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Tropical Convexity

Mike Develin and Bernd Sturmfels
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Communicated by Günter Ziegler

Abstract. The notions of convexity and convex polytopes are in-
troduced in the setting of tropical geometry. Combinatorial types of
tropical polytopes are shown to be in bijection with regular triangula-
tions of products of two simplices. Applications to phylogenetic trees
are discussed.

2000 Mathematics Subject Classification: 52A30; 92B10

1 Introduction

The tropical semiring (R,⊕,⊙) is the set of real numbers with the arithmetic
operations of tropical addition, which is taking the minimum of two numbers,
and tropical multiplication, which is ordinary addition. Thus the two arithmetic
operations are defined as follows:

a ⊕ b := min(a, b) and a ⊙ b := a + b.

The n-dimensional space Rn is a semimodule over the tropical semiring, with
tropical addition

(x1, . . . , xn) ⊕ (y1, . . . , yn) = (x1 ⊕ y1, . . . , xn ⊕ yn),

and tropical scalar multiplication

c ⊙ (x1, x2, . . . , xn) = (c ⊙ x1, c ⊙ x2, . . . , c ⊙ xn).

The semiring (R,⊕,⊙) and its semimodule Rn obey the usual distributive and
associative laws.
The purpose of this paper is to propose a tropical theory of convex polytopes.
Convexity in arbitrary idempotent semimodules was introduced by Cohen,
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2 Develin and Sturmfels

Gaubert and Quadrat [3] and Litvinov, Maslov and Shpiz [13]. Some of our
results (such as Theorem 23 and Propositions 20 and 21) are known in a differ-
ent guise in idempotent analysis. Our objective is to provide a combinatorial
approach to convexity in the tropical semiring which is consistent with the
recent developments in tropical algebraic geometry (see [15], [18], [20]). The
connection to tropical methods in representation theory (see [12], [16]) is less
clear and deserves further study.

There are many notions of discrete convexity in the computational geometry
literature, but none of them seems to be quite like tropical convexity. For in-
stance, the notion of directional convexity studied by Matoušek [14] has similar
features but it is different and much harder to compute with.

A subset S of Rn is called tropically convex if the set S contains the point
a ⊙ x ⊕ b ⊙ y for all x, y ∈ S and all a, b ∈ R. The tropical convex hull of
a given subset V ⊂ Rn is the smallest tropically convex subset of Rn which
contains V . We shall see in Proposition 4 that the tropical convex hull of V
coincides with the set of all tropical linear combinations

a1⊙v1 ⊕ a2⊙v2 ⊕ · · · ⊕ ar⊙vr , where v1, . . . , vr ∈ V and a1, . . . , ar ∈ R. (1)

Any tropically convex subset S of Rn is closed under tropical scalar multipli-
cation, R ⊙ S ⊆ S. In other words, if x ∈ S then x + λ(1, . . . , 1) ∈ S for all
λ ∈ R. We will therefore identify the tropically convex set S with its image in
the (n − 1)-dimensional tropical projective space

TPn−1 = Rn/(1, . . . , 1)R.

Basic properties of (tropically) convex subsets in TPn−1 will be presented in
Section 2. In Section 3 we introduce tropical polytopes and study their com-
binatorial structure. A tropical polytope is the tropical convex hull of a finite
subset V in TPn−1. Every tropical polytope is a finite union of convex poly-
topes in the usual sense: given a set V = {v1, . . . , vn}, their convex hull has
a natural decomposition as a polyhedral complex, which we call the tropical
complex generated by V . The following main result will be proved in Section
4:

Theorem 1. The combinatorial types of tropical complexes generated by a
set of r vertices in TPn−1 are in natural bijection with the regular polyhedral
subdivisions of the product of two simplices ∆n−1 × ∆r−1.

This implies a remarkable duality between tropical (n − 1)-polytopes with r
vertices and tropical (r − 1)-polytopes with n vertices. Another consequence
of Theorem 1 is a formula for the f -vector of a generic tropical complex. In
Section 5 we discuss applications of tropical convexity to phylogenetic analysis,
extending known results on injective hulls of finite metric spaces (cf. [7], [8], [9]
and [20]).
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Figure 1: Tropical convex sets and tropical line segments in TP2.

2 Tropically convex sets

We begin with two pictures of tropical convex sets in the tropical plane TP2. A
point (x1, x2, x3) ∈ TP2 is represented by drawing the point with coordinates
(x2−x1, x3−x1) in the plane of the paper. The triangle on the left hand side in
Figure 1 is tropically convex, but it is not a tropical polytope because it is not
the tropical convex hull of finitely many points. The thick edges indicate two
tropical line segments. The picture on the right hand side is a tropical triangle,
namely, it is the tropical convex hull of the three points (0, 0, 1), (0, 2, 0) and
(0,−1,−2) in the tropical plane TP2. The thick edges represent the tropical
segments connecting any two of these three points.
We next show that tropical convex sets enjoy many of the features of ordinary
convex sets.

Theorem 2. The intersection of two tropically convex sets in Rn or in TPn−1

is tropically convex. The projection of a tropically convex set onto a coordinate
hyperplane is tropically convex. The ordinary hyperplane {xi − xj = l} is
tropically convex, and the projection map from this hyperplane to Rn−1 given
by eliminating xi is an isomorphism of tropical semimodules. Tropically convex
sets are contractible spaces. The Cartesian product of two tropically convex sets
is tropically convex.

Proof. We prove the statements in the order given. If S and T are tropically
convex, then for any two points x, y ∈ S∩T , both S and T contain the tropical
line segment between x and y, and consequently so does S∩T . Therefore S∩T
is tropically convex by definition.
Suppose S is a tropically convex set in Rn. We wish to show that the im-
age of S under the coordinate projection φ : Rn → Rn−1, (x1, x2, . . . , xn) 7→
(x2, . . . , xn) is a tropically convex subset of Rn−1. If x, y ∈ S then we have the
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4 Develin and Sturmfels

obvious identity

φ
(
c ⊙ x ⊕ d ⊙ y

)
= c ⊙ φ(x) ⊕ d ⊙ φ(y).

This means that φ is a homomorphism of tropical semimodules. Therefore, if
S contains the tropical line segment between x and y, then φ(S) contains the
tropical line segment between φ(x) and φ(y) and hence is tropically convex.
The same holds for the induced map φ : TPn−1 → TPn−2.

Most ordinary hyperplanes in Rn are not tropically convex, but we are claiming
that hyperplanes of the special form xi − xj = k are tropically convex. If x
and y lie in that hyperplane then xi − yi = xj − yj . This last equation implies
the following identity for any real numbers c, d ∈ R:

(c⊙ x⊕ d⊙ y)i − (c⊙ x⊕ d⊙ y)j = min (xi+c, yi+d)−min (xj+c, yj+d) = k.

Hence the tropical line segment between x and y also lies in the hyperplane
{xi − xj = k}.
Consider the map from {xi − xj = k} to Rn−1 given by deleting the i-th
coordinate. This map is injective: if two points differ in the xi coordinate
they must also differ in the xj coordinate. It is clearly surjective because we
can recover an i-th coordinate by setting xi = xj + k. Hence this map is
an isomorphism of R-vector spaces and it is also an isomorphism of (R,⊕,⊙)-
semimodules.

Let S be a tropically convex set in Rn or TPn−1. Consider the family of
hyperplanes Hl = {x1 − x2 = l} for l ∈ R. We know that the intersection
S ∩ Hl is tropically convex, and isomorphic to its (convex) image under the
map deleting the first coordinate. This image is contractible by induction on
the dimension n of the ambient space. Therefore, S ∩ Hl is contractible. The
result then follows from the topological result that if S is connected, which all
tropically convex sets obviously are, and if S ∩ Hl is contractible for each l,
then S itself is also contractible.

Suppose that S ⊂ Rn and T ⊂ Rm are tropically convex. Our last assertion
states that S × T is a tropically convex subset of Rn+m. Take any (x, y) and
(x′, y′) in S × T and c, d ∈ R. Then

c ⊙ (x, y) ⊕ d ⊙ (x′, y′) =
(
c ⊙ x ⊕ d ⊙ x′ , c ⊙ y ⊕ d ⊙ y′ )

lies in S × T since S and T are tropically convex.

We next give a more precise description of what tropical line segments look
like.

Proposition 3. The tropical line segment between two points x and y in TPn−1

is the concatenation of at most n−1 ordinary line segments. The slope of each
line segment is a zero-one vector.
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Tropical Convexity 5

Proof. After relabeling the coordinates of x = (x1, , . . . , xn) and y =
(y1, . . . , yn), we may assume

y1 − x1 ≤ y2 − x2 ≤ · · · ≤ yn − xn. (2)

The following points lie in the given order on the tropical segment between x
and y:

x = (y1 − x1) ⊙ x ⊕ y =
(
y1, y1−x1+x2, . . . , y1−x1+xn−1, y1−x1+xn

)

(y2 − x2) ⊙ x ⊕ y =
(
y1, y2, y2−x2+x3, . . . , y2−x2+xn−1, y2−x2+xn

)

(y3 − x3) ⊙ x ⊕ y =
(
y1, y2, y3, . . . , y3−x3+xn−1, y3−x3+xn

)

...
...

...

(yn−1−xn−1) ⊙ x ⊕ y =
(
y1, y2, y3, . . . , yn−1, yn−1−xn−1+xn

)

y = (yn − xn) ⊙ x ⊕ y =
(
y1, y2, y3, . . . , yn−1, yn

)
.

Between any two consecutive points, the tropical line segment agrees with
the ordinary line segment, which has slope (0, 0, . . . , 0, 1, 1, . . . , 1). Hence the
tropical line segment between x and y is the concatenation of at most n − 1
ordinary line segments, one for each strict inequality in (2).

This description of tropical segments shows an important feature of tropical
polytopes: their edges use a limited set of directions. The following result
characterizes the tropical convex hull.

Proposition 4. The smallest tropically convex subset of TPn−1 which contains
a given set V coincides with the set of all tropical linear combinations (1). We
denote this set by tconv(V ).

Proof. Let x =
⊕r

i=1 ai⊙vi be the point in (1). If r ≤ 2 then x is clearly in the
tropical convex hull of V . If r > 2 then we write x = a1⊙v1 ⊕ (

⊕r
i=2 ai⊙vi).

The parenthesized vector lies the tropical convex hull, by induction on r, and
hence so does x. For the converse, consider any two tropical linear combinations
x =

⊕r
i=1 ci⊙vi and y =

⊕r
j=1 di⊙vi. By the distributive law, a⊙x⊕ b⊙y is

also a tropical linear combination of v1, . . . , vr ∈ V . Hence the set of all tropical
linear combinations of V is tropically convex, so it contains the tropical convex
hull of V .

If V is a finite subset of TPn−1 then tconv(V ) is a tropical polytope. In Figure 2
we see three small examples of tropical polytopes. The first and second are
tropical convex hulls of three points in TP2. The third tropical polytope lies in
TP3 and is the union of three squares.
One of the basic results in the usual theory of convex polytopes is
Carathéodory’s theorem. This theorem holds in the tropical setting.

Proposition 5 (Tropical Carathéodory’s Theorem). If x is in the trop-
ical convex hull of a set of r points vi in TPn−1, then x is in the tropical convex
hull of at most n of them.

Documenta Mathematica 9 (2004) 1–27



6 Develin and Sturmfels

v2 = (0, 2, 0)

v3 = (0, 1,−2)

v2 = (0, 2, 0)

v1 = (0, 0, 1)

v3 = (0,−2,−2)

v1 = (0, 0, 2) v2 = (0, 1, 0, 1)

v3 = (0, 1, 1, 0)

v1 = (0, 0, 1, 1)

Figure 2: Three tropical polytopes. The first two live in TP2, the last in TP3.

Proof. Let x =
⊕r

i=1 ai ⊙ vi and suppose r > n. For each coordinate j ∈
{1, . . . , n}, there exists an index i ∈ {1, . . . , r} such that xj = ci + vij . Take
a subset I of {1, . . . , r} composed of one such i for each j. Then we also have
x =

⊕
i∈I ai ⊙ vi, where #(I) ≤ n.

The basic theory of tropical linear subspaces in TPn−1 was developed in [18]
and [20]. Recall that the tropical hyperplane defined by a tropical linear form
a1 ⊙ x1 ⊕ a2 ⊙ x2 ⊕ · · · ⊕ an ⊙ xn consists of all points x = (x1, x2, . . . , xn)
in TPn−1 such that the following holds (in ordinary arithmetic):

ai +xi = aj +xj = min{ak +xk : k = 1, . . . , n} for some indices i 6= j.
(3)

Just like in ordinary geometry, hyperplanes are convex sets:

Proposition 6. Tropical hyperplanes in TPn−1 are tropically convex.

Proof. Let H be the hyperplane defined by (3). Suppose that x and y lie in H
and consider any tropical linear combination z = c ⊙ x ⊕ d ⊙ y. Let i be an
index which minimizes ai +zi. We need to show that this minimum is attained
at least twice. By definition, zi is equal to either c + xi or d + yi, and, after
permuting x and y, we may assume zi = c + xi ≤ d + yi. Since, for all k,
ai + zi ≤ ak + zk and zk ≤ c + xk, it follows that ai + xi ≤ ak + xk for all
k, so that ai + xi achieves the minimum of {a1 + x1, . . . , an + xn}. Since x
is in H, there exists some index j 6= i for which ai + xi = aj + xj . But now
aj + zj ≤ aj + c + xj = c + ai + xi = ai + zi. Since ai + zi is the minimum of
all aj + zj , the two must be equal, and this minimum is obtained at least twice
as desired.

Proposition 6 implies that if V is a subset of TPn−1 which happens to lie in
a tropical hyperplane H, then its tropical convex hull tconv(V ) will lie in H
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Tropical Convexity 7

as well. The same holds for tropical planes of higher codimension. Recall that
every tropical plane is an intersection of tropical hyperplanes [20]. But the
converse does not hold: not every intersection of tropical hyperplanes qualifies
as a tropical plane (see [18, §5]). Proposition 6 and the first statement in
Theorem 2 imply:

Corollary 7. Tropical planes in TPn−1 are tropically convex.

A theorem in classical geometry states that every point outside a closed convex
set can be separated from the convex set by a hyperplane. The same statement
holds in tropical geometry. This follows from the results in [3]. Some caution
is needed, however, since the definition of hyperplane in [3] differs from our
definition of hyperplane, as explained in [18]. In our definition, a tropical
hyperplane is a fan which divides TPn−1 into n convex cones, each of which
is also tropically convex. Rather than stating the most general separation
theorem, we will now focus our attention on tropical polytopes, in which case
the separation theorem is the Farkas Lemma stated in the next section.

3 Tropical polytopes and cell complexes

Throughout this section we fix a finite subset V = {v1, v2, . . . , vr} of tropical
projective space TPn−1. Here vi = (vi1, vi2, . . . , vin). Our goal is to study
the tropical polytope P = tconv(V ). We begin by describing the natural cell
decomposition of TPn−1 induced by the fixed finite subset V .

Let x be any point in TPn−1. The type of x relative to V is the ordered n-tuple
(S1, . . . , Sn) of subsets Sj ⊆ {1, 2, . . . , r} which is defined as follows: An index
i is in Sj if

vij − xj = min(vi1 − x1, vi2 − x2, . . . , vin − xn).

Equivalently, if we set λi = min{λ ∈ R : λ ⊙ vi ⊕ x = x } then Sj is the set
of all indices i such that λi ⊙ vi and x have the same j-th coordinate. We say
that an n-tuple of indices S = (S1, . . . , Sn) is a type if it arises in this manner.
Note that every i must be in some Sj .

Example 8. Let r = n = 3, v1 = (0, 0, 2), v2 = (0, 2, 0) and v3 = (0, 1,−2).
There are 30 possible types as x ranges over the plane TP2. The corresponding
cell decomposition has six convex regions (one bounded, five unbounded), 15
edges (6 bounded, 9 unbounded) and 6 vertices. For instance, the point x =
(0, 1,−1) has type(x) =

(
{2}, {1}, {3}

)
and its cell is a bounded pentagon.

The point x′ = (0, 0, 0) has type(x′) =
(
{1, 2}, {1}, {2, 3}

)
and its cell is one

of the six vertices. The point x′′ = (0, 0,−3) has type(x′′) =
{
{1, 2, 3}, {1}, ∅

)

and its cell is an unbounded edge.

Our first application of types is the following separation theorem.
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8 Develin and Sturmfels

Proposition 9 (Tropical Farkas Lemma). For all x ∈ TPn−1, exactly one
of the following is true.
(i) the point x is in the tropical polytope P = tconv(V ), or
(ii) there exists a tropical hyperplane which separates x from P .

The separation statement in part (ii) means the following: if the hyperplane
is given by (3) and ak + xk = min(a1 + x1, . . . , an + xn) then ak + yk >
min(a1 + y1, . . . , an + yn) for all y ∈ P .

Proof. Consider any point x ∈ TPn−1, with type(x) = (S1, . . . , Sn), and let
λi = min{λ ∈ R : λ ⊙ vi ⊕ x = x } as before. We define

πV (x) = λ1 ⊙ v1 ⊕ λ2 ⊙ v2 ⊕ · · · ⊕ λr ⊙ vr. (4)

There are two cases: either πV (x) = x or πV (x) 6= x. The first case implies
(i). Since (i) and (ii) clearly cannot occur at the same time, it suffices to prove
that the second case implies (ii).
Suppose that πV (x) 6= x. Then Sk is empty for some index k ∈ {1, . . . , n}.
This means that vik +λi−xk > 0 for i = 1, 2, . . . , r. Let ε > 0 be smaller than
any of these r positive reals. We now choose our separating tropical hyperplane
(3) as follows:

ak := −xk − ε and aj := −xj for j ∈ {1, . . . , n}\{k}. (5)

This certainly satisfies ak +xk = min(a1 +x1. . . . , an +xn). Now, consider any
point y =

⊕r
i=1 ci ⊙ vi in tconv(V ). Pick any m such that yk = cm + vmk. By

definition of the λi, we have xk ≤ λm + vmk for all k, and there exists some j
with xj = λm + vmj . These equations and inequalities imply

ak + yk = ak + cm + vmk = cm + vmk − xk − ε > cm − λm

= cm + vmj − xj ≥ yj − xj = aj + yj ≥ min(a1 + y1, . . . , an + yn).

Therefore, the hyperplane defined by (5) separates x from P as desired.

The construction in (4) defines a map πV : TPn−1 → P whose restriction to
P is the identity. This map is the tropical version of the nearest point map
onto a closed convex set in ordinary geometry. Such maps were studied in [3]
for convex subsets in arbitrary idempotent semimodules.
If S = (S1, . . . , Sn) and T = (T1, . . . , Tn) are n-tuples of subsets of {1, 2, . . . , r},
then we write S ⊆ T if Sj ⊆ Tj for j = 1, . . . , n. We also consider the set of
all points whose type contains S:

XS :=
{

x ∈ TPn−1 : S ⊆ type(x)
}
.

Lemma 10. The set XS is a closed convex polyhedron (in the usual sense).
More precisely,

XS =
{

x ∈ TPn−1 : xk −xj ≤ vik −vij for all j, k ∈ {1, . . . , n} with i ∈ Sj

}
.

(6)
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Tropical Convexity 9

v1

v2

v3

Figure 3: The region X(2,1,3) in the tropical convex hull of v1, v2 and v3.

Proof. Let x ∈ TPn−1 and T = type(x). First, suppose x is in XS . Then S ⊆ T .
For every i, j, k such that i ∈ Sj , we also have i ∈ Tj , and so by definition we
have vij − xj ≤ vik − xk, or xk − xj ≤ vik − vij . Hence x lies in the set on the
right hand side of (6). For the proof of the reverse inclusion, suppose that x
lies in the right hand side of (6). Then, for all i, j with i ∈ Sj , and for all k, we
have vij−xj ≤ vik−xk. This means that vij−xj = min(vi1−x1, . . . , vin−xn)
and hence i ∈ Tj . Consequently, for all j, we have Sj ⊂ Tj , and so x ∈ XS .

As an example for Lemma 10, we consider the region X(2,1,3) in the tropical
convex hull of v1 = (0, 0, 2), v2 = (0, 2, 0), and v3 = (0, 1,−2). This region
is defined by six linear inequalities, one of which is redundant, as depicted in
Figure 3. Lemma 10 has the following immediate corollaries.

Corollary 11. The intersection XS ∩ XT is equal to the polyhedron XS∪T .

Proof. The inequalities defining XS∪T are precisely the union of the inequalities
defining XS and XT , and points satisfying these inequalities are precisely those
in XS ∩ XT .

Corollary 12. The polyhedron XS is bounded if and only if Sj 6= ∅ for all
j = 1, 2, . . . , n.

Proof. Suppose that Sj 6= ∅ for all j = 1, 2, . . . , n. Then for every j and k,
we can find i ∈ Sj and m ∈ Sk, which via Lemma 10 yield the inequalities
vmk − vmj ≤ xk − xj ≤ vik − vij . This implies that each xk − xj is bounded on
XS , which means that XS is a bounded subset of TPn−1.
Conversely, suppose some Sj is empty. Then the only inequalities involving xj

are of the form xj − xk ≤ cjk. Consequently, if any point x is in Sj , so too is
x− kej for k > 0, where ej is the j-th basis vector. Therefore, in this case, XS

is unbounded.
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10 Develin and Sturmfels

Corollary 13. Suppose we have S = (S1, . . . , Sn), with S1 ∪ · · · ∪ Sn =
{1, . . . , r}. Then if S ⊆ T , XT is a face of XS, and furthermore all faces of
XS are of this form.

Proof. For the first part, it suffices to prove that the statement is true when
T covers S in the poset of containment, i.e. when Tj = Sj ∪ {i} for some
j ∈ {1, . . . , n} and i 6∈ Sj , and Tk = Sk for k 6= j.
We have the inequality presentation of XS given by Lemma 10. By the same
lemma, the inequality presentation of XT consists of the inequalities defining
XS together with the inequalities

{xk − xj ≤ vik − vij | k ∈ {1, . . . , n}}. (7)

By assumption, i is in some Sm. We claim that XT is the face of S defined by
the equality

xm − xj = vim − vij . (8)

Since XS satisfies the inequality xj −xm ≤ vij − vim, (8) defines a face F of S.
The inequality xm − xj ≤ vim − vij is in the set (7), so (8) is valid on XT and
XT ⊆ F . However, any point in F , being in XS , satisfies xk−xm ≤ vik−vim for
all k ∈ {1, . . . , n}. Adding (8) to these inequalities proves that the inequalities
(7) are valid on F , and hence F ⊆ XT . So XT = F as desired.
By the discussion in the proof of the first part, prescribing equality in the facet-
defining inequality xk − xj ≤ vik − vij yields XT , where Tk = Sk ∪ {i} and
Tj = Sj for j 6= k. Therefore, all facets of XS can be obtained as regions XT ,
and it follows recursively that all faces of XS are of this form.

Corollary 14. Suppose that S = (S1, . . . , Sn) is an n-tuple of indices sat-
isfying S1 ∪ · · · ∪ Sn = {1, . . . , r}. Then XS is equal to XT for some type
T .

Proof. Let x be a point in the relative interior of XS , and let T = type(x).
Since x ∈ XS , T contains S, and by Lemma 13, XT is a face of XS . However,
since x is in the relative interior of XS , the only face of XS containing x is XS

itself, so we must have XS = XT as desired.

We are now prepared to state our main theorem in this section.

Theorem 15. The collection of convex polyhedra XS, where S ranges over
all types, defines a cell decomposition CV of TPn−1. The tropical polytope
P = tconv(V ) equals the union of all bounded cells XS in this decomposition.

Proof. Since each point has a type, it is clear that the union of the XS is
equal to TPn−1. By Corollary 13, the faces of XS are equal to XU for S ⊆ U ,
and by Corollary 14, XU = XW for some type W , and hence XU is in our
collection. The only thing remaining to check to show that this collection
defines a cell decomposition is that XS ∩ XT is a face of both XS and XT ,
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Tropical Convexity 11

but XS ∩ XT = XS∪T by Corollary 11, and XS∪T is a face of XS and XT by
Corollary 13.

For the second assertion consider any point x ∈ TPn−1 and let S = type(x).
We have seen in the proof of the Tropical Farkas Lemma (Proposition 9) that
x lies in P if and only if no Sj is empty. By Corollary 12, this is equivalent to
the polyhedron XS being bounded.

The collection of bounded cells XS is referred to as the tropical complex gen-
erated by V ; thus, Theorem 15 states that this provides a polyhedral decom-
position of the polytope P = tconv(V ). Different sets V may have the same
tropical polytope as their convex hull, but generate different tropical complexes;
the decomposition of a tropical polytope depends on the chosen generating set,
although we will see later (Proposition 21) that there is a unique minimal
generating set.

Here is a nice geometric construction of the cell decomposition CV of TPn−1

induced by V = {v1, . . . , vr}. Let F be the fan in TPn−1 defined by the tropical
hyperplane (3) with a1 = · · · = an = 0. Two vectors x and y lie in the same
relatively open cone of the fan F if and only if

{ j : xj = min(x1, . . . , xn) } = { j : yj = min(y1, . . . , yn) }.

If we translate the negative of F by the vector vi then we get a new fan which
we denote by vi −F . Two vectors x and y lie in the same relatively open cone
of the fan vi −F if and only if

{ j : xj − vij = max(x1 − vi1, . . . , xn − vin) }
= { j : yj − vij = max(y1 − vi1, . . . , yn − vin) }.

Proposition 16. The cell decomposition CV is the common refinement of the
r fans vi −F .

Proof. We need to show that the cells of this common refinement are precisely
the convex polyhedra XS . Take a point x, with T = type(x) and define
Sx = (Sx1, . . . , Sxn) by letting i ∈ Sxj whenever

xj − vij = max(x1 − vi1, . . . , xn − vin). (9)

Two points x and y are in the relative interior of the same cell of the common
refinement if and only if they are in the same relatively open cone of each fan;
this is tantamount to saying that Sx = Sy. However, we claim that Sx = T .
Indeed, taking the negative of both sides of (9) yields exactly the condition for
i being in Tj , by the definition of type. Consequently, the condition for two
points having the same type is the same as the condition for the two points
being in the relative interior of the same chamber of the common refinement
of the fans v1 −F , v2 −F , . . . , vr −F .
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12 Develin and Sturmfels

(2,123,3)

(123, 1, 3)

(1, 1, 23)

(12, 1, 3)

(2, 13, 3)

(2, 1, 23)

(23, 1, 3)

(12, 1, 23)
(2, 12, 3)

(2, 1, 3)

(23, 13, 3)

(2, 12, 23)

(1, 1, 123)

Figure 4: A tropical complex expressed as the bounded cells in the common
refinement of the fans v1 −F , v2 −F and v3 −F . Cells are labeled with their
types.

An example of this construction is shown for our usual example, where v1 =
(0, 0, 2), v2 = (0, 2, 0), and v3 = (0, 1,−2), in Figure 4.
The next few results provide additional information about the polyhedron XS .
Let GS denote the undirected graph with vertices {1, . . . , n}, where {j, k} is
an edge if and only if Sj ∩ Sk 6= ∅.

Proposition 17. The dimension d of the polyhedron XS is one less than the
number of connected components of GS, and XS is affinely and tropically iso-
morphic to some polyhedron XT in TPd.

Proof. The proof is by induction on n. Suppose we have i ∈ Sj ∩Sk. Then XS

satisfies the linear equation xk − xj = c where c = vik − vij . Eliminating the
variable xk (projecting onto TPn−2), XS is affinely and tropically isomorphic
to XT where the type T is defined by Tr = Sr for r 6= j and Tj = Sj ∪Sk. The
region XT exists in the cell decomposition of TPn−2 induced by the vectors
w1, . . . , wn with wir = vir for r 6= j, and wij = max(vij , vik − c). The graph
GT is obtained from the graph GS by contracting the edge {j, k}, and thus has
the same number of connected components.
This induction on n reduces us to the case where all of the Sj are pairwise
disjoint. We must show that XS has dimension n − 1. Suppose not. Then
XS lies in TPn−1 but has dimension less than n − 1. Therefore, one of the
inequalities in (6) holds with equality, say xk − xj = vik − vij for all x ∈ XS .
The inequality “≤” implies i ∈ Sj and the inequality “≥” implies i ∈ Sk. Hence
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Tropical Convexity 13

Sj and Sk are not disjoint, a contradiction.

