On the Parity of Ranks of Selmer Groups III

Jan Nekovář

Received: May 4, 2006
Revised: May 10, 2007

Communicated by Ulf Rehmann

Abstract

We show that the parity conjecture for Selmer groups is invariant under deformation in p-adic families of self-dual pure Galois representations satisfying Pančiškin's condition at all primes above p.

2000 Mathematics Subject Classification: 11G40 11R23

0. Introduction

(0.0) Let F, L be number fields contained in a fixed algebraic closure $\overline{\mathbf{Q}}$ of \mathbf{Q}; let M be a motive over F with coefficients in L. The L-function of M (assuming it is well-defined) is a Dirichlet series $\sum_{n>1} a_{n} n^{-s}$ with coefficients in L. For each embedding $\iota: \overline{\mathbf{Q}} \hookrightarrow \mathbf{C}$, the complex-valued L-function

$$
L(\iota M, s)=\sum_{n \geq 1} \iota\left(a_{n}\right) n^{-s}
$$

is absolutely convergent for $\operatorname{Re}(s) \gg 0$. It is expected to admit a meromorphic continuation to \mathbf{C} and a functional equation of the form
$\left(C_{F E}\right) \quad\left(L \cdot L_{\infty}\right)(\iota M, s) \stackrel{?}{=} \varepsilon(\iota M, s)\left(L \cdot L_{\infty}\right)\left(\iota M^{*}(1),-s\right)$,
where

$$
L_{\infty}(\iota M, s)=\prod_{v \mid \infty} L_{v}(\iota M, s)
$$

is a product of appropriate Γ-factors (independent of ι) and

$$
\varepsilon(\iota M, s)=\iota(\varepsilon(M)) \operatorname{cond}(M)^{-s}, \quad \varepsilon(M) \in \overline{\mathbf{Q}}^{*}
$$

(0.1) Let p be a prime number and $\mathfrak{p} \mid p$ a prime of L above p. The \mathfrak{p}-adic realization $M_{\mathfrak{p}}$ of M is a finite-dimensional $L_{\mathfrak{p}}$-vector space equipped with a continuous action of the Galois group $G_{F, S}=\operatorname{Gal}\left(F_{S} / F\right)$, where $F_{S} \subset \overline{\mathbf{Q}}$ is the maximal extension of F unramified outside a suitable finite set $S \supset S_{p} \cup S_{\infty}$ of primes of F. According to the conjectures of Bloch and Kato [Bl-Ka] (generalized by Fontaine and Perrin-Riou [Fo-PR]),

$$
\begin{aligned}
\left(C_{B K}\right) \quad \operatorname{ord}_{s=0} L(\iota M, s) & \stackrel{?}{=} \operatorname{dim}_{L_{\mathfrak{p}}} H_{f}^{1}\left(F, M_{\mathfrak{p}}^{*}(1)\right)-\operatorname{dim}_{L_{\mathfrak{p}}} H^{0}\left(F, M_{\mathfrak{p}}^{*}(1)\right)= \\
& =h_{f}^{1}\left(F, M_{\mathfrak{p}}^{*}(1)\right)-h^{0}\left(F, M_{\mathfrak{p}}^{*}(1)\right),
\end{aligned}
$$

where $H_{f}^{1}(F, V) \subseteq H^{1}\left(G_{F, S}, V\right)$ is the generalized Selmer group defined in [BlKa .
(0.2) Consider the special case when the motive M is SELf-dual (i.e., when there exists a skew-symmetric isomorphism $\left.M \xrightarrow{\sim} M^{*}(1)\right)$ and PURE (necessarily of weight -1$)$. In this case $H^{0}\left(F, M_{\mathfrak{p}}\right)=0$ and $\operatorname{ord}_{s=0} L_{\infty}(\iota M, s)=0$, which means that the global ε-factor $\varepsilon(M)$ determines the parity of $\operatorname{ord}_{s=0} L(\iota M, s)$ (assuming the validity of $\left.\left(C_{F E}\right)\right)$:

$$
\begin{equation*}
(-1)^{\operatorname{ord}_{s=0} L(\iota M, s)}=\varepsilon(M) \tag{0.2.1}
\end{equation*}
$$

In this article we concentrate on the Parity conjecture for Selmer groups, namely on the conjecture
$\left(C_{B K}(\bmod 2)\right)$

$$
\operatorname{ord}_{s=0} L(\iota M, s) \stackrel{?}{=} h_{f}^{1}\left(F, M_{\mathfrak{p}}\right)(\bmod 2)
$$

In view of (0.2.1), this conjecture can be reformulated (assuming $\left(C_{F E}\right)$) as follows:

$$
\begin{equation*}
(-1)^{h_{f}^{1}\left(F, M_{\mathfrak{p}}\right)} \stackrel{?}{=} \varepsilon(M) \tag{0.2.2}
\end{equation*}
$$

(0.3) The advantage of the formulation (0.2.2) is that the global ε-factor

$$
\varepsilon(M)=\prod_{v} \varepsilon_{v}(M), \quad \varepsilon_{v}(M)=\varepsilon_{v}\left(M_{\mathfrak{p}}\right)
$$

is a product of local ε-factors, which can be expressed in terms of the Galois representation $M_{\mathfrak{p}}$ alone: for $v \nmid p \infty$ (resp., $\left.v \mid p\right), \varepsilon_{v}(M)$ is the local ε-factor of the representation of the Weil-Deligne group of F_{v} attached to the action of $\operatorname{Gal}\left(\bar{F}_{v} / F_{v}\right)$ on $M_{\mathfrak{p}}$ (resp., attached to the corresponding Fontaine module $D_{p s t}\left(M_{\mathfrak{p}}\right)$ over F_{v}). For $v \mid \infty, \varepsilon_{v}(M)$ depends on the Hodge numbers of the de Rham realization $M_{d R}$ of M, which can be read off from $D_{d R}\left(M_{\mathfrak{p}}\right)$ over F_{v}, for any $v \mid p$.
It makes sense, therefore, to rewrite the conjecture (0.2.2) as

$$
\begin{equation*}
(-1)^{h_{f}^{1}(F, V)} \stackrel{?}{=} \varepsilon(V)=\prod_{v} \varepsilon_{v}(V), \tag{0.3.1}
\end{equation*}
$$

for any symplectically self-dual $\left(V \xrightarrow{\sim} V^{*}(1)\right)$ representation of $G_{F, S}$ which is geometric ($=$ potentially semistable at all primes above p) and pure (of weight $-1)$.
In the present article we consider the following question: is the conjecture (0.3.1) invariant under deformation in p-adic families of representations of $G_{F, S}$? In other words, if V, V^{\prime} are two representations of $G_{F, S}$ (self-dual, geometric and pure) belonging to the same p-adic family (say, in one parameter) of representations of $G_{F, S}$, is it true that

$$
\begin{equation*}
(-1)^{h_{f}^{1}(F, V)} / \varepsilon(V) \stackrel{?}{=}(-1)^{h_{f}^{1}\left(F, V^{\prime}\right)} / \varepsilon\left(V^{\prime}\right) \tag{0.3.2}
\end{equation*}
$$

The main result of this article (Thm. 5.3.1) implies that (0.3.2) holds for families satisfying the Pančiškin condition at all primes $v \mid p$. The proof follows the strategy employed in [Ne 2, ch. 12] in the context of Hilbert modular forms ${ }^{(1)}$: multiplying both sides of (0.3.1) by a common sign (the contribution of the "trivial zeros"), we rewrite (0.3.1) as

$$
\begin{equation*}
(-1)^{\widetilde{h}_{f}^{1}(F, V)} \stackrel{?}{=} \widetilde{\varepsilon}(V)=\prod_{v} \widetilde{\varepsilon}_{v}(V) \tag{0.3.3}
\end{equation*}
$$

where $\widetilde{h}_{f}^{1}(F, V)=\operatorname{dim}_{L_{\mathfrak{p}}} \widetilde{H}_{f}^{1}(F, V)$ is the dimension of the extended Selmer group (defined in 4.2 below) and $\widetilde{\varepsilon}_{v}(V)=\varepsilon_{v}(V)$, unless $v \mid p$ and the local Euler factor at v admits a "trivial zero". The goal is to show that both sides of (0.3.3) remain constant in the family ${ }^{(2)}$.
The variation of $\widetilde{H}_{f}^{1}(F, V)$ in the family is controlled by the torsion submodule of a suitable \widetilde{H}_{f}^{2}. The generalized Cassels-Tate pairing constructed in [Ne 2, ch. 10] defines a skew-symmetric form on this torsion submodule, which implies that the parity of $\widetilde{h}_{f}^{1}(F, V)$ is constant in family:

$$
(-1)^{\widetilde{h}_{f}^{1}(F, V)}=(-1)^{\widetilde{h}_{f}^{1}\left(F, V^{\prime}\right)} .
$$

The Pančiškin condition allows us to compute explicitly the local terms $\widetilde{\varepsilon}_{v}(V)$ for all $v \mid p$, which yields

$$
\prod_{v \mid p \infty} \widetilde{\varepsilon}_{v}(V)=\prod_{v \mid p \infty} \widetilde{\varepsilon}_{v}\left(V^{\prime}\right)
$$

Finally, it follows from general principles (and the purity assumption) that

$$
\forall v \nmid p \infty \quad \varepsilon_{v}(V)=\varepsilon_{v}\left(V^{\prime}\right)
$$

hence $\widetilde{\varepsilon}(V)=\widetilde{\varepsilon}\left(V^{\prime}\right)$.

[^0]
1. Representations of the Weil-Deligne group

(1.1) The general setup ([De 1, §8], [De 2, 3.1], [Fo-PR, I.1.1-2])
(1.1.1) We use the notation of [Fo-PR, ch.I]. For a field L, denote by $L^{\text {sep }}$ a separable closure of L and by $G_{L}=\operatorname{Gal}\left(L^{\text {sep }} / L\right)$ the absolute Galois group of L. Throughout this article, K will be a complete discrete valuation field of characteristic zero with finite residue field k of cardinality $q=q_{k}$; denote by $f=f_{k} \in G_{k}$ the GEOMETRIC Frobenius element $\left(f(x)=x^{1 / q}\right)$. We identify $G_{k} \xrightarrow{\sim} \widehat{\mathbf{Z}}$ via $f \mapsto 1$ and denote by $\nu: G_{K} \xrightarrow{\text { can }} G_{k} \xrightarrow{\sim} \widehat{\mathbf{Z}}$ the canonical surjection whose kernel $\operatorname{Ker}(\nu)=I_{K}=I$ is the inertia group of K. The Weil group (of K) $W_{K}=\nu^{-1}(\mathbf{Z})=\coprod_{n \in \mathbf{Z}} \tilde{f}^{n} I\left(\tilde{f} \in \nu^{-1}(1)\right)$ is equipped with the topology of a disjoint union of countably many pro-finite sets. The homomorphism

$$
|\cdot|: W_{K} \longrightarrow q^{\mathbf{Z}}, \quad|w|=q^{-\nu(w)}
$$

corresponds to the normalized valuation $|\cdot|: K^{*} \longrightarrow q^{\mathbf{Z}}$ via the reciprocity isomorphism $\operatorname{rec}_{K}: K^{*} \xrightarrow{\sim} W_{K}^{a b}$ (normalized using the geometric Frobenius element).
(1.1.2) Let E be a field of characteristic zero.

An object of $\operatorname{Rep}_{E}\left(W_{K}\right)(=$ a representation of the Weil group of K over E) is a finite-dimensional E-vector space Δ equipped with a continuous homomorphism $\rho=\rho_{\Delta}: W_{K} \longrightarrow \operatorname{Aut}_{E}(\Delta)$ (with respect to the discrete topology on the target). As $\operatorname{Ker}(\rho)$ is open, $\rho(I)$ is finite and $\left.\rho\right|_{I}$ is semi-simple.
An object of $\operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right)$ ($=$ a representation of the Weil-Deligne group of K over $E)$ is a pair (ρ, N), where $\rho=\rho_{\Delta} \in \operatorname{Rep}_{E}\left(W_{K}\right)$ and $N \in \operatorname{End}_{E}(\Delta)$ is a nilpotent endomorphism satisfying

$$
\forall w \in W_{K} \quad \rho(w) N \rho(w)^{-1}=|w| N
$$

Morphisms in $\operatorname{Rep}_{E}\left(W_{K}\right)$ (resp., in $\operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right)$) are E-linear maps commuting with the action of W_{K} (resp., with the action of W_{K} and N). We consider $\operatorname{Rep}_{E}\left(W_{K}\right)$ as a full subcategory of $\operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right)$ via the full embedding $\rho \mapsto(\rho, 0)$. Tensor products and duals in $\operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right)$ are defined in the usual way: $N_{\Delta \otimes \Delta^{\prime}}=N_{\Delta} \otimes 1+1 \otimes N_{\Delta^{\prime}}, N_{\Delta^{*}}=-\left(N_{\Delta}\right)^{*}$. The Tate twist of $\Delta \in \operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right)$ by an integer $m \in \mathbf{Z}$ is defined as $\Delta|\cdot|^{m}=\Delta \otimes E|\cdot|^{m}$, where $w \in W_{K}$ acts on the one-dimensional representation $E|\cdot|^{m} \in \operatorname{Rep}_{E}\left(W_{K}\right)$ by $|w|^{m}$.
The Frobenius semi-simplification

$$
\Delta=(\rho, N) \mapsto \Delta^{f-s s}=\left(\rho^{s s}, N\right)
$$

is an exact tensor functor $\operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right) \longrightarrow \operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right)$. The "forget the monodromy" functor

$$
\Delta=(\rho, N) \mapsto \Delta^{N-s s}=(\rho, 0)
$$

is an exact tensor functor $\operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right) \longrightarrow \operatorname{Rep}_{E}\left(W_{K}\right)$.
Following [Fo-PR, I.1.2.1], we put, for each $\Delta \in \operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right)$,

$$
\Delta_{g}=\Delta^{\rho(I)}, \quad \Delta_{f}=\operatorname{Ker}(N)^{\rho(I)} \subset \Delta_{g}, \quad P_{K}(\Delta, u)=\operatorname{det}\left(1-f u \mid \Delta_{f}\right) \in E[u]
$$

We also set

$$
H^{0}(\Delta)=\operatorname{Ker}\left(\Delta_{f} \xrightarrow{f-1} \Delta_{f}\right)
$$

(1.1.3) In the special case when E is a finite extension of $\mathbf{Q}_{p}(p \neq \operatorname{char}(k))$ and when $V \in \operatorname{Rep}_{E}\left(G_{K}\right)$ is a representation of G_{K} over E (finite-dimensional and continuous with respect to the topology on E defined by the p-adic valuation), then V gives rise to a representation $W D(V)=\Delta=\left(\rho_{\Delta}, N\right) \in \operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right)$ acting on V, which is defined as follows ([De 1, 8.4]): there exists an open subgroup J of I which acts on V unipotently, and through the map $J \hookrightarrow I \rightarrow I(p)$, where $I(p)$ is the maximal pro- p-quotient of I (isomorphic to \mathbf{Z}_{p}). Fixing a topological generator t of $I(p)$ and an integer $a \geq 1$ such that t^{a} lies in the image of J, the nilpotent endomorphism

$$
N=\frac{1}{a} \log \rho_{V}\left(t^{a}\right) \in \operatorname{End}_{E}(V)
$$

(where $\rho_{V}: G_{K} \longrightarrow \operatorname{Aut}_{E}(V)$ denotes the action of G_{K} on V) is independent of a. Fix a lift $\widetilde{f} \in \nu^{-1}(1) \subset W_{K}$ of f and define

$$
\rho_{\Delta}: W_{K} \longrightarrow \operatorname{Aut}_{E}(V)
$$

by

$$
\rho_{\Delta}\left(\widetilde{f}^{n} u\right):=\rho_{V}\left(\widetilde{f}^{n} u\right) \exp (-b N) \quad(n \in \mathbf{Z}, u \in I)
$$

where $b \in \mathbf{Z}_{p}$ is such that the image of u in $I(p)$ is equal to t^{b}. The pair $\left(\rho_{\Delta}, N\right)$ defines an object $\Delta=W D(V)$ of $\operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right)$, the isomorphism class of which is independent of the choices of \widetilde{f} and t ([De 1], Lemma 8.4.3), and which satisfies

$$
\Delta_{f}=V^{\rho_{V}(I)}, \quad H^{0}(\Delta)=V^{\rho_{V}\left(G_{K}\right)}
$$