The following proposition can be regarded as a converse to Lemma 10.

Proposition 18. Let R be any polytope in TPn−1 defined by inequalities of
the form xk − xj ≤ cjk. Then R arises as a cell XS in the decomposition CV

of TPn−1 defined by some set V = {v1, . . . , vn}.

Proof. Define the vectors vi to have coordinates vij = cij for i 6= j, and vii = 0.
(If cij did not appear in the given inequality presentation then simply take it to
be a very large positive number.) Then by Lemma 10, the polytope in TPn−1

defined by the inequalities xk − xj ≤ cjk is precisely the unique cell of type
(1, 2, . . . , n) in the tropical convex hull of {v1, . . . , vn}.

The region XS is a polytope both in the ordinary sense and in the tropical
sense.

Proposition 19. Every bounded cell XS in the tropical complex generated by
V is itself a tropical polytope, equal to the tropical convex hull of its vertices.
The number of vertices of the polytope XS is at most

(
2n−2
n−1

)
, and this bound

is tight for all positive integers n.

Proof. By Proposition 17, if XS has dimension d, it is affinely and tropically
isomorphic to a region in the convex hull of a set of points in TPd, so it suffices
to consider the full-dimensional case.
The inequality presentation of Lemma 10 demonstrates that XS is tropically
convex for all S, since if two points satisfy an inequality of that form, so does
any tropical linear combination thereof. Therefore, it suffices to show that XS

is contained in the tropical convex hull of its vertices.
The proof is by induction on the dimension of XS . All proper faces of XS

are polytopes XT of lower dimension, and by induction are contained in the
tropical convex hull of their vertices. These vertices are a subset of the vertices
of XS , and so this face is in the tropical convex hull.
Take any point x = (x1, . . . , xn) in the interior of XS . Since XS has dimension
n, we can travel in any direction from x while remaining in XS . Let us travel
in the (1, 0, . . . , 0) direction until we hit the boundary, to obtain points y1 =
(x1 + b, x2, . . . , xn) and y2 = (x1 − c, x2, . . . , xn) in the boundary of XS . These
points are contained in the tropical convex hull by the inductive hypothesis,
which means that x = y1 ⊕ c ⊙ y2 is also, completing the proof of the first
assertion.
For the second assertion, we consider the convex hull of all differences of unit
vectors, ei − ej . This is a lattice polytope of dimension n − 1 and normalized
volume

(
2n−2
n−1

)
. To see this, we observe that this polytope is tiled by n copies

of the convex hull of the origin and the
(
n
2

)
vectors ei − ej with i < j. The

other n − 1 copies are gotten by cyclic permutation of the coordinates. This
latter polytope was studied by Gel’fand, Graev and Postnikov, who showed in

Documenta Mathematica 9 (2004) 1–27



14 Develin and Sturmfels

[4, Theorem 2.3 (2)] that the normalized volume of this polytope equals the
Catalan number 1

n

(
2n−2
n−1

)
.

We conclude that every complete fan whose rays are among the vectors ei − ej

has at most
(
2n−2
n−1

)
maximal cones. This applies in particular to the normal

fan of XS , hence XS has at most
(
2n−2
n−1

)
vertices. Since the configuration

{ei − ej} is unimodular, the bound is tight whenever the fan is simplicial and
uses all the rays ei − ej .

We close this section with two more results about arbitrary tropical polytopes
in TPn−1.

Proposition 20. If P and Q are tropical polytopes in TPn−1 then P ∩ Q is
also a tropical polytope.

Proof. Since P and Q are both tropically convex, P ∩ Q must also be. Conse-
quently, if we can find a finite set of points in P ∩Q whose convex hull contains
all of P ∩ Q, we will be done. By Theorem 15, P and Q are the finite unions
of bounded cells {XS} and {XT } respectively, so P ∩ Q is the finite union of
the cells XS ∩ XT . Consider any XS ∩ XT . Using Lemma 10 to obtain the
inequality representations of XS and XT , we see that this region is of the form
dictated by Proposition 18, and therefore obtainable as a cell XW in some
tropical complex. By Proposition 19, XW is itself a tropical polytope, and we
can therefore find a finite set whose convex hull is equal to XS ∩ XT . Taking
the union of these sets over all choices of S and T then gives us the desired set
of points whose convex hull contains all of P ∩ Q.

Proposition 21. Let P ⊂ TPn−1 be a tropical polytope. Then there exists a
unique minimal set V such that P = tconv(V ).

Proof. Suppose that P has two minimal generating sets, V = {v1, . . . , vm} and
W = {w1, . . . , wr}. Write each element of W as wi = ⊕m

j=1cij ⊙ vj . We claim
that V ⊆ W . Consider v1 ∈ V and write

v1 =
r⊕

i=1

di ⊙ wi =
m⊕

j=1

fj ⊙ vj where fj = mini(di + cij). (10)

If the term f1 ⊙ v1 does not minimize any coordinate in the right-hand side of
(10), then v1 is a linear combination of v2, . . . , vm, contradicting the minimality
of V . However, if f1 ⊙ v1 minimizes any coordinate in this expression, it must
minimize all of them, since (v1)j − (v1)k = (f1 ⊙ v1)j − (f1 ⊙ v1)k. In this case
we get v1 = f1 ⊙ v1, or f1 = 0. Pick any i for which f1 = di + ci1; we claim
that wi = ci1 ⊙ v1. Indeed, if any other term in wi = ⊕m

j=1cij ⊙ vj contributed
nontrivially to wi, that term would also contribute to the expression on the
right-hand side of (10), which is a contradiction. Consequently, V ⊆ W , which
means V = W since both sets are minimal by hypothesis.
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Tropical Convexity 15

Like many of the results presented in this section, Propositions 20 and 21
parallel results on ordinary polytopes. We have already mentioned the tropical
analogues of the Farkas Lemma and of Carathéodory’s Theorem (Propositions 5
and 9); Proposition 17 is analogous to the result that a polytope P ⊂ Rn of
dimension d is affinely isomorphic to some Q ⊂ Rd. Proposition 19 hints at
a duality between an inequality representation and a vertex representation of
a tropical polytope; this duality has been studied in greater detail by Michael
Joswig [11].

4 Subdividing products of simplices

Every set V = {v1, . . . , vr} of r points in TPn−1 begets a tropical polytope
P = tconv(V ) equipped with a cell decomposition into the tropical complex
generated by V . Each cell of this tropical complex is labelled by its type,
which is an n-vector of finite subsets of {1, . . . , r}. Two configurations (and
their corresponding tropical complexes) V and W have the same combinatorial
type if the types occurring in their tropical complexes are identical; note that
by Lemma 13, this implies that the face posets of these polyhedral complexes
are isomorphic.
With the definition in the previous paragraph, the statement of Theorem 1
has now finally been made precise. We will prove this correspondence between
tropical complexes and subdivisions of products of simplices by constructing
the polyhedral complex CP in a higher-dimensional space.
Let W denote the (r + n − 1)-dimensional real vector space
Rr+n/(1, . . . , 1,−1, . . . ,−1). The natural coordinates on W are denoted
(y, z) = (y1, . . . , yr, z1, . . . , zn). As before, we fix an ordered subset
V = {v1, . . . , vr} of TPn−1 where vi = (vi1, . . . , vin). This defines the
unbounded polyhedron

PV =
{

(y, z) ∈ W : yi + zj ≤ vij for all i ∈ {1, . . . , r} and j ∈ {1, . . . , n}
}
.

(11)

Lemma 22. There is a piecewise-linear isomorphism between the tropical com-
plex generated by V and the complex of bounded faces of the (r + n − 1)-
dimensional polyhedron PV . The image of a cell XS of CP under this iso-
morphism is the bounded face {yi + zj = vij : i ∈ Sj} of the polyhedron
PV . That bounded face maps isomorphically to XS via projection onto the
z-coordinates.

Proof. Let F be a bounded face of PV , and define Sj via i ∈ Sj if yi + zj = vij

is valid on all of F . If some yi or zj appears in no equality, then we can
subtract arbitrary positive multiples of that basis vector to obtain elements of
F , contradicting the assumption that F is bounded. Therefore, each i must
appear in some Sj , and each Sj must be nonempty.
Since every yi appears in some equality, given a specific z in the projection of
F onto the z-coordinates, there exists a unique y for which (y, z) ∈ F , so this
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16 Develin and Sturmfels

projection is an affine isomorphism from F to its image. We need to show that
this image is equal to XS .
Let z be a point in the image of this projection, coming from a point (y, z) in
the relative interior of F . We claim that z ∈ XS . Indeed, looking at the jth
coordinate of z, we find

−yi + vij ≥ zj for all i, (12)

−yi + vij = zj for i ∈ Sj . (13)

The defining inequalities of XS are xj −xk ≤ vij −vik with i ∈ Sj . Subtracting
the inequality −yi+vik ≥ zk from the equality in (13) yields that this inequality
is valid on z as well. Therefore, z ∈ XS . Similar reasoning shows that S =
type(z). We note that the relations (12) and (13) can be rewritten elegantly in
terms of the tropical product of a row vector and a matrix:

z = (−y) ⊙ V =
r⊕

i=1

(−yi) ⊙ vi. (14)

For the reverse inclusion, suppose that z ∈ XS . We define y = V ⊙ (−z). This
means that

yi = min(vi1 − z1, vi2 − z2, . . . , vin − zn). (15)

We claim that (y, z) ∈ F . Indeed, we certainly have yi +zj ≤ vij for all i and j,
so (y, z) ∈ PV . Furthermore, when i ∈ Sj , we know that vij − zj achieves the
minimum in the right-hand side of (15), so that vij − zj = yi and yi + zj = vij

is satisfied. Consequently, (y, z) ∈ F as desired.
It follows immediately that the two complexes are isomorphic: if F is a face
corresponding to XS and G is a face corresponding to XT , where S and T are
both types, then XS is a face of XT if and only if T ⊆ S. However, by the dis-
cussion above, this is equivalent to saying that the equalities G satisfies (which
correspond to T ) are a subset of the equalities F satisfies (which correspond
to S); this is true if and only if F is a face of G. So XS is a face of XT if and
only if F is a face of G, which implies the isomorphism of complexes.

The boundary complex of the polyhedron PV is polar to the regular subdivision
of the product of simplices ∆r−1×∆n−1 defined by the weights vij . We denote
this regular polyhedral subdivision by (∂PV )∗. Explicitly, a subset of vertices
(ei, ej) of ∆r−1 × ∆n−1 forms a cell of (∂PV )∗ if and only if the equations
yi +zj = vij indexed by these vertices specify a face of the polyhedron PV . We
refer to the book of De Loera, Rambau and Santos [5] for basics on polyhedral
subdivisions.
We now present the proof of the result stated in the introduction.

Proof of Theorem 1: The poset of bounded faces of PV is antiisomorphic to
the poset of interior cells of the subdivision (∂PV )∗ of ∆r−1 × ∆n−1. Since
every full-dimensional cell of (∂PV )∗ is interior, the subdivision is uniquely
determined by its interior cells. In other words, the combinatorial type of PV
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Tropical Convexity 17

is uniquely determined by the lists of facets containing each bounded face of
PV . These lists are precisely the types of regions in CP by Lemma 22. This
completes the proof.

Theorem 1, which establishes a bijection between the tropical complexes gener-
ated by r points in TPn−1 and the regular subdivisions of a product of simplices
∆r−1 ×∆n−1, has many striking consequences. First of all, we can pick off the
types present in a tropical complex simply by looking at the cells present in
the corresponding regular subdivision. In particular, if we have an interior cell
M , the corresponding type appearing in the tropical complex is defined via
Sj = {i ∈ [n] | (j, i) ∈ M}.
It is worth noting that via the Cayley Trick [19], Theorem 1 is equivalent to
saying that tropical complexes generated by r points in TPn−1 are in bijection
with the regular mixed subdivisions of the dilated simplex r∆n−1. This con-
nection is expanded upon and employed in a paper with Francisco Santos [6].
Another astonishing consequence of Theorem 1 is the identification of the row
span and column span of a matrix. This result can also be derived from [3,
Theorem 42].

Theorem 23. Given any matrix M ∈ Rr×n, the tropical complex generated by
its column vectors is isomorphic to the tropical complex generated by its row
vectors. This isomorphism is gotten by restricting the piecewise linear maps
Rn → Rr, z 7→ M ⊙ (−z) and Rr → Rn, y 7→ (−y) ⊙ M .

Proof. By Theorem 1, the matrix M corresponds via the polyhedron PM to a
regular subdivision of ∆r−1 × ∆n−1, and the complex of interior faces of this
regular subdivision is combinatorially isomorphic to both the tropical complex
generated by its row vectors, which are r points in TPn−1, and the tropi-
cal complex generated by its column vectors, which are n points in TPr−1.
Furthermore, Lemma 22 tells us that the cell in PM is affinely isomorphic
to its corresponding cell in both tropical complexes. Finally, in the proof of
Lemma 22, we showed that the point (y, z) in a bounded face F of PM satisfies
y = M ⊙ (−z) and z = (−y) ⊙ M . This point projects to y and z, and so
the piecewise-linear isomorphism mapping these two complexes to each other
is defined by the stated maps.

The common tropical complex of these two tropical polytopes is given by the
complex of bounded faces of the common polyhedron PM , which lives in a
space of dimension r + n − 1; the tropical polytopes are unfoldings of this
complex into dimensions r − 1 and n − 1. Theorem 23 also gives a natural
bijection between the combinatorial types of tropical convex hulls of r points
in TPn−1 and the combinatorial types of tropical convex hulls of n points in
TPr−1, incidentally proving that there are the same number of each. This
duality statement extends a similar statement in [3].

Figure 5 shows the dual of the convex hull of {(0, 0, 2), (0, 2, 0), (0, 1,−2)}, also
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D = (0, 0, 0)
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Figure 5: A demonstration of tropical polytope duality.

a tropical triangle (here r = n = 3). For instance, we compute:




0 0 2
0 2 0
0 1 −2







0
0
−2


 =




0
−2
−4


 .

This point is the image of the point (0, 0, 2) under this duality map. Note that
duality does not preserve the generating set; the polytope on the right is the
convex hull of points {F,D,B}, while the polytope on the left is the convex
hull of points {F,A,C}. This is necessary, of course, since in general a polytope
with r vertices is mapped to a polytope with n vertices, and r need not equal
n as it does in our example.
We now discuss the generic case when the subdivision (∂PV )∗ is a regular tri-
angulation of ∆r−1×∆n−1. We refer to [18, §5] for the geometric interpretation
of the tropical determinant.

Proposition 24. For a configuration V of r points in TPn−1 with r ≥ n the
following are equivalent:

1. The regular subdivision (∂PV )∗ is a triangulation of ∆r−1 × ∆n−1.

2. No k of the points in V have projections onto a k-dimensional coordinate
subspace which lie in a tropical hyperplane, for any 2 ≤ k ≤ n.

3. No k × k-submatrix of the r × n-matrix (vij) is tropically singular, i.e.
has vanishing tropical determinant, for any 2 ≤ k ≤ n.

Proof. The last equivalence is proven in [18, Lemma 5.1]. We will prove that
(1) and (3) are equivalent. The tropical determinant of a k by k matrix M is the
tropical polynomial ⊕σ∈Sk

(⊙k
i=1Miσ(i)). The matrix M is tropically singular

if the minimum minσ∈Sk
(
∑k

i=1 Miσ(i)) is achieved twice.
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The regular subdivision (∂PV )∗ is a triangulation if and only if the polyhedron
PV is simple, which is to say if and only if no r + n of the facets yi + zj ≤ vij

meet at a single vertex. For each vertex v, consider the bipartite graph Gv

consisting of vertices y1, . . . , yn and z1, . . . , zj with an edge connecting yi and
zj if v lies on the corresponding facet. This graph is connected, since each yi

and zj appears in some such inequality, and thus it will have a cycle if and only
if it has at least r + n edges. Consequently, PV is not simple if and only there
exists some Gv with a cycle.
If there is a cycle, without loss of generality it reads y1, z1, y2, z2, . . . , yk, zk.
Consider the submatrix M of (vij) given by 1 ≤ i ≤ k and 1 ≤ j ≤ k. We have
y1 +z1 = M11, y2 +z2 = M22, and so on, and also z1 +y2 = M12, . . . , zk +y1 =
Mk1. Adding up all of these equalities yields y1 + · · · + yk + z1 + · · · + zk =
M11 + · · · + Mkk = M12 + · · · + Mk1. But consider any permutation σ in
the symmetric group Sk. Since we have Miσ(i) = viσ(i) ≥ yi + zσ(i), we have∑

Miσ(i) ≥ x1 + · · ·+xk + y1 + · · ·+ yk. Consequently, the permutations equal
to the identity and to (12 · · · k) simultaneously minimize the determinant of
the minor M . This logic is reversible, proving the equivalence of (1) and (3).

If the r points of V are in general position, the tropical complex they generate
is called a generic tropical complex. These polyhedral complexes are then polar
to the complexes of interior faces of regular triangulations of ∆r−1 × ∆n−1.

Corollary 25. All tropical complexes generated by r points in general position
in TPn−1 have the same f-vector. Specifically, the number of faces of dimension
k is equal to the multinomial coefficient

(
r + n − k − 2

r − k − 1, n − k − 1, k

)
=

(r + n − k − 2)!

(r − k − 1)! · (n − k − 1)! · k!
.

Proof. By Proposition 24, these objects are in bijection with regular triangula-
tions of P = ∆r−1 × ∆n−1. The polytope P is equidecomposable [1], meaning
that all of its triangulations have the same f -vector. The number of faces of
dimension k of the tropical complex generated by given r points is equal to the
number of interior faces of codimension k in the corresponding triangulation.
Since all triangulations of all products of simplices have the same f -vector, they
must also have the same interior f -vector, which can be computed by taking
the f -vector and subtracting off the f -vectors of the induced triangulations on
the proper faces of P . These proper faces are all products of simplices and
hence equidecomposable, so all of these induced triangulations have f -vectors
independent of the original triangulation as well.
To compute this number, we therefore need only compute it for one tropical
complex. Let the vectors vi, 1 ≤ i ≤ r, be given by vi = (i, 2i, · · · , ni). By
Theorem 10, to count the faces of dimension k in this tropical complex, we
enumerate the existing types with k degrees of freedom. Consider any index i.
We claim that for any x in the tropical convex hull of {vi}, the set {j | i ∈ Sj}
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is an interval Ii, and that if i < m, the intervals Im and Ii meet in at most one
point, which in that case is the largest element of Im and the smallest element
of Ii.

Suppose we have i ∈ Sj and m ∈ Sl with i < m. Then we have by definition
vij − xj ≤ vil − xl and vml − xl ≤ vmj − xj . Adding these inequalities yields
vij + vml ≤ vil + vmj , or ij + ml ≤ il + mj. Since i < m, it follows that we
must have l ≤ j. Therefore, we can never have i ∈ Sj and m ∈ Sl with i < m
and j < l. The claim follows immediately, since the Ii cover [1, n].

The number of degrees of freedom of an interval set (I1, . . . , Ir) is easily seen
to be the number of i for which Ii and Ii+1 are disjoint. Given this, it follows
from a simple combinatorial counting argument that the number of interval sets
with k degrees of freedom is the multinomial coefficient given above. Finally,
a representative for every interval set is given by xj = xj+1 − cj , where if Sj

and Sj+1 have an element i in common (they can have at most one), cj = i,
and if not then cj = (min(Sj) + max(Sj+1))/2. Therefore, each interval set is
in fact a valid type, and our enumeration is complete.

Corollary 26. The number of combinatorially distinct generic tropical com-
plexes generated by r points in TPn−1 equals the number of distinct regular
triangulations of ∆r−1 × ∆n−1. The number of respective symmetry classes
under the natural action of the product of symmetric groups G = Sr × Sn on
both spaces is also the same.

The symmetries in the group G correspond to a natural action on ∆r−1×∆n−1

given by permuting the vertices of the two component simplices; the symmetries
in the symmetric group Sr correspond to permuting the points in a tropical
polytope, while those in the symmetric group Sn correspond to permuting the
coordinates. (These are dual, as per Corollary 23.) The number of symmetry
classes of regular triangulations of the polytope ∆r−1 × ∆n−1 is computable
via Jörg Rambau’s TOPCOM [17] for small r and n:

2 3

2 5 35
3 35 7, 955
4 530
5 13, 631

For example, the (2, 3) entry of the table divulges that there are 35 symme-
try classes of regular triangulations of ∆2 × ∆3. These correspond to the 35
combinatorial types of four-point configurations in TP2, or to the 35 combi-
natorial types of three-point configurations in TP3. These 35 configurations
(with the tropical complexes they generate) are shown in Figure 6; the label-
ing corresponds to Rambau’s labeling (see [17]) of the regular triangulations of
∆3 × ∆2.
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T[28]T[27]

T[2]T[1]

T[26]

T[23]

T[22]
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T[24]

T[32]

T[31]

T[35]

T[34]

T[33]

T[4]T[3]

T[30]T[29]

T[10]T[9]

T[13]

T[11]

T[12]

T[6]T[5] T[8]T[7]

T[18] T[20]

T[21]

T[19]

T[15]
T[14]

T[17]

T[16]

Figure 6: The 35 symmetry classes of tropical complexes generated by four
points in TP2.
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5 Phylogenetic analysis using tropical polytopes

A fundamental problem in bioinformatics is the reconstruction of phylogenetic
trees from approximate distance data. In this section we show how tropical
convexity might help provide new algorithmic tools for this problem. Our ap-
proach augments the results in [20, §4] and it provides a tropical interpretation
of the work on T -theory by Andreas Dress and his collaborators [7], [8], [9].
Consider a symmetric n × n-matrix D = (dij) whose entries dij are non-
negative real numbers and whose diagonal entries dii are all zero. We say that
D is a (finite) metric if the triangle inequality dij ≤ dik + djk holds for all
indices i, j, k. Our starting point is the following easy observation:

Proposition 27. The symmetric matrix D is a metric if and only if all prin-
cipal 3×3-minors of the negated symmetric matrix −D = (−dij) are tropically
singular.

Proof. Both properties involve only three points, so we may assume n = 3, in
which case

−D =




0 −d12 −d13

−d12 0 −d23

−d13 −d23 0


 .

The tropical determinant of this matrix is the minimum of the six expressions

0, −2d12, −2d13, −2d23, −d12 − d13 − d23 and − d12 − d13 − d23.

This minimum is attained twice if and only if it is attained by the last two
(identical) expressions, which occurs if and only if the three triangle inequalities
are satisfied.

In what follows we assume that D = (dij) is a metric. Let PD denote the
tropical convex hull in TPn−1 of the n row vectors (or column vectors) of
the negated matrix −D = (−dij). Proposition 27 tells us that the tropical
polytope PD is always one-dimensional for n = 3.
The finite metric D = (dij) is said to be a tree metric if there exists a weighted
tree T with n leaves such that dij denotes the distance between the i-th leaf
and the j-th leaf along the unique path between these leaves in T . The next
theorem characterizes tree metrics among all metrics by the dimension of the
tropical polytope PD. It is the tropical interpretation of results that are quite
classical and well-known in the phylogenetics literature.

Theorem 28. For a given finite metric D = (dij) the following conditions are
equivalent:

1. D is a tree metric,

2. the tropical polytope PD has dimension one,

3. all 4 × 4-minors of the matrix −D are tropically singular,
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4. all principal 4 × 4-minors of the matrix −D are tropically singular,

5. For any choice of four indices i, j, k, l ∈ {1, 2, . . . , n}, the maximum of
the three numbers dij + dkl, dik + djl and dil + dik is attained at least
twice.

Proof. The condition (5) is the familiar Four Point Condition for tree metrics.
The equivalence of (1) and (5) is a classical result due to various authors,
including Buneman [2] and Zaretsky [21]. See equation (B3) on page 57 in [7].
Suppose that the condition (5) holds. By the discussion in [20, §4], this means
that −D is a point in the tropical Grassmannian of lines, in symbols −D ∈
Gr(2, n) ⊂ TP(n

2). By [20, Theorem 3.8], the point −D corresponds to a
tropical line LD in TPn−1. The n distinguished points whose coordinates are
the rows of −D lie on the line LD. By Corollary 7, it follows that their tropical
convex hull PD is contained in LD. This means that PD has dimension one,
that is, (2) holds.
Suppose that (2) holds. Then the tropical rank of the matrix −D is equal to
two, by [6, Theorem 4.2]. This means that all r×r-minors of −D are tropically
singular for r ≥ 3. The case r = 4 is precisely the statement (3).
Obviously, the condition (3) implies the condition (4). What remains is to prove
the implication from (4) to (5). For this we note that the tropical determinant
of the 4 × 4-matrix 



0 −d12 −d13 −d14

−d12 0 −d23 −d24

−d13 −d23 0 −d34

−d14 −d24 −d34 0




equals twice the minimum of −d12 − d34, −d13 − d24 and −d14 − d23. (It’s the
tropicalization of a 4×4-Pfaffian). The matrix is tropically singular if and only
if the minimum is attained twice.

If the five equivalent conditions of Theorem 28 are satisfied then the metric tree
T coincides with the one-dimensional tropical polytope PD. To make sense of
this statement, we regard tropical projective space TPn−1 as a metric space
with respect to the infinity norm induced from Rn,

||x − y|| = max
{
|xi + yj − xj − yi| : 1 ≤ i < j ≤ n

}
,

and we note that the finite metric D embeds isometrically into PD via the rows
of − 1

2D:

i 7→ 1

2
· (−di1,−di2,−di3, . . . ,−din) for i = 1, 2, . . . , n

We learned from [8] that the tropical polytope PD first appeared in the 1964
paper [10] by John Isbell. For the proof of the following result we assume
familiarity with results from [7] and [8].
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Theorem 29. The tropical polytope PD equals Isbell’s injective hull of the
metric D.

Proof. According to Lemma 22, the tropical polytope PD is the bounded com-
plex of the following unbounded polyhedron in the (2n− 1)-dimensional space
W = R2n/R(1, . . . , 1,−1, . . . ,−1):

P−D =
{

(y, z) ∈ W : yi + zj ≤ −dij for all 1 ≤ i, j ≤ n
}
.

Dress et al. [7] showed that the injective hull T (D) of the finite metric D
coincides with the complex of bounded faces of the following n-dimensional
unbounded polyhedron:

Q−D =
{

x ∈ Rn : xi + xj ≥ dij for all 1 ≤ i, j ≤ n
}
.

What we need to show is that the two polyhedra have the same bounded
complex.
The metric D satisfies the tropical matrix identity −D = D ⊙ (−D), because
−dij = mink(dik −dkj). This implies that any column vector y of −D satisfies
y = (−y) ⊙ (−D).
Consider any vertex (y, z) of P−D. Then y is a column vector of −D. Equation
(14) implies z = (−y) ⊙ (−D) = y. Hence every vertex of P−D lies in the
subspace defined by y = z, and so does the complex of bounded faces of P−D.
Therefore the linear map (y, z) 7→ −y induces an isomorphism between the
bounded complex of P−D and the bounded complex of Q−D.

Theorem 23 specifies an involution on the set of all tropical complexes. We are
interested in the fixed points of this canonical involution. A necessary condition
is that r = n and V is a symmetric matrix. The previous result and its proof
can be reinterpreted as follows:

Corollary 30. A tropical complex P is pointwise fixed under the canonical
involution (on the set of all tropical complexes) if and only if P is the injective
hull of a metric on {1, 2, . . . , n}.

Proof. In order for P to be fixed under the canonical involution, it is necessary
that n = d. Hence we can write P = tconv(−D) for some non-negative square
matrix D. Now, P is fixed under the involution if and only if the identity
−D = D ⊙ (−D) holds. This identity is equivalent to D being a metric.