(1.2) Self-dual Representations

(1.2.1) Definition. Let $\omega: W_{K} \longrightarrow E^{*}$ be a one-dimensional object of $\operatorname{Rep}_{E}\left(W_{K}\right)$. We say that $\Delta \in \operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right)$ is ω-ORTHOGONAL (resp., ω SYMPLECTIC) if there exists a morphism in $\operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right) \Delta \otimes \Delta \longrightarrow \omega$ which is non-degenerate (i.e., which induces an isomorphism $\Delta \xrightarrow{\sim} \Delta^{*} \otimes \omega$) and SYMMETRIC (resp., SKEW-SYMMETRIC). If $\omega=1$, we say that Δ is ORTHOGONAL (resp., SYMPLECTIC).
(1.2.2) (1) If Δ is ω-orthogonal, then $\operatorname{det}(\Delta)^{2}=\omega^{\operatorname{dim}(\Delta)}$.
(2) If Δ is ω-symplectic, then $2 \mid \operatorname{dim}(\Delta)$ and $\operatorname{det}(\Delta)=\omega^{\operatorname{dim}(\Delta) / 2}$.
(1.2.3) Example: For $m \geq 1$, define $s p(m) \in \operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right)$ by

$$
s p(m)=\bigoplus_{i=0}^{m-1} E e_{i}, \quad N\left(e_{i}\right)=e_{i+1}, \quad \forall w \in W_{K} \quad w\left(e_{i}\right)=|w|^{i} e_{i}
$$

Up to a scalar multiple, there is a unique non-degenerate morphism $s p(m) \otimes$ $s p(m) \longrightarrow E|\cdot|{ }^{m-1}$ in $\operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right)$, namely

$$
s p(m) \otimes s p(m) \longrightarrow E|\cdot|^{m-1}, \quad e_{i} \otimes e_{j} \mapsto \begin{cases}(-1)^{i}, & i+j=m-1 \\ 0, & i+j \neq m-1\end{cases}
$$

This morphism is $|\cdot|^{m-1}$-symplectic (resp., $|\cdot|^{m-1}$-orthogonal) if $2 \mid m$ (resp., if $2 \nmid m)$.
(1.2.4) According to [De 2, 3.1.3(ii)], indecomposable f-semi-simple objects of $\operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right)$ are of the form $\rho \otimes s p(m)$, where $\rho \in \operatorname{Rep}_{E}\left(W_{K}\right)$ is irreducible and $m \geq 1$. This implies that, for each $|\cdot|$-symplectic representation $\Delta \xrightarrow{\sim} \Delta^{*}|\cdot| \in$ $\operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right)$, the f-semi-simplification $\Delta^{f-s s}$ is a direct sum of $|\cdot|$-symplectic representations of the following type:
(1) $X \oplus X^{*}|\cdot|\left(X \in \operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right)\right)$ with the standard symplectic form $\left(x, x^{*}\right) \otimes$ $\left(y, y^{*}\right) \mapsto x^{*}(y)-y^{*}(x)$;
(2) $\rho \otimes \operatorname{sp}(m)$, where $m \geq 1, \rho \in \operatorname{Rep}_{E}\left(W_{K}\right)$ is irreducible and $|\cdot|^{2-m}$-symplectic (resp., $|\cdot|^{2-m}$-orthogonal) if $2 \nmid m$ (resp., if $2 \mid m$).

(1.3) The monodromy filtration

(1.3.1) For each $\Delta=(\rho, N) \in \operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right)$, the monodromy filtration

$$
M_{n} \Delta:=\sum_{i-j=n+1} \operatorname{ker}\left(N^{i}\right) \cap \operatorname{Im}\left(N^{j}\right) \quad(n \in \mathbf{Z})
$$

is the unique increasing filtration of Δ by E-vector subspaces satisfying

$$
\begin{gathered}
\bigcap_{n} M_{n} \Delta=0, \quad \bigcup_{n} M_{n} \Delta=\Delta, \quad N\left(M_{n} \Delta\right) \subseteq M_{n-2} \Delta, \\
\forall r \geq 0 \quad N^{r}: \operatorname{gr}_{r}^{M} \Delta \xrightarrow{\sim} \operatorname{gr}_{-r}^{M} \Delta .
\end{gathered}
$$

(1.3.2) Examples: (1) $N=0 \Longleftrightarrow M_{-1} \Delta=0, M_{0} \Delta=\Delta$.
(2) If $N^{r} \neq 0=N^{r+1}(r \geq 0)$, then $M_{-r-1} \Delta=0, M_{-r} \Delta=\operatorname{Im}\left(N^{r}\right) \neq 0$, $M_{r-1} \Delta=\operatorname{Ker}\left(N^{r}\right) \neq \Delta, M_{r} \Delta=\Delta$.
(1.3.3) More precisely, the endomorphism $N \in \operatorname{End}_{E}(\Delta)$ defines a morphism in $\operatorname{Rep}_{E}\left(W_{K}\right)$

$$
N: \Delta \longrightarrow \Delta|\cdot|^{-1}
$$

which implies that each $M_{n} \Delta$ is a sub-object of $\Delta^{N-s s}$ in $\operatorname{Rep}_{E}\left(W_{K}\right)$,

$$
N: M_{n} \Delta \longrightarrow\left(M_{n-2} \Delta\right)|\cdot|^{-1}
$$

and, for each $r \geq 0$, the endomorphism N^{r} induces an isomorphism in $\operatorname{Rep}_{E}\left(W_{K}\right)$

$$
N^{r}: \operatorname{gr}_{r}^{M} \Delta \xrightarrow{\sim}\left(\operatorname{gr}_{-r}^{M} \Delta\right)|\cdot|^{-r}
$$

(1.3.4) The monodromy filtration on the dual representation $\Delta^{*}=\left(\rho^{*},-N^{*}\right)$ satisfies $M_{n} \Delta^{*}=\left(M_{-1-n} \Delta\right)^{\perp}(n \in \mathbf{Z})$, which yields canonical isomorphisms in $\operatorname{Rep}_{E}\left(W_{K}\right)$

$$
\forall m \leq n \quad M_{n} \Delta^{*} / M_{m} \Delta^{*} \xrightarrow{\sim}\left(M_{-1-m} \Delta / M_{-1-n} \Delta\right)^{*}
$$

(1.3.5) If $\langle\rangle:, \Delta \otimes \Delta \longrightarrow E \otimes \omega$ is an ω-symplectic form on Δ, then, for each $r \geq 0$, the formula $\langle x, y\rangle_{r}=\left\langle N^{r} x, y\right\rangle$ defines an $\omega|\cdot|^{-r}$-symplectic (resp., $\omega|\cdot|^{-r}$-orthogonal) form on $\operatorname{gr}_{r}^{M} \Delta \in \operatorname{Rep}_{E}\left(W_{K}\right)$ if $2 \mid r$ (resp., if $2 \nmid r$).
(1.3.6) Dimensions. The dimensions

$$
d_{r}=d_{r}(\Delta)=\operatorname{dim} \operatorname{gr}_{r}^{M} \Delta=d_{-r} \quad(r \in \mathbf{Z})
$$

can be interpreted as follows. By the Jacobson-Morozov theorem, there exists a (non-unique) representation

$$
\rho: \operatorname{sl}(2)=\operatorname{sl}(2, E) \longrightarrow \operatorname{End}_{E}(\Delta)
$$

such that $\rho\left(\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\right)=N$. Putting $H=\rho\left(\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\right)$ and $\Delta_{m}=\{x \in \Delta \mid$ $H x=m x\}(m \in \mathbf{Z})$, then

$$
M_{n} \Delta=\sum_{m \leq n} \Delta_{m}
$$

Decomposing Δ as a representation of $\operatorname{sl}(2)$

$$
\Delta \xrightarrow{\sim} \bigoplus_{j \geq 0}\left(S^{j} E^{2}\right)^{\oplus m_{j}(\Delta)}
$$

then the multiplicities $m_{j}=m_{j}(\Delta)$ are related to other numerical invariants of Δ as follows:

$$
\begin{gather*}
\operatorname{dim}(\Delta)=\sum_{j \geq 0}(j+1) m_{j}, \quad(\forall r \geq 0) \quad d_{-r}=\sum_{i \geq 0} m_{r+2 i}, \quad m_{r}=d_{-r}-d_{-r-2} \\
\operatorname{dim} \operatorname{Im}\left(N^{r}\right)=d_{r}+2 \sum_{j>r} d_{j}, \quad \operatorname{dim} \operatorname{Ker}\left(N^{r+1}\right)=d_{0}+2 \sum_{j=1}^{r} d_{j}+d_{r+1} \tag{1.3.6.1}
\end{gather*}
$$

(1.4) Purity
(1.4.1) Definition. Let E^{\prime} be a field containing E and $a \in \mathbf{Z}$. We say that $\alpha \in E^{\prime}$ is a q^{a}-Weil number of weight $n \in \mathbf{Z}$ if α is algebraic over \mathbf{Q}, there exists $N \in \mathbf{Z}$ such that $q^{N} \alpha$ is integral over \mathbf{Z}, and for each embedding $\sigma: \mathbf{Q}(\alpha) \hookrightarrow \mathbf{C}$, the usual archimedean absolute value of $\sigma(\alpha)$ is equal to $|\sigma(\alpha)|_{\infty}=q^{a n / 2}$.
(1.4.2) Definition. We say that $\Delta \in \operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right)$ is strictly pure of Weight $n \in \mathbf{Z}$ if $\Delta=\rho \in \operatorname{Rep}_{E}\left(W_{K}\right)$ and if for each $w \in W_{K}$ all eigenvalues of $\rho(w)$ are $q^{\nu(w)}$-Weil numbers of weight $n \in \mathbf{Z}$.
(1.4.3) Definition. We say that $\Delta \in \operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right)$ is pure of weight $n \in \mathbf{Z}$ if, for each $r \in \mathbf{Z}, \operatorname{gr}_{r}^{M} \Delta \in \operatorname{Rep}_{E}\left(W_{K}\right)$ is strictly pure of weight $n+r$.
(1.4.4) (1) Each representation $\rho \in \operatorname{Rep}_{E}\left(W_{K}\right)$ with finite image is strictly pure of weight 0 .
(2) If $\Delta, \Delta^{\prime} \in \operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right)$ are (strictly) pure of weights n and n^{\prime}, respectively, then $\Delta \otimes \Delta^{\prime}$ is (strictly) pure of weight $n+n^{\prime}$, and Δ^{*} is (strictly) pure of weight $-n$.
(3) For each $m \in \mathbf{Z}, E|\cdot|^{m}$ is strictly pure of weight $-2 m$.
(4) For each $\rho \in \operatorname{Rep}_{E}\left(W_{K}\right)$ and $m \geq 1$,
$\Delta=\rho \otimes s p(m)$ is pure of weight $n \Longleftrightarrow \rho$ is strictly pure of weight $n+m-1$ $\Longrightarrow \Delta_{f}=\rho^{I}|\cdot|^{m-1}$ is strictly pure of weight $n+1-m$.
(5) If $\Delta \in \operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right)$ is pure of weight $n<0$, then all eigenvalues of $\rho(\widetilde{f})$ (for any $\left.\widetilde{f} \in \nu^{-1}(1)\right)$ on $\operatorname{Ker}(N) \subseteq M_{0} \Delta$ are q-Weil numbers of weights $\leq n<0$, hence $H^{0}(\Delta)=0$.
(6) If $\Delta \underset{\sim}{ } \in \operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right)$ is pure of weight n (but not necessarily f-semi-simple), then $\Delta \xrightarrow{\sim} \bigoplus \rho_{j} \otimes s p\left(m_{j}\right)$, where each $\rho_{j} \in \operatorname{Rep}_{E}\left(W_{K}\right)$ is strictly pure of weight $n+m_{j}-1$.
(1.4.5) Definition. In the situation of 1.1.3, we say that $V \in \operatorname{Rep}_{E}\left(G_{K}\right)$ is PURE of Weight $n \in \mathbf{Z}$ if $W D(V) \in \operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right)$ is pure of weight $n \in \mathbf{Z}$ in the sense of 1.4.3.
(1.5) Specialization of representations of the Weil-Deligne group
(1.5.1) Let \mathcal{O} be a discrete valuation ring containing \mathbf{Q}; denote by E (resp., $k_{\mathcal{O}}$) the field of fractions (resp., the residue field) of \mathcal{O}.
(1.5.2) An object of $\operatorname{Rep}_{\mathcal{O}}\left({ }^{\prime} W_{K}\right)$ (= a representation of the Weil-Deligne group of K over \mathcal{O}) consists of a free \mathcal{O}-module of finite type T, a continuous homomorphism $\rho=\rho_{T}: W_{K} \longrightarrow \operatorname{Aut}_{\mathcal{O}}(T)$ (with respect to the discrete topology on the target) and a nilpotent endomorphism $N=N_{T} \in \operatorname{End}_{\mathcal{O}}(T)$ satisfying

$$
\forall w \in W_{K} \quad \rho(w) N \rho(w)^{-1}=|w| N
$$

The Generic fibre (resp., the special fibre) of T is the representation $T_{\eta}=$ $T \otimes_{\mathcal{O}} E \in \operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right)$ (resp., the representation $T_{s}=T \otimes_{\mathcal{O}} k_{\mathcal{O}} \in \operatorname{Rep}_{k_{\mathcal{O}}}\left({ }^{\prime} W_{K}\right)$). We denote by N_{η} (resp., N_{s}) the monodromy operator $N_{T} \otimes 1$ on T_{η} (resp., on $\left.T_{s}\right)$.
(1.5.3) For $T \in \operatorname{Rep}_{\mathcal{O}}\left({ }^{\prime} W_{K}\right)$, we denote by T^{*} the representation $T^{*}=$ $\operatorname{Hom}_{\mathcal{O}}(T, \mathcal{O})$ (equipped with the dual action of W_{K} and the monodromy operator $\left.N_{T^{*}}=-\left(N_{T}\right)^{*}\right)$. Given a representation $\omega: W_{K} \longrightarrow \mathcal{O}^{*}$, we say that T is ω-ORTHOGONAL (resp., ω-SYMPLECTIC) if there exists an isomorphism $j: T \xrightarrow{\sim} T^{*} \otimes \omega$ in $\operatorname{Rep}_{\mathcal{O}}\left({ }^{\prime} W_{K}\right)$ satisfying $j^{*} \otimes \omega=j$ (resp., $j^{*} \otimes \omega=-j$).
(1.5.4) Proposition. Assume that $T \in \operatorname{Rep}_{\mathcal{O}}\left({ }^{\prime} W_{K}\right)$ is $|\cdot|$-symplectic (hence so are T_{η} and T_{s}) and that $T_{s} \in \operatorname{Rep}_{k_{\mathcal{O}}}\left({ }^{\prime} W_{K}\right)$ is pure (necessarily of weight -1). Then:
(1) $\forall j \geq 0 \quad m_{j}\left(T_{\eta}\right)=m_{j}\left(T_{s}\right)$.
(2) $\forall j \geq 0 \quad \operatorname{dim}_{E} \operatorname{Ker}\left(N_{\eta}^{j}\right)=\operatorname{dim}_{k_{\mathcal{O}}} \operatorname{Ker}\left(N_{s}^{j}\right)$.
(3) For each $j \geq 0$, the natural injective map $\left(\operatorname{Ker}\left(N_{\eta}^{j}\right) \cap T\right) \otimes_{\mathcal{O}} k_{\mathcal{O}} \longrightarrow \operatorname{Ker}\left(N_{s}^{j}\right)$ is an isomorphism.

Proof. It is enough to prove (1), since (2) is a consequence of (1) and the formulas (1.3.6.1), and (2) is equivalent to (3) for trivial reasons. We prove (1) by induction on $r=\min \left\{j \geq 0 \mid N_{T}^{j+1}=0\right\}$. If $r=0$, then there is nothing to prove. Assume that $r \geq 1$ and that (1) holds whenever $N_{T}^{r}=0$. Recall from 1.3.2(2) and 1.3.5 that

$$
\begin{aligned}
& M_{-r-1}\left(T_{\eta}\right)=0 \neq M_{-r}\left(T_{\eta}\right)=\operatorname{Im}\left(N_{\eta}^{r}\right), \quad M_{r-1}\left(T_{\eta}\right)=\operatorname{Ker}\left(N_{\eta}^{r}\right) \neq T_{\eta}=M_{r}\left(T_{\eta}\right), \\
& M_{-r-1}\left(T_{s}\right)=0, \quad M_{-r}\left(T_{s}\right)=\operatorname{Im}\left(N_{s}^{r}\right), \quad M_{r-1}\left(T_{s}\right)=\operatorname{Ker}\left(N_{s}^{r}\right), \quad M_{r}\left(T_{s}\right)=T_{s}
\end{aligned}
$$

and that $M_{-r}\left(T_{\eta}\right)$ is $|\cdot|{ }^{r+1}$-symplectic (resp., $|\cdot|{ }^{r+1}$-orthogonal) if $2 \mid r$ (resp., if $2 \nmid r)$. The latter property implies that, for any eigenvalue $\alpha \in \overline{k_{\mathcal{O}}}$ of any lift $\tilde{f} \in \nu^{-1}(1)$ of f acting on $\left(M_{-r}\left(T_{\eta}\right) \cap T\right) \otimes_{\mathcal{O}} k_{\mathcal{O}}$ there exists another eigenvalue α^{\prime} such that $\alpha \alpha^{\prime}=q^{-r-1}$. On the other hand, $\left(M_{-r}\left(T_{\eta}\right) \cap T\right) \otimes_{\mathcal{O}} k_{\mathcal{O}} \in \operatorname{Rep}_{k_{\mathcal{O}}}\left(W_{K}\right)$ is a sub-object of T_{s} in $\operatorname{Rep}_{k_{\mathcal{O}}}\left({ }^{\prime} W_{K}\right)$, and all eigenvalues of \tilde{f} on T_{s} are q-Weil numbers of weights contained in $\{-r-1,-r, \ldots, r-1\}$; thus both α and α^{\prime} are q-Weil numbers of weight $-r-1$. In other words, $\left(\operatorname{Im}\left(N_{\eta}^{r}\right) \cap T\right) \otimes_{\mathcal{O}} k_{\mathcal{O}}=$ $\left(M_{-r}\left(T_{\eta}\right) \cap T\right) \otimes_{\mathcal{O}} k_{\mathcal{O}}$ is strictly pure of weight $-r-1$, hence is contained in $M_{-r}\left(T_{s}\right)=\operatorname{Im}\left(N_{s}^{r}\right)=\left(\operatorname{Im}\left(N_{T}^{r}\right)\right) \otimes_{\mathcal{O}} k_{\mathcal{O}}$. The opposite inclusion being trivial, we deduce that $\operatorname{Im}\left(N_{T}^{r}\right)$ is equal to $\operatorname{Im}\left(N_{\eta}^{r}\right) \cap T$, hence is a direct summand of T (as an \mathcal{O}-module); it follows that

$$
m_{r}\left(T_{s}\right)=\operatorname{dim}_{k_{\mathcal{O}}} \operatorname{Im}\left(N_{s}^{r}\right)=\operatorname{dim}_{E} \operatorname{Im}\left(N_{\eta}^{r}\right)=m_{r}\left(T_{\eta}\right)
$$

The representation $T^{\prime}=\left(M_{r-1}\left(T_{\eta}\right) \cap T\right) /\left(M_{-r}\left(T_{\eta}\right) \cap T\right) \in \operatorname{Rep}_{\mathcal{O}}\left({ }^{\prime} W_{K}\right)$ is also $|\cdot|$-symplectic, satisfies $N_{T^{\prime}}^{r}=0$, and T_{s}^{\prime} is pure of weight -1 . By induction hypothesis, we have

$$
\forall j \geq 0 \quad m_{j}\left(T_{s}^{\prime}\right)=m_{j}\left(T_{\eta}^{\prime}\right)
$$

The relations

$$
m_{j}\left(T_{?}^{\prime}\right)=\left\{\begin{array}{ll}
m_{j}\left(T_{?}\right), & j \neq r, r-2 \\
m_{r-2}\left(T_{?}\right)+m_{r}\left(T_{?}\right), & j=r-2 \geq 0 \\
0, & \text { otherwise }
\end{array} \quad(?=\eta, s)\right.
$$

then imply

$$
\forall j \geq 0 \quad m_{j}\left(T_{s}\right)=m_{j}\left(T_{\eta}\right)
$$

2. LOCAL ε-FACTORS

(2.1) General facts

(2.1.1) Fix an algebraically closed field $E^{\prime} \supset E$. Let $\psi: K \longrightarrow E^{\prime *}$ be a non-trivial continuous homomorphism (with respect to the discrete topology on the target); it always exists. If $\psi^{\prime}: K \longrightarrow E^{\prime *}$ is another non-trivial continuous homomorphism, then there exists unique $a \in K^{*}$ such that $\psi^{\prime}=\psi_{a}$, where $\psi_{a}(y)=$ $\psi(a y)$. Denote by μ_{ψ} the unique E^{\prime}-valued Haar measure on K which is self-dual with respect to ψ; then

$$
\begin{equation*}
\forall a \in K^{*} \quad \mu_{\psi_{a}}=|a|^{1 / 2} \mu_{\psi} \tag{2.1.1.1}
\end{equation*}
$$

and every non-zero E^{\prime}-valued Haar measure μ on K is a scalar multiple of μ_{ψ} : $\mu=b \mu_{\psi}$, for some $b \in E^{\prime *}$.
(2.1.2) Deligne [De 1] associated to each triple (Δ, ψ, μ), where $\Delta \in \operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right)$ and ψ, μ are as in 2.1.1, the local ε-factor $\varepsilon(\Delta, \psi, \mu) \in E^{\prime *}$ satisfying the following properties.
(2.1.2.1) $\varepsilon(\Delta, \psi, \mu)=\varepsilon\left(\Delta^{f-s s}, \psi, \mu\right)$.
(2.1.2.2) If $0 \longrightarrow \rho^{\prime} \longrightarrow \rho \longrightarrow \rho^{\prime \prime} \longrightarrow 0$ is an exact sequence in $\operatorname{Rep}_{E}\left(W_{K}\right)$, then $\varepsilon(\rho, \psi, \mu)=\varepsilon\left(\rho^{\prime}, \psi, \mu\right) \varepsilon\left(\rho^{\prime \prime}, \psi, \mu\right)$.
(2.1.2.3) $\quad \varepsilon_{0}(\Delta, \psi, \mu)=\varepsilon(\Delta, \psi, \mu) \operatorname{det}\left(-f \mid \Delta_{f}\right) \quad$ depends only on $\Delta^{N-s s} \in$ $\operatorname{Rep}_{E}\left(W_{K}\right)$. As $\left(\Delta^{N-s s}\right)_{f}=\Delta_{g}$, it follows that

$$
\varepsilon(\Delta, \psi, \mu)=\varepsilon\left(\Delta^{N-s s}, \psi, \mu\right) \operatorname{det}\left(-f \mid \Delta_{g} / \Delta_{f}\right)
$$

(2.1.2.4) $\forall a \in K^{*} \quad \varepsilon\left(\Delta, \psi_{a}, \mu\right)=(\operatorname{det} \Delta)(a)|a|^{-\operatorname{dim}(\Delta)} \varepsilon(\Delta, \psi, \mu)$.
(2.1.2.5) $\quad \forall b \in E^{\prime *} \quad \varepsilon(\Delta, \psi, b \mu)=b^{\operatorname{dim}(\Delta)} \varepsilon(\Delta, \psi, \mu)$.
(2.1.2.6) If $\Delta=\rho \in \operatorname{Rep}_{E}\left(W_{K}\right)$, then $\varepsilon(\rho, \psi, \mu) \varepsilon\left(\rho^{*}|\cdot|, \psi_{-1}, \mu^{*}\right)=1$ (where μ^{*} is the measure dual to μ with respect to ψ).
(2.1.2.7) If $\Delta=\rho \in \operatorname{Rep}_{E}\left(W_{K}\right)$, and if $\chi: W_{K} / I \longrightarrow E^{*}$ is an unramified one-dimensional representation, then

$$
\varepsilon(\rho \otimes \chi, \psi, \mu)=\varepsilon(\rho, \psi, \mu) \chi(\pi)^{a(\rho)+\operatorname{dim}(\rho) n(\psi)}
$$

where π is a prime element of \mathcal{O}_{K} and $a(\rho)$ (resp., $n(\psi)$) is the conductor exponent of ρ (resp., of ψ).
(2.1.2.8) ([Fo-PR, I.1.2.3]) For an exact sequence in $\operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right)$

$$
0 \longrightarrow \Delta^{\prime} \longrightarrow \Delta \longrightarrow \Delta^{\prime \prime} \longrightarrow 0
$$

set $P_{K}(\beta)=P_{K}(\Delta, u) / P_{K}\left(\Delta^{\prime}, u\right) P_{K}\left(\Delta^{\prime \prime}, u\right), a(\beta)=\operatorname{dim} \Delta_{f}^{\prime}+\operatorname{dim} \Delta_{f}^{\prime \prime}-$ $\operatorname{dim} \Delta_{f}, \varepsilon(\beta)=\varepsilon(\Delta, \psi, \mu) / \varepsilon\left(\Delta^{\prime}, \psi, \mu\right) \varepsilon\left(\Delta^{\prime \prime}, \psi, \mu\right)$, and similarly for the dual exact sequence

$$
\left(\beta^{*}|\cdot|\right) \quad 0 \longrightarrow \Delta^{\prime * *}|\cdot| \longrightarrow \Delta^{*}|\cdot| \longrightarrow \Delta^{\prime *}|\cdot| \longrightarrow 0
$$

then

$$
P_{K}\left(\beta^{*}|\cdot|, u^{-1}\right)=\varepsilon(\beta) u^{a(\beta)} P_{K}(\beta, u)
$$

(2.1.3) Lemma. If $\Delta \in \operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right)$, then $\varepsilon(\Delta, \psi, \mu) \varepsilon\left(\Delta^{*}|\cdot|, \psi_{-1}, \mu^{*}\right)=1$ (where μ^{*} is the measure dual to μ with respect to ψ).

Proof. Thanks to (2.1.2.1-2), we can assume that Δ is f-semi-simple and indecomposable: $\Delta=\rho \otimes s p(m), \rho \in \operatorname{Rep}_{E}\left(W_{K}\right), m \geq 1$. In this case

$$
\begin{aligned}
\Delta_{g}=\bigoplus_{j=0}^{m-1} \rho^{I}|\cdot|^{j}, \quad \Delta_{g} / \Delta_{f} & =\bigoplus_{j=0}^{m-2} \rho^{I}|\cdot|^{j}, \quad \Delta^{*}|\cdot|=\rho^{*} \otimes s p(m)|\cdot|^{2-m} \\
\left(\Delta^{*}|\cdot|\right)_{g} /\left(\Delta^{*}|\cdot|\right)_{f} & =\bigoplus_{j=0}^{m-2}\left(\rho^{*}\right)^{I}|\cdot|^{2-m+j}=\left(\Delta_{g} / \Delta_{f}\right)^{*}
\end{aligned}
$$

(as $\rho(I)$ is finite, we have $\left(\rho^{*}\right)^{I}=\left(\rho^{I}\right)^{*}$), hence

$$
\operatorname{det}\left(-f \mid \Delta_{g} / \Delta_{f}\right) \operatorname{det}\left(-f \mid\left(\Delta^{*}|\cdot|\right)_{g} /\left(\Delta^{*}|\cdot|\right)_{f}\right)=1 ;
$$

we deduce that

$$
\varepsilon(\Delta, \psi, \mu) \varepsilon\left(\Delta^{*}|\cdot|, \psi_{-1}, \mu^{*}\right)=\varepsilon\left(\Delta^{N-s s}, \psi, \mu\right) \varepsilon\left(\left(\Delta^{*}|\cdot|\right)^{N-s s}, \psi_{-1}, \mu^{*}\right)
$$

which is equal to 1 , by (2.1.2.6).

(2.2) | $\cdot \mid$-SYMPLECTIC REPRESENTATIONS

(2.2.1) Proposition. Let $\Delta \xrightarrow{\sim} \Delta^{*}|\cdot| \in \operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right)$ be $|\cdot|$-symplectic. Then:
(1) $\varepsilon(\Delta):=\varepsilon\left(\Delta, \psi, \mu_{\psi}\right)$ does not depend on ψ.
(2) $\varepsilon(\Delta)= \pm 1$; more precisely:
(3) If $\rho \xrightarrow{\sim} \rho^{*}|\cdot| \in \operatorname{Rep}_{E}\left(W_{K}\right)$ is $|\cdot|$-symplectic, then $\varepsilon(\rho)= \pm 1$.
(4) If $\Delta=X \oplus X^{*}|\cdot|$ is as in 1.2.4(1), then $\varepsilon(\Delta)=\varepsilon\left(\Delta^{N-s s}\right)=(\operatorname{det} X)(-1)$.
(5) If $\Delta=\rho \otimes \operatorname{sp}(2 n+1)\left(\rho \in \operatorname{Rep}_{E}\left(W_{K}\right), n \geq 0\right)$, then $\rho|\cdot|^{n} \in \operatorname{Rep}_{E}\left(W_{K}\right)$ is $|\cdot|$-symplectic and $\varepsilon(\Delta)=\varepsilon\left(\Delta^{N-s s}\right)=\varepsilon\left(\rho|\cdot|{ }^{n}\right)$.
(6) If $\Delta=\rho \otimes \operatorname{sp}(2 n)\left(\rho \in \operatorname{Rep}_{E}\left(W_{K}\right), n \geq 1\right)$, then $\rho|\cdot|{ }^{n-1} \in \operatorname{Rep}_{E}\left(W_{K}\right)$ is orthogonal, there is an exact sequence in $\operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right)$

$$
\begin{gathered}
0 \longrightarrow \Delta^{+} \longrightarrow \Delta \longrightarrow \Delta^{-} \longrightarrow 0 \\
\Delta^{+}=\rho \otimes \operatorname{sp}(n)|\cdot|^{n}, \quad \Delta^{-}=\rho \otimes \operatorname{sp}(n),
\end{gathered}
$$

$H^{0}\left(\Delta^{-}\right)=H^{0}\left(\rho|\cdot|{ }^{n-1}\right)$ and

$$
\varepsilon(\Delta)=(-1)^{\operatorname{dim}_{E} H^{0}\left(\Delta^{-}\right)}\left(\operatorname{det} \Delta^{+}\right)(-1), \quad \varepsilon\left(\Delta^{N-s s}\right)=\left(\operatorname{det} \Delta^{+}\right)(-1)
$$

Proof. (1) For each $a \in K^{*}$,

$$
\begin{align*}
& \varepsilon\left(\Delta, \psi_{a}, \mu_{\psi_{a}}\right)=\varepsilon\left(\Delta, \psi_{a},|a|^{1 / 2} \mu_{\psi}\right) \quad \quad(b y ~(2.1 .1 .1)) \\
& =|a|^{\operatorname{dim}(\Delta) / 2} \varepsilon\left(\Delta, \psi_{a}, \mu_{\psi}\right) \quad \text { (by (2.1.2.5)) } \\
& =(\operatorname{det} \Delta)(a)|a|^{-\operatorname{dim}(\Delta) / 2} \varepsilon\left(\Delta, \psi, \mu_{\psi}\right) \quad(\text { by }(2.1 .2 .4)) \\
& =\varepsilon\left(\Delta, \psi, \mu_{\psi}\right) \text {. } \tag{2}
\end{align*}
$$

(2) Writing $\Delta^{f-s s}$ as a direct sum of $|\cdot|$-symplectic representations of the form 1.2.4(1) or $1.2 .4(2)$, the statement follows from the explicit formulas (4)-(6) and (3), proved below.
(3) Combining (2.1.2.6), (2.1.2.4) and 1.2.2(2), we obtain

$$
\begin{gathered}
\varepsilon\left(\rho, \psi, \mu_{\psi}\right)^{2}=\varepsilon\left(\rho, \psi, \mu_{\psi}\right)(\operatorname{det} \rho)(-1) \varepsilon\left(\rho, \psi, \mu_{\psi}\right)=\varepsilon\left(\rho, \psi, \mu_{\psi}\right) \varepsilon\left(\rho, \psi_{-1}, \mu_{\psi}\right)= \\
=\varepsilon\left(\rho, \psi, \mu_{\psi}\right) \varepsilon\left(\rho^{*}|\cdot|, \psi_{-1}, \mu_{\psi}\right)=1
\end{gathered}
$$

(4) As in the proof of (3), Lemma 2.1.3 together with (2.1.2.4) yield

$$
\begin{aligned}
\varepsilon(\Delta)=\varepsilon\left(X, \psi, \mu_{\psi}\right) \varepsilon\left(X^{*}|\cdot|, \psi, \mu_{\psi}\right) & =(\operatorname{det} X)(-1) \varepsilon\left(X, \psi_{-1}, \mu_{\psi}\right) \varepsilon\left(X^{*}|\cdot|, \psi, \mu_{\psi}\right)= \\
& =(\operatorname{det} X)(-1) .
\end{aligned}
$$