Dress, Huber and Moulton [7] emphasize that the tropical polytope PD records
many important invariants of a given finite metric D. For instance, the di-
mension of PD gives information about how far the metric is from being a tree
metric. In practical biological applications of phylogenetic reconstruction, the
distances dij are not known exactly, and PD appears to contain many of the
various trees which are found by existing software for phylogenetic reconstruc-
tion.
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The dimension of the tropical complex PD = tconv(−D) can be characterized
combinatorially by tropicalizing the sub-Pfaffians of a skew-symmetric n × n-
matrix. The tropical Pfaffians of format 4 × 4 specify the four point condition
(5) in Theorem 28, while the tropical sub-Pfaffians of format 6 × 6 specify
the six-point condition which is discussed in [7, page 25]. The combinatorial
study of k-compatible split systems can be interpreted in the setting of tropical
algebraic geometry (cf. [15], [18], [20]) as the study of the k-th secant variety

in the Grassmannian Gr(2, n) ⊂ TP(n
2).

Tropical convexity provides a convenient language to study numerous exten-
sions of the classical problem of tree reconstruction. As an example, imagine
the following scenario, which would correspond to the Grassmannian of planes
in TPn−1, denoted Gr(3, n).
Suppose there are n taxa, labeled 1, 2, . . . , n, and rather than having a distance
for any pair i, j, we are now given a proximity measure dijk for any triple
i, j, k ∈ {1, 2, . . . , n}. We can then construct a tropical polytope by taking the
tropical convex hull of

(
n
2

)
points as follows:

P = tconv
{ (

−dij1,−dij2,−dij3, . . . − dijn

)
∈ TPn−1 : 1 ≤ i < j ≤ n

}
.

Under certain hypotheses, the tropical polytope P can be realized as the com-
plex of bounded faces of the polyhedron in Rn defined by the inequalities
xi + xj + xk ≥ dijk. It provides a polyhedral model for the tree-like nature
of the data (dijk). The case of most interest is when P is two-dimensional in
which case it plays the role of a two-dimensional phylogenetic tree.
The construction of this particular tropical polytope P was pioneered by Dress
and Terhalle in the important paper [9]. There they discuss valuated matroids,
which are essentially the points on the tropical Grassmannian of [20], and they
call P the tight span of a valuated matroid. We share their view that these
tropical polytopes constitute a promising tool for phylogenetic analysis.
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Abstract. The following paper is devoted to the construction of
transfer maps (Becker-Gottlieb transfers) for non-orientable cohomol-
ogy theories on the category of smooth algebraic varieties. Since non-
orientability makes obstruction to the existence of transfer structure,
we define transfers for a specially constructed class of morphisms.
Being rather small, this class is yet big enough for application pur-
poses. As an application of the developed transfer technique we get
the proof of rigidity theorem for all cohomology theories represented
by T-spectra.
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Introduction

The purpose of the current paper is to generalize the results obtained in [PY] to
non-orientable cohomology theories on the category of smooth varieties over an
algebraically closed field. This generalization seems to be especially interesting
after a recent paper of Hornbostel [Ho] who proved T -representability of higher
Witt groups and Hermitian K-theory. These results give us two good exam-
ples of non-orientable theories, which have important algebraic and arithmetic
meaning.
In our proof we mostly follow the strategy described in [PY]. This, roughly
speaking, includes constructing of transfer maps for a given theory, checking
such fundamental properties as commutativity of base-change diagrams for
transversal squares, finite additivity, and normalization. Finally, we use these
properties to establish the main result (Rigidity theorem). Employing further
the technique of Suslin [Su1], one can obtain the results similar to ones ob-
tained in Suslin’s paper for the extension of algebraically closed fields. Slightly

1Partially supported by TMR ERB FMRX CT-97-0107, INTAS, and RFFI 00-01-00116
grants.
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adapting methods of Gabber [Ga] we may generalize the rigidity property for
Hensel local rings to an arbitrary cohomology theory.
Certainly, this program would fail already on the first step, because of the
result of Panin [Pa] showing that there exists an one-to-one correspondence
between orientations and transfer structures. However, shrinking the class of
morphisms for which we define transfers to some smaller class Ctriv we may
construct a satisfactory transfer structure. On the other hand, the class Ctriv

is still big enough to be used in the proof of the rigidity theorem.
Acknowledgements. I’m very grateful to Ivan Panin for really inspiring
discussions during the work. Probably, this paper would never appear without
his help. I’m very grateful to Ulf Rehmann, who invited me to stay in the very
nice working environment of the University of Bielefeld, where the text was
mostly written. Also I would like to thank Jens Hornbostel for proofreading
of the draft version of this paper and really valuable discussions concerning
rigidity for the Henselian case.
Notation remarks. We use the standard ‘support’ notation for cohomology
of pairs and denote A(X,U) by AZ(X), provided that U is an open subscheme
of X and Z = X − U . Moreover, in this case we often denote the pair (X,U)
by (X)Z .
We omit grading of cohomology groups whenever it is possible. However, to
make the T -suspension isomorphism compatible to the usual notation, we write
A[d] for cohomology shifted by d. For example, if A denotes a cohomology
theory A∗,∗ represented by a T -spectrum, we set A[d] = A∗+2d,∗+d.
For a closed smooth subcheme Z ⊂ X ∈ Sm/k we denote by B(X,Z) the
deformation to the normal cone of Z in X. Namely, we set B(X,Z) to be the
blow-up of X × A1 with center at Z × {0}. More details for this well-known
construction may be found in [Fu, Chapter 5],[MV, Theorem 3.2.23], or [Pa].
The notation pt is reserved for the final object Spec k in Sm/k .

1. Rigidity Theorem

Denote by Ctriv the class of equipped morphisms (f,Θ) where f is decomposed

as f : X
τ→֒ Y ×An p→ Y such that τ is a closed embedding with trivial normal

bundle NY ×An/X , p is a projection morphism, and Θ: NY ×An/X
∼= X × AN

is a trivialization isomorphism. Abusing the notation we often omit Θ if the
trivialization is clear from the context. The main purpose of this paper is to
show that the class Ctriv may be endowed with a transfer structure, which makes
given cohomology theory A a functor with weak transfers (see [PY, Definition
1.8]) with respect to this class. We also show that Ctriv is still big enough
to fit all the requirements of constructions used in [PY] to prove the Rigidity
Theorem. This, finally, yields Theorem 1.10, which may be applied to concrete
examples of theories.
Let Sm/k be a category of smooth varieties over an algebraically closed field
k. Denote by Sm2/k a category whose objects are pairs (X,Y ), where
X,Y ∈ Sm/k , the scheme Y is a locally closed subscheme in X and morphisms
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are defined in a usual way as morphisms of pairs. A functor E : X 7→ (X, ∅)
identifies Sm/k with a full subcategory of Sm2/k .

Definition 1.1. We say that a functor F : Sm/k → G admits extension to
pairs by a functor F : Sm2/k → G if F = F ◦ E.

Definition 1.2. We call a contravariant functor A : Sm2/k → Gr-Ab to the
category of graded abelian groups a cohomology theory if it satisfies the following
four properties:

(1) Suspension Isomorphism. For a scheme X ∈ Sm/k and its open
subscheme U set W = X −U . Then, we are given a functorial isomor-
phism

AW (X)
Σ∼= A[1]

W×{0}(X × A1)

induced by the T -suspension morphism.

(2) Zariski Excision. Let X
i
⊇ X0 ⊇ Z be objects of Sm/k such that

X0 is open in X and Z is closed in X. Then, the induced map

i∗ : AZ(X)
∼=→ AZ(X0) is an isomorphism.

(3) Homotopy Invariance. For every (X,Y ) ∈ Sm2/k the map
p∗ : A(X,Y ) → A(X × A1, Y × A1) induced by the projection is an
isomorphism.

(4) Homotopy purity. Let Z ⊂ Y ⊂ X ∈ Sm/k be closed embeddings of
smooth varieties. Let N be the corresponding normal bundle over Y ,
i0 : N →֒ B(X,Y ) and i1 : X →֒ B(X,Y ) be canonical embeddings over
0 and 1, respectively. Then, the induced maps:

AZ(N )
i∗0←∼= AZ×A1(B(X,Y ))

i∗1→∼= AZ(X)

are isomorphisms.

Definition 1.3. We call a contravariant functor A : Sm/k → Gr-Ab a coho-
mology theory if it admits an extension to pairs by the functor A which is a
cohomology theory.

In what follows we often use the same notation for functors and their extensions
to pairs. We also usually identify objects X and (X, ∅).
Most important examples of cohomology theories may be obtained in the fol-
lowing way.

Example 1.4. Every functor represented by a T -spectrum in the sense of Vo-
evodsky (see [Vo]) is a cohomology theory.
Since the category of spaces, introduced by Voevodsky [Vo, p.583], has fibred
coproducts, we can extend any functor A : Sm/k → G to Sm2/k setting
A(X,Y ) = A(X/Y ). All functors represented by T -spectra satisfy conditions
(1)–(3) of Definition 1.2 (see [MV, PY, Pa]). Condition (4) is actually Theo-
rem 2.2.8 from [Pa].
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Theorem 1.5. Every cohomology theory A given on the category Sm/k of
smooth varieties over an algebraically closed field k may be endowed with the
structure of a functor with weak transfers for the class Ctriv, i.e. for every
f : X → Y ∈ Ctriv we assign the transfer map f! : A(X) → A(Y ), which satisfy
properties 3.1–3.3 below.

We postpone the proof of this theorem till the last section and show, first,
that the class Ctriv is big enough to make the proof of the Rigidity Theorem
given at [PY] running. We reproduce here some constructions and arguments
from [PY]. From now on we consider the case of algebraically closed base field
k. Let A : (Sm/k) → Gr-Ab be a cohomology theory and X be a smooth curve
over k. We can construct a map Φ: Div(X) → Hom(A(X), A(k)) defined on
canonical generators as: [x] 7→ x∗, where x∗ : A(X) → A(k) is the pull-back
map, corresponding to the point x ∈ X(k).

Theorem 1.6. Let X be a smooth affine curve with trivial tangent bundle, X̄
be its projective completion, and X∞ = X̄ − X. Let also A be a homotopy
invariant contravariant functor with weak transfers for the class Ctriv. Then,
the map Φ can be decomposed in the following way:

Div(X)
Φ //

Ω &&NNNNNNNNNN
Hom(A(X), A(k))

Pic(X̄,X∞),

Ψ

66lllllllllllll

where Pic(X̄,X∞) is the relative Picard group (see [SV]) and the map Ω is the
canonical homomorphism.

Proof. Let us recall that a divisor D lies in the kernel of Ω if and only if there
exists a function f ∈ k(X̄) such that f |X∞ = 1 and D = [f ]. We denote zero
and pole locuses of f by div0(f) = D, and div∞(f) = D′, respectively. It is
now sufficient to check that Φ(D) = Φ(D′).
Denote by X0 the open locus f 6= 1 on X̄. By the choice of the function f ,
we have: i : X0 ⊂ X and the morphism f : X0 → P1 − {1} = A1 is finite.

This shows the existence of a decomposition f : X0 τ→ An p→ A1, with closed
embedding τ and projection p. For the normal bundle NAn/X0 we have a short
exact sequence:

(1.1) 0 // TX0 // τ∗(TAn) // NAn/X0 // 0.

Since the tangent bundles TX0 and TAn are trivial, the normal bundle NAn/X0

is stably trivial. Finally, because every stably trivial bundle over a curve is
trivial, we have: f ∈ Ctriv.
Moreover, since we may assume (as well as in [PY, Proof of Theorem 1.11])
that the corresponding divisors are unramified, the map f is étale over the
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points {0} and {∞}. Consider now the diagram:

(1.2) A(X)

i∗

²²⊕
x/∞

A(x)

∑
x/∞

f̃x,! $$HHHHHHH
HH

A(D′)oo

f̃∞,!

²²

A(X0)oo //

f̃!

²²

A(D)

f̃0,!

²²

// ⊕
x/0

A(x)

∑
x/0

f̃x,!{{ww
ww

ww
ww

w

A(pt) A(A1)
i∗∞oo i∗0 // A(pt)

where f̃0,! (f̃∞,!) denotes the transfer map corresponding to the morphism f̃0

(resp. f̃∞), which is a restriction of the morphism f̃ to the divisor D (D′,
respectively). Due to the discussion above, all vertical arrows are well defined,

since all corresponding morphisms belong to Ctriv. (For morphisms f̃0 and f̃∞
we choose trivialization maps as restrictions of Θ.)
Using the standard properties of the functor with weak transfers (see 3.1–3.3),
one can see that the diagram above is commutative.
On the other hand, it is easy to check that going from A(X) to two different
copies of A(pt) one obtains the maps Φ(D) and Φ(D′), respectively.
Finally, using the homotopy invariance of the functor A, one has:

(1.3) Φ(D) = i∗0f̃!i
∗ = i∗∞f̃!i

∗ = Φ(D′).

¤

Since the group Pic(X̄,X∞)◦ of relative divisors of degree 0 is n-divisible over
an algebraically closed field of characteristic relatively prime to n, we get the
following corollary:

Corollary 1.7. Let us assume, in addition to the hypothesis of Theorem 1.6,
that there exists an integer n coprime to the exponential characteristic Char(k)
such that nA(Y ) = 0 for any Y ∈ Sm/k. Then, the map Ψ can be passed

through the degree map Pic(X̄,X∞)
deg→ Z. Namely, if D,D′ are two divisors

of the same degree, one has: Φ(D) = Φ(D′) : A(X) → A(Spec k).

Now we want to get rid of the normal bundle triviality assumption. For this
end, we need the following simple geometric observation.

Lemma 1.8. For a smooth curve X and a divisor D on X one can choose such
an open neighborhood X0 of SuppD that the tangent bundle TX0 is trivial.

Proof. Let Υ be an invertible sheaf on X corresponding to the tangent bundle
TX . Denote by OX,D a localization of OX at the support of the divisor D.
The scheme SpecOX,D is a spectrum of a regular semi-local ring endowed with
a natural morphism j : SpecOX,D → X. Therefore, the sheaf j∗Υ is free.
This means there exists an open neighborhood X0 ⊃ SuppD such that the
restriction Υ|X0 is free as well. ¤
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The proofs of following two theorems are same, word by word, to ones of
Theorems 1.13 and 2.17 from [PY].

Theorem 1.9 (The Rigidity Theorem). Let A : Sm/k → Gr-Ab be a ho-
motopy invariant functor with weak transfers for the class Ctriv. Assume that
the field k is algebraically closed and nA = 0 for some integer n, coprime to
Char k. Then, for every smooth affine variety V and any two k-rational points
t1, t2 ∈ V (k) the induced maps t∗1, t

∗
2 : A(V ) → A(Spec k) coincide.

Theorem 1.10. Let k ⊂ K be an extension of algebraically closed fields. Let
also A be a cohomology theory vanishing after multiplication by n, coprime to
the exponential field characteristic. Then, for any X ∈ Sm/k, we have:

A(X)
∼=→ A(XK).

Besides Theorem 1.10 we would like to mention briefly the following nice ap-
plication of the developed technique 2

Theorem 1.11. Let A and k be as above, M ∈ Sm/k, and R be the henseliza-
tion of M at some closed point. Then, the map

A(R)
∼=→ A(Spec k)

is an isomorphism.

The proof of the theorem may be achieved as a direct compilation of Gab-
ber [Ga], Suslin-Voevodsky [Su2, SV] (see also an approach of [GT]) results
and Theorem 1.6. By general strategy, one reduces the above statement to
a form of the Rigidity Theorem. Namely, it is possible to construct such a
curve M over the field k with some special divisor D that the statement of
Theorem 1.11 would follow from the fact that Φ(D) = 0. The divisor D, by

its construction, can be written in the form D = n · D̃ + [f ], for some divisor

D̃ and rational function f on M (as follows from the proper base change theo-
rem [Mi, SGA4]). Finally, it is sufficient to apply the statement of Theorem 1.6
to complete the proof.

2. Becker–Gottlieb Transfers

In this section we construct transfer maps required in Theorem 1.5. First of all,

we build transfers with support for closed embeddings. Let W →֒ X
f→֒ Y be

closed embeddings such that W,X, Y ∈ Sm/k and (f,Θ) ∈ Ctriv of codimension

n. We now define a map (f,Θ)! : AW (X) → A
[n]
W (Y ). Consider, first, following

isomorphisms:

(2.1) ϕW (Θ): AW (X)
Σn

∼=
// A

[n]
W×{0}(X × An)

Θ∗

∼=
// A

[n]
W (NY/X).

The next step involves Homotopy Purity property. Consider the map:

(2.2) χW : AW (NY/X)
(i∗0)−1

→∼= AW×A1(B(Y,X))
i∗1→∼= AW (Y ),

2This observation was obtained jointly with Jens Hornbostel.

Documenta Mathematica 9 (2004) 29–40



Rigidity II: Non-Orientable Case 35

Definition 2.1. The composite map: (f,Θ)W
! = χW ◦ ϕW (Θ): AW (X) →

A
[n]
W (Y ) is called Becker–Gottlieb transfer for the closed embedding f with sup-

port W .

In case W = X we often omit any mentioning of the support. One can easily
verify that the defined transfer map commutes with support extension homo-
morphisms. Namely, the following lemma holds.

Lemma 2.2. Suppose we have a chain of closed embeddings: W2 →֒ W1 →֒
X

f→֒ Y , with f ∈ Ctriv. Then, the diagram

AW2
(X)

f
W2
! //

ext.

²²

AW2
(Y )

ext.

²²
AW1

(X)
f

W1
! // AW1

(Y )

commutes. (Here ext. denotes the support extension homomorphism.)

Construction-Definition 2.3. Let now (f : X → Y,Θ) ∈ Ctriv be a mor-

phism of relative dimension d endowed with a decomposition X
τ→֒ Y ×An p→ Y ,

with closed embedding τ and projection p. We define Becker–Gottlieb3 trans-
fer map (f,Θ)! in the following way. Consider the standard open embedding

An j→֒ Pn and denote the complement of An by P∞. The following morphisms
of pairs are induced by standard embeddings:
(2.3)

(Y × An)X

jX
→֒ (Y × Pn)X

α
← (Y × Pn, Y × P∞)

β
→ (Y × Pn)Y ×{0}

jY
←֓ (Y × An)Y ×{0}.

Since the morphism β identifies P∞ with zero-section of the line bundle Pn−{0}
over Pn−1, it induces an isomorphism of cohomology groups β∗ : AY (Y ×Pn)

∼=→
A(Y × Pn, Y × P∞). The morphism jX gives us an excision isomorphism

j∗X : AX(Y × Pn)
∼=→ AX(Y × An).

We define (f,Θ)! as a the following composite map:
(2.4)

A(X)
(τ,Θ)! //A

[d+n]
X (Y × An)

j∗
Y ◦(β∗)−1◦α∗◦(j∗

X)−1

//A
[d+n]
Y ×{0}(Y × An) ∼=

Σ−n
//A[d](Y ),

where Σ−n denotes the n-fold T -desuspension. We usually denote the map
Σ−n ◦ j∗Y ◦ (β∗)−1 ◦ α∗ ◦ (j∗X)−1 by p!.

3. Proof of Theorem 1.5

We now prove Theorem 1.5 checking consequently all necessary properties of a
functor with weak transfers.

3We call the transfer maps under construction Becker–Gottlieb transfers, since we gener-

ally follow the philosophy of their paper [BG]. However, our algebraic construction is much
more restrictive than the original topological one.
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Proposition 3.1 (Base change property). Given a diagram with Carte-
sian squares

X ′ Â Ä τ ′
//

f ′

((

g′

²²

Y ′ × An

²²

// Y ′

g

²²
X

Â Ä τ //

f

66Y × An // Y

where f ∈ Ctriv of codimension d, and morphisms τ , τ ′ are closed embeddings
such that the left-hand-side square is transversal. We also require Θ′ to be a
base-change of Θ in the sense that the square:

(3.1) X ′ × Ad+n

g′×id

²²

NY ′×An/X′
Θ′

oo

N(g′)

²²

NY ×An/X ×
X

X ′

X × Ad+n NY ×An/X
Θoo

is Cartesian. Then, the diagram:

A(X ′)
(f ′,Θ′)!−−−−−→ A[d](Y ′)

g′∗

x g∗

x

A(X)
(f,Θ)!−−−−→ A[d](Y ).

commutes.

Proof. Let us look at the diagram appearing on the first step of the computation
of f!.

(3.2) A(X ′)
Σd+n

// A
[d+n]
X′×{0}(X

′ × Ad+n)
Θ′∗

// A
[d+n]
X′ (NY ′×An/X′)

A(X)

g′∗

OO

Σd+n
// A

[d+n]
X×{0}(X × Ad+n)

Σn(g′)∗

OO

Θ∗
// A

[d+n]
X (NY ×An/X)

N(g′)∗

OO

The left-hand-side square commutes because of the suspension functoriality.
Commutativity of the right-hand-side one follows from Diagram 3.1. Going
further along the construction of f!, we may see that all other squares whose
commutativity has to be checked are either commute already in the category
Sm2/k or include (de-)suspension isomorphisms like the very left one. This
shows the required base-change diagram commutes. ¤

Proposition 3.2 (Additivity). Let X = X0⊔X1 ∈ Sm/k be a disjoint union
of subvarieties X0 and X1, em : Xm →֒ X (m = 0, 1) be embedding maps, and
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(f : X → Y,Θ) ∈ Ctriv (codim f = d). Setting fm = f ◦ em, we have:

f0,!e
∗
0 + f1,!e

∗
1 = f!.

(All necessary decompositions and trivializations for morphisms f0, f1 are as-
sumed to be corresponding restrictions of ones for f .)

Proof. As it follows from the proof of [PY, Proposition 4.3], in order to show the
additivity property it is sufficient to check the commutativity of the following
pentagonal diagram:

(3.3) A(X0)

τ0,!

²²

AX0
(X)

ϕ∗

//

ww

∼=
ψ∗

oo A(X)

τ!

²²
A

[d+n]
X0

(Y × An)
χ∗

//

p0,!
''NNNNNNNNNNN

A
[d+n]
X (Y × An)

p!
wwppppppppppp

A[d](Y ),

where ψ∗ is the excision homomorphism, ϕ∗ and χ∗ are extension of support
maps, and the composites p0,! ◦ τ0,! (p! ◦ τ!, resp.) form the transfer maps f0,!

(f!, respectively). We prove, first, the commutativity of the bottom triangle.
Both oblique arrows may be factored through the group A(Y × Pn, Y × P∞).
Since the diagram:

(3.4) (Y × An)X0

jX0

²²

(Y × An)X
? _

χoo

jX

²²
(Y × Pn)X0

(Y × Pn)X
? _oo

(Y × Pn, Y × P∞)
6 V

hhRRRRRRRRRRRRR ) ª

66mmmmmmmmmmmmm

commutes already in Sm2/k , the required triangle commutes as well. We now
show the commutativity of the rectangular part of Diagram 3.3. Define the
dotted map as a transfer with the support X0 corresponding to the embedding
X →֒ Y × An = Y. This (due to Lemma 2.2) makes the right trapezium
part of the diagram commutative. Commutativity of the upper-left triangle is
equivalent, by the definition, to a claim that the following diagram commutes.
(3.5)

AX0(X)

(1)

Σd+n
//

ψ∗ ∼=

²²

A
[d+n]
X0

(X × Ad+n) //

∼=

²²
(2)

A
[d+n]
X0

(NY/X)

∼=

²²
(3)

A
[d+n]

X0×A1(B(Y, X)) //∼=oo

(4)

A
[d+n]
X0

(Y)

A(X0)
Σd+n

// A[d+n]
X0

(X0 × Ad+n) // A[d+n]
X0

(NY/X0
) A

[d+n]

X0×A1(B(Y, X0)) //

σ∗

OO

∼=oo A
[d+n]
X0

(Y)
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(Here the map σ∗ is induced by a morphism blowing down a component X1.
See [PY, Section 4] for more details.) Simple arguments utilized at the end of
the proof of Proposition 3.1 may be used here as well. Namely, the suspension
isomorphism functoriality implies commutativity of square (1). Square (2)
commutes, because its bottom horizontal arrow is the restriction of the top
one. Squares (3) and (4) are induced by commutative diagrams of varieties.
The proposition follows. ¤

Proposition 3.3 (Normalization). For the morphism id : pt → pt =

Spec(k) endowed with an arbitrary decomposition pt
τ→֒ An → pt the map

id! : A(pt) → A(pt) is identical.

In order to prove this statement we show, first, that in case of the identity map
pt → pt the constructed transfer map does not depend on the choice of normal
bundle trivialization.

Lemma 3.4. Let X ∈ Sm2/k be a smooth pair endowed with a linear action of

SLn(k). Then, for any matrix α ∈ SLn(k) the induced isomorphism A(X)
α∗

→
A(X) is the identity map.

Proof. Every matrix of SLn(k) may be written as a product of elementary
matrices. Every elementary matrix acts trivially on X, because of existence of
a canonical contracting homotopy H(eij(a), t) = eij(at). ¤

Lemma 3.5. The standard homothety action of λ ∈ k∗ on the affine line A1

induces the identity isomorphism A{0}(A1)
λ∗

→ A{0}(A1).

Proof. Consider a diagram:

(3.6) A1 λ //
_Ä

²²

A1
_Ä

²²
P1 Λ // P1,

where Λ =

(
λ 0
0 1

)
and the vertical arrows are standard open embeddings

given by: a 7→ (a : 1). Due to the excision axiom, this diagram yields the
following commutative diagram of cohomology groups:

(3.7) A{0}(A1) A{0}(A1)
λ∗

oo

A{0}(P1)

∼=

OO

A{0}(P1).
Λ∗

oo

∼=

OO

Let us get rid of the support. Since the natural map A(P1) → A(A1) = A(pt)
is split by the projection P1 → pt , the cohomology long exact sequence shows

that the support extension map A{0}(P1)
ext→ A(P1) is a monomorphism. The

action of diagonal matrices clearly commutes with the map ext. Therefore, it

Documenta Mathematica 9 (2004) 29–40



Rigidity II: Non-Orientable Case 39

is sufficient to show that the matrix Λ acts trivially on A(P1). This matrix

is SL2-equivalent to the matrix

(√
λ 0

0
√

λ

)
. (Let us recall that the field k is

algebraically closed.) Due to Lemma 3.4 two SL2-equivalent matrices induce
the same action in cohomology and the latter matrix obviously acts trivially
on P1. ¤

Lemma 3.6. Any matrix of GLn(k) acting on An by left multiplication induces
trivial action on cohomology groups A{0}(An).

Proof. Changing, if necessary, the acting matrix by its SLn-equivalent, we may
assume that the action is given by the diagonal matrix Λ = diag(λ, 1, . . . , 1).
Let us also mention that the pair (An, An − {0}) is the n-fold T -suspension of
T = (A1, A1−{0}). Since we have chosen the matrix Λ in a special way (acting
only on the first factor), the suspension isomorphism and Lemma 3.5 complete
the proof. ¤

Proof of Proposition 3.3 Let us consider the chain of maps giving the transfer
map: id! : A(pt) → A(pt). We take into account that the normal bundle to pt
in An is canonically isomorphic to An.
(3.8)

A(pt)

Σn

²²
A{0}(A

n)

δ

33
(i∗0)−1

// AA1(B(An, pt))
i∗1 // A{0}(A

n)
(j∗)−1

//

γ

&&

A{0}(P
n)

α∗
// A(Pn, P∞)

(β∗)−1

²²
A{0}(A

n)

Σ−n

²²

A{0}(P
n)

j∗oo

A(pt)

In this diagram j∗ denotes the excision isomorphism and maps γ and δ are just
set to be composites of the fitting arrows. As it was shown in [PY, Lemma 5.8],
the map δ is identical. Since in the considered case both maps α∗ and β∗ are
induced by the same embedding (Pn, P∞) →֒ (Pn, Pn − {0}), the map γ is also
identical. This finishes the proof of Normalization property. ¤
The latter three propositions actually check all the conditions required by the
definition of a functor with weak transfers. This completes the proof of Theo-
rem 1.5 as well.
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Études Sci. Publ. Math. No. 90, pp. 45–143 (2001).
[Pa] Panin, I. Push-forwards in Oriented Cohomology Theories of Algebraic

Varieties: II (preprint) www.math.uiuc.edu/K-theory/0619/ 2003.
[PY] Panin, I.; Yagunov S. Rigidity for Orientable Functors. Journal of Pure

and Applied Algebra, vol.172, (2002) pp. 49–77.
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Abstract. We give a necessary and sufficient condition for a mor-
phism between recollements of abelian categories to be an equivalence.
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1 Introduction

Recollements of abelian and triangulated categories play an important role in
geometry of singular spaces [3], in representation theory [4, 12], in polynomial
functors theory [8, 9, 14] and in ring theory, where recollements are known
as torsion, torsion-free theories [6]. A fundamental example of recollement of
abelian categories is due to MacPherson and Vilonen [10]. It first appeared as
an inductive step in the construction of perverse sheaves. The main motivation
for our work was to understand when a recollement can be obtained through
the construction of MacPherson and Vilonen.

A recollement situation consists of three abelian categories A′, A, A′′ together
with additive functors:

i∗←− j!←−
A′ i∗−→ A j∗

−→ A′′

i!←− j∗←−

which satisfy the following conditions:

1membre du laboratoire Jean-Leray, UMR 6629 UN/CNRS
2supported by the grants INTAS-99-00817 and RTN-Network “K-theory, linear algebraic

groups and related structures” HPRN-CT-2002- 00287
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i. j! is left adjoint to j∗ and j∗ is left adjoint to j∗

ii. the unit IdA′′ → j∗j! and the counit j∗j∗ → IdA′′ are isomorphisms

iii. i∗ is left adjoint to i∗ and i∗ is left adjoint to i!

iv. the unit IdA′ → i!i∗ and the counit i∗i∗ → IdA′ are isomorphisms

v. i∗ is an embedding onto the full subcategory of A with objects A such
that j∗A = 0.

In this case one says that A is a recollement of A′′ and A′. These notations will
be kept throughout the paper. Thus in any recollement situation, the category
i∗A′ is a localizing and colocalizing subcategory of A in the sense of [5], and
the category A′′ is equivalent to the quotient category of A by i∗A′.

If B is also a recollement of A′′ and A′, then a comparison functor A → B is an
exact functor which commutes with all the structural functors i∗, i∗, i!, j!, j∗, j∗.
According to [12, Theorem 2.5], a comparison functor between recollements of
triangulated categories is an equivalence of categories. Our example in Sec-
tion 2.2 shows that this is not necessarily the case for recollements of abelian
categories.
Our main result, Theorem 7.2, characterizes which comparisons of recollements
are equivalences of categories. As an application, we give a homological crite-
rion deciding when a recollement can be obtained through the construction of
MacPherson and Vilonen.
Theorem. A recollement situation of categories with enough projectives is
isomorphic to a MacPherson-Vilonen construction if and only if the following
two conditions hold.

i. There exists an exact functor r: A → A′ such that r ◦ i∗ = IdA′ .

ii. For any projective object V of the category A′, (L2i
∗)(i∗V ) = 0.

2 Examples

Our examples are related to polynomial functors. The relevance of this formal-
ism to polynomial functors was stressed by N. Kuhn [8].
We let A′ be the category of finite vector spaces over the field with two elements
F2, and we let A′′ be the category of finite vector spaces over F2 with involution,
or finite representations of Σ2 over F2.

2.1

In the first example, the category A is a category of diagrams of finite vector
spaces over F2:

(V1,H, V2, P ) : V1 ⇄ V2 ,
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where H: V1 → V2 and P : V2 → V1 are linear maps which satisfy: PHP = 0
and HPH = 0. The category A is equivalent to the category of quadratic
functors from finitely generated free abelian groups to vector spaces over F2.
It is a recollement for the following functors:

i∗(V1,H, V2, P ) = Coker (P ), j!(V, T ) = (VT , 1 + T, V, p)

i∗(V ) = (V, 0, 0, 0), j∗(V1,H, V2, P ) = (V2,HP − 1)

i!(V1,H, V2, P ) = Ker (H) , j∗(V, T ) = (V T , h, V, 1 + T ) ,

where V T = Ker (1 − T ), VT = Coker (1 − T ), h is the inclusion and p is the
quotient map. Note that the functor i∗ admits an obvious exact retraction r:
(V1,H, V2, P ) 7→ V1.

2.2 Comparison fails for abelian categories recollements

We now consider the full subcategory of the category A in Example 2.1, whose
objects satisfy the relation: PH = 0. This category is equivalent to the cate-
gory of quadratic functors from finite vector spaces to vector spaces over F2.
The same formulae define a recollement as well. As a result, the inclusion
of categories is a comparison functor. It is not, however, an equivalence of
categories.

3 The construction of MacPherson and Vilonen [10]

3.1

Let A′ and A′′ be abelian categories. Let F : A′′ → A′ be a right exact
functor, let G: A′′ → A′ be a left exact functor and let ξ: F → G be a
natural transformation. Define the category A(ξ) as follows. The objects of
A(ξ) are tuples (X,V, α, β), where X is in A′′, V is in A′, α : F (X) → V and
β : V → G(X) are morphisms in A′ such that the following diagram commutes:

F (X)
ξX //

α
""DD

DD
DD

DD
G(X)

V

β

<<zzzzzzzz

.

A morphism from (X,V, α, β) to (X ′, V ′, α′, β′) is a pair (f, ϕ), where f : X →
X ′ is a morphism in A′′ and ϕ: V → V ′ is a morphism in A′, such that the
following diagram commutes:

F (X)
α //

F (f)

²²

V
β //

ϕ

²²

G(X)

G(f)

²²
F (X ′)

α′
// V ′ β′

// G(X ′)

.
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The category A(ξ) comes with functors:

i∗(X,V, α, β) = Coker (α) , j!(X) = (X,F (X), IdF (X), ξX) ,

i∗(V ) = (0, V, 0, 0) , j∗(X,V, α, β) = X ,

i!(X,V, α, β) = Ker (β) , j∗(X) = (X,G(X), ξX , IdG(X)) .

The functor i∗ has a retraction functor r:

r(X,V, α, β) = V .

The category A(ξ) is abelian in such a way that the functors r and j∗ are
exact. The above data define a recollement. Note that we recover the natural
transformation ξ from the retraction r and the recollement data as:

F = rj! G = rj∗ ξ ≃ rN .

The category A depends only [10, Proposition 1.2] on the class of the extension

0 → i!j! → F
ξ→ G → i∗j∗ → 0 ,

image by r of the exact sequence (4).

3.2

We now consider two particular cases of this construction, already known to
Grothendieck (see [1]). Let F : A′′ → A′ be a right exact functor. Take ξ:
F → 0 to be the transformation into the trivial functor. The corresponding
construction is denoted by A′ ⋊F A′′. Thus objects of this category are triples
(V,X, α), where V and X are objects of A′ and A′′ respectively and α is a
morphism α: F (X) → V of the category A′. Note that i∗j∗ = 0 and i!j! ∼= F .
Moreover, i! and j∗ are exact functors.
Similarly, let B′ and B′′ be abelian categories and let G: B′′ → B′ be a left
exact functor. We take ξ: 0 → G to be the natural transformation from
the trivial functor. The corresponding recollement is denoted by B′ ⋉G B′′.
Objects of this category are triples (B′′, B′, β : B′ → G(B′′)). Assuming now
B′ = A′′, B′′ = A′ and G : A′ → A′′ is right adjoint to F , the category
A′ ⋊F A′′ = A′′ ⋉G A′ fits into two different recollement situations.

4 General properties of recollements

Most of the properties in this section can probably be found in [3] or other
references. We list them for convenience. Note however that, when they are
not a consequence of [5], they are usually stated and proved in the context of
triangulated categories. We consistently provide statements (and a few proofs)
in the context of abelian categories and derived functors.
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4.1 First properties

We remark as usual that taking opposite categories results in the exchange of
j! and i∗ with j∗ and i! respectively. This is referred to as duality. For instance,
the relation j∗i∗ = 0 - a consequence of (v) - yields the dual relation i!j∗ = 0.

Proposition 4.1 In any recollement situation:

i∗j! = 0 , i!j∗ = 0.

Proposition 4.2 The units and counits of adjonction give rise to exact se-
quences of natural transformations:

j!j
∗ ǫ→ IdA → i∗i

∗ → 0 (1)

0 → i∗i
! → IdA

η→ j∗j
∗ . (2)

We now recall the definition of the norm N : j! → j∗. For any X, Y in A′′,
there are natural isomorphisms:

HomA(j!X, j∗Y ) ∼= HomA′′(X, j∗j∗Y ) ∼= HomA′′(X,Y ).

For Y = X, let NX : j!X → j∗X be the map corresponding to the identity of
X. It is a natural transformation [3, 1.4.6.2]. The norm N is thus defined so
that: Nj∗ = η ◦ ǫ. Hence:

N ∼= N(j∗j∗) = (Nj∗)j∗ ∼= (η◦ǫ)j∗ = ηj∗◦ǫj∗ ∼= ǫj∗ and, dually N ∼= ηj! . (3)

The image of the norm is a functor

j!∗ := Im (N : j! → j∗) : A′′ → A .

Proposition 4.3 In any recollement situation: i∗j!∗ = 0 , i!j!∗ = 0 .

Proof. Use Proposition 4.1 and apply i∗ to the epi j! → j!∗. 2

Proposition 4.4 In any recollement situation, there is a short exact sequence
of natural transformations

0 → i∗i
!j! → j!

N→ j∗ → i∗i
∗j∗ → 0 . (4)

Proof. Precompose the exact sequence (1) with j∗. Precomposition is exact,
hence one gets the following exact sequence:

j! → j∗ → i∗i
∗j∗ → 0 ,

where the left arrow is the norm N according to (3). Dually, there is an exact
sequence:

0 → i∗i
!j! → j!

N→ j∗ .

Splicing the two sequences together gives the result. 2

Applying the snake lemma, one gets the following strong restriction on the
functors i!j! and i∗j∗ of a recollement situation.
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Corollary 4.5 For any short exact sequence in A′′:

0 → X → Y → Z → 0

there is an exact sequence in A′:

i!j!(X) → i!j!(Y ) → i!j!(Z) → i∗j∗(X) → i∗j∗(Y ) → i∗j∗(Z)

4.2 Homological properties

In this section we investigate the derived functors of the functors in a rec-
ollement situation. We use the following convention throughout this section:
When mentioning left derived functors L−, the category A, and thus the cat-
egories A′ and A′′, have enough projectives, and, similarly, when mentioning
right derived functors R−, the categories A, A′ and A′′ have enough injectives.
Most of the proofs consist in applying long exact sequences for derived functors
to Section 4.1’s exact sequences.

Proposition 4.6 For each integer n ≥ 1:

j∗(Lnj!) = 0 , j∗(Rnj∗) = 0 .

Proposition 4.7
(L1i

∗)i∗ = 0 , (R1i!)i∗ = 0 (5)

(L1i
∗)j! = 0 , (R1i!)j∗ = 0 (6)

(L1i
∗)j!∗ = i!j! , (R1i!)j!∗ = i∗j∗ (7)

Proposition 4.8 There is a natural exact sequence:

0 → Ext1A′(i∗A, V ) → Ext1A(A, i∗V )
η−→ HomA′((L1i

∗)A, V ) →
→ Ext2A′(i∗A, V ) → Ext2A(A, i∗V ) .

Proof. This follows from the spectral sequence for the derived functors of the
composite functors:

E2
pq = Extp

A′(Lqi
∗(A), V ) =⇒ Extp+q

A (A, i∗V ) . (8)

2

Proposition 4.9 Let A be an object in Ker i∗. The counit ǫA: j!j
∗A → A

is epi and its kernel is in i∗A′. Indeed, if A has enough projectives, there is a
short exact sequence:

0 → i∗(L1i
∗)A → j!j

∗A
ǫA−→ A → 0 . (9)

We prove the dual statement:
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Proposition 4.10 Let A be an object in Ker i!. The unit ηA: A → j∗j∗A is
mono and its cokernel is in i∗A′. Indeed, if A has enough injectives, there is a
short exact sequence:

0 → A
ηA−→ j∗j

∗A → i∗(R
1i!)A → 0 . (10)

Proof. When i!A = 0, the exact sequence (2) simplifies to a short exact se-
quence:

0 → A
ηA−→ j∗j

∗A → Coker ηA → 0 . (11)

First applying the exact functor j∗, and using that j∗η is an iso, we see that
j∗(Coker ηA) = 0. Thus Coker ηA is in i∗A′. Suppose that A has enough
injectives. Applying now the left exact functor i!, the long exact sequence for
right derived functors gives an exact sequence:

0 → i!A → i!j∗j
∗A → i!Coker ηA → (R1i!)A → (R1i!)j∗j

∗A .

Proposition 4.1 and (6) give an isomorphism i!Coker (ηA) ∼= R1i!(A). 2

4.3 Description of the image of j∗, j!∗, j!

Since j∗j! ∼= j∗j∗ ∼= j∗j!∗ ∼= IdA′′ , the functors j!, j∗, j!∗: A′′ → A are full
embeddings. The next result describes the essential image of each of them.

Proposition 4.11 The functors j!, j∗, j!∗ : A′′ → A induce the following
equivalences of categories:

j!∗ : A′′ → {A ∈ A | i∗(A) = 0 = i!(A)},

j! : A′′ → {A ∈ A | i∗(A) = 0 = L1i
∗(A)},

j∗ : A′′ → {A ∈ A | i!(A) = 0 = R1i!(A)}.

4.4 A monomorphism on Ext-groups

Since j∗ : A → A′′ is an exact functor, it induces an homomorphism

Extn
A(A,B) → Extn

A′′(j∗A, j∗B), n ≥ 0.

It is well-known that when A and B are simple objects, this map is injective
for n = 1 (see for example [8, Proposition 4.12 ]). The following more general
result holds.

Proposition 4.12 Let A,B ∈ A be objects for which i∗A = 0 and i!B = 0.
Suppose j∗A 6= 0 and j∗B 6= 0. Then

Ext1A(A,B) → Ext1A′′(j∗A, j∗B)

is a monomorphism.
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5 Description of Ker i∗ and Ker i!

Let Ker i! be the full subcategory of objects A of A such that i!A = 0, and let
Ker i∗ be the full subcategory of objects A of A such that i∗A = 0. In this
section, we describe these subcategories of A in terms of the categories A′, A′′,
and the functors i∗j∗, i!j! between them, through the following construction:

Definition 5.1 Let T : A′′ → A′ be an additive functor between abelian cat-
egories. The category M(T ) has objects triples (X,V, α) where X is in A′′,
V is in A′, and α: V → TX is a monomorphism. A map from (X,V, α)
to (X ′, V ′, α′) is a pair of morphisms (f, ϕ) such that the following diagram
commutes:

V
α //

ϕ

²²

T (X)

T (f)

²²
V ′ α′

// T (X ′) .

The following theorem is inspired by [13].

Theorem 5.2 In a recollement with enough projectives, the functor A 7→
(j∗A, i∗A, i∗ηA : i∗A → i∗j∗j∗A) is an equivalence from the category Ker i!

to the category M(i∗j∗).

Proof. First, we show that the functor is well defined. Apply the functor i∗ on
the short exact sequence (11). There results an exact sequence:

L1i
∗(Coker ηA) → i∗A → i∗j∗j

∗(A) → i∗Coker ηA → 0 .

whose left term cancels by Proposition 4.10 and (5). The map i∗ηA is thus
mono.

Next, we define the quasi-inverse: M(i∗j∗) → Ker i!. To an object (X,V, α),
it associates the kernel A(X,V, α) of the composite of epis:

j∗X
ǫj∗→ i∗i

∗j∗X → Coker i∗α .

That is, A(X,V, α) fits in the following map of extensions:

0 // j!∗X // j∗X // i∗i∗j∗X // 0

0 // j!∗X //

=

OO

A(X,V, α) //

OO

i∗V //

i∗α

OO

0 .

To a map (f, ϕ), it associates the map induced by j∗(f).

We leave the verifications to the reader, with the help of the isomorphism
Nj∗ ∼= ǫ ◦ η. 2

The dual study of the category Ker i∗ leads to the following.
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Theorem 5.3 In a recollement with enough injectives, the functor A 7→
(j∗A, i!Ker ǫA, i!Ker ǫA → i!j!j

∗A) is an equivalence from the category Ker i∗

to the category M(i!j!).

This time, the quasi-inverse fits in the following map of extensions:

0 // i∗i!j!X //

²²

j!X //

²²

j!∗X //

=

²²

0

0 // Coker (i∗α) // A(X,V, α) // j!∗X // 0 .

Note (Proposition 4.9) that when the recollement has enough projectives,
i!Ker ǫA is nothing but (L1i

∗)A.

6 Recollements as linear extensions

The exact sequence (2) tells that every object A in A sits in a short exact
sequence:

0 → Ker ηA → A
ηA→ Im ηA → 0 .

where Ker ηA
∼= i∗i!A is in i∗A′ and Im ηA

∼= A/i∗i!A is in Ker i!. We denote
by G the category encoding these data from the recollement situation. That
is, objects of the category G are triples (A,U, e) of an object A in Ker i!, an
object U in A′ and an extension class e in the group Ext1A(A, i∗U). A map
from (A,U, e) to (A′, U ′, e′) is a pair of morphism (α : A → A′, β : U → U ′)
such that: α∗e′ = (i∗β)∗e in the group Ext1A(A′, i∗U). It comes with a functor:

A → G B 7→ (Im ηB , i!B, [0 → Ker ηB → B
η−→ Im ηB → 0]) .

Because of the Yoneda correspondence between extensions and elements in
Ext1, this functor induces an equivalence of categories to G from the following
category B. The objects of B are those of A, and a map in HomB(B,B′) is a
class of maps in HomA(B,B′) inducing the same map in G.

We claim that A → B defines a linear extension of categories in the sense of
Baues and Wirsching. For completeness, we now recall what we need from this
theory (however, the following defining properties might be better understood
by just looking at our example).

Definition 6.1 [2, IV.3] Let B be a category and let D : Bop × B → Ab be a
bifunctor with abelian groups values. We say that

0 // D // C
p // B // 0 (12)

is a linear extension of the category B by D if the following conditions hold:

i. C is a category and p is a functor. Moreover C and B have the same
objects, p is the identity on objects and p is surjective on morphisms.
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ii. For any objects c and d in B, the abelian group D(c, d) acts on the set
HomC(c, d). Moreover p(f0) = p(g0) if and only if there is unique α in
D(c, d) such that: g0 = f0 + α. Here for each f0 : c → d in C and
α ∈ D(c, d) we write f0 + α for the action of α on f0.

iii. The action satisfies the linear distributivity law: for two composable maps
f0 and g0 in C

(f0 + α)(g0 + β) = f0g0 + f∗β + g∗α ,

where f = p(f0) and g = p(g0).

A morphism between two linear extensions

0 // D //

φ1

²²

C
p //

φ0

²²

B //

φ

²²

0

0 // D′ // C′ p′

// B′ // 0

consists of functors φ and φ0, such that φp = p′φ0, together with a natural
transformation φ1 : D → D′ ◦ (φop × φ) such that:

φ0(f0 + α) = φ0(f0) + φ1(α)

for all f0 : c → d in C and α in D(c, d).

The following properties of linear extensions are relevant to our problem.

i. If B is a small category, there is [2, IV.6] a canonical bijection

M(B,D) ∼= H2(B,D).

from the set of equivalence classes of linear extensions of B by D and the
second cohomology group H2(B,D) of B with coefficients in D.

ii. The functor p reflects isomorphisms and yields a bijection on the sets of
isomorphism classes Iso(C) ∼= Iso(B).

iii. Let (φ1, φ0, φ) be a morphism of linear extensions. Suppose that φ1(c, d)
is an isomorphism for any c and d in B. Then φ is an equivalence of
categories if and only if φ0 is an equivalence of categories.

iv. If B is an additive category and D is a biadditive bifunctor, then the
category C is additive [7, Proposition 3.4].

We now describe recollements in terms of linear extensions.

Proposition 6.2 Let D be the bifunctor defined on B by:

D(B,B′) := HomA(B/i∗i
!B, i∗i

!B′) .

The category A is a linear extension of B by D.
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Proof. It reduces to the following. Two maps of extensions:

0 // U //

²²

A

f

²²
g

²²

// X //

²²

0

0 // U ′ // A′ // X ′ // 0

agree on the side vertical arrows if and only if their difference f − g factors
through a map in the group Hom(X,U ′). 2

The results of Section 5 shows that the categories A′, A′′ and the functors
i∗j∗, i!j! of the recollement situation determine the category Ker i!. We now
show that it does determine the bifunctor D as well. For an object B in B, let
((X,V, α), U) be its image under the composite:

B ≃ G → Ker i! ×A′ ≃ M(i∗j∗) ×A′ .

That is: X = j∗A, V = i∗A, for A = B/i∗i!B, U = i!B. Then:

D(B,B′) := HomA(A, i∗U
′) = HomA′(i∗A,U ′) = HomA′(V,U ′) . (13)

7 A comparison theorem

We have seen in Section 2.2 an example of a comparison functor which is not
an equivalence of categories. However, a comparison functor E indeed yields
an equivalence from Ker (i∗ : A1 → A′) to Ker (i∗ : A2 → A′), and similarly
for Ker i!. If E is an equivalence of categories, then clearly E commutes with
the derived functors R•i! and L•i∗. This observation leads to the following
definition.

Definition 7.1 Let (A′,A1,A′′) and (A′,A2,A′′) be two recollement situa-
tions. Assume that the categories A1,A2,A′,A′′ have enough projective ob-
jects. A comparison functor E: A1 → A2 is left admissible if the following
diagram commutes.

A′

=

²²

Ker i!
L1i∗oo

E

²²
A′ Ker i!

L1i∗
oo

A right admissible comparison functor is defined similarly by using the functors
R1i! and the categories Ker i∗.

Theorem 7.2 Let E be a comparison functor between categories with enough
injectives and projectives. The following conditions are equivalent

i. E is right admissible
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ii. E is left admissible

iii. E is an equivalence of categories.

Proof. It is clear that iii) implies both conditions i) and ii). We only show that
ii) implies iii). A dual argument shows that i) implies iii). By Section 6, the
functor E yields a commutative diagram of linear extensions

0 // D1
//

²²

A1
//

E

²²

B1
//

²²

0

0 // D2
// A2

// B2
// 0

First we show that E yields an equivalence of categories B1 → B2. By Section
6 it suffices to show that E yields an equivalence G1 → G2. When there are
enough projectives, E yields an equivalence on Ker i! (Theorem 5.2). The
induced map

Ext1A1
(A, i∗U) → Ext1A2

(E(A), i∗U)

is an isomorphism for U in A′ and A in Ker i!, thanks to Proposition 4.8 and
the five-lemma. Once B1 and B2 are identified, we use the computation (13) to
conclude that the morphism of bifunctors D1 → D2 is an isomorphism. The
rest is a consequence of the properties of linear extensions of categories. 2

8 Recollement pré-héréditaire

8.1 pre-hereditary recollement

Definition 8.1 A recollement situation with enough projectives is
pre-hereditary if for any projective object V of the category A′:

(L2i
∗)(i∗V ) = 0 .

Proposition 8.2 In a pre-hereditary recollement situation: (L2i
∗)i∗ = 0.

Proof. By (5) the functor (L2i
∗)i∗ is right exact. If it vanishes on projective

objects, it vanishes on all objects. 2

Lemma 8.3 In a pre-hereditary recollement situation there is an isomorphism
of functors

(L1i
∗)j∗ ∼= i!j!.

Proof. Apply the functor i∗ to the short exact sequence:

0 → j!∗ → j∗ → i∗i
∗j∗ → 0 .

By (5), L1i
∗ vanishes on i∗i∗j∗, and by hypothesis L2i

∗ vanishes on i∗i∗j∗.
Hence the long exact sequence for left derived functors yields an isomorphism:
(L1i

∗)j!∗ ∼= (L1i
∗)j∗. The result follows by (7). 2
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Theorem 8.4 Let (A′,A,A′′) and (A′,B,A′′) be two pre-hereditary recolle-
ment situations and let E : A → B be a comparison functor. Then E is
admissible and hence is an equivalence of categories.

Proof. We have to prove that L1i
∗ has the same value on A and EA, provided

that i!A = 0. For such an A, there is a short exact sequence (11). Applying
the functor i∗ results in an exact sequence:

L2i
∗(Coker ηA) → L1i

∗(A) → L1i
∗(j∗j

∗A) → L1i
∗(Coker ηA)

whose right term cancels by Proposition 4.10 and (5), and whose left term can-
cels by Proposition 8.2. This gives an isomorphism: L1i

∗(A) ∼= (L1i
∗)j∗j∗(A).

Lemma 8.3 finishes the proof. 2

8.2 MacPherson-Vilonen recollements

The following proposition is a formalized version of the construction of projec-
tives in [11, Proposition 2.5].

Proposition 8.5 Let A(F
ξ→ G) be a MacPherson-Vilonen recollement. As-

sume further that the left exact functor G has a left adjoint G∗. Then the exact
functor r has a left adjoint r∗defined by:

r∗V = (G∗V, FG∗V ⊕ V, (1, 0), ξG∗V ⊕ ηV )

where in this formula η denotes the unit of adjonction: idA′ → GG∗. In
particular, there is a short exact sequence:

0 → j!G
∗ → r∗ → i∗ → 0 . (14)

Proof. Necessarily, j∗r∗ = (rj!)
∗ = G∗. Then check. 2

Proposition 8.6 Every MacPherson-Vilonen recollement with enough projec-
tives is pre-hereditary .

Proof. Apply the functor i∗ to the short exact sequence (14). Part of the
resulting long exact sequence is an exact sequence:

(L2i
∗)r∗ → (L2i

∗)i∗ → (L1i
∗)j!G

∗ ,

whose right term cancels by (6). To conclude, if P is a projective in A′, then
r∗P is a projective in A, because r∗ is left adjoint to an exact functor. 2

This leads to the following characterization of MacPherson-Vilonen recolle-
ments. A special case appeared in [15, Proposition 2.6]
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Theorem 8.7 A recollement situation of categories with enough projectives is
isomorphic to a MacPherson-Vilonen construction if and only if the recollement
is pre-hereditary and there exists an exact functor r: A → A′ such that r ◦ i∗ =
IdA′ .

Proof. Consider a recollement with such an exact retraction functor r. The nat-
ural transformation N : j! → j∗ yields a transformation rN from the right exact
functor rj! to the left exact functor rj∗. Thus we can form the MacPherson-

Vilonen construction A(rj!
rN→ rj∗). We define a functor E: A → A(rj!

rN→ rj∗)
by:

E(A) = (j∗(A), r(A), r(ǫA), r(ηA)).

One checks with Section 3 and (3) that E is a comparison functor. By Propo-
sition 8.6, A(rN) is pre-hereditary. If A is also pre-hereditary, Theorem 8.4
applies. 2

Remark. Similarly one can define pre-cohereditary recollements by the condi-
tion R2i!(i∗V ) = 0 for any injective V in A′. We leave to the reader to dualize
the above results.

8.3 The case when i∗j∗ = 0 or i!j! = 0

In this section, we characterize the recollements A = A′ ⋊F A′′ of Section 3.2.

Proposition 8.8 For a recollement with enough projectives, the following are
equivalent:

i. The functor i∗ is exact.

ii. i!j! = 0.

Dually, for a recollement with enough injectives, the following are equivalent:

i. The functor i! is exact.

ii. i∗j∗ = 0.

Proof. We prove the second assertion. Assume that i! is exact. Applying i! to
the epimorphism j∗ → i∗i∗j∗ gets an epimorphism 0 = i!j∗ → i!i∗i∗j∗ ∼= i∗j∗.
Assume conversely that i∗j∗ = 0 and suppose that the recollement has enough
injectives. We first prove that R1i!(A) = 0 when i!A = 0. By Proposition 4.10,
if i!A = 0, there is an epimorphism j∗j∗A → Coker ηA

∼= i∗(R1i!)(A). Applying
the right exact functor i∗, we get an epimorphism i∗j∗j∗(A) → (R1i!)(A).
Next, we apply i! to the short exact sequence (2). It yields an exact sequence:

0 → i!
≃→ i! → i!Im η → (R1i!)i∗i

! → R1i! → (R1i!)Im η .