Replacing X by $X^{N-s s}$, we obtain $\varepsilon\left(\Delta^{N-s s}\right)=\left(\operatorname{det} X^{N-s s}\right)(-1)=$ $(\operatorname{det} X)(-1)=\varepsilon(\Delta)$.
(5) As $\Delta=\rho \otimes \operatorname{sp}(2 n+1)$ is $|\cdot|$-symplectic, the representation $\rho|\cdot|{ }^{n}$ is also $|\cdot|$-symplectic, by 1.2.3-4 (in particular, $\operatorname{det}(\rho)=|\cdot|^{(1-2 n) \operatorname{dim}(\rho) / 2}$). The same calculation as in the proof of Lemma 2.1.3 yields

$$
\begin{gathered}
\Delta_{g} / \Delta_{f}=\bigoplus_{j=0}^{2 n-1} \rho^{I}|\cdot|^{j}, \quad\left(\rho^{I}|\cdot|^{j}\right)^{*}=\left(\rho^{*}|\cdot|^{-j}\right)^{I}=\rho^{I}|\cdot|^{2 n-1-j} \\
\Delta_{g} / \Delta_{f}=\bigoplus_{j=0}^{n-1} \rho^{I}|\cdot|^{j} \oplus\left(\rho^{I}|\cdot|^{j}\right)^{*}
\end{gathered}
$$

which implies that $\operatorname{det}\left(-f \mid \Delta_{g} / \Delta_{f}\right)=1$, hence
$\varepsilon(\Delta)=\varepsilon\left(\Delta^{N-s s}\right)=\prod_{j=0}^{2 n} \varepsilon\left(\rho|\cdot|^{j}, \psi, \mu_{\psi}\right)=\varepsilon\left(\rho|\cdot|^{n}\right) \prod_{j=0}^{n-1} \varepsilon\left(\rho|\cdot|^{j} \oplus\left(\rho|\cdot|^{j}\right)^{*}|\cdot|\right) \stackrel{(4)}{=} \varepsilon\left(\rho|\cdot|^{n}\right)$.
(6) As $\Delta=\rho \otimes s p(2 n)$ is $|\cdot|$-symplectic, the representation $\left.\rho|\cdot|\right|^{n-1}$ is orthogonal, by 1.2 .3 . The same calculation as in the proof of (5) shows that

$$
\varepsilon\left(\Delta^{N-s s}\right)=\prod_{j=0}^{n-1} \varepsilon\left(\rho|\cdot|^{j} \oplus\left(\rho|\cdot|^{j}\right)^{*}|\cdot|\right) \stackrel{(4)}{=} \prod_{j=0}^{n-1} \operatorname{det}\left(\rho|\cdot|^{j}\right)(-1)=\left(\operatorname{det} \Delta^{+}\right)(-1)
$$

and

$$
\Delta_{g} / \Delta_{f}=\rho^{I}|\cdot|^{n-1} \oplus \bigoplus_{j=0}^{n-2} \rho^{I}|\cdot|^{j} \oplus\left(\rho^{I}|\cdot|^{j}\right)^{*}, \quad \operatorname{det}\left(-f \mid \Delta_{g} / \Delta_{f}\right)=\left(-\left.f\left|\rho^{I}\right| \cdot\right|^{n-1}\right) .
$$

As $\rho(I)$ acts semi-simply, the (unramified) representation $V=\rho^{I}|\cdot|^{n-1} \in$ $\operatorname{Rep}_{E}\left(W_{K}\right)$ is also orthogonal; applying Lemma 2.2 .2 below to $u=f$ acting on V, we obtain

$$
\varepsilon(\Delta) / \varepsilon\left(\Delta^{N-s s}\right)=\operatorname{det}\left(-f \mid \Delta_{g} / \Delta_{f}\right)=(-1)^{\operatorname{dim}_{E} \operatorname{Ker}(f-1: V \longrightarrow V)}
$$

Finally,

$$
\operatorname{Ker}(V \xrightarrow{f-1} V)=H^{0}\left(\rho|\cdot|^{n-1}\right)=H^{0}(\rho \otimes s p(n))=H^{0}\left(\Delta^{-}\right)
$$

(2.2.2) Lemma. Let (V, q) be a non-degenerate quadratic space over a field L of characteristic not equal to 2 . If $u \in O(V, q)$, then

$$
\operatorname{det}(-u)=(-1)^{\operatorname{dim}_{L} \operatorname{Ker}(u-1)}, \quad \operatorname{det}(u)=(-1)^{\operatorname{dim}_{L} \operatorname{Im}(u-1)}
$$

Proof. The following short argument is due to J. Oesterlé. The two formulas being equivalent, it is enough to prove the second one. Let $a \in V, q(a) \neq 0$; denote by $s \in O^{-}(V, q)$ the reflection with respect to the hyperplane $\operatorname{Ker}(s-1)=a^{\perp}$. A short calculation shows that

$$
\operatorname{Ker}(s u-1)= \begin{cases}\operatorname{Ker}(u-1) \oplus L b, & a=(u-1) b, b \in V \\ \operatorname{Ker}(u-1) \cap a^{\perp} \subsetneq \operatorname{Ker}(u-1), & a \notin \operatorname{Im}(u-1),\end{cases}
$$

hence

$$
\begin{equation*}
\operatorname{dim}_{L} \operatorname{Im}(s u-1)=\operatorname{dim}_{L} \operatorname{Im}(u-1) \mp 1 \tag{2.2.2.1}
\end{equation*}
$$

Writing u as a product of $r \geq 1$ reflections, we deduce from (2.2.2.1), by induction, that $\operatorname{dim}_{L} \operatorname{Im}(u-1) \equiv r(\bmod 2)$, as claimed.
(2.2.3) Proposition. Let $\Delta \xrightarrow{\sim} \Delta^{*}|\cdot| \in \operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right)$ be $|\cdot|$-symplectic and pure (of weight -1). Assume that there exists an exact sequence in $\operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right)$

$$
0 \longrightarrow \Delta^{+} \longrightarrow \Delta \longrightarrow \Delta^{-} \longrightarrow 0
$$

such that the isomorphism $\Delta \xrightarrow{\sim} \Delta^{*}|\cdot|$ induces isomorphisms $\Delta^{ \pm} \xrightarrow{\sim}\left(\Delta^{\mp}\right)^{*}|\cdot|$. Assume, in addition, that there exists a direct sum decomposition $\Delta=\Delta_{1} \oplus \Delta_{2}$ in $\operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right)$ compatible with the isomorphism $\Delta \xrightarrow{\sim} \Delta^{*}|\cdot|$ and the exact sequence (β), and such that $H^{0}\left(\Delta_{2}^{-}\right)=0$, while

$$
\begin{equation*}
0 \longrightarrow \Delta_{1}^{+} \longrightarrow \Delta_{1} \longrightarrow \Delta_{1}^{-} \longrightarrow 0 \tag{1}
\end{equation*}
$$

is a direct sum of exact sequences of the type considered in Proposition 2.2.1(6).
Then

$$
\varepsilon(\Delta)=(-1)^{\operatorname{dim}_{E} H^{0}\left(\Delta^{-}\right)}\left(\operatorname{det} \Delta^{+}\right)(-1), \quad \varepsilon\left(\Delta^{N-s s}\right)=\left(\operatorname{det} \Delta^{+}\right)(-1)
$$

Proof. It is enough to treat separately Δ_{1} and Δ_{2}. For $\Delta=\Delta_{1}$, the statement follows from Proposition 2.2.1(6). For $\Delta=\Delta_{2}$, the assumption $H^{0}\left(\Delta^{-}\right)=0$ implies that $P_{K}\left(\Delta^{-}, 1\right) \neq 0$. As Δ is pure of weight $-1<0$, we also have $H^{0}\left(\Delta^{+}\right) \subseteq H^{0}(\Delta)=0$, by 1.4.4(5), hence $P_{K}\left(\Delta^{+}, 1\right) P_{K}(\Delta, 1) \neq 0$. Letting $u \longrightarrow 1$ in (2.1.2.8), we obtain $\varepsilon(\beta)=1$, hence

$$
\varepsilon(\Delta)=\varepsilon\left(\Delta^{+}, \psi, \mu_{\psi}\right) \varepsilon\left(\Delta^{-}, \psi, \mu_{\psi}\right)=\varepsilon\left(\Delta^{+} \oplus\left(\Delta^{+}\right)^{*}|\cdot|\right)=\left(\operatorname{det} \Delta^{+}\right)(-1)
$$

Finally,

$$
\begin{gathered}
\varepsilon\left(\Delta^{N-s s}\right)=\varepsilon\left(\left(\Delta^{+}\right)^{N-s s}, \psi, \mu_{\psi}\right) \varepsilon\left(\left(\Delta^{-}\right)^{N-s s}, \psi, \mu_{\psi}\right)= \\
=\varepsilon\left(\left(\Delta^{+}\right)^{N-s s} \oplus\left(\left(\Delta^{+}\right)^{N-s s}\right)^{*}|\cdot|\right)=\left(\operatorname{det}\left(\Delta^{+}\right)^{N-s s}\right)(-1)=\left(\operatorname{det} \Delta^{+}\right)(-1)
\end{gathered}
$$

(2.2.4) Proposition. In the situation of 1.5.4, $\varepsilon\left(T_{s}\right)=\varepsilon\left(T_{\eta}\right) \in\{ \pm 1\}$.

Proof. For any \mathcal{O}-module X, denote by red $: X \longrightarrow X \otimes_{\mathcal{O}} k_{\mathcal{O}}$ the canonical surjection. Proposition 1.5.4 implies that

$$
\operatorname{red}\left(\frac{T \cap\left(T_{\eta}\right)_{g}}{T \cap\left(T_{\eta}\right)_{f}}\right)=\left(T_{s}\right)_{g} /\left(T_{s}\right)_{f}
$$

hence

$$
\begin{aligned}
& \operatorname{red}\left(\varepsilon\left(T_{\eta}\right) / \varepsilon\left(T_{\eta}^{N-s s}\right)\right)=\operatorname{red}\left(\operatorname{det}\left(-f \mid\left(T_{\eta}\right)_{g} /\left(T_{\eta}\right)_{f}\right)\right)= \\
& \quad=\left(\operatorname{det}\left(-f \mid\left(T_{s}\right)_{g} /\left(T_{s}\right)_{f}\right)=\varepsilon\left(T_{s}\right) / \varepsilon\left(T_{s}^{N-s s}\right)\right.
\end{aligned}
$$

As $\varepsilon\left(T_{\eta}\right), \varepsilon\left(T_{\eta}^{N-s s}\right), \varepsilon\left(T_{s}\right), \varepsilon\left(T_{s}^{N-s s}\right) \in\{ \pm 1\}$, we are reduced to showing that

$$
\operatorname{red}\left(\varepsilon\left(T_{\eta}^{N-s s}\right)\right) \stackrel{?}{=} \varepsilon\left(T_{s}^{N-s s}\right)
$$

The following argument is based on a suggestion of T. Saito. We can replace $\left(\rho_{T}, N_{T}\right)$ by $\left(\rho_{T}, 0\right)$ and assume that $N_{T}=0$. Furthermore, after replacing E by a finite extension, we can assume (see [De 1, 4.10]) that

$$
T_{\eta}^{f-s s}=\bigoplus_{\alpha} \rho_{\alpha} \otimes \omega_{\alpha}
$$

where $\rho_{\alpha} \in \operatorname{Rep}_{L}\left(W_{K}\right)$ for a subfield $L \subset \mathcal{O}$ of finite degree over \mathbf{Q}, and ω_{α} : $W_{K} / I \longrightarrow \mathcal{O}^{*}$ is an unramified representation of rank 1 . We have

$$
\forall w \in W_{K} \quad \operatorname{Tr}\left(w \mid T_{s}\right)=\operatorname{red}\left(\operatorname{Tr}\left(w \mid T_{\eta}\right)\right)
$$

hence

$$
T_{s}^{f-s s}=\bigoplus_{\alpha} \rho_{\alpha} \otimes \operatorname{red}\left(\omega_{\alpha}\right) .
$$

Applying (2.1.2.7) to each direct summand, we obtain

$$
\begin{gathered}
\operatorname{red}\left(\varepsilon\left(T_{\eta}\right)\right)=\prod_{\alpha} \operatorname{red}\left(\varepsilon\left(\rho_{\alpha} \otimes \omega_{\alpha}, \psi, \mu_{\psi}\right)\right)=\prod_{\alpha} \varepsilon\left(\rho_{\alpha} \otimes \operatorname{red}\left(\omega_{\alpha}\right), \operatorname{red} \circ \psi, \operatorname{red} \circ \mu_{\psi}\right)= \\
=\varepsilon\left(T_{s}\right) .
\end{gathered}
$$

(2.3) The archimedean case

Let $L=\mathbf{R}$ or \mathbf{C}. If H is a pure \mathbf{R}-Hodge structure over L ([Fo-PR, III.1]) of weight -1 , then

$$
H=\bigoplus_{r>0} H_{r}(r)^{\oplus m_{r}}
$$

where H_{r} is a two-dimensional pure \mathbf{R}-Hodge structure over L of Hodge type $(2 r-1,0),(0,2 r-1)$. The standard formulas ([De 3, 5.3], [Fo-PR, III.1.1.10, III.1.2.7]) yield

$$
\varepsilon\left(H_{r}(r)\right)=(-1)^{[L: \mathbf{R}] r} \times \begin{cases}1, & L=\mathbf{R} \\ -1, & L=\mathbf{C}\end{cases}
$$

As

$$
\forall p<0 \quad h^{p,-1-p}(H)=m_{-p},
$$

we obtain
$\varepsilon(H)=(-1)^{[L: \mathbf{R}] d^{-}(H)} \times\left\{\begin{array}{ll}1, & L=\mathbf{R} \\ (-1)^{\left(\operatorname{dim}_{\mathbf{R}} H\right) / 2}, & L=\mathbf{C},\end{array} \quad d^{-}(H)=\sum_{p<0} p h^{p, q}(H)\right.$.

3. Local p-adic Galois representations

(3.1) General facts

(3.1.1) Notation. Let p be the characteristic of the residue field k of K; then $q=p^{h}$ and K is a finite extension of \mathbf{Q}_{p}. Denote by $\sigma \in \operatorname{Gal}\left(\mathbf{Q}_{p}^{u r} / \mathbf{Q}_{p}\right) \xrightarrow{\sim} G_{\mathbf{F}_{p}}$ the lift of the arithmetic Frobenius element $x \mapsto x^{p}$. Let L be another finite extension of \mathbf{Q}_{p}.
We use the standard notation

$$
\operatorname{Rep}_{c r i s, L}\left(G_{K}\right) \subset \operatorname{Rep}_{s t, L}\left(G_{K}\right) \subset \operatorname{Rep}_{p s t, L}\left(G_{K}\right)=\operatorname{Rep}_{d R, L}\left(G_{K}\right) \subset \operatorname{Rep}_{L}\left(G_{K}\right)
$$

for Fontaine's hiearchy of (finite-dimensional, L-linear) representations of G_{K} ([Fo]), and

$$
\begin{gathered}
D_{c r i s}(V)=\left(V \otimes_{\mathbf{Q}_{p}} B_{\text {cris }}\right)^{G_{K}}, \quad D_{s t}(V)=\left(V \otimes_{\mathbf{Q}_{p}} B_{s t}\right)^{G_{K}}, \\
D_{p s t}(V)=\lim _{\widehat{K}}\left(V \otimes_{\mathbf{Q}_{p}} B_{s t}\right)^{G_{K^{\prime}}} \\
D_{d R}^{i}(V)=\left(V \otimes_{\mathbf{Q}_{p}} t^{i} B_{d R}^{+}\right)^{G_{K}} \subset D_{d R}(V)=\left(V \otimes_{\mathbf{Q}_{p}} B_{d R}\right)^{G_{K}}
\end{gathered}
$$

for various Fontaine's functors (above, $V \in \operatorname{Rep}_{L}\left(G_{K}\right)$, and K^{\prime} runs through all finite extensions of K contained in $\bar{K})$. As in [Bl-Ka], put $H^{i}(K,-)=H_{\text {cont }}^{i}\left(G_{K},-\right)$ and, for $*=e, f, s t, g$,

$$
\begin{gathered}
H_{*}^{1}(K, V)=\operatorname{Ker}\left(H^{1}(K, V) \longrightarrow H^{1}\left(K, V \otimes_{\mathbf{Q}_{p}} B_{*}\right)\right) \\
B_{e}=B_{c r i s}^{\varphi=1}, \quad B_{f}=B_{\text {cris }}, \quad B_{g}=B_{d R}
\end{gathered}
$$

If K^{\prime} / K is a finite Galois extension, then

$$
\begin{equation*}
H_{*}^{1}(K, V)=H_{*}^{1}\left(K^{\prime}, V\right)^{\operatorname{Gal}\left(K^{\prime} / K\right)}, \quad(*=\emptyset, e, f, s t, g) \tag{3.1.1.1}
\end{equation*}
$$

(as both $H^{1}(-, V)$ and $H^{1}\left(-, V \otimes_{\mathbf{Q}_{p}} B_{*}\right)$ satisfy Galois descent w.r.t. the extension K^{\prime} / K, and the functor of $\operatorname{Gal}\left(K^{\prime} / K\right)$-invariants is exact on the category of $\mathbf{Q}\left[\operatorname{Gal}\left(K^{\prime} / K\right)\right]$-modules).
(3.1.2) For $V \in \operatorname{Rep}_{d R, L}\left(G_{K}\right)$ and $i \in \mathbf{Z}$, define

$$
\begin{gathered}
d_{L}^{i}(V):=\operatorname{dim}_{L}\left(D_{d R}^{i}(V) / D_{d R}^{i+1}(V)\right), \quad d_{L}^{-}(V):=\sum_{i<0} i d_{L}^{i}(V), \\
d_{L}(V):=\sum_{i \in \mathbf{Z}} i d_{L}^{i}(V) .
\end{gathered}
$$