By (5), (R1i!)i∗i! = 0, so that: i!Im η = 0. It results that (R1i!)Im η = 0 as
well, and finally that R1i! = 0. 2

As an application we recover [1, Proposition 2.4].
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Proposition 8.9 Every recollement situation with enough projectives, such
that: i!j! = 0, is equivalent to A′ ⋉i∗j∗ A′′. Dually, every recollement situation
with enough injectives, such that: i∗j∗ = 0, is equivalent to A′ ⋊i!j! A′′.

Proof. When the recollement has enough projectives, Theorem 8.7 applies for
r = i∗. 2

Corollary 8.10 Let A′,A,A′′ be a recollement situation with enough projec-
tive or enough injectives. If the norm N : j! → j∗ is an isomorphism, then
A ∼= A′ ×A′′.

Proof. By Proposition 4.4: i∗j∗ = i!j! = 0. Then we apply Proposition 8.9. 2

Acknowledgements. The second author would like to thank University of
Nantes for hospitality and support.
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Abstract. We study spectral and scattering properties of the Lapla-
cian H(σ) = −∆ in L2(R2

+) corresponding to the boundary condition
∂u
∂ν +σu = 0 for a wide class of periodic functions σ. For non-negative

σ we prove that H(σ) is unitarily equivalent to the Neumann Lapla-
cian H(0). In general, there appear additional channels of scattering
which are analyzed in detail.
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Introduction

0.1 Setting of the problem

The present paper is a continuation of [Fr], but can be read independently. It
studies the Laplacian

H(σ)u = −∆u on R2
+ (0.1)

together with a boundary condition of the third type

∂u

∂ν
+ σu = 0 on R × {0}, (0.2)

where ν denotes the exterior unit normal and where the function σ : R → R is
assumed to be 2π-periodic. Moreover, let

σ ∈ Lq,loc(R) for some q > 1.

Documenta Mathematica 9 (2004) 57–77



58 Rupert L. Frank and Roman G. Shterenberg

Under this condition H(σ) can be defined as a self-adjoint operator in L2(R2
+)

by means of the lower semibounded and closed quadratic form
∫

R2
+

|∇u(x)|2 dx +

∫

R

σ(x1)|u(x1, 0)|2 dx1, u ∈ H1(R2
+).

We analyze the spectrum of H(σ) and develop a scattering theory viewing H(σ)

as a (rather singular) perturbation of H(0), the Neumann Laplacian on R2
+.

(For the abstract mathematical scattering theory see, e.g., [Ya1].)
By means of the Bloch-Floquet theory we represent H(σ) as a direct integral

∫ 1/2

−1/2

⊕H(σ)(k) dk (0.3)

with fiber operators H(σ)(k) acting in L2(Π) where Π := (−π, π) × R+ is
the halfstrip. Due to the relation (0.3) the investigation of the operator H(σ)

reduces to the study of the operators H(σ)(k).

0.2 The main results

It was shown in [Fr] that the wave operators

W
(σ)
± (k) := W±(H(σ)(k),H(0)(k))

on the halfstrip exist and are complete. This immediately implies the existence
of the wave operators

W
(σ)
± := W±(H(σ),H(0))

on the halfplane and the coincidence of the ranges

R(W
(σ)
+ ) = R(W

(σ)
− ).

(Of course, the existence of the wave operators can also be obtained by a
modification of the Cook method, see Section 17 in [Ya2].) Moreover, it was
shown in [Fr] that the singular continuous spectrum of the operators H(σ)(k)
is empty.
In the present paper we will study the point spectrum of the operators H(σ)(k).
In general, there will be (discrete or embedded) eigenvalues which may produce
bands in the spectrum of the operator H(σ) on the halfplane. In this case,
the wave operators are not complete and there appear additional channels of
scattering. For the additional bands in the spectrum we give some quantitative
estimates and we construct an example where a gap in the spectrum appears.
Moreover, we prove that the spectrum of the operator H(σ) is purely absolutely
continuous.
Under the additional assumption

σ(x1) ≥ 0, a.e. x1 ∈ R, (0.4)
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we prove that the operators H(σ)(k) have no eigenvalues. This implies that the

wave operators W
(σ)
± are unitary and provide a unitary equivalence between

the operators H(σ) and H(0).

0.3 Additional channels of scattering

Additional channels of scattering were already discovered in a number of other
problems that exhibit periodicity with respect to some but not all space di-
rections. Without aiming at completeness we mention the papers [DaSi], [Sa]
concerning the scattering theory of problems of this type, [GrHoMe], [Ka] con-
cerning Schrödinger operators with periodic point interactions and [BeBrPa]
concerning the case of discrete Schrödinger operators.
In the present paper, using the specific properties of the operator under con-
sideration we are able not only to show the appearance of additional channels
of scattering but also to develop a more detailed analysis of these channels. In
particular, we give some sufficient conditions for existence and non-existence
of additional channels and prove that the spectrum of the operator is purely
absolutely continuous.
The problem of absolute continuity in a case with partial periodicity is also in-
vestigated in [FiKl], where the Schrödinger operator with an electric potential
is considered.

0.4 Outline of the paper

Let us explain the structure of this paper. In Section 1 we recall the precise
definition of the operators H(σ) and H(σ)(k) in terms of quadratic forms and
the direct integral decomposition. In Subsection 1.2 we state the main result in
the case of non-negative σ (Theorem 1.1) and the main result about absolute
continuity (Theorem 1.2).
In Section 2 we transform the eigenvalue problem for H(σ)(k) and λ ∈ R in the
spirit of the Birman-Schwinger principle to the problem whether 0 is an eigen-
value of a certain ”discrete pseudo-differential operator” of order one in L2(T).
In this way we reduce the problem of (possibly embedded) eigenvalues to the
study of operators with compact resolvent. In Section 3 we prove the absence
of eigenvalues of H(σ)(k) under the condition (0.4), which implies Theorem
1.1. The general case is treated in Section 4 and the proof of Theorem 1.2 is
given in Subsection 4.3. We supplement this in Section 5 with a more detailed
analysis in the case when σ is a trigonometric polynomial. Finally, in Section
6 we describe and discuss the additional channels of scattering that appear in
the general case. In Subsection 6.2 we construct an example of an open gap.
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1 Setting of the problem. The main result

1.1 Notation

We introduce the halfplane

R2
+ := {x = (x1, x2) ∈ R2 : x2 > 0} = R × R+,

and the halfstrip

Π := {x = (x1, x2) ∈ R2 : −π < x1 < π, x2 > 0} = (−π, π) × R+,

where R+ := (0,+∞). Moreover, we need the lattice 2πZ. Unless stated
otherwise, periodicity conditions are understood with repect to this lattice.
We think of the corresponding torus T := R/2πZ as the interval [−π, π] with
endpoints identified.
We use the notation D = (D1,D2) = −i∇ in R2.
For a measurable set Λ ⊂ R we denote by meas Λ its Lebesgue measure.
For an open set Ω ⊂ Rd, d = 1, 2, the index in the notation of the norm
‖.‖L2(Ω) is usually dropped. The space L2(T) may be formally identified with
L2(−π, π). We denote the Fourier coefficients of a function f ∈ L2(T) by

f̂n := 1√
2π

∫ π

−π
f(x1)e

−inx1 dx1, n ∈ Z.

Next, Hs(Ω) is the Sobolev space of order s ∈ R (with integrability index
2). By Hs(T) we denote the closure of C∞(T) in Hs(−π, π). Here C∞(T) is
the space of functions in C∞(−π, π) which can be extended 2π-periodically to
functions in C∞(R). The space Hs(T) is endowed with the norm

‖f‖2
Hs(T) :=

∑

n∈Z

(1 + n2)s|f̂n|2, f ∈ Hs(T).

By H̃s(Π) we denote the closure of C̃∞(Π)∩Hs(Π) in Hs(Π). Here C̃∞(Π) is
the space of functions in C∞(Π) which can be extended 2π-periodically with
respect to x1 to functions in C∞(R2

+).
Statements and formulae which contain the double index ”±” are understood
as two independent assertions.
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1.2 The operators H(σ) on the halfplane. Main results

Before describing the main results we recall the definition of the operators H(σ)

from [Fr]. Let σ be a real-valued periodic function satisfying

σ ∈ Lq(T) for some q > 1. (1.1)

It is easy to see (cf. [Fr]) that under this condition the quadratic form

D[h(σ)] := H1(R2
+),

h(σ)[u] :=

∫

R2
+

|Du(x)|2 dx +

∫

R

σ(x1)|u(x1, 0)|2 dx1
(1.2)

is lower semibounded and closed in the Hilbert space L2(R2
+), so it generates

a self-adjoint operator which will be denoted by H(σ). The case σ = 0 corre-
sponds to the Neumann Laplacian on the halfplane, whereas the case σ 6= 0
implements a (generalized) boundary condition of the third type.
The spectrum of the ”unperturbed” operator H(0) coincides with [0,+∞) and
is purely absolutely continuous of infinite multiplicity.
In [Fr] we proved the existence of the wave operators

W
(σ)
± := W±(H(σ),H(0)) = s − lim

t→±∞
exp(itH(σ)) exp(−itH(0)).

We state now the main results of the present part. An especially complete
result can be obtained under the additional assumption

σ(x1) ≥ 0, a.e. x1 ∈ R. (1.3)

Theorem 1.1. Assume that σ satisfies (1.1) and (1.3). Then the wave opera-

tors W
(σ)
± exist, are unitary and satisfy

H(σ) = W
(σ)
± H(0)W

(σ)∗
± . (1.4)

In particular, under the condition (1.3) the spectrum of the operator H(σ) is
purely absolutely continuous. This is also true for general σ.

Theorem 1.2. Assume that σ satisfies (1.1). Then the operator H(σ) has
purely absolutely continuous spectrum.

However, in contrast to the case of non-negative σ now the operator H(σ)

may be not unitarily equivalent to H(0) and then the wave operators W
(σ)
± are

not complete. This is connected with the existence of additional channels of
scattering. The discussion of this phenomenon is conveniently postponed to
Section 6.
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1.3 Definition of the operators H(σ)(k) on the halfstrip. Direct
Integral Decomposition

Let σ be a real-valued periodic function satisfying (1.1) and let k ∈ [− 1
2 , 1

2 ]. It
follows (cf. [Fr]) that the quadratic form

D[h(σ)(k)] := H̃1(Π),

h(σ)(k)[u] :=

∫

Π

(
|(D1 + k)u(x)|2 + |D2u(x)|2

)
dx +

∫ π

−π

σ(x1)|u(x1, 0)|2 dx1

(1.5)

is lower semibounded and closed in the Hilbert space L2(Π), so it generates
a self-adjoint operator which will be denoted by H(σ)(k). In addition to the
Neumann (if σ = 0) or third type (if σ 6= 0) boundary condition at {x2 = 0}, the
functions in D(H(σ)) satisfy periodic boundary conditions at {x1 ∈ {−π, π}}.
The operator H(σ) on the halfplane can be partially diagonalized by means of
the Gelfand transformation. This operator is initially defined for u ∈ S(R2

+),
the Schwartz class on R2

+, by

(Uu)(k, x) :=
∑

n∈Z

e−ik(x1+2πn)u(x1 + 2πn, x2), k ∈ [− 1
2 , 1

2 ], x ∈ Π,

and extended by continuity to a unitary operator

U : L2(R
2
+) →

∫ 1/2

−1/2

⊕L2(Π) dk. (1.6)

One finds (cf. [Fr]) that

U H(σ) U∗ =

∫ 1/2

−1/2

⊕H(σ)(k) dk. (1.7)

This relation allows us to investigate the operator H(σ) by studying the fibers
H(σ)(k).
In [Fr] it was shown that

σac

(
H(σ)(k)

)
= [k2,+∞), σsc

(
H(σ)(k)

)
= ∅. (1.8)

In the present part we give a detailed analysis of the point spectrum of H(σ)(k).

2 Characterization of eigenvalues of the operator H(σ)(k)

Let σ be a real-valued periodic function satisfying (1.1) and let k ∈ [− 1
2 , 1

2 ],
λ ∈ R. In the Hilbert space L2(T) we consider the quadratic forms

D[b(σ)(λ, k)] := H1/2(T),

b(σ)(λ, k)[f ] :=
∑

n∈Z

βn(λ, k) |f̂n|2 +

∫ π

−π

σ(x1)|f(x1)|2 dx1,
(2.1)
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where

βn(λ, k) :=

{ √
(n + k)2 − λ if (n + k)2 > λ,

−
√

λ − (n + k)2 if (n + k)2 ≤ λ.
(2.2)

It follows from the Sobolev embedding theorems that the forms b(σ)(λ, k) are
lower semibounded and closed, so they generate self-adjoint operators which
will be denoted by B(σ)(λ, k).
The compactness of the embedding of H1/2(T) in L2(T) implies that the oper-
ators B(σ)(λ, k) have compact resolvent.
Now we characterize the eigenvalues of the operator H(σ)(k) as the values λ for
which 0 is an eigenvalue of the operators B(σ)(λ, k). More precisely, we have

Proposition 2.1. Let k ∈ [− 1
2 , 1

2 ] and λ ∈ R.

1. Let u ∈ N (H(σ)(k) − λI) and define

f(x1) := u(x1, 0), x1 ∈ T. (2.3)

Then f ∈ N (B(σ)(λ, k)), f̂n = 0 if (n + k)2 ≤ λ and, moreover,

u(x) =
1√
2π

∑

(n+k)2>λ

f̂n einx1 e−βn(λ,k) x2 , x ∈ Π. (2.4)

2. Let f ∈ N (B(σ)(λ, k)) such that f̂n = 0 if (n + k)2 ≤ λ and define u by
(2.4).
Then u ∈ N (H(σ)(k) − λI) and, moreover, (2.3) holds.

For the proof of Proposition 2.1 we use the following notation. For u ∈ L2(Π)
and n ∈ Z we define

ûn(x2) :=
1√
2π

∫ π

−π

u(x)e−inx1 dx1, x2 ∈ R+,

so that, with respect to convergence in L2(Π),

u(x) =
1√
2π

∑

n∈Z

einx1 ûn(x2), x ∈ Π.

Moreover, one finds that u ∈ H̃1(Π) iff

ûn ∈ H1(R+), n ∈ Z, and
∑

n∈Z

(
(1 + n2)‖ûn‖2 + ‖D2ûn‖2

)
< ∞.

The proof of the following observation is straightforward.

Lemma 2.2. Let k ∈ [− 1
2 , 1

2 ] and λ ∈ R.

1. Let u ∈ H̃1(Π), then the following are equivalent:
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(i) u ∈ N (H(σ)(k) − λI),

(ii)
∫ ∞
0

D2ûnD2ϕ dx2 + 1√
2π

∫ π

−π
σ(x1)u(x1, 0)e−inx1 dx1 ϕ(0) =

= (λ − (n + k)2)
∫ ∞
0

ûnϕdx2, n ∈ Z, ϕ ∈ H1(R+).

2. Let f ∈ H1/2(T), then the following are equivalent:

(i) f ∈ N (B(σ)(λ, k)),

(ii) βn(λ, k) f̂n + 1√
2π

∫ π

−π
σ(x1)f(x1)e

−inx1 dx1 = 0, n ∈ Z.

Proof of Proposition 2.1. The proof follows easily from Lemma 2.2. Note that
if u ∈ N (H(σ)(k) − λI), then D2

2ûn = ((λ − (n + k)2)ûn. Therefore

ûn(x2) =

{
0 if (n + k)2 ≤ λ,

f̂n e−βn(λ,k) x2 if (n + k)2 > λ,

with f defined by (2.3).

Remark 2.3. Obviously, the statement of Proposition 2.1 does not depend on
the definition of βn(λ, k) for (n + k)2 ≤ λ. The reason for our choice (2.2) is of
technical nature and will become clear in Subsection 4.2 below.

3 The case of non-negative σ

Proposition 2.1 allows us to deduce easily the main result if σ is non-negative.
We start with the operators H(σ)(k) on the halfstrip.

Theorem 3.1. Assume that σ satisfies (1.1) and (1.3) and let k ∈ [− 1
2 , 1

2 ].

Then the operator H(σ)(k) has purely absolutely continuous spectrum.

Proof. In view of (1.8) it suffices to prove that H(σ)(k) has no eigenvalues. For

this we use Proposition 2.1. Let λ ∈ R and f ∈ N (B(σ)(λ, k)) such that f̂n = 0
if (n + k)2 ≤ λ. It follows that

b(σ)(λ, k)[f ] ≥ γ‖f‖2

where γ := min{βn(λ, k) : n ∈ Z, f̂n 6= 0} > 0. Together with b(σ)(λ, k)[f ] =
0 this implies f = 0. So by Proposition 2.1 (1), λ is not an eigenvalue of
H(σ)(k).

Concerning the operator H(σ) on the halfplane we obtain immediately the

Proof of Theorem 1.1. In [Fr] we showed that W
(σ)
± is unitarily equivalent to

the direct integral of the operators W
(σ)
± (k), k ∈ [− 1

2 , 1
2 ]. The latter were shown

to be complete, and by Theorem 3.1 they are actually unitary. Thus W
(σ)
± is

unitary and (1.4) follows from the intertwining property of wave operators.
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4 The general case

4.1 The point spectrum of the operators H(σ)(k)

If we impose no additional condition on σ we have the following result on the
point spectrum of the operators H(σ)(k).

Theorem 4.1. Assume that σ satisfies (1.1) and let k ∈ [− 1
2 , 1

2 ]. Then

σp

(
H(σ)(k)

)
(if non-empty) consists of eigenvalues of finite multiplicities which

may accumulate at +∞ only.

Note that the case of an infinite sequence of (embedded) eigenvalues actually
occurs.

Example 4.2. Let σ ≡ σ0 < 0 be a negative constant and k ∈ [− 1
2 , 1

2 ]. Then

σp

(
H(σ)(k)

)
= {−σ2

0 + (n + k)2 : n ∈ Z}.

This follows easily by Proposition 2.1 or directly by separation of variables.

For the proof of Theorem 4.1 we need an auxiliary result. For k ∈ [− 1
2 , 1

2 ],

λ ∈ R we denote by µm(λ, k), m ∈ N, the eigenvalues of B(σ)(λ, k) arranged in
non-decreasing order and repeated according to their multiplicities. Then we
have

Lemma 4.3. Let k ∈ [− 1
2 , 1

2 ], then the functions µm(., k), m ∈ N, are continu-
ous and strictly decreasing on R.

The proof (of strict monotonicity) uses an analyticity argument and is conve-
niently postponed to Subsection 4.2.

Proof of Theorem 4.1. Proposition 2.1 (1) implies for λ ∈ R

dimN (H(σ)(k) − λI) ≤ dimN (B(σ)(λ, k)). (4.1)

Since B(σ)(λ, k) has compact resolvent, it follows that eigenvalues λ of H(σ)(k)
have finite multiplicities.
To prove that the only possible accumulation point of σp

(
H(σ)(k)

)
is +∞, let

Λ = (λ−, λ+) be an open interval. It follows from (4.1) and Lemma 4.3 that

♯cm{λ ∈ (λ−, λ+) : λ is eigenvalue of H(σ)(k)} ≤
≤

∑

λ∈(λ−,λ+)

dimN (B(σ)(λ, k)) =

= ♯{m ∈ N : µm(λ, k) = 0 for some λ ∈ (λ−, λ+)} =

= ♯{m ∈ N : µm(λ−, k) > 0 and µm(λ+, k) < 0} =

= ♯cm{µ < 0 : µ is eigenvalue of B(σ)(λ+, k)}−
− ♯cm{µ ≤ 0 : µ is eigenvalue of B(σ)(λ−, k)},

(4.2)
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where ♯cm{...} means that the cardinality of {...} is determined according to
multiplicities. The RHS of (4.2) is finite since B(σ)(λ+, k), B(σ)(λ−, k) are
lower semibounded and have compact resolvent. This completes the proof of
the theorem.

Remark 4.4. We emphasize the equality

♯cm{λ ∈ (−∞, k2) : λ is eigenvalue of H(σ)(k)} =

= ♯cm{µ < 0 : µ is eigenvalue of B(σ)(k2, k)}.
(4.3)

Indeed, it follows from Proposition 2.1 (2) that the estimate (4.1) becomes an
equality for λ < k2, therefore also (4.2) for λ+ = k2, and we obtain (4.3) by
choosing −λ− so large that B(σ)(λ−, k) is positive.
The equality (4.3) can be used to obtain estimates on the number of eigenval-
ues of H(σ)(k) below k2 and on its asymptotics in the limit of large coupling
constant. Such calculations for the operators B(σ)(k2, k) are rather standard,
so we do not go into details.

4.2 Complexification

Now we extend the operator family B(σ)(λ, k) to complex values of λ and k.
For this construction we fix k0 ∈ [− 1

2 , 1
2 ], λ0 ∈ R \ {(n+ k0)

2 : n ∈ Z}. We can
choose δ0 > 0 (depending on λ0, k0) such that

(n + κ)2 − z 6= 0, n ∈ Z,

for all z, κ ∈ C such that |z − λ0| < δ0, |κ − k0| < δ0. Therefore, if we put

Ũ := {z ∈ C : |z − λ0| < δ}, Ṽ := {κ ∈ C : |κ − k0| < δ},

the functions βn, n ∈ Z, admit a unique analytic continuation to Ũ × Ṽ , and
we can define sectorial and closed forms b(σ)(z, κ) for z ∈ Ũ , κ ∈ Ṽ by (2.1)
with βn(λ, k) replaced by βn(z, κ). The corresponding m-sectorial operators
will be denoted by B(σ)(z, κ). For fixed κ ∈ Ṽ (z ∈ Ũ , respectively) they form
an analytic family of type (B) with respect to z ∈ Ũ (κ ∈ Ṽ , respectively) (see,
e.g., Section VII.4 in [K]).
From this construction we obtain

Lemma 4.5. Let k0 ∈ [− 1
2 , 1

2 ], λ0 ∈ R \ {(n + k0)
2 : n ∈ Z} such that 0 is an

eigenvalue of B(σ)(λ0, k0). Then there exist open neighbourhoods U, V ⊂ R of
λ0, k0 and a real-analytic function h : U × V → C such that for all λ ∈ U ,
k ∈ V ∩ [− 1

2 , 1
2 ] one has

0 ∈ σp

(
B(σ)(λ, k)

)
iff h(λ, k) = 0.
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Proof. The proof is rather standard, so we only sketch the major steps. We
consider the family B(σ)(z, κ), z ∈ Ũ , κ ∈ Ṽ , constructed above. Since these
operators have compact resolvent, we can use a Riesz projection to separate
the eigenvalues around 0 from the rest of the spectrum. The resulting operator
has finite rank and is analytic with respect to z and κ, so its determinant h
has the desired properties.

Our next goal is to show that for every λ ∈ U the function h(λ, .) con-
structed above is not identically zero. For the proof of this we need to consider
quasimomenta κ = k + iy with large imaginary part y. So fix k ∈ [− 1

2 , 1
2 ],

λ ∈ R \ {(n + k)2 : n ∈ Z}, then the above construction (with λ0, k0 replaced
by λ, k) yields a δ > 0 and an analytic family B(σ)(λ, κ), |κ − k| < δ. If we
assume in addition that k 6= 0 and choose δ ∈ (0, |k|), we find that

(n + κ)2 − λ 6= 0, n ∈ Z,

holds for all κ ∈ C such that |Re κ − k| < δ. Therefore B(σ)(λ, κ) admits a
further analytic extension to

˜̃V := {κ ∈ C : |Re κ − k| < δ}.

Concerning quasimomenta with large imaginary part we have the technical

Lemma 4.6. Let k ∈ [− 1
2 , 1

2 ] \ {0}, λ ∈ R \ {(n + k)2 : n ∈ Z} and δ ∈ (0, |k|)
as above. Then there exist constants y0 = y0(λ, k, δ), C = C(λ, k, δ) such that
for all k′ ∈ [− 1

2 , 1
2 ], y ∈ R satisfying |k′ − k| < δ, |y| > y0 the operator

B(σ)(λ, k′ + iy) is boundedly invertible with

∥∥∥∥
(
B(σ)(λ, k′ + iy)

)−1
∥∥∥∥ ≤ C

1 + |y| .

Proof. It suffices to find constants y0, C̃ = C̃(λ, k, δ) > 0 such that for all
0 6= f ∈ H1/2(T), k′ ∈ [− 1

2 , 1
2 ], y ∈ R satisfying |k′ − k| < δ, |y| > y0 there

exists 0 6= g ∈ H1/2(T) such that

|b(σ)(λ, k′ + iy)[f, g]| ≥ C̃ (1 + |y|) ‖f‖‖g‖.

For given 0 6= f ∈ H1/2(T), k′ ∈ [− 1
2 , 1

2 ] ∩ (k − δ, k + δ), y ∈ R we define g by
its Fourier coefficients

ĝn :=
βn(λ, k′ + iy)

|βn(λ, k′ + iy)| f̂n, n ∈ Z.

(Note that βn(λ, k′+iy) 6= 0 by the choice of δ.) Then we have 0 6= g ∈ H1/2(T),
‖g‖ = ‖f‖ and

|b(σ)(λ, k′+iy)[f, g]| ≥
∑

n∈Z

|βn(λ, k′+iy)||f̂n|2− 1
2‖

√
|σ|f‖2− 1

2‖
√

|σ|g‖2. (4.4)
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Using the elementary estimates

|βn(λ, k′ + iy)| ≥ c1 (1 + |y|), n ∈ Z, |k′ − k| < δ,

|βn(λ, k′ + iy)| ≥ c2 (1 + |n|), n ∈ Z, |k′ − k| < δ,
(4.5)

(with some constants c1 = c1(λ, k, δ) > 0, c2 = c2(λ, k, δ) > 0) and the Sobolev
embedding theorem we find that for sufficiently large y0

‖
√

|σ|f‖2 ≤ 1
2

∑

n∈Z

|βn(λ, k′ + iy)||f̂n|2, |k′ − k| < δ, |y| > y0.

Using a similar estimate for ‖
√

|σ|g‖2 and (4.4), (4.5) we obtain

|b(σ)(λ, k′ + iy)[f, g]| ≥ 1
2 c1 (1 + |y|) ‖f‖‖g‖, |k′ − k| < δ, |y| > y0,

which concludes the proof.

As announced above, we have

Lemma 4.7. Let k0, λ0, h, U and V be as in Lemma 4.5. Then for all λ ∈ U
one has h(λ, .) 6≡ 0.

Proof. To arrive at a contradiction we assume that h(λ, .) ≡ 0 for some λ ∈ U .

We choose k ∈ V \ {0} and consider the family B(σ)(λ, κ), κ ∈ ˜̃V constructed
above. It follows from the Analytic Fredholm Alternative (see, e.g., Theorem
VII.1.10 in [K]) that all operators of this family have 0 as an eigenvalue. But
this contradicts Lemma 4.6.

As an immediate consequence of Lemmas 4.5 and 4.7 and relation (4.1) we
obtain the following result which will be needed in Subsection 4.3 to prove that
the spectrum of the operator H(σ) is purely absolutely continuous.

Corollary 4.8. There exists a countable number of open intervals Uj , Vj ⊂ R
and real-analytic functions hj : Uj × Vj → C satisfying

1. for all k ∈ [− 1
2 , 1

2 ] and λ ∈ R \ {(n + k)2 : n ∈ Z} such that λ ∈
σp

(
H(σ)(k)

)
there is a j such that (λ, k) ∈ Uj ×Vj and hj(λ, k) = 0, and

2. for all j and all λ ∈ Uj one has hj(λ, .) 6≡ 0.

To complete this subsection we prove Lemma 4.3 which was used in the proof
of Theorem 4.1.

Proof of Lemma 4.3. That µm(., k) is a continuous, non-increasing function
follows from the variational principle and the continuity and monotonicity of
the operators B(σ)(λ, k) with respect to λ.
To prove the strict monotonicity we assume to the contrary that for some m ∈ N
the function µm(., k) coincides on an interval Λ with a constant µ0 ∈ R. We
choose λ0 ∈ Λ \ {(n + k)2 : n ∈ Z} and consider the family B(σ)(z, k), z ∈ Ũ ,
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constructed at the beginning of this subsection (with λ0, k0 replaced by λ0, k).
It follows from the Analytic Fredholm Alternative (see, e.g., Theorem VII.1.10
in [K]) that µ0 is an eigenvalue of B(σ)(z, k) also for complex z ∈ Ũ .
However, let z ∈ Ũ ∩C± and f ∈ N (B(σ)(z, k)−µ0I). We have ∓Imβn(z, k) >

0, n ∈ Z, so Im b(σ)(λ, k)[f ] = 0 implies that f̂n = 0, n ∈ Z, i.e., f = 0. So µ0

is not an eigenvalue of B(σ)(z, k).

4.3 Proof of Theorem 1.2

Now we prove Theorem 1.2 following the method suggested in [FiKl]. We need
the following result from Complex Analysis of Several Variables which can be
proved by means of the Implicit Function Theorem (see [FiKl]).

Lemma 4.9. Let U, V ⊂ R be open intervals and h : U×V → C be real-analytic.
Let Λ ⊂ U with meas Λ = 0 such that for all λ ∈ Λ one has h(λ, .) 6≡ 0. Then

meas {k ∈ V : h(λ, k) = 0 for some λ ∈ Λ} = 0.

Proof of Theorem 1.2. Let Λ ⊂ R with meas Λ = 0. We denote the spec-
tral projection of H(σ) (H(σ)(k), respectively) corresponding to Λ by E(σ)(Λ)
(E(σ)(Λ, k), respectively). Then it follows from (1.7) that

U E(σ)(Λ)U∗ =

∫ 1/2

−1/2

⊕E(σ)(Λ, k) dk

and we have to prove that this operator is equal to 0.
For this we write [− 1

2 , 1
2 ] = K1 ∪ K2 ∪ K3 where

K1 =
{

k ∈ [− 1
2 , 1

2 ] : σp

(
H(σ)(k)

)
∩ Λ = ∅

}
,

K2 =
{

k ∈ [− 1
2 , 1

2 ] : σp

(
H(σ)(k)

)
∩ Λ ∩ {(n + k)2 : n ∈ Z} 6= ∅

}
,

K3 =
{

k ∈ [− 1
2 , 1

2 ] : ∅ 6= σp

(
H(σ)(k)

)
∩ Λ ⊂

(
R \ {(n + k)2 : n ∈ Z}

)}
.

Since σsc

(
H(σ)(k)

)
= ∅ we immediately obtain E(σ)(Λ, k) = 0 for k ∈ K1.

Now

K2 ⊂
⋃

n∈Z

{k ∈ [− 1
2 , 1

2 ] : (n + k)2 − λ = 0 for some λ ∈ Λ}, (4.6)

and with the notation of Corollary 4.8

K3 ⊂
⋃

j

{k ∈ Vj ∩ [− 1
2 , 1

2 ] : hj(λ, k) = 0 for some λ ∈ Uj ∩ Λ}. (4.7)

It follows from Lemma 4.9 that meas K2 = meas K3 = 0, which concludes the
proof.
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5 The case of a trigonometric polynomial σ

We have seen in Example 4.2 that the operators H(σ)(k) may have embedded
eigenvalues. Let us investigate this phenomenon under the additional assump-
tion that only finitely many Fourier coefficients of σ are non-zero. Note that
in this case the operator B(σ)(λ, k) acts in Fourier space as a finite-diagonal
matrix. This allows us to exclude the existence of large embedded eigenvalues.

Proposition 5.1. Assume that σ is a trigonometric polynomial of degree N >
0 and let k ∈ [− 1

2 , 1
2 ]. Then

σp

(
H(σ)(k)

)
⊂

(
−‖σ−‖2

∞ + k2, (N − |k|)2
)
.

Here σ− := 1
2 (|σ| − σ) denotes the negative part of σ.

Proof. The proof of σp

(
H(σ)(k)

)
⊂ [−‖σ−‖2

∞ +k2,+∞) is similar to the proof

of Theorem 3.1. Moreover, it is easy to see that −‖σ−‖2
∞ + k2 ∈ σp

(
H(σ)(k)

)

only if σ coincides a.e. with a negative constant, which is excluded by the
assumption N > 0.
Let us prove now that σp

(
H(σ)(k)

)
⊂ (−∞, (N − |k|)2). For this we use

Proposition 2.1. Let λ ≥ (N − |k|)2 and f ∈ N (B(σ)(λ, k)) such that

f̂n = 0 if (n + k)2 ≤ λ. (5.1)

In particular, we see from B(σ)(λ, k)f = 0 that

√
(n + k)2 − λ f̂n +

1√
2π

N∑

m=−N

σ̂mf̂n−m = 0 if (n + k)2 ≥ λ. (5.2)

The estimate

♯{n ∈ Z : (n + k)2 ≤ λ} ≥ ♯{n ∈ Z : (n + k)2 ≤ (N − |k|)2} ≥ 2N

and (5.1) imply that f̂n = 0 for at least 2N consecutive n. Using σ̂N = σ̂−N 6= 0

it is easy to see from (5.2) that f̂n = 0 for all n, i.e. f = 0. So by Proposition
2.1 (1), λ is not an eigenvalue of H(σ)(k).

We show now that embedded eigenvalues in the interval [(N − 1 + |k|)2, (N −
|k|)2) can occur but are ”rare”.

Proposition 5.2. Assume that σ is a trigonometric polynomial of degree N >
0 and let k ∈ (− 1

2 , 1
2 ). Then H(σ)(k) may have only simple eigenvalues in

[(N − 1 + |k|)2, (N − |k|)2) and the set

{(λ, k) ∈ R× (− 1
2 , 1

2 ) : λ ∈ σp

(
H(σ)(k)

)
∩ [(N − 1 + |k|)2, (N − |k|)2)} (5.3)

is finite.
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For the proof of this proposition we introduce the following auxiliary operators
in the Hilbert space l2(N).

D(A(σ)(λ, k)) := {α ∈ l2(N) :

∞∑

n=1

(1 + n2)|αn|2 < ∞},

(
A(σ)(λ, k)α

)
n

:=

{
βn(λ, k)αn + 1√

2π

∑n−1
m=−N σ̂m αn−m if n ≤ N,

βn(λ, k)αn + 1√
2π

∑N
m=−N σ̂m αn−m if n > N.

(5.4)

The operators A(σ)(λ, k) are self-adjoint and have compact resolvent.

Lemma 5.3. Let k ∈ (− 1
2 , 1

2 ) and λ ∈ [(N − 1 + |k|)2, (N − |k|)2). Then λ is

an eigenvalue of H(σ)(k) iff there exist 0 6= α+, α− ∈ D(A(σ)(λ, k)) such that
A(σ)(λ, k)α+ = A(σ)(λ,−k)α− = 0 and α+

n = α−
n = 0 for n < N . In this case,

λ is a simple eigenvalue.

Proof. We use Proposition 2.1. If λ is an eigenvalue of H(σ)(k), there exists

a 0 6= f ∈ N (B(σ)(λ, k)) such that f̂n = 0 if |n| < N . We note that the only
relation between the positive and the negative Fourier coefficients of f is the
equation

σ̂N f̂−N + σ̂−N f̂N = 0.

Therefore f is unique up to multiples. We put

α+
n := f̂n, α−

n := f̂−n, n ∈ N, (5.5)

and find (using σ̂n = σ̂−n, n ∈ Z) that α+, α− are as claimed.
Conversely, let α+, α− have the properties of the lemma. Then α+

Nα−
N 6= 0

and multiplying α+ by a constant if necessary, we can assume that σ̂Nα−
N +

σ̂−Nα+
N = 0. Defining f by (5.5) and f̂n := 0 if |n| < N we find that 0 6= f ∈

N (B(σ)(λ, k)), so λ is an eigenvalue of H(σ)(k) by Proposition 2.1 (2). This
completes the proof.

The reason for introducing the operators A(σ)(λ, k) is that they are not only
monotone with respect to λ but also with respect to k. This is essentially used
in the

Proof of Proposition 5.2. It remains to prove that the set (5.3) is finite. We
denote by νm(λ, k), m ∈ N, the eigenvalues of the operator A(σ)(λ, k), arranged
in non-decreasing order and repeated according to their multiplicities. By the
same arguments as in the proof of Lemma 4.3 one finds that the functions
νm(λ, .) (νm(., k), respectively) are continuous and strictly increasing (strictly
decreasing, respectively) for fixed λ (k, respectively).
Now Lemma 5.3 implies that if λ is an eigenvalue of H(σ)(k) in [(N − 1 +
|k|)2, (N − |k|)2) then there exist m, m′ ∈ N such that

νm(λ, k) = νm′(λ,−k) = 0. (5.6)
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It follows easily from the monotonicity properties mentioned above that for
each pair (m,m′) ∈ N × N there exists at most one pair (λ, k) with λ ∈ [(N −
1 + |k|)2, (N − |k|)2) such that (5.6) holds. Since the functions νm are strictly
positive for sufficiently large m we conclude that the set (5.3) is finite.

Example 5.4. In the case N = 1 it is convenient to write σ as

σ(x1) := −α + Reβ cos x1 + Imβ sin x1, x1 ∈ T,

with α ∈ R, β ∈ C. Under the conditions

0 < α < 1, 0 < |β| ≤ 1 − α, (5.7)

one finds that

νm(λ, k) > 0 for m ≥ 2, k ∈ (− 1
2 , 1

2 ), λ ∈ [k2, (1 − |k|)2).
Thus it follows from (5.6) and the strict monotonicity of ν1(λ, .) that the op-
erator H(σ)(k) has no eigenvalues in [k2, (1− |k|)2) for k 6= 0. We consider the
case k = 0. Under condition (5.7) one easily derives the estimates

ν1(λ, 0) ≥ 0 for λ ∈ [0, 1 − (α + |β|)2],
ν1(λ, 0) < 0 for λ ∈ (1 − α2, 1),

which imply that H(σ)(0) has a (unique) embedded eigenvalue in [0, 1). It
can be shown (see Remark 5.5 below) that it depends real-analytically on the
”coupling parameter” |β| > 0.
Let us emphasize that if 0 < α < 1 and β = 0, the operator H(σ)(0) has
embedded eigenvalues −α2 +m2, m ∈ N, each double degenerate (see Example
4.2). As soon as the coupling is turned on (i.e., |β| > 0) all the eigenvalues
above 1 as well as one of the eigenvalues in (0, 1) dissolve, whereas the other
one of the eigenvalues in (0, 1) depends smoothly on |β| ∈ [0, 1 − α].

Remark 5.5. Let us mention that the eigenvalue in the above example is due
to the following symmetry. Since the operator is (up to unitary equivalence)
invariant under a shift with respect to x1 we may assume that β ∈ R. Then σ
is even with respect to x1 = 0 and so for k = 0 the decomposition into even
and odd functions reduces the operator H(σ)(0). It remains to notice that the
essential spectrum of the part of the operator acting on odd functions starts at
the point λ = 1.

6 Additional Channels of Scattering of the operators H(σ)

6.1 Additional Channels due to discrete eigenvalues

Here we construct the additional channels of scattering of H(σ) which arise
from the discrete eigenvalues of the operators H(σ)(k).
For k ∈ [− 1

2 , 1
2 ] we denote by

λ1(k) ≤ λ2(k) ≤ · · ·λl(k)(k) < k2 (6.1)
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the discrete eigenvalues of H(σ)(k), arranged in non-decreasing order and re-
peated according to their multiplicities. By Theorem 4.1 l(k) is a finite number,
possibly equal to 0. It is convenient to set λl(k) := k2 if l > l(k). The functions
λl are continuous on [− 1

2 , 1
2 ] for each l ∈ N. Combining this with (1.7) we find

σ
(
H(σ)

)
=

⋃

l∈N

λl([− 1
2 , 1

2 ]) ∪ [0,+∞), (6.2)

i.e., the spectrum of H(σ) has band structure.
According to Theorem 1.2 none of the functions λl is constant (since this would
correspond to an eigenvalue of H(σ)).
To construct the additional channels of scattering we introduce some notation.
We put

Kl := {k ∈ [− 1
2 , 1

2 ] : l ≤ l(k)}, l ∈ N0.

These sets are open in [− 1
2 , 1

2 ] and Kl = ∅ for sufficiently large l. We define

l0 := max{l ∈ N0 : Kl 6= ∅}.

Now assume l0 > 0 (which means that some of the operators H(σ)(k) have
discrete eigenvalues). For each k ∈ [− 1

2 , 1
2 ] we can choose orthonormal eigen-

functions ψl(., k), 1 ≤ l ≤ l(k), corresponding to the eigenvalues (6.1),

H(σ)(k)ψl(., k) = λl(k)ψl(., k),

such that the mappings

Kl → L2(Π), k 7→ ψl(., k), 1 ≤ l ≤ l0,

are piecewise analytic. Recall that the functions ψl(., k) are of the form (2.4).
It is convenient to define ψl(., k) := 0 if k 6∈ Kl and to extend the functions
ψl(., k) periodically with respect to the variable x1 to functions on R2

+ for all
k ∈ [− 1

2 , 1
2 ].

For 1 ≤ l ≤ l0 we denote by Pl(k), k ∈ [− 1
2 , 1

2 ], the projection in L2(Π) onto
the subspace spanned by ψl(., k). With this notation, we call the subspaces

Cl := R
(
U∗

(∫ 1/2

−1/2

⊕Pl(k) dk

)
U

)
, 1 ≤ l ≤ l0,

additional channels of scattering (ACS) of the operator H(σ). Here U is the
Gelfand transformation (1.6). Thus the functions u ∈ Cl are precisely the
functions of the form

u(x) =

∫ 1/2

−1/2

f(k)ψl(x, k)eikx1 dk, x ∈ R2
+, (6.3)

with f ∈ L2(Kl) arbitrary. In particular, it follows from the form (2.4) of the
eigenfunction ψl(., k) that functions u ∈ Cl decay exponentially with respect to
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the variable x2 provided Kl = [− 1
2 , 1

2 ].
Let us list some more properties of the spaces Cl. One has for all 1 ≤ l, j ≤ l0

Cl ⊥Cj , j 6= l, and Cl ⊥R(W
(σ)
± ).

Indeed, this follows from the fact that ψl(., k) is orthogonal to ψj(., k), j 6= l,

and to the subspace R(W
(σ)
± (k)) for all k ∈ [− 1

2 , 1
2 ]. In particular, Theorem

1.2 implies that the wave operators W
(σ)
± are not complete if there exists an

ACS (i.e., l0 > 0). Moreover, the spaces Cl reduce the operator H(σ), and
on functions u ∈ Cl of the form (6.3) H(σ) acts by multiplying the function f
with the function λl. Thus, the part of H(σ) on Cl is unitarily equivalent to
multiplication with the function λl on L2(Kl).
Remark 1.10 of [Fr] shows that functions u ∈ Cl correspond to states which
propagate along the boundary.

6.2 Existence of ACS. Existence of gaps

It is clear from Theorem 1.1 that there are no ACS if σ is non-negative. Let us
give an easy sufficient condition for the existence of ACS. It requires σ to be
”negative in mean”.

Proposition 6.1. Assume that σ̂0 := 1√
2π

∫ π

−π
σ(x1) dx1 < 0. Then

σ
(
H(σ)

)
∩ (−∞, 0) 6= ∅.

Proof. Indeed, we prove that H(σ)(k) has an eigenvalue smaller or equal to
k2 − 1

2π σ̂2
0 for all k ∈ [− 1

2 , 1
2 ]. For this we consider the trial function defined by

u(x) := eσ̂0x2/
√

2π, x ∈ Π, which satisfies

h(σ)(k)[u] = (k2 − 1
2π σ̂2

0)‖u‖2.

The assertion follows now from the variational principle.

Remark 6.2. With more elaborate techniques one can show that the conclusion
of Proposition 6.1 remains valid under the assumption σ̂0 = 0, σ 6≡ 0.

We give now an example where the first gap of H(σ) is open, i.e. where

max
k∈[− 1

2 , 1
2 ]

λ1(k) < min
k∈[− 1

2 , 1
2 ]

λ2(k). (6.4)

We start with a more general construction. Let −π ≤ c ≤ π be given. For

k ∈ [− 1
2 , 1

2 ] we consider the self-adjoint operators H
(σ)
D (k), H

(σ)
N (k) in L2(Π)

which differ from H(σ)(k) only by Dirichlet and natural boundary conditions,

respectively, at {x1 ∈ {−π, c, π}}. More precisely, the operators H
(σ)
ν (k), ν ∈
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{D,N}, are defined by the quadratic forms h
(σ)
ν (k) given by the same formal

expression (1.5) as h(σ)(k) but with domains

D[h
(σ)
D (k)] := {u ∈ H1(Π) : u(.,−π) = u(., c) = u(., π) = 0},

D[h
(σ)
N (k)] := {u ∈ L2(Π) : u|(−π,c)×R+

∈ H1((−π, c) × R+),

u|(c,π)×R+
∈ H1((c, π) × R+)}.

It follows that
H

(σ)
N (k) ≤ H(σ)(k) ≤ H

(σ)
D (k). (6.5)

Moreover, it is easy to see that for each ν all the operators H
(σ)
ν (k), k ∈ [− 1

2 , 1
2 ],

are unitarily equivalent. Their essential spectrum starts at ( π
π+|c| )

2 if ν = D

and at 0 if ν = N . We define the numbers λν
l , l ∈ N, as the successive infima

of the variational quotient

h
(σ)
ν (k)[u]

‖u‖2
, 0 6= u ∈ D[h(σ)

ν (k)].

By the variational principle the λN
l < 0 coincide with the discrete eigenvalues

of the operator H
(σ)
N (k), and similarly for ν = D. It follows from (6.5) together

with the variational principle that for all l ∈ N

λN
l ≤ λl(k) ≤ λD

l , k ∈ [− 1
2 , 1

2 ]. (6.6)

Let us give now an example of an open gap.

Example 6.3. Let a, b ∈ R and

σ(x1) :=

{
−a if x1 ∈ [−π, c],
b if x1 ∈ (c, π).

We claim that under the assumptions

a > π
π+c , b ≥ 0, −π < c < π, (6.7)

the inequality (6.4) holds.
Indeed, one easily finds that λD

1 = λN
2 = −a2 +( π

π+c )2, so because of (6.6) and
the continuity of λ1 it suffices to prove that

λ1(k) < −a2 + ( π
π+c )2, k ∈ [− 1

2 , 1
2 ].

To arrive at a contradiction we assume that we have equality for some k.

Consider the eigenfunction u of H
(σ)
D (k) corresponding to the eigenvalue −a2 +

( π
π+c )2,

u(x) :=

{
2
√

a
π+c e−ikx1 sin( π

π+c (x1 + π)) e−ax2 , x1 ∈ [−π, c],

0, x1 ∈ (c, π).
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Then u ∈ H̃1(Π), ‖u‖ = 1 and h(σ)(k)[u] = inf{h(σ)(k)[v] : v ∈ H̃1(Π), ‖v‖ =
1}. It follows from general principles that u ∈ D(H(σ)(k)) and H(σ)(k)u =
λ1(k)u. By Elliptic Regularity we must have u ∈ H2

loc(Π), which is obviously
not true. This contradiction completes the proof of (6.4).

Remark 6.4. It follows from (6.6) that the condition λD
l < λN

l+1 for some l ∈ N
is sufficient for an open gap. This can be used to construct further examples.

Remark 6.5. By an argument similar to the one in Example 6.3 we find that
if there exists a non-empty connected open subset Λ of the torus such that
σ(x1) ≤ − π

meas Λ , x1 ∈ Λ, then σ
(
H(σ)

)
∩ (−∞, 0) 6= ∅, so there exist ACS.

To conclude this subsection we note that the number of ACS (due to discrete
eigenvalues) can be estimated using (4.3).

6.3 Additional Channels due to embedded eigenvalues

In general, the embedded eigenvalues of the operators H(σ)(k), k ∈ [− 1
2 , 1

2 ],

also contribute to the spectrum of the operator H(σ). Therefore the subspace

C∗ := R
(
U∗

(∫ 1/2

−1/2

⊕E(σ)
(
σp

(
H(σ)(k)

)
∩

[
k2,+∞

)
, k

)
dk

)
U

)

may be non-trivial and, in this case, will be called an ACS. We have

L2(R
2
+) = R(W

(σ)
± ) ⊕ (

∑l0
l=1 ⊕Cl) ⊕ C∗.

The subspace C∗ reduces the operator H(σ) and is orthogonal to the ACS Cl,

1 ≤ l ≤ l0, and to R(W
(σ)
± ).

Let us consider some examples. If σ ≡ σ0 < 0 is a negative constant, we know
from Example 4.2 that the embedded eigenvalues of H(σ)(k) depend piecewise
analytically on k and all of them contribute to the spectrum of H(σ). We note
that in this case the part of H(σ) on C∗ is an unbounded operator.
If σ is a trigonometric polynomial of degree N > 0, we know from Proposition
5.1 that H(σ)(k) has no embedded eigenvalues greater or equal to (N − |k|)2.
Moreover, we know from Proposition 5.2 that the embedded eigenvalues in the
interval [(N − 1 + |k|)2, (N − |k|)2) do not contribute to the spectrum of the
operator H(σ). So the part of H(σ) on C∗ is a bounded operator with spectrum
contained in [0, (N − 1

2 )2].
In the special case when σ is a trigonometric polynomial of degree one, it follows
again from Proposition 5.1 and Proposition 5.2 that C∗ = {0}. We emphasize
(see Example 5.4) that embedded eigenvalues of the operators H(σ)(k) actually
occur in this case.
The question whether C∗ can be non-trivial for non-constant σ remains open.
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Abstract. We describe a method of adding tails to C∗-
correspondences which generalizes the process used in the study
of graph C∗-algebras. We show how this technique can be used to
extend results for augmented Cuntz-Pimsner algebras to C∗-algebras
associated to general C∗-correspondences, and as an application we
prove a gauge-invariant uniqueness theorem for these algebras. We
also define a notion of relative graph C∗-algebras and show that
properties of these C∗-algebras can provide insight and motivation
for results about relative Cuntz-Pimsner algebras.
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1 Introduction

In [18] Pimsner introduced a way to construct a C∗-algebra OX from a pair
(A,X), where A is a C∗-algebra and X is a C∗-correspondence (sometimes
called a Hilbert bimodule) over A. Throughout his analysis Pimsner assumed
that his correspondence was full and that the left action of A on X was injec-
tive. These Cuntz-Pimsner algebras have been found to compose a class of C∗-
algebras that is extraordinarily rich and includes numerous C∗-algebras found
in the literature: crossed products by automorphisms, crossed products by en-
domorphisms, partial crossed products, Cuntz-Krieger algebras, C∗-algebras of
graphs with no sinks, Exel-Laca algebras, and many more. Consequently, the
study of Cuntz-Pimsner algebras has received a fair amount of attention by the
operator algebra community in recent years, and because information about
OX is very densely codified in (A,X), determining how to extract it has been
the focus of much current effort.
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One interesting consequence of this effort has been the introduction of the
so-called relative Cuntz-Pimsner algebras, denoted O(K,X), that have Cuntz-
Pimsner algebras as quotients. Very roughly speaking, a relative Cuntz-
Pimsner algebra arises by relaxing some of the relations that must hold among
the generators of a Cuntz-Pimsner algebra. These relations are codified in an
ideal K of A. (The precise definition will be given shortly.) Relative Cuntz-
Pimsner algebras arise quite naturally, particularly when trying to understand
the ideal structure of a Cuntz-Pimsner algebra (See, e.g., [15, 6]). It turns out,
in fact, that not only are Cuntz-Pimsner algebras quotients of relative Cuntz-
Pimsner algebras, but quotients of Cuntz-Pimsner algebras are often relative
Cuntz-Pimsner algebras [6, Theorem 3.1].
Although in his initial work Pimsner assumed that his C∗-correspondences
were full and had injective left action, in recent years there have been efforts to
remove these restrictions. Pimsner himself described how to deal with the case
when X was not full, defining the so-called augmented Cuntz-Pimsner algebras
[18, Remark 1.2(3)]. However, the case when the left action is not injective
has been more elusive. In [6] it was shown that for any C∗-correspondence X
and for any ideal K of A consisting of elements that act as compact operators
on the left of X, one may define O(K,X) to be a C∗-algebra which satisfies a
certain universal property [6, Proposition 1.3]. In the case that X is full with
injective left action, this definition agrees with previously defined notions of
relative Cuntz-Pimsner algebras, and the Cuntz-Pimsner algebra OX is equal
to O(J(X),X), where J(X) denotes the ideal consisting of all elements of A
which act on the left of X as compact operators.
In [6] it was proposed that for a general C∗-correspondence X, the C∗-algebra
O(J(X),X) is the proper analogue of the Cuntz-Pimsner algebra. However,
upon further analysis it seems that this is not exactly correct. To see why,
consider the case of graph C∗-algebras. If E = (E0, E1, r, s) is a graph, then
there is a natural C∗-correspondence X(E) over C0(E

0) associated to E (see
[7, Example 1.2]). If E has no sinks, then the C∗-algebra O(J(X(E)),X(E))
is isomorphic to the graph C∗-algebra C∗(E). However, when E has sinks this
will not necessarily be the case.
It is worth mentioning that graphs with sinks play an important role in the
study of graph C∗-algebras. Even if one begins with a graph E containing no
sinks, an analysis of C∗(E) will often necessitate considering C∗-algebras of
graphs with sinks. For example, quotients of C∗(E) will often be isomorphic
to C∗-algebras of graphs with sinks even when E has no sinks. Consequently,
one needs a theory that incorporates these objects.
This deficiency in the generalization of Cuntz-Pimsner algebras was addressed
by Katsura in [10] and [11]. If X is a C∗-correspondence over a C∗-algebra A
with left action φ : A → L(X), then Katsura proposed that the appropriate
analogue of the Cuntz-Pimsner algebra is OX := O(JX ,X), where

JX := {a ∈ J(X) : ab = 0 for all b ∈ ker φ}.
(Note that when φ is injective JX = J(X).) It turns out that when φ is
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injective, OX is equal to the augmented Cuntz-Pimsner algebra of X, and when
X is also full OX coincides with the Cuntz-Pimsner algebra of X. Furthermore,
if E is a graph (possibly containing sinks), then OX(E) is isomorphic to C∗(E).
In addition, as with graph algebras, the class of OX ’s is closed under quotients
by gauge-invariant ideals. These facts, together with the analysis described
in [11] and [12], provide strong arguments for using OX := O(JX ,X) as the
analogue of the Cuntz-Pimsner algebra. We shall adopt this viewpoint here,
and for a general C∗-correspondence X we define OX := O(JX ,X) to be the
C∗-algebra associated to X.
In this paper we shall describe a method which will allow one to “bootstrap”
many results for augmented Cuntz-Pimsner algebras to C∗-algebras associated
to general correspondences. This method is inspired by a technique from the
theory of graph C∗-algebras, where one can often reduce to the sinkless case
by the process of “adding tails to sinks”. Specifically, if E is a graph and v is a
vertex of E, then by adding a tail to v we mean attaching a graph of the form

v // • // • // • // · · ·

to E. It is well known that if F is the graph formed by adding a tail to every
sink of E, then F is a graph with no sinks and C∗(E) is canonically isomorphic
to a full corner of C∗(F ). Thus in the proofs of many theorems about graph
C∗-algebras, one can reduce to the case of no sinks.
In this paper we describe a generalization of this process for C∗-
correspondences. More specifically, if X is a C∗-correspondence over a
C∗-algebra A, then we describe how to construct a C∗-algebra B and a C∗-
correspondence Y over B with the property that the left action of Y is injective
and OX is canonically isomorphic to a full corner of OY . Thus many questions
about C∗-algebras associated to correspondences can be reduced to questions
about augmented Cuntz-Pimsner algebras, and many results characterizing
properties of augmented Cuntz-Pimsner algebras may be easily generalized to
C∗-algebras associated to general correspondences. As an application of this
technique, we use it in the proof of Theorem 5.1 to extend the Gauge-Invariant
Uniqueness Theorem for augmented Cuntz-Pimsner algebras to C∗-algebras of
general correspondences.
This paper is organized as follows. We begin in Section 2 with some preliminar-
ies. In Section 3 we analyze graph C∗-algebras in the context of Cuntz-Pimsner
and relative Cuntz-Pimsner algebras, and describe a notion of a relative graph
C∗-algebra. Since graph algebras provide much of the impetus for our analysis
of C∗-correspondences, we examine these objects carefully in order to provide
a framework which will motivate and illuminate the results of subsequent sec-
tions. In Section 4 we describe our main result — a process of “adding tails”
to general C∗-correspondences. We also prove that this process preserves the
Morita equivalence class of the associated C∗-algebra. In Section 5 we pro-
vide an application of our technique of “adding tails” by using it to extend the
Gauge-Invariant Uniqueness Theorem for augmented Cuntz-Pimsner algebras
to C∗-algebras associated to general correspondences. We also interpret this
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theorem in the context of relative Cuntz-Pimsner algebras, and in Section 6 we
use it to classify the gauge-invariant ideals in C∗-algebras associated to certain
correspondences. Finally, we conclude in Section 7 by discussing other possible
applications of our technique.
The authors would like to thank Takeshi Katsura for pointing out an error in a
previous draft of this paper, and for many useful conversations regarding these
topics.