(3.1.3) If $V \in \operatorname{Rep}_{p s t, L}\left(G_{K}\right)$, then $D=D_{p s t}(V)$ is a free $\left(\mathbf{Q}_{p}^{u r} \otimes_{\mathbf{Q}_{p}} L\right)$-module of rank equal to $\operatorname{dim}_{L}(V)$, which is equipped (among others) with the following structure ([Fo], [Fo-PR, I.2.2]):
(1) An L-linear action $\rho_{s l}: W_{K} \longrightarrow \operatorname{Aut}_{L}(D)$, which is $\mathbf{Q}_{p}^{u r}$-semi-linear in the following sense:

$$
\forall w \in W_{K} \forall \lambda \in \mathbf{Q}_{p}^{u r} \forall x \in D \quad \rho_{s l}(w)(\lambda x)=f_{k}^{\nu(w)}(\lambda) \rho_{s l}(w)(x)
$$

(2) An L-linear, σ-semi-linear map $\varphi: D \longrightarrow D$ commuting with $\rho_{s l}(w)$ (for all $\left.w \in W_{K}\right):$

$$
\forall w \in W_{K} \forall \lambda \in \mathbf{Q}_{p}^{u r} \forall x \in D \quad \varphi(\lambda x)=\sigma(\lambda) \varphi(x)
$$

(3) A $\left(\mathbf{Q}_{p}^{u r} \otimes_{\mathbf{Q}_{p}} L\right)$-linear nilpotent endomorphism $N: D \longrightarrow D$ commuting with $\rho_{s l}(w)$ (for all $w \in W_{K}$) and satisfying $N \varphi=p \varphi N$.
(4) An isomorphism of $\left(K \otimes \mathbf{Q}_{p} L\right)$-modules

$$
\left(D \otimes_{\mathbf{Q}_{p}^{u r}} \bar{K}\right)^{G_{K}} \xrightarrow{\sim} D_{d R}(V) .
$$

(3.2) Potentially semistable representations and representations of the Weil-Deligne group
We recall how, for each $V \in \operatorname{Rep}_{p s t, L}\left(G_{K}\right)$, the structure 3.1.3(1)-(3) can be used to define a representation of the Weil-Deligne group of K ([Fo], [Fo-PR, I.1.3.2]).
(3.2.1) Fix a field $E \supset \mathbf{Q}_{p}^{u r}$ for which there exists an embedding $\tau: L \hookrightarrow E$, and define

$$
W D_{\tau}(V):=D_{p s t}(V) \otimes_{\mathbf{Q}_{p}^{u r} \otimes_{\mathbf{Q}_{p}} L, \mathrm{id} \otimes \tau} E,
$$

which is an E-vector space of dimension $\operatorname{dim}_{E}\left(W D_{\tau}(V)\right)=\operatorname{dim}_{L}(V)$. We define an E-LINEAR action of W_{K} on $W D_{\tau}(V)$ by

$$
\rho(w):=\rho_{s l}(w) \circ \varphi^{h \nu(w)} \otimes \mathrm{id} \quad\left(w \in W_{K}\right)
$$

and a monodromy operator $N=N \otimes \mathrm{id} \in \operatorname{End}_{E}\left(W D_{\tau}(V)\right)$. This defines a representation

$$
W D_{\tau}(V)=(\rho, N) \in \operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right)
$$

whose isomorphism class does not depend on τ. Furthermore,

$$
W D_{\tau}: \operatorname{Rep}_{p s t, L}\left(G_{K}\right) \longrightarrow \operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right)
$$

is an exact tensor functor.
(3.2.2) Examples: (1) If V is potentially unramified, then $W D_{\tau}(V)=V \otimes_{L, \tau}$ $E \in \operatorname{Rep}_{E}\left(W_{K}\right)$.
 with $\rho(I)$ acting trivially, $N=N \otimes \mathrm{id}$ and $\rho\left(f_{k}\right)=\varphi^{h} \otimes \mathrm{id}$. Conversely, if $\rho(I)$ acts trivially, then V is semistable.
(3) If $V=L(n)=L \otimes \mathbf{Q}_{p} \mathbf{Q}_{p}(n)(n \in \mathbf{Z})$, then $W D_{\tau}(V)=E|\cdot|^{n}=E \otimes|\cdot|^{n}$.
(4) (Lubin-Tate theory) Fix a prime element $\pi \in \mathcal{O}_{K}$. The reciprocity map $\operatorname{rec}_{K}: K^{*} \longrightarrow G_{K}^{a b}$ (normalized using the geometric Frobenius element) defines a one-dimensional representation $V_{\pi} \in \operatorname{Rep}_{\text {cris }, K}\left(G_{K}\right)$

$$
\chi_{\pi}: G_{K} \longrightarrow G_{K}^{a b} \xrightarrow{\sim} \widehat{K}^{*}=\pi^{\widehat{\mathbf{z}}} \times \mathcal{O}_{K}^{*} \rightarrow \mathcal{O}_{K}^{*} \hookrightarrow K^{*}
$$

which arises in the π-adic Tate module of any Lubin-Tate group over K associated to π. In this case

$$
\begin{array}{cl}
D_{p s t}\left(V_{\pi}\right)=\left(\mathbf{Q}_{p}^{u r} \otimes_{\left.\mathbf{Q}_{p} K\right) u,} \quad \varphi^{h}(u)=(1 \otimes \pi)^{-1} u, \quad N u=0\right. \\
\forall w \in W_{K} & \rho_{s l}(w)(u)=u
\end{array}
$$

If $E \supset \mathbf{Q}_{p}^{u r}$ is a field and $\tau: K \hookrightarrow E$ an embedding of fields, then $W D_{\tau}\left(V_{\pi}\right) \in$ $\operatorname{Rep}_{E}\left(W_{K}\right)$ is an unramified one-dimensional representation of W_{K}, on which $f=$ f_{k} acts by $\tau(\pi)^{-1}$. For $K=\mathbf{Q}_{p}$ and $\pi=p$ we recover Example (3) for $n=1$.
(3.2.3) Definition. We say that $V \in \operatorname{Rep}_{p s t, L}\left(G_{K}\right)$ is Pure of Weight $n \in \mathbf{Z}$ if $W D_{\tau}(V) \in \operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right)$ is pure of weight n, in the sense of 1.4.3.
(3.2.4) Lemma. For each $V \in \operatorname{Rep}_{p s t, L}\left(G_{K}\right)$ and each $\tau: L \hookrightarrow E \supset \mathbf{Q}_{p}^{u r}$,

$$
W D_{\tau}(V)_{g}^{f_{k}=1}=D_{s t}(V)^{\varphi=1} \otimes_{L, \tau} E, \quad H^{0}\left(W D_{\tau}(V)\right)=D_{\text {cris }}(V)^{\varphi=1} \otimes_{L, \tau} E .
$$

Proof. As $D_{\text {cris }}(V)=D_{s t}(V)^{N=0}$, it is enough to prove the first equality. As both sides satisfy Galois descent with respect to finite Galois extensions K^{\prime} / K, we can assume that V is semistable. In this case, 3.2.2(2) implies that
$W D_{\tau}(V)_{g}^{f_{k}=1}=W D_{\tau}(V)^{f_{k}=1}=D_{s t}(V)^{\varphi^{h}=1} \otimes_{K_{0} \otimes \mathbf{Q}_{p} L, \mathrm{id} \otimes \tau} E \quad\left(K_{0}=K \cap \mathbf{Q}_{p}^{u r}\right)$.
As

$$
D_{s t}(V)^{\varphi^{h}=1}=D_{s t}(V)^{\varphi=1} \otimes_{\mathbf{Q}_{p}} K_{0}
$$

(thanks to Hilbert's Theorem 90 for $H^{1}\left(K_{0} / \mathbf{Q}_{p}, G L_{n}\left(K_{0}\right)\right)$), it follows that

$$
W D_{\tau}(V)_{g}^{f_{k}=1}=D_{s t}(V)^{\varphi=1} \otimes_{L, \tau} E .
$$

(3.2.5) Corollary. If $V \in \operatorname{Rep}_{p s t, L}\left(G_{K}\right)$ is pure of weight $n<0$, then $D_{\text {cris }}(V)^{\varphi=1}=0$.
(3.2.6) Proposition. For each $V \in \operatorname{Rep}_{p s t, L}\left(G_{K}\right)$,

$$
\left(\operatorname{det}_{E}\left(W D_{\tau}(V)\right)\right)(-1)=(-1)^{d_{L}(V)}\left(\operatorname{det}_{L} V\right)(-1)
$$

Proof. As $W D_{\tau}$ is a tensor functor and $d_{L}(V)=d_{L}\left(\operatorname{det}_{L}(V)\right)$, we can replace V by $\operatorname{det}_{L}(V)$, hence assume that $\operatorname{dim}(V)=1$; denote by $\chi_{V}: G_{K} \longrightarrow K^{*}$ the character by which G_{K} acts on V. After replacing L by a finite extension, we can assume that L contains the Galois closure of K over \mathbf{Q}_{p}. As V is potentially semistable, there exists a one-dimensional representation

$$
\chi: G_{K} \longrightarrow L^{*}
$$

with finite image and integers $n_{\sigma}(\sigma: K \hookrightarrow L)$ such that

$$
\chi_{V}=\chi \prod_{\sigma: K \hookrightarrow L}\left(\sigma \circ \chi_{\pi}\right)^{-n_{\sigma}},
$$

where $\chi_{\pi}: G_{K} \longrightarrow K^{*}$ is as in 3.2.2(4). It follows from 3.2.2 that $W D_{\tau}(V)=$ $(\tau \circ \chi) \alpha$, where $\alpha: W_{K} / I \longrightarrow E^{*}$ is the one-dimensional unramified representation satisfying

$$
\alpha(f)=\prod_{\sigma: K \hookrightarrow L} \tau(\sigma(\pi))^{n_{\sigma}}
$$

This implies that

$$
\left(\operatorname{det}_{E}\left(W D_{\tau}(V)\right)\right)(-1)=\chi(-1), \quad\left(\operatorname{det}_{L} V\right)(-1)=(-1)^{n} \chi(-1), \quad n=\sum_{\sigma: K_{\hookrightarrow} \hookrightarrow L} n_{\sigma}
$$

On the other hand,

$$
d_{L}^{i}(V)=\left|\left\{\sigma: K \hookrightarrow L \mid n_{\sigma}=i\right\}\right|,
$$

hence $n=d_{L}(V)$.

(3.3) Representations satisfying Pančiškin’s condition

We recall a few basic facts from [Ne 1].
(3.3.1) Definition. We say that $V \in \operatorname{Rep}_{L}\left(G_{K}\right)$ satisfies Pančiškin's condiTION if there exists an exact sequence in $\operatorname{Rep}_{L}\left(G_{K}\right)$

$$
0 \longrightarrow V^{+} \longrightarrow V \longrightarrow V^{-} \longrightarrow 0
$$

such that $V^{ \pm} \in \operatorname{Rep}_{p s t, L}\left(G_{K}\right)$ and $D_{d R}^{0}\left(V^{+}\right)=0=D_{d R}\left(V^{-}\right) / D_{d R}^{0}\left(V^{-}\right)$. If this is the case, then $V^{ \pm}$are uniquely determined ([Ne 1], 6.7), $V \in \operatorname{Rep}_{p s t, L}\left(G_{K}\right)$ ([Ne 1], $1.28)$ and $V^{*}(1)$ also satisfies Pančiškin's condition (with $\left.\left(V^{*}(1)\right)^{ \pm}=\left(V^{\mp}\right)^{*}(1)\right)$.
(3.3.2) Proposition. If V satisfies Pančiškin's condition, then:
(1) $H^{0}\left(K, V^{-}\right)=D_{\text {cris }}\left(V^{-}\right)^{\varphi=1}=D_{s t}\left(V^{-}\right)^{\varphi=1}$.
(2) Assume that there exists a finite Galois extension K^{\prime} / K over which V becomes semistable and such that $D_{\text {cris }}\left(\left.V\right|_{G_{K^{\prime}}}\right)^{\varphi=1}=D_{\text {cris }}\left(\left.V^{*}(1)\right|_{G_{K^{\prime}}}\right)^{\varphi=1}=0$ (the latter condition holds, e.g., if V is pure of weight -1 , by 3.2.5). Then

$$
H_{e}^{1}(K, V)=H_{f}^{1}(K, V)=H_{s t}^{1}(K, V)=H_{g}^{1}(K, V)
$$

and there is an exact sequence

$$
0 \longrightarrow H^{0}\left(K, V^{-}\right) \longrightarrow H^{1}\left(K, V^{+}\right) \longrightarrow H_{f}^{1}(K, V) \longrightarrow 0
$$

in which $H^{1}\left(K, V^{+}\right)=H_{s t}^{1}\left(K, V^{+}\right)$.
Proof. (1) This is proved in [Ne 1, 1.28(3)] under the tacit assumption that V^{-} is semistable. The general case follows by passing to a finite Galois extension over which V^{-}becomes semistable and taking Galois invariants.
(2) Over K^{\prime}, the statement is proved in [Ne 1, 1.32]; the general case follows by applying (3.1.1.1).
(3.3.3) Proposition. Assume that V satisfies Pančiškin's condition, is pure (of weight -1) and that there exists an isomorphism $j: V \xrightarrow{\sim} V^{*}(1)$ in $\operatorname{Rep}_{L}\left(G_{K}\right)$ satisfying $j^{*}(1)=-j$. Then:
(1) j induces isomorphisms $V^{ \pm} \xrightarrow{\sim}\left(V^{\mp}\right)^{*}(1)$.
(2) Fix an embedding of fields $\tau: L \hookrightarrow E \supset \mathbf{Q}_{p}^{u r}$ and put $\Delta=W D_{\tau}(V)$, $\Delta^{ \pm}=W D_{\tau}\left(V^{ \pm}\right)$. Then $\Delta \in \operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right)$ is $|\cdot|$-symplectic and the exact sequence in $\operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right)$

$$
0 \longrightarrow \Delta^{+} \longrightarrow \Delta \longrightarrow \Delta^{-} \longrightarrow 0
$$

satisfies the assumptions of Proposition 2.2.3.
(3) $\left(\operatorname{det}_{E} \Delta^{+}\right)(-1) /\left(\operatorname{det}_{L} V^{+}\right)(-1)=(-1)^{d_{L}\left(V^{+}\right)}=(-1)^{d_{L}^{-}(V)}$.
(4) The ε-factors of Δ and $\Delta^{N-s s}$ are equal to

$$
\begin{aligned}
\varepsilon(\Delta) & =(-1)^{\operatorname{dim}_{L} H^{0}\left(K, V^{-}\right)}(-1)^{d_{L}^{-}(V)}\left(\operatorname{det}_{L} V^{+}\right)(-1), \\
\varepsilon\left(\Delta^{N-s s}\right) & =(-1)^{d_{L}^{-}(V)}\left(\operatorname{det}_{L} V^{+}\right)(-1) .
\end{aligned}
$$

Proof. (1) This follows from the remarks made in 3.3.1.
(2) Δ is $|\cdot|$-symplectic, since $W D_{\tau}$ is a tensor functor. In order to verify the assumptions of Proposition 2.2.3, we are going to decompose Δ into several components. Firstly, the functor

$$
\operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right) \longrightarrow \operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right), \quad X \mapsto X^{\rho(I)}
$$

is exact and commutes with duals. In addition, $X^{\rho(I)}$ is a direct summand of X, with a functorial complement X^{\prime}. Secondly, for each $\lambda \in \bar{E}$, the minimal polynomial $p_{[\lambda]}(T)$ of λ over E depends only on the G_{E}-orbit $[\lambda]$ of λ. We define

$$
\begin{gathered}
\Delta_{1}=\bigoplus_{\lambda \in q^{\mathbf{z}}} \bigcup_{n \geq 1} \operatorname{Ker}\left((f-\lambda)^{n}: \Delta^{\rho(I)} \longrightarrow \Delta^{\rho(I)}\right), \\
\Delta_{2}=\Delta^{\prime} \oplus \bigoplus_{\lambda \notin q^{\mathbf{z}}} \bigcup_{n \geq 1} \operatorname{Ker}\left(p_{[\lambda]}(f)^{n}: \Delta^{\rho(I)} \longrightarrow \Delta^{\rho(I)}\right) .
\end{gathered}
$$

The direct sum decomposition $\Delta=\Delta_{1} \oplus \Delta_{2}$ in $\operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right)$ is compatible with the isomorphism $\Delta \xrightarrow{\sim} \Delta^{*}|\cdot|$ and the exact sequence

$$
0 \longrightarrow \Delta^{+} \longrightarrow \Delta \longrightarrow \Delta^{-} \longrightarrow 0
$$

By construction, every subquotient of Δ_{2} in $\operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right)$ has trivial H^{0}, hence $H^{0}\left(\Delta_{2}^{-}\right)=0$. As Δ is pure of weight -1 , it follows that

$$
\Delta_{1}=\bigoplus_{m \geq 1} \sigma_{m} \otimes s p(2 m)
$$

where each $\sigma_{m} \in \operatorname{Rep}_{E}\left({ }^{\prime} W_{K}\right)$ is an unramified representation of W_{K} on which $q^{1-m} f$ acts unipotently.
As V satisfies the Pančiškin condition, weak admissibility of $V^{ \pm}$implies that all eigenvalues of f on $\Delta_{1}^{+}=\Delta^{+} \cap \Delta_{1}$ (resp., on $\Delta_{1}^{-}=\Delta_{1} / \Delta_{1}^{+}$) are of the form q^{n} with $n<0$ (resp., with $n \geq 0$). It follows that

$$
\Delta_{1}^{+}=\bigoplus_{m \geq 1} \sigma_{m} \otimes s p(m)|\cdot|^{m}, \quad \Delta_{1}^{-}=\bigoplus_{m \geq 1} \sigma_{m} \otimes s p(m)
$$

which proves (2).
(3) This follows from Proposition 3.2.6 applied to V^{+}.
(4) We combine Proposition 2.2.3 (which applies to Δ, thanks to (2)) with the formula (3) and the fact that

$$
\begin{aligned}
H^{0}\left(\Delta^{-}\right)=D_{c r i s}\left(V^{-}\right)^{\varphi=1} & \otimes_{L, \tau} E=\left(D_{\text {cris }}\left(V^{-}\right)^{\varphi=1} \cap D_{d R}^{0}\left(V^{-}\right)\right) \otimes_{L, \tau} E= \\
& =H^{0}\left(K, V^{-}\right) \otimes_{L, \tau} E
\end{aligned}
$$

4. Global p-adic Galois representations

(4.1) Generalities

(4.1.1) Notation. Let F be a number field. For each prime l of \mathbf{Q}, let S_{l} be the set of primes of F above l. Fix a prime number p, a finite extension $L_{\mathfrak{p}}$ of \mathbf{Q}_{p} and a finite set $S \supset S_{\infty} \cup S_{p}$ of primes of F. Let F_{S} be the maximal extension of F (contained in \bar{F}) unramified outside S; put $G_{F, S}=\operatorname{Gal}\left(F_{S} / F\right)$. For each prime v of F fix an embedding $\bar{F} \hookrightarrow \bar{F}_{v}$; this defines a morphism $G_{F_{v}} \longrightarrow G_{F} \longrightarrow G_{F, S}$. For each Galois representation $V \in \operatorname{Rep}_{L_{p}}\left(G_{F, S}\right)$ (continuous and finite-dimensional over $L_{\mathfrak{p}}$), denote by $V_{v} \in \operatorname{Rep}_{L_{\mathfrak{p}}}\left(G_{F_{v}}\right)$ the local Galois representation induced by the map $G_{F_{v}} \longrightarrow G_{F, S}$. For each $v \notin S_{\infty} \cup S_{p}$, denote by $W D\left(V_{v}\right) \in \operatorname{Rep}_{L_{\mathfrak{p}}}\left({ }^{(} W_{F_{v}}\right)$ the associated representation of the Weil-Deligne group of F_{v} (see 1.1.3). As in [Bl-Ka], we put

$$
\begin{gathered}
\forall v \notin S_{\infty} \cup S_{p} \quad H_{f}^{1}\left(F_{v}, V\right)=H_{u r}^{1}\left(F_{v}, V\right)=\operatorname{Ker}\left(H^{1}\left(F_{v}, V\right) \longrightarrow H^{1}\left(F_{v}^{u r}, V\right)\right) \\
H_{f}^{1}(F, V)=\operatorname{Ker}\left(H^{1}\left(G_{F, S}, V\right) \longrightarrow \bigoplus_{v \in S-S_{\infty}} H^{1}\left(F_{v}, V\right) / H_{f}^{1}\left(F_{v}, V\right)\right) .
\end{gathered}
$$

The $L_{\mathfrak{p}}$-vector space $H_{f}^{1}(F, V)$ does not change if we enlarge S.
(4.1.2) Throughout $\S 4$, assume that V satisfies the following conditions.
(1) There exists an isomorphism $j: V \xrightarrow{\sim} V^{*}(1)$ in $\operatorname{Rep}_{L_{\mathrm{p}}}\left(G_{F, S}\right)$ satisfying $j^{*}(1)=-j$.
(2) For each $v \in S_{p}, V_{v} \in \operatorname{Rep}_{L_{\mathfrak{p}}}\left(G_{F_{v}}\right)$ satisfies the Pančiškin condition 3.3.1:

$$
0 \longrightarrow V_{v}^{+} \longrightarrow V_{v} \longrightarrow V_{v}^{-} \longrightarrow 0
$$

(in particular, $V_{v} \in \operatorname{Rep}_{p s t, L_{\mathfrak{p}}}\left(G_{F_{v}}\right)$).
(3) For each $v \notin S_{\infty} \cup S_{p}$ (resp., $v \in S_{p}$), V_{v} is pure (necessarily of weight -1) in the sense of 1.4.5 (resp., in the sense of 3.2.3).
(4) For each $i \in \mathbf{Z}$, the integer

$$
d^{i}(V):=\operatorname{dim}_{L_{\mathfrak{p}}}\left(D_{d R}^{i}\left(V_{v}\right) / D_{d R}^{i+1}\left(V_{v}\right)\right) /\left[F_{v}: \mathbf{Q}_{p}\right]
$$

does not depend on $v \in S_{p}$. This condition is satisfied if $V=M_{\mathfrak{p}}$ is the \mathfrak{p}-adic realization of a motive (pure of weight -1) M over F with coefficients in a number field L (of which $L_{\mathfrak{p}}$ is a completion), as

$$
d^{i}(V)=\operatorname{dim}_{L}\left(F^{i} M_{d R} / F^{i+1} M_{d R}\right)
$$

in this case.
Example: $F=\mathbf{Q}$ and $V=\left(S^{2 m-1} V(f)\right)(m k-m+1-k / 2)$, where $m \geq 1$ and $V(f)$ is the Galois representation (pure of weight $k-1$) associated to a potentially p-ordinary Hecke eigenform $f \in S_{k}\left(\Gamma_{0}(N)\right)$ of (even) weight k and trivial character. (4.1.3) ε-FActors. We define

$$
\begin{equation*}
d^{-}(V)=\sum_{i<0} i d^{i}(V) \tag{4.1.3.1}
\end{equation*}
$$

$$
\forall v \in S_{\infty} \quad \varepsilon\left(V_{v}\right)=(-1)^{\left[F_{v}: \mathbf{R}\right] d^{-}(V)} \times \begin{cases}1, & F_{v}=\mathbf{R} \tag{4.1.3.2}\\ (-1)^{\operatorname{dim}_{L_{\mathfrak{p}}}(V) / 2}, & F_{v}=\mathbf{C}\end{cases}
$$

(in view of (2.3.1), this is the correct archimedean local ε-factor if $V=M_{\mathfrak{p}}$ is as in 4.1.2(4)) and

$$
\begin{equation*}
\forall v \notin S_{\infty} \quad \varepsilon\left(V_{v}\right)=\varepsilon\left(W D\left(V_{v}\right)\right) \tag{4.1.3.3}
\end{equation*}
$$

For any prime v of F, let

$$
\widetilde{\varepsilon}\left(V_{v}\right)=\varepsilon\left(V_{v}\right) \times \begin{cases}(-1)^{h^{0}\left(F_{v}, V_{v}^{-}\right)}, & v \in S_{p} \tag{4.1.3.4}\\ 1, & v \notin S_{p}\end{cases}
$$

where

$$
h^{i}\left(F_{v}, X\right)=\operatorname{dim}_{L_{\mathfrak{p}}} H^{i}\left(F_{v}, X\right) \quad\left(X \in \operatorname{Rep}_{L_{\mathfrak{p}}}\left(G_{F_{v}}\right)\right)
$$

Finally, define

$$
\begin{equation*}
\varepsilon(V)=\prod_{v} \varepsilon\left(V_{v}\right), \quad \widetilde{\varepsilon}(V)=\prod_{v} \widetilde{\varepsilon}\left(V_{v}\right) \tag{4.1.3.5}
\end{equation*}
$$

(this makes sense, as $\varepsilon\left(V_{v}\right)=1$ for all but finitely many v). It follows from Proposition 3.3.3 that

$$
\begin{equation*}
\forall v \in S_{p} \quad \widetilde{\varepsilon}\left(V_{v}\right)=(-1)^{\left[F_{v}: \mathbf{Q}_{p}\right] d^{-}(V)}\left(\operatorname{det} V_{v}^{+}\right)(-1)=\varepsilon\left(W D\left(V_{v}\right)^{N-s s}\right), \tag{4.1.3.6}
\end{equation*}
$$

hence

$$
\prod_{v \in S_{p}} \widetilde{\varepsilon}\left(V_{v}\right)=(-1)^{[F: \mathbf{Q}] d^{-}(V)} \prod_{v \in S_{p}}\left(\operatorname{det} V_{v}^{+}\right)(-1) .
$$

As

$$
\prod_{v \in S_{\infty}} \varepsilon\left(V_{v}\right)=(-1)^{[F: \mathbf{Q}] d^{-}(V)}
$$

it follows that

$$
\begin{equation*}
\prod_{v \in S_{p} \cup S_{\infty}} \widetilde{\varepsilon}\left(V_{v}\right)=\prod_{v \in S_{p}}\left(\operatorname{det} V_{v}^{+}\right)(-1) . \tag{4.1.3.7}
\end{equation*}
$$

(4.2) Selmer complexes and extended Selmer groups

(4.2.1) For a pro-finite group G and a representation $X \in \operatorname{Rep}_{L_{\mathfrak{p}}}(G)$ (continuous, finite-dimensional), denote by $C^{\bullet}(G, X)$ the standard complex of (nonhomogeneous) continuous cochains of G with values in X. Fix a set $S_{p} \subset \Sigma \subset S$ and define, for each $v \in S-S_{\infty}$, the complex

$$
U_{v}^{+}(V)= \begin{cases}C \cdot\left(G_{F_{v}}, V_{v}^{+}\right), & v \in S_{p} \\ 0, & v \in \Sigma-S_{p} \\ C_{u r}^{\bullet}\left(G_{F_{v}}, V_{v}\right)=C \cdot\left(G_{F_{v}} / I_{v}, V_{v}^{I_{v}}\right), & v \in S-\Sigma\end{cases}
$$

where $I_{v} \subset G_{F_{v}}$ is the inertia group. As in ([Ne 2], 12.5.9.1), define the Selmer complex of V associated to the local conditions $\Delta_{\Sigma}(V)=\left(U_{v}^{+}(V)\right)_{v \in S-S_{\infty}}$ as

$$
\begin{gathered}
\widetilde{C}_{f}^{\bullet}\left(G_{F, S}, V ; \Delta_{\Sigma}(V)\right)= \\
=\operatorname{Cone}\left(C \cdot\left(G_{F, S}, V\right) \oplus \bigoplus_{v \in S-S_{\infty}} U_{v}^{+}(V) \longrightarrow \bigoplus_{v \in S-S_{\infty}} C^{\bullet}\left(G_{F_{v}}, V\right)\right)[-1] .
\end{gathered}
$$

(4.2.2) Proposition. (1) For each $v \notin S_{\infty} \cup S_{p}$, the complexes $C^{\bullet}\left(G_{F_{v}}, V\right)$ and $C_{u r}^{\bullet}\left(G_{F_{v}}, V\right)$ are acyclic.
(2) Up to a canonical isomorphism, the image of $\widetilde{C}_{f}^{\cdot}\left(G_{F, S}, V ; \Delta_{\Sigma}(V)\right)$ in the
derived category $D_{f t}^{b}\left(L_{\mathfrak{p}}-\mathrm{Mod}\right)$ does not depend on Σ and S; denote it by $\widetilde{\mathbf{R}}_{f}(F, V)$ and its cohomology by $\widetilde{H}_{f}^{i}(F, V)$ (as $L_{\mathfrak{p}}$ is a field, $\widetilde{\mathbf{R}}_{f}(F, V)=$ $\left.\bigoplus_{i \in \mathbf{Z}} \widetilde{H}_{f}^{i}(F, V)[-i]\right)$.
(3) There is an exact sequence

$$
0 \longrightarrow \bigoplus_{v \in S_{p}} H^{0}\left(F_{v}, V_{v}^{-}\right) \longrightarrow \widetilde{H}_{f}^{1}(F, V) \longrightarrow H_{f}^{1}(F, V) \longrightarrow 0
$$

(4) If we put $h_{f}^{1}(F, V)=\operatorname{dim}_{L_{\mathfrak{p}}} H_{f}^{1}(F, V), \widetilde{h}_{f}^{1}(F, V)=\operatorname{dim}_{L_{\mathfrak{p}}} \widetilde{H}_{f}^{1}(F, V)$, then

$$
(-1)^{h_{f}^{1}(F, V)} / \varepsilon(V)=(-1)^{\widetilde{h}_{f}^{1}(F, V)} / \widetilde{\varepsilon}(V) .
$$

Proof. (cf. [Ne 2, 12.5.9.2]) (1) The cohomology group $H^{0}\left(F_{v}, V\right)=0$ vanishes by purity (1.4.4(5)), $H^{2}\left(F_{v}, V\right) \xrightarrow{\sim} H^{0}\left(F_{v}, V^{*}(1)\right)^{*} \xrightarrow{\sim} H^{0}\left(F_{v}, V\right)^{*}=$ 0 by duality and $H^{1}\left(F_{v}, V\right)=0$ by the local Euler characteristic formula $\sum_{i=0}^{2}(-1)^{i} h^{i}\left(F_{v}, V\right)=0$. Finally, $\operatorname{dim}_{L_{\mathfrak{p}}} H_{u r}^{1}\left(F_{v}, V\right)=h^{0}\left(F_{v}, V\right)=0$.
(2) Independence of Σ follows from (1), independence of S is a general fact ([Ne 2], Prop. 7.8.8).
(3) It follows from (1) and [Ne 2, Lemma 9.6.3] that there is an exact sequence
$0 \longrightarrow \widetilde{H}_{f}^{0}(F, V) \longrightarrow H^{0}\left(G_{F, S}, V\right) \longrightarrow \bigoplus_{v \in S_{p}} H^{0}\left(F_{v}, V_{v}^{-}\right) \longrightarrow \widetilde{H}_{f}^{1}(F, V) \longrightarrow H \longrightarrow 0$,
where

$$
H=\operatorname{Ker}\left(H^{1}\left(G_{F, S}, V\right) \longrightarrow \bigoplus_{v \in S-S_{\infty}} H^{1}\left(F_{v}, V\right) / \operatorname{Im}\left(H^{1}\left(U_{v}^{+}(V)\right)\right)\right)
$$

As

$$
\operatorname{Im}\left(H^{1}\left(U_{v}^{+}(V)\right)\right)= \begin{cases}0=H_{f}^{1}\left(F_{v}, V\right), & v \notin S_{p} \\ H_{f}^{1}\left(F_{v}, V\right), & v \in S_{p}\end{cases}
$$

by (1) and Proposition 3.3.2(2), respectively, we deduce that $H=H_{f}^{1}(F, V)$. Finally, $H^{0}\left(G_{F, S}, V\right)=0$ by purity.
(4) This is a consequence of (3) and (4.1.3.4).
5. p-Adic families of global p-adic Galois representations
(5.1) The general setup
(5.1.1) Fix a number field F, a prime number p and a finite set $S \supset S_{p} \cup S_{\infty}$ of primes of F.
(5.1.2) Assume that we are given the following data.
(1) A complete local noetherian domain R of $\operatorname{dimension} \operatorname{dim}(R)=2$, whose residue field is a finite extension of \mathbf{F}_{p} and whose fraction field \mathscr{L} is of characteristic zero.
(2) An R-module of finite type \mathcal{T} equipped with an R-linear continuous action of $G_{F, S}$ (with respect to the pro-finite topology of \mathcal{T}). Set $\mathcal{V}=\mathcal{T} \otimes_{R} \mathscr{L}$.
(3) A skew-symmetric morphism of $R\left[G_{F, S}\right]$-modules

$$
(,): \mathcal{T} \otimes_{R} \mathcal{T} \longrightarrow R(1)=R \otimes_{\mathbf{z}_{p}} \mathbf{Z}_{p}(1)
$$

inducing an isomorphism of $\mathscr{L}\left[G_{F, S}\right]$-modules

$$
\mathcal{V} \xrightarrow{\sim} \mathcal{V}^{*}(1)=\operatorname{Hom}_{\mathscr{L}}(\mathcal{V}, \mathscr{L})(1) .
$$