2 Preliminaries

For the most part we will use the notation and conventions of [6], augmenting
them when necessary with the innovations of [10] and [11].

Definition 2.1. If A is a C∗-algebra, then a right Hilbert A-module is a Banach
space X together with a right action of A on X and an A-valued inner product
〈·, ·〉A satisfying

(i) 〈ξ, ηa〉A = 〈ξ, η〉Aa

(ii) 〈ξ, η〉A = 〈η, ξ〉∗A

(iii) 〈ξ, ξ〉A ≥ 0 and ‖ξ‖ = 〈ξ, ξ〉1/2
A

for all ξ, η ∈ X and a ∈ A. For a Hilbert A-module X we let L(X) denote the
C∗-algebra of adjointable operators on X, and we let K(X) denote the closed
two-sided ideal of compact operators given by

K(X) := span{ΘX
ξ,η : ξ, η ∈ X}

where ΘX
ξ,η is defined by ΘX

ξ,η(ζ) := ξ〈η, ζ〉A. When no confusion arises we shall

often omit the superscript and write Θξ,η in place of ΘX
ξ,η.

Definition 2.2. If A is a C∗-algebra, then a C∗-correspondence is a right Hilbert
A-module X together with a ∗-homomorphism φ : A → L(X). We consider φ
as giving a left action of A on X by setting a · x := φ(a)x.

Definition 2.3. If X is a C∗-correspondence over A, then a representation of X
into a C∗-algebra B is a pair (π, t) consisting of a ∗-homomorphism π : A → B
and a linear map t : X → B satisfying

(i) t(ξ)∗t(η) = π(〈ξ, η〉A)

(ii) t(φ(a)ξ) = π(a)t(ξ)

(iii) t(ξa) = t(ξ)π(a)

for all ξ, η ∈ X and a ∈ A.
Note that Condition (iii) follows from Condition (i) due to the equation

‖t(ξ)π(a) − t(ξa)‖2 = ‖(t(ξ)π(a) − t(ξa))∗(t(ξ)π(a) − t(ξa))‖ = 0.
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If (π, t) is a representation of X into a C∗-algebra B, we let C∗(π, t) denote
the C∗-subalgebra of B generated by π(A) ∪ t(X).
A representation (π, t) is said to be injective if π is injective. Note that in this
case t will also be isometric since

‖t(ξ)‖2 = ‖t(ξ)∗t(ξ)‖ = ‖π(〈ξ, ξ〉A)‖ = ‖〈ξ, ξ〉A‖ = ‖ξ‖2.

When (π, t) is a representation of X into B(H) for a Hilbert space H, we say
that (π, t) is a representation of X on H.

In the literature a representation (π, t) is sometimes referred to as a Toeplitz
representation (See, e.g., [7] and [6].), and as an isometric representation [15].
However, here, all representations considered will be at least Toeplitz or iso-
metric and so we drop the additional adjective. We note that in [7] the authors
show that given a correspondence X over a C∗-algebra A, there is a C∗-algebra,
denoted TX and a representation (πX , tX) of X in TX that is universal in the
following sense: TX is generated as a C∗-algebra by the ranges of πX and
tX , and given any representation (π, t) in a C∗-algebra B, then there is a C∗-
homomorphism of TX into B, denoted ρ(π,t), that is unique up to an inner
automorphism of B, such that π = ρ(π,t) ◦ πX and t = ρ(π,t) ◦ tX . The C∗-
algebra TX and the representation (πX , tX) are unique up to an obvious notion
of isomorphism. We call TX the Toeplitz algebra of the correspondence X, but
we call (πX , tX) a universal representation of X in TX , with emphasis on the
indefinite article, because at times we want to consider more than one.

Definition 2.4. For a representation (π, t) of a C∗-correspondence X on B there
exists a ∗-homomorphism π(1) : K(X) → B with the property that

π(1)(Θξ,η) = t(ξ)t(η)∗.

See [18, p. 202], [9, Lemma 2.2], and [7, Remark 1.7] for details on the existence
of this ∗-homomorphism. Also note that if (π, t) is an injective representation,
then π(1) will be injective as well.

Definition 2.5. For an ideal I in a C∗-algebra A we define

I⊥ := {a ∈ A : ab = 0 for all b ∈ I}.

If X is a C∗-correspondence over A, we define an ideal J(X) of A by J(X) :=
φ−1(K(X)). We also define an ideal JX of A by

JX := J(X) ∩ (ker φ)⊥.

Note that JX = J(X) when φ is injective, and that JX is the maximal ideal
on which the restriction of φ is an injection into K(X).

Definition 2.6. If X is a C∗-correspondence over A and K is an ideal in J(X),
then we say that a representation (π, t) is coisometric on K, or is K-coisometric
if

π(1)(φ(a)) = π(a) for all a ∈ K.
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In [6, Proposition 1.3] the authors show that given a correspondence X over a
C∗-algebra A, and an ideal K of A contained in J(X), there is a C∗-algebra,
denoted O(K,X), and a representation (πX , tX) of X in O(K,X) that is coiso-
metric on K and is universal with this property, in the following sense: O(K,X)
is generated as a C∗-algebra by the ranges of πX and tX , and given any repre-
sentation (π, t) of X in a C∗-algebra B that is K-coisometric, then there is a
C∗-homomorphism of O(K,X) into B, denoted ρ(π,t), that is unique up to an
inner automorphism of B, such that π = ρ(π,t) ◦ πX and t = ρ(π,t) ◦ tX .

Definition 2.7. The algebra O(K,X), associated with an ideal K in J(X), is
called the relative Cuntz-Pimsner algebra determined by X and the ideal K.
Further, a representation (πX , tX) that is coisometric on K and has the univer-
sal property just described is called a universal K-coisometric representation
of X.

Remark 2.8. When the ideal K is the zero ideal in J(X), then the algebra
O(K,X) becomes TX and a universal 0-coisometric representation of X is sim-
ply a representation of X. Furthermore, if X is a C∗-correspondence in which
φ is injective, then OX := O(JX ,X) is precisely the augmented Cuntz-Pimsner
algebra of X defined in [18]. If X is full, i.e., if span{〈ξ, η〉A : ξ, η ∈ X} = A,
then the augmented Cuntz-Pimsner algebra of X and the Cuntz-Pimsner alge-
bra of X coincide. Thus OX coincides with the Cuntz-Pimsner algebra of [18]
when φ is injective and X is full. Whether or not φ is injective, a universal
J(X)-coisometric representation is sometimes called a universal Cuntz-Pimsner
covariant representation [6, Definition 1.1].

Remark 2.9. If O(K,X) is a relative Cuntz-Pimsner algebra associated to a
C∗-correspondence X, and if (π, t) is a universal K-coisometric representation
of X, then for any z ∈ T (π, zt) is also a universal K-coisometric representation.
Hence by the universal property, there exists a homomorphism γz : O(K,X) →
O(K,X) such that γz(π(a)) = π(a) for all a ∈ A and γz(t(ξ)) = zt(ξ) for all
ξ ∈ X. Since γz−1 is an inverse for this homomorphism, we see that γz is
an automorphism. Thus we have an action γ : T → AutO(K,X) with the
property that γz(π(a)) = π(a) and γz(t(ξ)) = zt(ξ). Furthermore, a routine
ǫ/3 argument shows that γ is strongly continuous. We call γ the gauge action
on O(K,X).

3 Viewing graph C∗-algebras as Cuntz-Pimsner algebras

Let E := (E0, E1, r, s) be a directed graph with countable vertex set E0, count-
able edge set E1, and range and source maps r, s : E1 → E0. A Cuntz-Krieger
E-family is a collection of partial isometries {se : e ∈ E1} with commuting
range projections together with a collection of mutually orthogonal projections
{pv : v ∈ E0} that satisfy

1. s∗ese = pr(e) for all e ∈ E1

2. ses
∗
e ≤ ps(e) for all e ∈ E1
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3. pv =
∑

{e:s(e)=v} ses
∗
e for all v ∈ E0 with 0 < |s−1(v)| < ∞

The graph algebra C∗(E) is the C∗-algebra generated by a universal Cuntz-
Krieger E-family (see [14, 13, 2, 5, 1]).

Example 3.1 (The Graph C∗-correspondence). If E = (E0, E1, r, s) is a graph,
we define A := C0(E

0) and

X(E) := {x : E1 → C : the function v 7→
∑

{f∈E1:r(f)=v}
|x(f)|2 is in C0(E

0) }.

Then X(E) is a C∗-correspondence over A with the operations

(x · a)(f) := x(f)a(r(f)) for f ∈ E1

〈x, y〉A(v) :=
∑

{f∈E1:r(f)=v}
x(f)y(f) for f ∈ E1

(a · x)(f) := a(s(f))x(f) for f ∈ E1

and we call X(E) the graph C∗-correspondence associated to E. Note that we

could write X(E) =
⊕0

v∈E0 ℓ2(r−1(v)) where this denotes the C0 direct sum
(sometimes called the restricted sum) of the ℓ2(r−1(v))’s. Also note that X(E)
and A are spanned by the point masses {δf : f ∈ E1} and {δv : v ∈ E0},
respectively.

Theorem 3.2 ([5, Proposition 12]). If E is a graph with no sinks, and
X(E) is the associated graph C∗-correspondence, then O(J(X(E)),X(E)) ∼=
C∗(E). Furthermore, if (πX , tX) is a universal J(X(E))-coisometric rep-
resentation, then {tX(δe), πX(δv)} is a universal Cuntz-Krieger E-family in
O(J(X(E)),X(E)).

It was shown in [7, Proposition 4.4] that

J(X(E)) = span{δv : |s−1(v)| < ∞}
and if v emits finitely many edges, then

φ(δv) =
∑

{f∈E1:s(f)=v}
Θδf ,δf

and πX(φ(δv)) =
∑

{f∈E1:s(f)=v}
tX(δf )tX(δf )∗.

Furthermore, one can see that δv ∈ ker φ if and only if v is a sink in E. Also
δv ∈ span{〈x, y〉A} if and only if v is a source, and since δs(f) · δf = δf we see
that span A · X = X and X(E) is essential. These observations show that we
have the following correspondences between the properties of the graph E and
the properties of the graph C∗-correspondence X(E).

Property of X(E) Property of E
φ(δv) ∈ K(X(E)) v emits a finite number of edges
φ(A) ⊆ K(X(E)) E is row-finite

φ is injective E has no sinks
X(E) is full E has no sources

X(E) is essential always
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Remark 3.3. If E is a graph with no sinks, then O(J(X(E)),X(E)) is canon-
ically isomorphic to C∗(E). When E has sinks, this will not be the case. If
(π, t) is the universal J(X(E))-coisometric representation of X(E), then it will
be the case that {t(δe), π(δv)} is a Cuntz-Krieger E-family. However, when
v is a sink in E, φ(δv) = 0 and thus π(δv) = π(1)(φ(δv)) = 0. Consequently,
{t(δe), π(δv)} will not be a universal Cuntz-Krieger E-family when E has sinks.
However, if E is a graph with sinks, then we see that φ(δv) = 0 if and only if
v is a sink, and δv ∈ (ker φ)⊥ if and only if v is not a sink. Thus

JX(E) = span{δv : 0 < |s−1(v)| < ∞}

and a proof similar to that in [7, Proposition 4.4] shows that OX(E) :=
O(JX(E),X(E)) is isomorphic to C∗(E). Furthermore, if (πX , tX) is a uni-
versal J(X(E))-coisometric representation of X(E), then {tX(δe), πX(δv)} is a
universal Cuntz-Krieger E-family in OX(E).

3.1 Relative Graph Algebras

We shall now examine relative Cuntz-Pimsner algebras in the context of graph
algebras. If E is a graph and X(E) is the associated graph C∗-correspondence,
then JX(E) := span{δv : 0 < |s−1(v)| < ∞}. If K is an ideal in JX(E), then K =
span{δv : v ∈ V } for some subset V of vertices which emit a finite and nonzero
number of edges. If (O(K,X(E)), tX , πX) is the relative Cuntz-Pimsner algebra
determined by K, then the relation πX(δv) =

∑
s(e)=v tX(δe)tX(δe)

∗ will hold
only for vertices v ∈ V . This motivates the following definition.

Definition 3.4. Let E = (E0, E1, r, s) be a graph and define R(E) := {v ∈ E0 :
0 < |s−1(v)| < ∞}. For any V ⊆ R(E) we define a Cuntz-Krieger (E, V )-
family to be a collection of mutually orthogonal projections {pv : v ∈ E0}
together with a collection of partial isometries {se : e ∈ E1} that satisfy

1. s∗ese = pr(e) for e ∈ E1

2. ses
∗
e < ps(e) for e ∈ E1

3. pv =
∑

s(e)=v ses
∗
e for all v ∈ V

We refer to a Cuntz-Krieger (E,R(E))-family as simply a Cuntz-Krieger E-
family, and we refer to a Cuntz-Krieger (E, ∅)-family as a Toeplitz-Cuntz-
Krieger family.

Definition 3.5. If E is a graph and V ⊆ R(E), then we define the relative graph
algebra C∗(E, V ) to be the C∗-algebra generated by a universal Cuntz-Krieger
(E, V )-family.

The existence of C∗(E, V ) can be proven by adapting the argument for the
existence of graph algebras in [13], or by realizing C∗(E, V ) as a relative Cuntz-
Pimsner algebra.
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Note that C∗(E,R(E)) is the graph algebra C∗(E), and C∗(E, ∅) is the Toeplitz
algebra defined in [7, Theorem 4.1] (but different from the Toeplitz algebra
defined in [4]). It is also the case that if {se, pv} is a universal Cuntz-Krieger
(E, V )-family, then whenever v ∈ R(E)\V we have pv >

∑
s(e)=v ses

∗
e.

Definition 3.6. Let E = (E0, E1, r, s) be a graph and V ⊆ R(E). We define
the graph EV to be the graph with vertex set E0

V := E0 ∪ {v′ : v ∈ R(E)\V },
edge set E1 ∪ {e′ : e ∈ E1 and r(e) ∈ R(E)\V }, and r and s extended to E1

V

by defining s(e′) := s(e) and r(e′) := r(e)′.

Roughly speaking, when forming EV one takes E and adds a sink for each
element v ∈ R(E)\V as well as edges to this sink from each vertex that feeds
into v.

Theorem 3.7. If E is a graph and V ⊆ R(E), then the relative graph algebra
C∗(E, V ) is canonically isomorphic to the graph algebra C∗(EV ).

Proof. Let {se, pv : e ∈ E1, v ∈ E0} be a generating Cuntz-Krieger (E, V )-
family in C∗(E, V ). For w ∈ E0

V and f ∈ E1
V define

qw :=





pv if w /∈ R(E)\V∑
{e∈E1:s(e)=w} ses

∗
e if w ∈ R(E)\V

pv − ∑
{e∈E1:s(e)=v} ses

∗
e if w = v′ for some v ∈ R(E)\V .

tf :=

{
sfqr(f) if f ∈ E1

seqr(e)′ if f = e′ for some e ∈ E1.

It is straightforward to check that {tf , qw : f ∈ E1
V , w ∈ E0

V } is a Cuntz-
Krieger EV -family in C∗(E, V ). Thus by the universal property there exists
a homomorphism α : C∗(EV ) → C∗(E, V ) taking the generators of C∗(EV )
to {tf , qw}. By the gauge-invariant uniqueness theorem [1, Theorem 2.1] α is
injective. Furthermore, whenever v ∈ R(E)\V we see that pv = qv + qv′ and
whenever r(e) ∈ R(E)\V we see that se = te + te′ . Thus {qw, tf} generates
C∗(E, V ) and α is surjective. Consequently α is an isomorphism.

This theorem shows that the class of relative graph algebras is the same as
the class of graph algebras. Thus we gain no new C∗-algebras by considering
relative graph algebras in place of graph algebras. However, we maintain that
relative graph algebras are still useful and arise naturally in the study of graph
algebras. In particular, we give three examples of common situations in which
relative graph algebras prove convenient.

Example 3.8 (Subalgebras of Graph Algebras). Let E = (E0, E1, r, s) be a graph
and let {se, pv : e ∈ E1, v ∈ E0} be a generating Cuntz-Krieger E-family in
C∗(E). If F = (F 0, F 1, rF , sF ) is a subgraph of E, and A denotes the C∗-
subalgebra of C∗(E) generated by {se, pv : e ∈ F 1, v ∈ F 0}, then it is well-
known that A is a graph algebra (but not necessarily the C∗-algebra associated
to F ). In fact, we see that for any v ∈ F 0, the sum

∑
{e∈F 1:sF (e)=v} ses

∗
e may
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not add up to pv because some of the edges in s−1(v) may not be in F . However,
if we let V := {v ∈ R(F ) : s−1

F (v) = s−1(v)}. Then {se, pv : e ∈ F 1, v ∈ F 0} is
a Cuntz-Krieger (F, V )-family and A ∼= C∗(F, V ).
These subalgebras arise often in the study of graph algebras. In [8, Lemma 2.4]
they were realized as graph algebras by the method shown in the proof of
Theorem 3.7, and in [19, Lemma 1.2] these subalgebras were realized as graph
algebras by using the notion of a dual graph. In both of these instances it
would have been convenient to have used relative graph algebras. Realizing
the subalgebra as C∗(F, V ) would have provided an economy of notation as
well as a more direct analysis of the subalgebras under consideration.

Example 3.9 (Spielberg’s Toeplitz Graph Algebras). In [21] Spielberg introduced
a notion of a Toeplitz graph groupoid and a Toeplitz graph algebra. The
Toeplitz graph algebras defined in [21, Definition 2.17] are relative graph alge-
bras as defined in Definition 3.5 (see [21, Theorem 2.9]). Spielberg also made
use of his Toeplitz graph algebras in [22] to construct graph algebras with a
specified K-theory.

Example 3.10 (Quotients of Graph Algebras). If E = (E0, E1, r, s) is a row-
finite graph and H is a saturated hereditary subset of vertices of E, then it
follows from [2, Theorem 4.1(b)] that C∗(E)/IH

∼= C∗(F ) where F is the
subgraph defined by

F 0 := E0\H F 1 := {e ∈ E1 : r(e) /∈ H}.

If E is not row-finite, then this is not necessarily the case. The obstruction is
due to the vertices in the set

BH = {v ∈ E0 | v is an infinite emitter and 0 < |s−1(v) ∩ r−1(E0 \ H)| < ∞}.

In fact, if {se, pv} is a generating Cuntz-Krieger E-family in C∗(E), then the
cosets {se + IH , pv + IH : v /∈ H, r(e) /∈ H} will have the property that pv +
IH ≥ ∑

e∈E\H:s(e)=v}(se + IH)(se + IH)∗ with equality occurring if and only if

v ∈ R(F )\BH . Thus it turns out that {se + IH , pv + IH : v /∈ H, r(e) /∈ H} will
be a Cuntz-Krieger (F,R(F )\BH)-family and C∗(E)/IH

∼= C∗(F,R(F )\BH).
The quotient C∗(E)/IH was realized as a graph algebra in [1, Proposition 3.4]
by a technique similar to that used in the proof of Theorem 3.7. However,
relative graph algebras provide a more natural context for describing these
quotients.

In addition to their applications in the situations mentioned above, relative
graph algebras can be useful for another reason. Since any relative graph
algebra is canonically isomorphic to a graph algebra, we see that for every
theorem about graph algebras there will be a corresponding theorem for relative
graph algebras. Thus the relative graph algebras provide a class of relative
Cuntz-Pimsner algebras that are well understood. With this in mind, we shall
now state a version of the Gauge-Invariant Uniqueness Theorem for relative
graph algebras.
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Theorem 3.11 (Gauge-Invariant Uniqueness for Relative Graph
Algebras). Let E = (E0, E1, r, s) be a graph and V ⊆ R(E). Also let
{se, pv : e ∈ E1, v ∈ E0} and let γ : T → AutC∗(E, V ) denote the gauge
action on C∗(E, V ). If ρ : C∗(E, V ) → A is a ∗-homomorphism between C∗-
algebras that satisfies

1. ρ(pv) 6= 0 for all v ∈ E0

2. ρ(pv − ∑
s(e)=v ses

∗
e) 6= 0 for all v ∈ V

3. there exists a strongly continuous action β : T → AutA such that βz ◦ρ =
ρ ◦ γz for all z ∈ T.

then ρ is injective.

Proof. By Theorem 3.7 there exists an isomorphism α : C∗(EV ) → C∗(E, V )
and a generating Cuntz-Krieger EV -family {te, qw} for which

α(qw) :=





pv if w /∈ R(E)\V∑
{e∈E1:s(e)=w} ses

∗
e if w ∈ R(E)\V

pv − ∑
{e∈E1:s(e)=v} ses

∗
e if w = v′ for some v ∈ R(E)\V .

α(tf ) :=

{
sfqr(f) if f ∈ E1

seqr(e)′ if f = e′ for some e ∈ E1.

To show that ρ is injective, it suffices to show that ρ ◦ α is injective. We shall
do this by applying the gauge-invariant uniqueness theorem for graph algebras
[1, Theorem 2.1] to ρ ◦ α. Now clearly if w /∈ R(E)\V , then ρ ◦ α(qw) 6= 0 by
(1). If w = v′, then ρ ◦ α(qw) 6= 0 by (2). Furthermore, if w ∈ R(E)\V then
ρ ◦α(qw) = 0 implies that ρ(

∑
s(e)=w ses

∗
e) = 0 and thus for any f ∈ s−1(v) we

have
ρ(sf ) = ρ(

∑

s(e)=w

ses
∗
e)ρ(sf ) = 0.

But then ρ(pr(f)) = ρ(s∗fsf ) = 0 which contradicts (1). Hence we must have
ρ ◦ α(qw) 6= 0. Finally, if γ′ denotes the gauge action on C∗(EV ), then by
checking on generators we see that βz ◦ (ρ ◦ α) = (ρ ◦ α) ◦ γ′

z. Therefore, ρ ◦ α
is injective by the gauge invariant uniqueness theorem for graph algebras, and
consequently ρ is injective.

We have shown in Theorem 3.7 that every relative graph algebra is isomorphic
to a graph algebra. More generally, Katsura has shown in [12] that every rel-
ative Cuntz-Pimsner algebra is isomorphic to the C∗-algebra associated to a
correspondence; that is, if O(K,X) is a relative Cuntz-Pimsner algebra, then
there exists a C∗-correspondence X ′ such that OX′ := O(JX′ ,X ′) is isomorphic
to O(K,X). In Theorem 5.1 we shall prove a gauge-invariant uniqueness theo-
rem for C∗-algebras associated to correspondences. Afterwards, in Remark 5.3,
we shall use Katsura’s analysis in [12] to give an interpretation of Theorem 3.11
in the context of relative Cuntz-Pimsner algebras.
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4 Adding Tails to C∗-correspondences

If E is a graph and v is a vertex of E, then by adding a tail to v we mean
attaching a graph of the form

v
e1

// v1
e2

// v2
e3

// v3
e4

// · · ·

to E. It was shown in [2, §1] that if F is the graph formed by adding a tail
to every sink of E, then F is a graph with no sinks and C∗(E) is canonically
isomorphic to a full corner of C∗(F ). The technique of adding tails to sinks
is a simple but powerful tool in the analysis of graph algebras. In the proofs
of many results it allows one to reduce to the case in which the graph has no
sinks and thereby avoid certain complications and technicalities.
Our goal in this section is to develop a process of “adding tails to sinks” for
C∗-correspondences, so that given any C∗-correspondence X we may form a
C∗-correspondence Y with the property that the left action of Y is injective
and OX is canonically isomorphic to a full corner in OY .

Definition 4.1. Let X be a C∗-correspondence over A with left action φ : A →
L(X), and let I be an ideal in A. We define the tail determined by I to be the
C∗-algebra

T := I(N)

where I(N) denotes the c0-direct sum of countably many copies of the ideal I.
We shall denote the elements of T by

~f := (f1, f2, f3, . . .)

where each fi is an element of I. We shall consider T as a right Hilbert
C∗-module over itself (see [20, Example 2.10]). We define Y := X ⊕ T and
B := A⊕T . Then Y is a right Hilbert B-module in the usual way; that is, the
right action is given by

(ξ, ~f) · (a,~g) := (ξ · a, ~f~g) for ξ ∈ X, a ∈ A, and ~f,~g ∈ T

and the inner product is given by

〈(ξ, ~f), (ν,~g)〉B := (〈ξ, ν〉A, ~f∗~g) for ξ, ν ∈ X and ~f,~g ∈ T .

Furthermore, we shall make Y into a C∗-correspondence over B by defining a
left action φB : B → L(Y ) as

φB(a, ~f)(ξ,~g) := (φ(a)(ξ), (ag1, f1g2, f2g3, . . .)) for a ∈ A, ξ ∈ X, and ~f,~g ∈ T .

We call Y the C∗-correspondence formed by adding the tail T to X.

Lemma 4.2. Let X be a C∗-correspondence over A, and let T := (ker φ)(N) be
the tail determined by ker φ. If Y := X⊕T is the C∗-correspondence over B :=
A ⊕ T formed by adding the tail T to X, then the left action φB : B → L(Y )
is injective. Consequently, JY = J(Y ) and OY = O(J(Y ), Y ) is equal to the
C∗-algebra defined by Pimsner in [18].
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Proof. If (a, ~f) ∈ ker φB, then for all ξ ∈ X we have

(φ(a)ξ,~0) = φB(a, ~f)(ξ,~0) = (0,~0)

so that φ(a)ξ = 0 and a ∈ ker φ. Thus (0, (a, f1, f2, . . .)) ∈ X ⊕ T and

(0, (aa∗, f1f
∗
1 , f2f

∗
2 , . . .)) = φB(a, ~f)(0, (a∗, f1, f2, . . .)) = (0,~0)

so that ‖a‖2 = ‖aa∗‖ = 0 and ‖fi‖2 = ‖fif
∗
i ‖ = 0 for all i ∈ N. Consequently,

a = 0 and ~f = ~0 so that φB is injective.

Theorem 4.3. Let X be a C∗-correspondence over A, and let T := (ker φ)(N)

be the tail determined by ker φ. Also let Y := X ⊕ T be the C∗-correspondence
over B := A ⊕ T formed by adding the tail T to X.

(a) If (π, t) is a JX-coisometric representation of X on a Hilbert space HX ,
then there is a Hilbert space HY = HX ⊕ HT and a J(Y )-coisometric
representation (π̃, t̃) of Y on HY with the property that π̃|X = π and
t̃|A = t.

(b) If (π̃, t̃) is a J(Y )-coisometric representation of Y into a C∗-algebra C,
then (π̃|A, t̃|X) is a JX-coisometric representation of X into C. Further-
more, if π̃|A is injective, then π̃ is injective.