(4) For each $v \in S_{p}$ an $R\left[G_{F_{v}}\right]$-submodule $\mathcal{T}_{v}^{+} \subset \mathcal{T}_{v}$ such that the isomorphism $\mathcal{V} \xrightarrow{\sim} \mathcal{V}^{*}(1)$ induces isomorphisms of $\mathscr{L}\left[G_{F_{v}}\right]$-modules

$$
\mathcal{V}_{v}^{ \pm} \xrightarrow{\sim}\left(\mathcal{V}_{v}^{\mp}\right)^{*}(1)=\operatorname{Hom}_{\mathscr{L}}\left(\mathcal{V}_{v}^{\mp}, \mathscr{L}\right)(1)
$$

where $\mathcal{V}_{v}^{+}=\mathcal{T}_{v}^{+} \otimes_{R} \mathscr{L}, \mathcal{V}_{v}^{-}=\mathcal{V}_{v} / \mathcal{V}_{v}^{+}$.
(5) A prime ideal $P \in \operatorname{Spec}(R)$ of height $h t(P)=1$, which does not contain p and such that R_{P} is a discrete valuation ring. Fix a prime element ϖ_{P} of R_{P}. The residue field $\kappa(P)=R_{P} / \varpi_{P} R_{P}$ is a finite extension of \mathbf{Q}_{p}. Define

$$
\mathcal{T}_{P}=\mathcal{T} \otimes_{R} R_{P} \subset \mathcal{V}, \quad V=\mathcal{T}_{P} / \varpi_{P} \mathcal{T}_{P} \in \operatorname{Rep}_{\kappa(P)}\left(G_{F, S}\right)
$$

and, for each $v \in S_{p}$,

$$
\begin{gathered}
\left(\mathcal{T}_{P}\right)_{v}^{+}=\mathcal{T}_{P} \cap \mathcal{V}_{v}^{+}, \quad\left(\mathcal{T}_{P}\right)_{v}^{-}=\mathcal{T}_{P} /\left(\mathcal{T}_{P}\right)_{v}^{+}, \quad V_{v}^{+}=\left(\mathcal{T}_{P}\right)_{v}^{+} / \varpi_{P}\left(\mathcal{T}_{P}\right)_{v}^{+} \subset V_{v} \\
V_{v}^{-}=V_{v} / V_{v}^{+}
\end{gathered}\left(V_{v}^{ \pm} \in \operatorname{Rep}_{\kappa(P)}\left(G_{F_{v}}\right)\right) .
$$

(6) We assume that there exists $u \in \mathscr{L}^{*}$ such that $u \cdot($,$) induces an isomorphism$ of $R_{P}\left[G_{F, S}\right]$-modules

$$
\mathcal{T}_{P} \xrightarrow{\sim} \mathcal{T}_{P}^{*}(1)=\operatorname{Hom}_{R_{P}}\left(\mathcal{T}_{P}, R_{P}\right)(1)
$$

This implies that, for each $v \in S_{p}, u \cdot($,$) induces an isomorphism of R_{P}\left[G_{F_{v}}\right]-$ modules $\left(\mathcal{T}_{P}\right)_{v}^{ \pm} \xrightarrow{\sim}\left(\left(\mathcal{T}_{P}\right)_{v}^{\mp}\right)^{*}(1)$. Reducing $u \cdot($,$) modulo P$, we obtain a nondegenerate skew-symmetric morphism of $\kappa(P)\left[G_{F, S}\right]$-modules $V \otimes_{\kappa(P)} V \longrightarrow$ $\kappa(P)(1)$ which induces, for each $v \in S_{p}$, isomorphisms $V_{v}^{ \pm} \xrightarrow{\sim}\left(V_{v}^{\mp}\right)^{*}(1)$ in $\operatorname{Rep}_{\kappa(P)}\left(G_{F_{v}}\right)$.
(7) We assume that, for each $v \in S_{p}$, the exact sequence

$$
0 \longrightarrow V_{v}^{+} \longrightarrow V_{v} \longrightarrow V_{v}^{-} \longrightarrow 0
$$

satisfies the Pančiškin condition: $V_{v}^{ \pm} \in \operatorname{Rep}_{p s t, \kappa(P)}\left(G_{F_{v}}\right)$ and $D_{d R}^{0}\left(V_{v}^{+}\right)=0=$ $D_{d R}\left(V_{v}^{-}\right) / D_{d R}^{0}\left(V_{v}^{-}\right)$.
(8) We assume that, for each $v \notin S_{\infty}, V_{v}$ is pure of weight -1 (in the sense of 1.4.5 and 3.2.3, respectively).
(9) We assume that, for each $i \in \mathbf{Z}$, the integer

$$
d^{i}(V):=\operatorname{dim}_{\kappa(P)}\left(D_{d R}^{i}\left(V_{v}\right) / D_{d R}^{i+1}\left(V_{v}\right)\right) /\left[F_{v}: \mathbf{Q}_{p}\right]
$$

does not depend on $v \in S_{p}$; put

$$
d^{-}(V)=\sum_{i<0} i d^{i}(V)
$$

(5.1.3) This implies, in particular, that V satisfies the assumptions 4.1.2(1)-(4).
(5.1.4) Fix $v \notin S_{p} \cup S_{\infty}$. As $\operatorname{Aut}_{R}(\mathcal{T})$ is a pro-finite group containing a pro-p open subgroup, there exists an open subgroup J of the inertia group $I=I_{v}=$ $\operatorname{Gal}\left(\bar{F}_{v} / F_{v}^{u r}\right)$ such that J acts on \mathcal{T} through the map $J \hookrightarrow I \rightarrow I(p)$, where $I(p)$ is the maximal pro- p-quotient of I (isomorphic to \mathbf{Z}_{p}). Fixing a topological generator t of $I(p)$ and an integer $a \geq 1$ such that t^{a} lies in the image of J, then the set of eigenvalues of t^{a} acting on \mathcal{V} is stable under the map $\lambda \mapsto \lambda^{N v}$, which implies that there exists an integer $c \geq 1$ divisible by a such that t^{c} acts unipotently on \mathcal{V}. Defining

$$
N=\frac{1}{c} \log \rho_{\mathcal{T}}\left(t^{c}\right) \in \operatorname{End}_{R}(\mathcal{T}) \otimes \mathbf{Q}
$$

(where $\rho_{\mathcal{T}}: G_{K} \longrightarrow \operatorname{Aut}_{R}(\mathcal{T})$ denotes the action of $G_{F_{v}}$ on \mathcal{T}) and (fixing a lift $\widetilde{f} \in \nu^{-1}(1) \subset W_{K}$ of $\left.f\right)$
$\rho_{T}\left(\widetilde{f}^{n} u\right):=\rho_{\mathcal{T}}\left(\widetilde{f}^{n} u\right) \exp (-b N) \in \operatorname{Aut}_{R \otimes \mathbf{Q}}(\mathcal{T} \otimes \mathbf{Q}) \subset \operatorname{Aut}_{R_{P}}\left(\mathcal{T}_{P}\right) \quad(n \in \mathbf{Z}, u \in I)$
(where $b \in \mathbf{Z}_{p}$ is such that the image of u in $I(p)$ is equal to t^{b}), the pair $\left(\rho_{T}, N\right)$ defines an object $T=\left(\rho_{T}, N\right)$ of $\operatorname{Rep}_{R_{P}}\left({ }^{\prime} W_{F_{v}}\right)$ in the sense of 1.5.2, the isomorphism class of which is independent of the choice of \tilde{f} ([De 1], 8.4.3). By construction, the special fibre of T is isomorphic to

$$
T_{s} \xrightarrow{\sim} W D\left(V_{v}\right) \in \operatorname{Rep}_{\kappa(P)}\left({ }^{\prime} W_{F_{v}}\right)
$$

We define

$$
\begin{align*}
W D\left(\mathcal{V}_{v}\right) & :=T_{\eta}=T \otimes_{R_{P}} \mathscr{L} \in \operatorname{Rep}_{\mathscr{L}}\left({ }^{\prime} W_{F_{v}}\right) \\
\varepsilon\left(\mathcal{V}_{v}\right) & :=\varepsilon\left(W D\left(\mathcal{V}_{v}\right)\right) . \tag{5.1.4.1}
\end{align*}
$$

If we choose another generator of $I(p)$, then N is multiplied by a scalar $\lambda \in \mathbf{Z}_{p}^{*}$, which does not change the isomorphism class of $W D\left(\mathcal{V}_{v}\right)$ ([De 1], 8.4.3).
(5.2) Selmer complexes and extended Selmer groups
(5.2.1) We equip each R-module $Y=\mathcal{T}, \mathcal{T}_{v}^{+}, T_{v}^{I_{v}}$ with the pro-finite topology and we denote by $C^{\bullet}(G, Y)$ the corresponding complex of continuous cochains (for
$G=G_{F, S}, G_{F_{v}}, G_{F_{v}} / I_{v}$, respectively). For $R^{\prime}=R_{P}, \mathscr{L}$, define $C \cdot\left(G, Y \otimes_{R} R^{\prime}\right)=$ $C^{\bullet}(G, Y) \otimes_{R} R^{\prime}$. As in 4.2.1, fix a set $S_{p} \subset \Sigma \subset S$ and define, for $X=\mathcal{T}_{P}, \mathcal{V}$, $R_{X}=R_{P}, \mathscr{L}$ and each $v \in S-S_{\infty}$, complexes of R_{X}-modules

$$
U_{v}^{+}(X)= \begin{cases}C \cdot\left(G_{F_{v}}, X_{v}^{+}\right), & v \in S_{p} \\ 0, & v \in \Sigma-S_{p} \\ C_{u r}^{\bullet}\left(G_{F_{v}}, X\right)=C \cdot\left(G_{F_{v}} / I_{v}, X^{I_{v}}\right), & v \in S-\Sigma,\end{cases}
$$

and

$$
\begin{gathered}
\widetilde{C}_{f}^{\bullet}\left(G_{F, S}, X ; \Delta_{\Sigma}(X)\right)= \\
=\operatorname{Cone}\left(C^{\bullet}\left(G_{F, S}, X\right) \oplus \bigoplus_{v \in S-S_{\infty}} U_{v}^{+}(X) \longrightarrow \bigoplus_{v \in S-S_{\infty}} C^{\bullet}\left(G_{F_{v}}, X\right)\right)[-1] .
\end{gathered}
$$

(5.2.2) Proposition. (1) For each $X=\mathcal{T}_{P}, \mathcal{V}$ and each $v \notin S_{\infty} \cup S_{p}$, the complexes $C^{\bullet}\left(G_{F_{v}}, X\right)$ and $C_{u r}^{\bullet}\left(G_{F_{v}}, X\right)$ are acyclic.
(2) Up to a canonical isomorphism, the image of $\widetilde{C}_{f}^{\bullet}\left(G_{F, S}, X ; \Delta_{\Sigma}(X)\right)$ in $D_{f t}^{b}\left(R_{X}-\operatorname{Mod}\right)$ does not depend on Σ and S; denote it by $\widetilde{\mathbf{R}}_{f}(F, X)$ and its cohomology by $\widetilde{H}_{f}^{i}(F, X)$ (as \mathscr{L} is a field, $\widetilde{\mathbf{R}}_{f}(F, \mathcal{V})=\bigoplus_{i \in \mathbf{Z}} \widetilde{H}_{f}^{i}(F, \mathcal{V})[-i]$).
(3) There is an exact triangle in $D_{f t}^{b}\left(R_{P}-\operatorname{Mod}\right)$

$$
\widetilde{\mathbf{R}}_{f}\left(F, \mathcal{T}_{P}\right) \xrightarrow{\varpi_{P}} \widetilde{\mathbf{R}}_{f}\left(F, \mathcal{I}_{P}\right) \longrightarrow \widetilde{\mathbf{R}}_{f}(F, V) \longrightarrow{\widetilde{\mathbf{R}}{ }_{f}\left(F, \mathcal{T}_{P}\right)[1]}
$$

giving rise to exact sequences

$$
0 \longrightarrow \widetilde{H}_{f}^{i}\left(F, \mathcal{T}_{P}\right) / \varpi_{P} \widetilde{H}_{f}^{i}\left(F, \mathcal{T}_{P}\right) \longrightarrow \widetilde{H}_{f}^{i}(F, V) \longrightarrow \widetilde{H}_{f}^{i+1}\left(F, \mathcal{I}_{P}\right)\left[\varpi_{P}\right] \longrightarrow 0
$$

(4) There exists a skew-symmetric isomorphism in $D_{f t}^{b}\left(R_{P}\right.$ - Mod)

$$
\widetilde{\mathbf{R}}_{f}\left(F, \mathcal{T}_{P}\right) \xrightarrow{\sim} \mathbf{R H o m}_{R_{P}}\left(\widetilde{\mathbf{R}}_{f}\left(F, \mathcal{T}_{P}\right), R_{P}\right)[-3]
$$

inducing a skew-symmetric non-degenerate pairing

$$
\widetilde{H}_{f}^{2}\left(F, \mathcal{T}_{P}\right)_{R_{P}-\text { tors }} \times \widetilde{H}_{f}^{2}\left(F, \mathcal{T}_{P}\right)_{R_{P}-\text { tors }} \longrightarrow \mathscr{L} / R_{P}
$$

(5) There exists an R_{P}-module Z of finite length such that $\widetilde{H}_{f}^{2}\left(F, \mathcal{T}_{P}\right)_{R_{P}-\text { tors }} \xrightarrow{\sim}$ $Z \oplus Z$.
(6) $\widetilde{H}_{f}^{1}\left(F, \mathcal{T}_{P}\right)$ is a free R_{P}-module of $\operatorname{rank} \widetilde{h}_{f}^{1}(F, \mathcal{V}):=\operatorname{dim}_{\mathscr{L}} \widetilde{H}_{f}^{1}(F, \mathcal{V})$.
(7) $\widetilde{h}_{f}^{1}(F, V) \equiv \widetilde{h}_{f}^{1}(F, \mathcal{V})(\bmod 2)$.

Proof. (cf. [Ne 2, 12.7.13.4]) (1) It is enough to prove the statement for $X=\mathcal{T}_{P}$. By ([Ne 2], Prop. 3.4.2 and 3.4.4), there is an exact sequence of complexes

$$
0 \longrightarrow C^{\bullet}\left(G_{F_{v}}, \mathcal{I}_{P}\right) \xrightarrow{\varpi_{P}} C^{\bullet}\left(G_{F_{v}}, \mathcal{I}_{P}\right) \longrightarrow C^{\bullet}\left(G_{F_{v}}, V\right) \longrightarrow 0
$$

which induces injections

$$
H^{i}\left(G_{F_{v}}, \mathcal{T}_{P}\right) / \varpi_{P} H^{i}\left(G_{F_{v}}, \mathcal{T}_{P}\right) \hookrightarrow H^{i}\left(F_{v}, V\right)
$$

As $H^{i}\left(F_{v}, V\right)=0$ by Proposition 4.2.2(1), and $H^{i}\left(G_{F_{v}}, \mathcal{I}_{P}\right)=H^{i}\left(G_{F_{v}}, \mathcal{T}\right) \otimes_{R} R_{P}$ is an R_{P}-module of finite type (by [Ne 2], Prop. 4.2.3), it follows that $H^{i}\left(G_{F_{v}}, \mathcal{T}_{P}\right)=0$. Finally, the unramified cohomology $H_{u r}^{1}=H_{u r}^{1}\left(G_{F_{v}}, \mathcal{T}_{P}\right)=$ $\mathcal{T}_{P}^{I_{v}} /\left(f_{v}-1\right) \mathcal{T}_{P}^{I_{v}}$ is an R_{P}-module of finite type and $H_{u r}^{1} / \varpi_{P} H_{u r}^{1}$ is a subquotient of $V^{I_{v}} / \varpi_{P} V^{I_{v}}=H_{u r}^{1}\left(G_{F_{v}}, V\right)=0$; thus $H_{u r}^{1}=0$.
(2) This follows from (1), as in the proof of 4.2.2(2).
(3) According to (2), we can take $\Sigma=S$, in which case the exact triangle in question follows from the exact sequences

$$
0 \longrightarrow C^{\bullet}\left(G, \mathcal{I}_{P}\right) \xrightarrow{\varpi_{P}} C^{\bullet}\left(G, \mathcal{I}_{P}\right) \longrightarrow C^{\bullet}(G, V) \longrightarrow 0 \quad\left(G=G_{F, S}, G_{F_{v}}\right)
$$

The isomorphism $\widetilde{\mathbf{R}}_{f}\left(F, \mathcal{I}_{P}\right){\stackrel{\mathrm{Q}}{R_{P}}}^{\mathscr{L}} \xrightarrow{\sim} \widetilde{\mathbf{R}}_{f}(F, \mathcal{V})$ is a direct consequence of the definitions.
(4) Take again $\Sigma=S$. According to a localized version of ([Ne 2], 7.8.4.4), there exists an exact triangle in $D_{f t}^{b}\left(R_{P}-\operatorname{Mod}\right)$

$$
\widetilde{\mathbf{R}}_{f}\left(F, \mathcal{I}_{P}\right) \xrightarrow{\gamma} \mathbf{R H o m}_{R_{P}}\left(\widetilde{\mathbf{R}}_{f}\left(F, \mathcal{I}_{P}\right), R_{P}\right)[-3] \longrightarrow \bigoplus_{v \in S-S_{\infty}} \operatorname{Err}_{v}
$$

in which the error terms Err_{v} vanish for $v \in S_{p}$ (as $\left.\left(\mathcal{T}_{P}\right)^{ \pm} \xrightarrow{\sim}\left(\left(\mathcal{T}_{P}\right)^{\mp}\right)^{*}(1)\right)$, as well as for $v \notin S_{p}$ (by (1) and [Ne 2], Prop. 6.7.6(iv)). The map γ (which is an isomorphism, by the previous discussion) is skew-symmetric, by ([Ne 2], Prop. 6.6.2 and 7.7.3). The skew-symmetric non-degenerate pairing

$$
\widetilde{H}_{f}^{2}\left(F, \mathcal{T}_{P}\right)_{R_{P}-\text { tors }} \times \widetilde{H}_{f}^{2}\left(F, \mathcal{T}_{P}\right)_{R_{P}-\text { tors }} \longrightarrow \mathscr{L} / R_{P}
$$

is constructed from γ in ([Ne 2], Prop. 10.2.5).
(5) This follows from (4) and the structure theory of symplectic modules of finite length over discrete valuation rings (note that 2 is invertible in R_{P}).
(6) It is enough to show that $\widetilde{H}_{f}^{1}\left(F, \mathcal{I}_{P}\right)$ has no R_{P}-torsion, which si a consequence of the exact sequence from (3) (for $i=0$).
(7) In the exact sequence from (3) for $i=1$, the term on the left (resp., on the right), is a $\kappa(P)$-vector space of dimension $\widetilde{h}_{f}^{1}(F, \mathcal{V})$, by (6) (resp., of even dimension, by $(5))$; thus the dimension of the middle term $\left(=\widetilde{h}_{f}^{1}(F, V)\right)$ has the same parity as $\widetilde{h}_{f}^{1}(F, \mathcal{V})$.
(5.3) The parity conjecture in p-Adic families
(5.3.1) Theorem. Under the assumptions 5.1.2(1)-(9), the quantity

$$
\begin{aligned}
& (-1)^{h_{f}^{1}(F, V)} / \varepsilon(V)=(-1)^{\widetilde{h}_{f}^{1}(F, V)} / \widetilde{\varepsilon}(V)= \\
= & (-1)^{\widetilde{h}_{f}^{1}(F, \mathcal{V})} \prod_{v \in S_{p}}\left(\operatorname{det} \mathcal{V}_{v}^{+}\right)(-1) \prod_{v \notin S_{p} \cup S_{\infty}} \varepsilon\left(\mathcal{V}_{v}\right)
\end{aligned}
$$

depends only on \mathcal{V} and $\mathcal{V}_{v}^{+}\left(v \in S_{p}\right)$.
Proof. We combine the equalities

$$
\begin{array}{cc}
(-1)^{h_{f}^{1}(F, V)} / \varepsilon(V)=(-1)^{\widetilde{h}_{f}^{1}(F, V)} / \widetilde{\varepsilon}(V) & \text { (Prop. 4.2.2(4)) } \\
(-1)^{\widetilde{h}_{f}^{1}(F, V)}=(-1)^{\widetilde{h}_{f}^{1}(F, \mathcal{V})} & \text { (Prop. 5.2.2(7)) } \\
\widetilde{\varepsilon}(V)=\prod_{v \in S_{p} \cup S_{\infty}} \widetilde{\varepsilon}\left(V_{v}\right) \prod_{v \notin S_{p} \cup S_{\infty}} \varepsilon\left(V_{v}\right)=\prod_{v \in S_{p}}\left(\operatorname{det} V_{v}^{+}\right)(-1) \prod_{v \notin S_{\infty} \cup S_{p}} \varepsilon\left(V_{v}\right) \\
\forall v \notin S_{\infty} \cup S_{p} \quad \varepsilon\left(V_{v}\right)=\varepsilon\left(\mathcal{V}_{v}\right) & \text { (Prop. 2.2.4) } \\
\forall v \in S_{p} \quad\left(\operatorname{det} V_{v}^{+}\right)(-1)=\left(\operatorname{det} \mathcal{V}_{v}^{+}\right)(-1) \tag{Prop.2.2.4}
\end{array}
$$

(both sides are equal to ± 1, and the L.H.S. is the reduction of the R.H.S. modulo $P)$.
(5.3.2) Corollary. Under the assumptions 5.1.2(1)-(4), if $P, P^{\prime} \in \operatorname{Spec}(R)$ are prime ideals satisfying 5.1.2(5)-(9), then the Galois representations $V=\mathcal{T}_{P} / P \mathcal{T}_{P}$ and $V^{\prime}=\mathcal{T}_{P^{\prime}} / P^{\prime} \mathcal{T}_{P^{\prime}}$ satisfy

$$
(-1)^{h_{f}^{1}(F, V)} / \varepsilon(V)=(-1)^{h_{f}^{1}\left(F, V^{\prime}\right)} / \varepsilon\left(V^{\prime}\right)
$$

(5.3.3) Open questions. It would be of interest to generalize Corollary 5.3.2 to self-dual families of Galois representations that do not satisfy the Pančiškin condition. Is it true, in general, that

$$
(-1)^{\left[F_{v}: \mathbf{Q}_{p}\right] d^{-}(V)} \varepsilon\left(W D\left(V_{v}\right)^{N-s s}\right) \quad\left(v \in S_{p}\right)
$$

depends only on \mathcal{V}_{v}, and that

$$
(-1)^{h_{f}^{1}(F, V)} \prod_{v \in S_{p}} \frac{\varepsilon\left(W D\left(V_{v}\right)\right)}{\varepsilon\left(W D\left(V_{v}\right)^{N-s s}\right)}
$$

depends only on \mathcal{V} ?
(5.3.4) Example (dihedral Iwasawa theory). Assume that $F_{0} \subset F_{\infty}$ are Galois extension of F such that $\left[F_{0}: F\right]=2, \Gamma=\operatorname{Gal}\left(F_{\infty} / F_{0}\right) \xrightarrow{\sim} \mathbf{Z}_{p}$ and $\Gamma^{+}=\operatorname{Gal}\left(F_{\infty} / F\right)=\Gamma \rtimes\{1, \tau\}$ is dihedral:

$$
\tau \in \Gamma^{+}-\Gamma, \quad \tau^{2}=1, \quad \forall g \in \Gamma \quad \tau g \tau^{-1}=g^{-1}
$$

Let $V \in \operatorname{Rep}_{L_{\mathrm{p}}}\left(G_{F, S}\right)$ be a Galois representation satisfying 4.1.2(1)-(4); fix a $G_{F, S^{-}}$ stable $\mathcal{O}_{\mathfrak{p}}$-lattice $T \subset V\left(\mathcal{O}_{\mathfrak{p}}=\mathcal{O}_{L_{\mathfrak{p}}}\right)$ such that the pairing $(,)_{V}: V \times V \longrightarrow L_{\mathfrak{p}}(1)$ induced by j maps $T \times T$ into $\mathcal{O}_{\mathfrak{p}}(1)$. After enlarging S if necessary, we can assume that S contains all primes that ramify in F_{0} / F; then $F_{\infty} \subset F_{S}$. We define the following data of the type considered in 5.1.2:
(1) Let $R=\mathcal{O}_{\mathfrak{p}}[[\Gamma]]$ be the Iwasawa algebra of Γ (isomorphic to the power series ring $\mathcal{O}_{\mathfrak{p}}[[X]]$). The Iwasawa algebra of Γ^{+}is a free (both left and right) R module of rank 2 :

$$
\mathcal{O}_{\mathfrak{p}}\left[\left[\Gamma^{+}\right]\right]=R \oplus R \tau=R \oplus \tau R
$$

Denote by ι the standard $\mathcal{O}_{\mathfrak{p}}$-linear involution on $\mathcal{O}_{\mathfrak{p}}\left[\left[\Gamma^{+}\right]\right]\left(\iota(\sigma)=\sigma^{-1}\right.$ for all $\sigma \in \Gamma^{+}$).
(2) Let $\mathcal{T}=T \otimes_{\mathcal{O}_{\mathfrak{p}}} \mathcal{O}_{\mathfrak{p}}\left[\left[\Gamma^{+}\right]\right]$, considered as a left $R\left[G_{F, S}\right]$-module with the action given by
$r(x \otimes a)=x \otimes r a, \quad g(x \otimes a)=g(x) \otimes a(\bar{g})^{-1} \quad\left(r \in R, x \in T, a \in \mathcal{O}_{\mathfrak{p}}\left[\left[\Gamma^{+}\right]\right]\right)$,
where we have denoted by \bar{g} the image of $g \in G_{F, S}$ in Γ^{+}(cf., [Ne 2], 10.3.5.3).
(3) As in ([Ne 2], 10.3.5.10), the formula

$$
\left(x \otimes\left(a_{1}+\tau a_{2}\right), y \otimes\left(b_{1}+\tau b_{2}\right)\right)=(x, y)_{V}\left(a_{1} \iota\left(b_{2}\right)+\iota\left(a_{2}\right) b_{1}\right)
$$

defines a skew-symmetric R-bilinear pairing (,): $\mathcal{T} \times \mathcal{T} \longrightarrow R(1)$, which induces an isomorphism

$$
\mathcal{T} \otimes \mathbf{Q} \xrightarrow{\sim} \operatorname{Hom}_{R}(\mathcal{T}, R(1)) \otimes \mathbf{Q}
$$

(hence satisfies 5.1.2(3)).
(4) For each $v \in S_{p}$, define $\mathcal{T}_{v}^{+}=T_{v}^{+} \otimes_{\mathcal{O}_{\mathfrak{p}}} \mathcal{O}_{\mathfrak{p}}\left[\left[\Gamma^{+}\right]\right]$(where $T_{v}^{+}=T \cap V_{v}^{+}$).
(5) Let $\beta: \Gamma \longrightarrow L_{\mathfrak{p}}(\beta)^{*}$ be a homomorphism with finite image (where $L_{\mathfrak{p}}(\beta)$ is a field generated over $L_{\mathfrak{p}}$ by the values of β); then $P=\operatorname{Ker}\left(\beta: R \longrightarrow L_{\mathfrak{p}}(\beta)\right) \in$ $\operatorname{Spec}(R)$ is as in 5.1.2(5), with $\kappa(P)=L_{\mathfrak{p}}(\beta)$. It follows from ([Ne 2], Lemma 10.3.5.4) that

$$
\mathcal{I}_{P} / \varpi_{P} \mathcal{I}_{P}=\operatorname{Ind}_{G_{F_{0}, S}}^{G_{F, S}}(V \otimes \beta)
$$

where we have denoted by $V \otimes \beta \in \operatorname{Rep}_{L_{\mathrm{p}}(\beta)}\left(G_{F_{0}, S}\right)$ the $G_{F_{0}, S}$-module $V \otimes_{L_{\mathfrak{p}}}$ $L_{\mathfrak{p}}(\beta)$ on which $g \in G_{F_{0}, S}$ acts by $g \otimes \beta(\bar{g})$, where \bar{g} is the image of g in Γ. The discussion in ([Ne 2], 10.3.5.10) implies that 5.1.2(6) holds with $u=1$. The conditions 5.1.2(7)-(9) for $\mathcal{T}_{P} / \varpi_{P} \mathcal{I}_{P}$ follow from the corresponding conditions 4.1.2(2)-(4) for V.
(5.3.5) In the situation of 5.3 .4 , putting $F_{\beta}=F_{\infty}^{\operatorname{Ker}(\beta)}$ and, for each $L_{\mathfrak{p}}[\Gamma]$-module M,

$$
M^{(\beta)}=\left\{x \in M \otimes_{L_{\mathfrak{p}}} L_{\mathfrak{p}}(\beta) \mid \forall \sigma \in \Gamma \quad \sigma(x)=\beta(\sigma) x\right\}
$$

then we have

$$
\begin{gathered}
H_{f}^{1}\left(F, \mathcal{T}_{P} / \varpi_{P} \mathcal{T}_{P}\right)=H_{f}^{1}\left(F_{0}, V \otimes \beta\right)=\left(H_{f}^{1}\left(F_{\beta}, V\right) \otimes \beta\right)^{\operatorname{Gal}\left(F_{\beta} / F_{0}\right)}= \\
=H_{f}^{1}\left(F_{\beta}, V\right)^{\left(\beta^{-1}\right)}
\end{gathered}
$$

and the action of τ induces an isomorphism of $L_{\mathfrak{p}}(\beta)$-vector spaces

$$
\tau: H_{f}^{1}\left(F_{\beta}, V\right)^{\left(\beta^{-1}\right)} \xrightarrow{\sim} H_{f}^{1}\left(F_{\beta}, V\right)^{(\beta)}
$$

Applying Corollary 5.3.2, we obtain, for any pair of characters of finite order $\beta, \beta^{\prime}: \Gamma \longrightarrow \bar{L}_{\mathfrak{p}}^{*}$, that

$$
\begin{equation*}
(-1)^{h_{f}^{1}\left(F_{0}, V \otimes \beta\right)} / \varepsilon\left(F_{0}, V \otimes \beta\right)=(-1)^{h_{f}^{1}\left(F_{0}, V \otimes \beta^{\prime}\right)} / \varepsilon\left(F_{0}, V \otimes \beta^{\prime}\right) \tag{5.3.5.1}
\end{equation*}
$$

In this special case one can prove Proposition 2.2.4 directly (at least if $p \neq 2$) by using (2.1.2.7).
It would be of interest to generalize (5.3.5.1) to more general dihedral characters, as in $[\mathrm{Ma}-\mathrm{Ru}]$.

References

[Bl-Ka] S. Bloch, K. Kato, L-functions and Tamagawa numbers of motives, in: The Grothendieck Festschrift I, Progress in Mathematics 86, Birkhäuser, Boston, Basel, Berlin, 1990, pp. 333-400.
[De 1] P. Deligne, Les constantes des équations fonctionnelles des fonctions L, in: Modular functions of one variable II (Antwerp, 1972), Lect. Notes in Math. 349, Springer, Berlin, 1973, pp. 501-597.
[De 2] P. Deligne, Formes modulaires et représentations de GL(2), in: Modular functions of one variable II (Antwerp, 1972), Lect. Notes in Math. 349, Springer, Berlin, 1973, pp. 55-105.
[De 3] P. Deligne, Valeurs de fonctions L et périodes d'intégrales, in: Automorphic forms, representations and L-functions (Corvallis, 1977), Proc. Symposia Pure Math. 33/II, American Math. Society, Providence, Rhode Island, 1979, pp. 313-346.
[Fo] J.-M. Fontaine, Représentations ℓ-adiques potentiellement semi-stables, in: Périodes p-adiques (Bures-sur-Yvette, 1988), Astérisque 223, Soc. Math. de France, Paris, 1994, pp. 321-347.
[Fo-PR] J.-M. Fontaine, B. Perrin-Riou, Autour des conjectures de Bloch et Kato: cohomologie galoisienne et valeurs de fonctions L, in: Motives (Seattle,
1991), Proc. Symposia in Pure Math. 55/I, American Math. Society, Providence, Rhode Island, 1994, pp. 599-706.
[Ma-Ru] B. Mazur, K. Rubin, Finding large Selmer rank via an arithmetic theory of local constants, Ann. of Math., to appear.
[Ne 1] J. Nekovář, On p-adic height pairings, in: Séminaire de Théorie des Nombres de Paris 1990/91, Progress in Math. 108, (S. David, ed.), Birkhäuser, Boston, 1993, pp. 127-202.
[Ne 2] J. Nekováŕ, Selmer complexes, Astérisque 310, Soc. Math. de France, Paris, 2006.

Jan Nekovář
Université Pierre et Marie Curie (Paris 6)
Institut de Mathématiques de Jussieu
Théorie des Nombres, Case 247
4, place Jussieu
F-75252 Paris cedex 05
FRANCE

[^0]: ${ }^{(1)}$ In [loc. cit.] we worked with automorphic ε-factors, but they coincide with the Galois-theoretical ε-factors ([Ne 2], 12.4.3, 12.5.4(iii)).
 ${ }^{(2)}$ Morally, $\widetilde{\varepsilon}(V)$ should be the sign in the functional equation of a p-adic L function attached to the family.