(c) Let (πY , tY ) be a universal J(Y )-coisometric representation of Y . Then
(π, t) := (πY |A, tY |X) is a JX-coisometric representation of X in
C∗(πY , tY ). Furthermore, ρ(π,t) : OX → C∗(πX , tX) ⊆ OY is an iso-
morphism onto the C∗-subalgebra of OY generated by

{πY (a,~0), tY (ξ,~0) : a ∈ A and ξ ∈ X}

and this C∗-subalgebra is a full corner of OY . Consequently, OX is nat-
urally isomorphic to a full corner of OY .

Corollary 4.4. If X is a C∗-correspondence and (πX , tX) is a universal
J(X)-coisometric representation of X, then (πX , tX) is injective.

Proof. By the theorem (πX , tX) extends to a universal J(Y )-coisometric rep-
resentation (πY , tY ) of Y . Since φB is injective by Lemma 4.2 it follows from
[6, Corollary 6.2] that (πY , tY ) is injective. Consequently, πX = πY |A is injec-
tive.

To prove this theorem we shall need a number of lemmas.

Lemma 4.5. Let X be a C∗-correspondence and let T := (ker φ)(N) be the tail
determined by ker φ. Also let Y := X ⊕ T be the C∗-correspondence over
B := A ⊕ T formed by adding the tail T to X. Then for any (a, ~f) ∈ Y we

have that (a, ~f) ∈ J(Y ) if and only if a = a1 + a2 with a1 ∈ JX and a2 ∈ ker φ.
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Proof. Suppose a = a1 + a2 with a1 ∈ JX and a2 ∈ ker φ. Then we may write
φ(a1) = limn

∑Nn

k=1 ΘX
ξn,k,ηn,k

for some ξn,k, ηn,k ∈ X. But then

φB(a1,~0) = lim
n

Nn∑

k=1

ΘY
(ξn,k,~0),(ηn,k,~0)

∈ K(Y ).

In addition, since a2 ∈ ker φ we see that if we let {~eλ}λ∈Λ be an approximate
unit for T with ~eλ = (e1

λ, e2
λ, . . .) for each λ, then

φB(a2, ~f) = lim
λ

ΘY
(0,(a2,f1,f2,...)),(0,(e1

λ,e2
λ,...)) ∈ K(Y ).

Thus φB(a, ~f) = φB(a1,~0) + φB(a2, ~f)) ∈ K(Y ).

Conversely, suppose that φB(a, ~f) ∈ K(Y ). Then we may write

φB(a, ~f) = lim
n

Nn∑

k=1

ΘY
(ξn,k, ~fn,k),(ηn,k,~gn,k)

.

If we write ~fn,k = (f1
n,k, f2

n,k, . . .) and ~gn,k = (g1
n,k, g2

n,k, . . .) then for any (ξ,~g) ∈
X ⊕ T we have that

(φ(a)ξ, (ag1, f1g2, . . .)) = φB(a, ~f)(ξ,~g)

= lim
n

Nn∑

k=1

ΘY
(ξn,k, ~fn,k),(ηn,k,~gn,k)

(ξ,~g)

= lim
n

Nn∑

k=1

((ξn,k〈ηn,k, ξ〉A, (f1
n,kg1

n,k
∗
g1, f

2
n,kg2

n,k
∗
g2, . . .))

= lim
n

Nn∑

k=1

((ΘX
ξn,k,ηn,k

ξ, (f1
n,kg1

n,k
∗
g1, f

2
n,kg2

n,k
∗
g2, . . .)).

(1)

Now since the operator norm on L(Y ) dominates the operator norm on L(X),

we see that limn

∑Nn

k=1 ΘX
ξn,k,ηn,k

converges and φ(a) = limn

∑Nn

k=1 ΘX
ξn,k,ηn,k

.

Thus a ∈ K(X).

Furthermore, if {eλ}λ∈Λ is an approximate unit for kerφ, then for any n,m ∈ N
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we have

∥∥∥(

Nn∑

k=1

f1
n,kg1

n,k
∗ −

Nm∑

k=1

f1
m,kg1

m,k
∗
)eλ

∥∥∥

=
∥∥∥
( Nn∑

k=1

ΘY
(ξn,k, ~fn,k),(ηn,k,~gn,k)

−
Nm∑

k=1

ΘY
(ξm,k, ~fm,k),(ηm,k,~gm,k)

)
(0, (eλ, 0, 0, . . .))

∥∥∥

≤
∥∥∥

Nn∑

k=1

ΘY
(ξn,k, ~fn,k),(ηn,k,~gn,k)

−
Nm∑

k=1

ΘY
(ξm,k, ~fm,k),(ηm,k,~gm,k)

∥∥∥
∥∥∥(0, (eλ, 0, 0, . . .))

∥∥∥

=
∥∥∥

Nn∑

k=1

ΘY
(ξn,k, ~fn,k),(ηn,k,~gn,k)

−
Nm∑

k=1

ΘY
(ξm,k, ~fm,k),(ηm,k,~gm,k)

∥∥∥

for all λ ∈ Λ. Taking the limit with respect to λ shows that

∥∥
Nn∑

k=1

f1
n,kg1

n,k
∗ −

Nm∑

k=1

f1
m,kg1

m,k
∗∥∥

≤
∥∥

Nn∑

k=1

ΘY
(ξn,k, ~fn,k),(ηn,k,~gn,k)

−
Nm∑

k=1

ΘY
(ξm,k, ~fm,k),(ηm,k,~gm,k)

)
∥∥.

Since the
∑Nn

k=1 ΘY
(ξn,k, ~fn,k),(ηn,k,~gn,k)

’s converge in the operator norm on L(Y ),

this inequality implies that
∑Nn

k=1 f1
n,kg1

n,k
∗

converges to an element in ker φ. If

we let a2 = limn

∑Nn

k=1 f1
n,kg1

n,k
∗ ∈ ker φ, then Eq.(1) shows that ag = a2g for

all g ∈ ker φ. But then a1 := a − a2 ∈ (ker φ)⊥, and consequently a1 ∈ JX .
Since a = a1 + a2 the proof is complete.

Lemma 4.6. Let (π̃, t̃) be a representation of Y which is coisometric on ker φ⊕
T , and suppose that π̃|A is injective. For any f ∈ ker φ we define ǫi(f) :=
(0, . . . , 0, f, 0, . . .) ∈ T where f appears in the ith position. Then for every
i ∈ N and for every f ∈ ker φ, the equation π̃(0, ǫi(f)) = 0 implies that f = 0.

Proof. First note that it suffices to prove the lemma for f ≥ 0, because if
π̃(0, ǫi(f)) = 0 then π̃(0, ǫi(ff∗)) = π̃(0, ǫi(f))π̃(0, ǫi(f))∗ = 0, and ff∗ = 0 if
and only if f = 0.

If π̃(0, ǫi(f)) = 0 and f ≥ 0, then

‖t̃(0, ǫi(
√

f))‖2 = ‖t̃(0, ǫi(
√

f))∗t̃(0, ǫi(
√

f))‖
= ‖π̃(〈(0, ǫi(

√
f)), (0, ǫi(

√
f))〉B‖

= ‖π̃(0, ǫi(f))‖
= 0
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so that t̃(0, ǫi(
√

f)) = 0 and consequently

0 = t̃(0, ǫi(
√

f))t̃(0, ǫi(
√

f))∗ = π̃(1)(ΘY
(0,ǫi(

√
f)),(0,ǫi(

√
f)))

=

{
π̃(1)(φB(f,~0)) if i = 1

π̃(1)(φB(0, ǫi−1(f))) if i ≥ 2
=

{
π̃(f,~0) if i = 1

π̃(0, ǫi−1(f)) if i ≥ 2.

If i = 1, the fact that π̃|A is injective implies that f = 0. Furthermore, an
inductive argument combined with the above equality shows that for all i ∈ N
we have f = 0.

Lemma 4.7. Let (π̃, t̃) be a representation of Y which is coisometric on JY =

J(Y ). If ~f = (f1, f2, . . .) ∈ T and ~g = (g1, g2, . . .) ∈ T , then

t̃(0, ~f)t̃(0, ~g)∗ = π̃(f1g
∗
1 , (f2g

∗
2 , f3g

∗
3 , . . .)).

Proof. For any (ξ,~h) ∈ Y = X ⊕ T we have

Θ(0, ~f),(0,~g)(ξ,
~h) = (0, ~f)〈(0, ~g), (ξ,~h)〉B = (0, ~f~g∗~h)

= φB(f1g
∗
1 , ((f2g

∗
2 , . . .))(ξ,~h)

so that Θ(0, ~f),(0,~g) = φB(f1g
∗
1 , (f2g

∗
2 , . . .)). Thus

t̃(0, ~f)t̃(0, ~g)∗ = π̃(1)(Θ(0, ~f),(0,~g)) = π̃(1)(φB(f1g
∗
1 , (f2g

∗
2 , . . .))

= π̃(f1g
∗
1 , (f2g

∗
2 , f3g

∗
3 , . . .)).

Lemma 4.8. Let (π̃, t̃) be a representation of Y . If ξ ∈ X, a ∈ A, and ~f ∈ T ,
then the following relations hold:

(1) t̃(0, ~f)π̃(a,~0) = 0

(2) t̃(0, ~f)t̃(ξ,~0) = 0

(3) t̃(0, ~f)t̃(ξ,~0)∗ = 0

Proof. To see (1) we note that t̃(0, ~f)π̃(a,~0) = t̃((0, ~f)(a,~0)) = t̃(0, 0) = 0. To
see (2) and (3) let {~eλ}λ∈Λ be an approximate unit for T . Then

t̃(0, ~f)t̃(ξ,~0) = lim
λ

t̃(0, ~f~eλ)t̃(ξ,~0) = lim
λ

t̃(0, ~f)π̃(0, ~eλ)t̃(ξ,~0) = 0

which shows that (2) holds, and

t̃(0, ~f)t̃(ξ,~0)∗ = lim
λ

t̃(0, ~f~eλ)t̃(ξ,~0)∗ = lim
λ

t̃(0, ~f)π̃(0, ~eλ)t̃(ξ,~0)∗

= lim
λ

t̃(0, ~f)(t̃(ξ,~0)π̃(0, ~eλ))∗ = 0

which shows that (3) holds.
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Lemma 4.9. Let (π̃, t̃) be a representation of Y , and define (π, t) := (π̃|A, t̃|X).

If c ∈ C∗(π, t) and ~f ∈ T , then

t̃(0, ~f)c = 0.

Proof. Since C∗(π, t) is generated by elements of the form π̃(a,~0) and t̃(ξ,~0),
the result follows from the relations in Lemma 4.8.

Lemma 4.10. Let (π̃, t̃) be a representation of Y which is coisometric on JY =
J(Y ), and define (π, t) := (π̃|A, t̃|X). If n ∈ {0, 1, 2, . . .}, then any element of
the form

t̃(ξ1, ~f1) . . . t̃(ξn, ~fn)π̃(a,~h)t̃(ηn, ~gn)∗ . . . t̃(η1, ~g1)
∗

will be equal to c + π̃(0,~k) for some c ∈ C∗(π, t) and some ~k ∈ T .

Proof. We shall prove this by induction on n.
Base Case: n = 0. Then the term above is equal to π̃(a,~h) = π̃(a,~0)+ π̃(0,~h)
and the claim holds trivially.
Inductive Step: Assume the claim holds for n. Given an element

t̃(ξ1, ~f1) . . . t̃(ξn+1, ~fn+1)π̃(a,~h)t̃(ηn+1, ~gn+1)
∗ . . . t̃(η1, ~g1)

∗

it follows from the inductive hypothesis that

t̃(ξ2, ~f2) . . . t̃(ξn+1, ~fn+1)π̃(a,~h)t̃(ηn+1, ~gn+1)
∗ . . . t̃(η2, ~g2)

∗

has the form c + π̃(0,~k) for c ∈ C∗(π, t) and ~k ∈ T . Thus using Lemma 4.9
gives

t̃(ξ1, ~f1) . . . t̃(ξn+1, ~fn+1)π̃(a,~h)t̃(ηn+1, ~gn+1)
∗ . . . t̃(η1, ~g1)

∗

= t̃(ξ1, ~f1)(c + π̃(0,~k))t̃(η1, ~g1)
∗

= (t̃(ξ1,~0) + t̃(0, ~f1))(c + π̃(0,~k))(t̃(η1,~0) + t̃(0, ~g1)
∗)

= t̃(ξ1,~0)ct̃(η1,~0)∗ + t̃(0, ~f1)π̃(0,~k)t̃(0, ~g1)
∗

= t̃(ξ1,~0)ct̃(η1,~0)∗ + t̃(0, ~f1
~k)t̃(0, ~g1)

∗.

It follows from Lemma 4.7 that t̃(0, ~f1
~k)t̃(0, ~g1)

∗ is of the form c′ + π̃(0, ~k′)
with c′ ∈ im π ⊆ C∗(π, t). Since t̃(ξ1,~0)ct̃(η1,~0)∗ is also in C∗(π, t) the proof is
complete.

We wish to show that if (π̃, t̃) is a representation of Y and if we restrict to obtain
(π, t) := (π̃|X , t̃|A), then C∗(π, t) is a corner of C∗(π̃, t̃). If A is unital and X
is left essential, then this corner will be determined by the projection π(1,~0).
However, in the following lemma we wish to consider the general case and
must make use of approximate units to define the projection that determines
the corner.
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Lemma 4.11. Let X be a C∗-correspondence over A and let T := (ker φ)N be
the tail determined by ker φ. If Y := X ⊕ T is the C∗-correspondence over
B := A ⊕ T formed by adding the tail T to X, and if (π̃, t̃) is a representation
of Y , then there exists a projection p ∈ M(C∗(π̃, t̃)) with the property that for

all a ∈ A, ξ ∈ X, and ~f ∈ T the following relations hold:

(1) pt̃(ξ, ~f) = t̃(ξ, (f1, 0, 0, . . .))

(2) t̃(ξ, ~f)p = t̃(ξ,~0)

(3) pπ̃(a, ~f) = π̃(a, ~f)p = π̃(a,~0)

Proof. Let {~eλ}λ∈Λ be an approximate unit for T , and for each λ ∈ Λ let
~eλ = (e1

λ, e2
λ, . . .). Consider {π̃(0, ~eλ)}λ∈Λ. For any element

t̃(ξ1, ~f1) . . . t̃(ξn, ~fn)π̃(a,~h)t̃(ηm, ~gm)∗ . . . t̃(η1, ~g1)
∗ (2)

we have

lim
λ

π̃(0, ~eλ)t̃(ξ1, ~f1) . . . t̃(ξn, ~fn)π̃(a,~h)t̃(ηm, ~gm)∗ . . . t̃(η1, ~g1)
∗

= lim
λ

t̃(0, (0, e1
λf12, e

2
λf13, . . .) . . . t̃(ξn, ~fn)π̃(a,~h)t̃(ηm, ~gm)∗ . . . t̃(η1, ~g1)

∗

= t̃(0, (0, f12, f13, . . .)) . . . t̃(ξn, ~fn)π̃(a,~h)t̃(ηm, ~gm)∗ . . . t̃(η1, ~g1)
∗

so this limit exists.
Now since any c ∈ C∗(π̃, t̃) can be approximated by a finite sum of elements of
the form shown in (2), it follows that limλ π̃(0, ~eλ)c exists for all c ∈ C∗(π̃, t̃).
Let us view C∗(π̃, t̃) as a C∗-correspondence over itself (see [20, Example 2.10]).
If we define q : C∗(π̃, t̃) → C∗(π̃, t̃) by q(c) = limλ π̃(0, ~eλ)c then we see that
for any c, d ∈ C∗(π̃, t̃) we have

d∗q(c) = lim
λ

d∗π̃(0, ~eλ)c = lim
λ

(π̃(0, ~eλ)d)∗c = q(d)∗c

and hence q is an adjointable operator on C∗(π̃, t̃). Therefore q defines (left
multiplication by) an element in the multiplier algebra M(C∗(π̃, t̃)) [20, The-
orem 2.47]. It is easy to check that q2 = q∗ = q so that q is a projection. Now
if we let p := 1 − q in M(C∗(π̃, t̃)), then it is easy to check that relations (1),
(2), and (3) follow from the definition of q.

Proof of Theorem 4.3. (a) Let I := ker φ, set H0 := π(I)HX , and define HT :=⊕∞
i=1 Hi where Hi = H0 for all i = 1, 2, . . .. We define t̃ : Y → B(HX ⊕HT )

and π̃ : B → B(HX ⊕ HT ) as follows: Viewing Y as Y = X ⊕ T and B as
B = A ⊕ T , for any (h, (h1, h2, . . .)) ∈ HQ ⊕HT we define

t̃(ξ, (f1, f2, . . .))(h, (h1, h2, . . .)) = (t(ξ)h + π(f1)h1, (π(f2)h2, π(f3)h3, . . .))

and

π̃(a, (f1, f2, . . .))(h, (h1, h2, . . .)) = (π(a)h, (π(f1)h1, π(f2)h2, . . .)).
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Then it is straightforward to show that (π̃, t̃) is a representation of Y on
HQ ⊕ HT . To see that (π̃, t) is coisometric on J(Y ), choose an element
(a, (f1, f2, . . .)) ∈ J(Y ). By Lemma 4.5 we know that a = a1 + a2 for
a1 ∈ JX and a2 ∈ ker φ. Furthermore, since a1 ∈ J(X) we may write

φ(a1) = limn

∑Nn

k=1 ΘX
ξn,k,ηn,k

for some ξn,k, ηn,k ∈ X. It follows that

φB(a1,~0) = lim
n

Nn∑

k=1

ΘY
(ξn,k,~0),(ηn,k,~0)

∈ K(Y ).

In addition, since a2 ∈ ker φ we see that if we let {~eλ}λ∈Λ be an approximate
unit for T with ~eλ = (e1

λ, e2
λ, . . .) for each λ, then

φB(a2, ~f) = lim
λ

ΘY
(0,(a,f1,f2,...)),(0,(e1

λ,e2
λ,...)) ∈ K(Y ).

Now for any n ∈ N we see that {en
λ}λ∈Λ is an approximate unit for kerφ.

Furthermore, we see that for all (ξ, ~f), (η,~g) ∈ Y = X ⊕ T we have

t̃(ξ, ~f)t̃(η,~g)∗ = (t(ξ)t(η)∗ + π(f1g
∗
1), (π(f2g

∗
2), π(f3g

∗
3), . . .))

and thus

π̃(1)(φB(a, ~f))

= π̃(1)(φB(a1,~0)) + π̃(1)(φB(a2, ~f))

= lim
n

Nn∑

k=1

t̃(ξn,k,~0)t̃(ηn,k,~0)∗ + lim
λ

t̃(0, (a2, f1, f2, . . .))t̃(0, (e
1
λ, e2

λ, . . .))∗

= lim
n

Nn∑

k=1

(t(ξn,k)t(ηn,k)∗,~0) + lim
λ

(π(a2e
1
λ), (π(f1e

2
λ), π(f2e

3
λ), . . .))

= (π(1)(φ(a1)),~0) + (π(a2), (π(f1), π(f2), . . .))

= (π(a1),~0) + (π(a2), (π(f1), π(f2), . . .))

= π̃(a, ~f)

so (π̃, t̃) is coisometric on J(Y ).

(b) If (π̃, t̃) is a representation of Y in a C∗-algebra C which is coisometric
on J(Y ), then it is straightforward to see that the restriction (π̃|A, t̃|X) is a
representation. To see that (π̃|A, t̃|X) is coisometric on JX , choose an element

a ∈ JX . Since JX ⊆ J(X) we may write φ(a) = limn

∑Nn

k=1 ΘX
ξn,k,ηn,k

for some

ξn,k, ηn,k ∈ X. In addition, since a ∈ (ker φ)⊥ ⊆ JX we have that

φB(a,~0) = lim
n

Nn∑

k=1

ΘY
(ξn,k,~0),(ηn,k,~0)

∈ K(Y )
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and we have

π̃|(1)A (φA(a)) = lim
n

Nn∑

k=1

t̃|X(ξn,k)t̃|X(ηn,k)∗ = lim
n

Nn∑

k=1

t̃(ξn,k,~0)t̃(ηn,k,~0)∗

= π̃(1)(φB(a,~0)) = π̃(a,~0) = π̃|A(a)

so (π̃|A, t̃|X) is coisometric on JX .

Furthermore, suppose that the restriction π̃|A is injective. If (a, ~f) ∈ B := A⊕T

and π̃(a, ~f) = 0, let {gλ}λ∈Λ be an approximate unit for kerφ, and for any
f ∈ ker φ and i ∈ N let ǫi(f) := (0, . . . , 0, f, 0, . . .) where f is in the ith position.

Since π̃(a, ~f) = 0 we see that if we write ~f = (f1, f2, . . .), then for all i ∈ N we
have

π̃(0, ǫi(gλfi)) = π̃(0, ǫi(gλ))π̃(a, ~f) = 0,

and taking limits with respect to λ shows that π̃(0, ǫi(fi)) = 0 for all i ∈ N.

From Lemma 4.6 it follows that fi = 0 for all i ∈ N. Thus ~f = 0, and since
π̃|A is injective we also have that a = 0. Hence π̃ is injective.

(c) The fact that (π, t) := (πY |A, tY |X) is a representation which is coisometric
on JX follows from Part (b). Furthermore, the fact that ρ(π,t) is injective follows
from Part (a) which shows that any ∗-representation of OX factors through a
∗-representation of OY . All that remains is to show that im ρ(π,t) = C∗(π, t) is
a full corner of OY .

Let p ∈ M(OY ) be the projection described in Lemma 4.11. We shall first show
that C∗(π, t) = pOY p. To begin, we see from the relations in Lemma 4.11 that
for all a ∈ A we have pπ(a)p = pπY (a,~0)p = πY (a,~0) = π(a) and for all ξ ∈ X
we have pt(ξ)p = p(tY (ξ,~0))p = tY (ξ,~0) = t(ξ). Thus C∗(π, t) ⊆ pOY p.

To see the reverse inclusion, note that any element in OY is the limit of sums
of elements of the form

tY (ξ1, ~f1) . . . tY (ξn, ~fn)πY (a,~h)tY (ηm, ~gm)∗ . . . tY (η1, ~g1)
∗

and thus any element of pOY p is the limit of sums of elements of the form

ptY (ξ1, ~f1) . . . tY (ξn, ~fn)πY (a,~h)tY (ηm, ~gm)∗ . . . tY (η1, ~g1)
∗p

Therefore, it suffices to show that each of these elements is in C∗(π, t). Now if
n ≥ m, then we may use Lemma 4.10 to write

tY (ξn−m+1, ~fn−m+1) . . . tY (ξn, ~fn)πY (a,~h)tY (ηm, ~gm)∗ . . . tY (η1, ~g1)
∗
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as c + πY (0,~k) for c ∈ C∗(π, t) and ~k ∈ T . Then

ptY (ξ1, ~f1) . . . tY (ξn, ~fn)πY (a,~h)tY (ηm, ~gm)∗ . . . tY (η1, ~g1)
∗p

= ptY (ξ1, ~f1) . . . tY (ξn−m, ~fn−m)(c + πY (0,~k))p

= ptY (ξ1, ~f1) . . . tY (ξn−m, ~fn−m)cp

= ptY (ξ1, ~f1) . . . tY (ξn−m, ~fn−m)pcp

= ptY (ξ1, ~f1) . . . tY (ξn−m−1, ~fn−m−1)ptY (ξn−m,~0)pcp

...

= ptY (ξ1,~0)p . . . ptY (ξn−m,~0)pcp

= tY (ξ1,~0) . . . tY (ξn−m,~0)c

= t(ξ1) . . . t(ξn−m)c

which is in C∗(π, t). The case when n ≤ m is similar. Hence pOY p ⊆ C∗(π, t).
To see that the corner C∗(π, t) = pOY p is full, suppose that I is an ideal
in OY that contains C∗(π, t). For f ∈ ker φ and n ∈ N define ǫn(f) :=
(0, . . . , 0, f, 0, . . .) ∈ T , where the term f is in the nth position. Let {eλ}λ∈Λ

be an approximate unit for kerφ. Now tY (ξ,~0), πY (a,~0) ∈ C∗(π, t) ⊆ I for all
a ∈ A and ξ ∈ X, and since T is the c0-direct sum of countably many copies of
ker φ in order to show that I is all of OY it suffices to prove that for all n ∈ N
and λ ∈ Λ we have tY (0, ǫn(eλ)) ∈ I and πY (0, ǫn(eλ)) ∈ I. We shall prove
this by induction on n.
Base Case: For any β, λ ∈ Λ we have from Lemma 4.7 that

tY (0, ǫ1(eλ))tY (0, ǫ1(eβ))∗ = πY (eλeβ ,~0) ∈ I.

Also for any α ∈ Λ we have

tY (0, (ǫ1(eλeβeα)) = tY (0, ǫ1(eλ))πY (0, ǫ1(e
∗
βeα))

= tY (0, ǫ1(eλ))tY (0, ǫ1(eβ))∗tY (0, ǫ1(eα))

which is in I. Taking limits with respect to α and β gives

tY (0, ǫ1(eλ)) = lim
β

lim
α

tY (0, ǫ1(eλeβeα)) ∈ I.

Furthermore, since tY (0, ǫ1(eλ)) ∈ I for all λ ∈ Λ, we see that

πY (0, ǫ1(eλ)) = lim
β

πY (0, ǫ1(eλeβ)) = lim
β

tY (0, ǫ1(eλ))∗tY (0, ǫ1(eβ)) ∈ I.

Inductive step: Suppose that tY (0, ǫn(eλ)), πY (0, ǫn(eλ)) ∈ I for any λ ∈ Λ.
Then for all λ, β ∈ Λ we have

tY (0, ǫn+1(eλ))tY (0, ǫn+1(eβ))∗ = π
(1)
Y (ΘY

(0,ǫn+1(eλ)),(0,ǫn+1(eβ)))

= π
(1)
Y (φB(0, ǫn(eβeλ)))

= πY (0, ǫn(eβeλ))

= πY (0, ǫn(eβ))πY (0, ǫn(eλ))
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which is in I. Thus for any α ∈ Λ we have that

tY (0, ǫn+1(eλeβeα)) = tY (0, ǫn+1(eλ))πY (0, ǫn+1(eβeα))

= tY (o, ǫn+1(eλ))tY (0, ǫn+1(eβ))∗tY (0, ǫn+1(eα))

is in I. Taking limits with respect to α and β gives

tY (0, ǫn+1(eλ)) = lim
β

lim
α

tY (0, ǫn+1(eλeβeα)) ∈ I.

Furthermore, since tY (0, ǫn+1(eλ)) ∈ I for all λ ∈ Λ, we have

πY (0, ǫn+1(eλ)) = lim
β

πY (0, ǫn+1(eβeλ)) = lim
β

tY (0, ǫn+1(eβ))∗tY (0, ǫn+1(eλ))

which is in the ideal I.

5 Gauge-Invariant Uniqueness

Recall that we let γ denote the gauge action of T on OX . A gauge-invariant
uniqueness was proven in [6, Theorem 4.1] for (augmented) Cuntz-Pimsner
algebras. Our method of adding tails, together with Theorem 4.3, will allow
us to extend this theorem to the case when φ is not injective, and ultimately
to all relative Cuntz-Pimsner algebras.
The following Gauge-Invariant Uniqueness Theorem was proven by Katsura
using direct methods in [11, Theorem 6.4]. We shall now give an alternate
proof, showing how the method of adding tails can be used to bootstrap [6,
Theorem 4.1] to the general case.

Theorem 5.1 (Gauge-Invariant Uniqueness). Let X be a C∗-
correspondence over A, and let (πX , tX) be a universal J(X)-coisometric
representation of X. If ρ : OX → C is a homomorphism between C∗-algebras
which satisfies the following two conditions:

1. the restriction of ρ to πX(A) is injective

2. there is a strongly continuous action β : T → Aut(ρ(OX)) such that
βz ◦ ρ = ρ ◦ γz for all z ∈ T

then ρ is injective.

Remark 5.2. When φ is injective, the statement above is actually an equivalent
reformulation of [6, Theorem 4.1]. The equivalence relies on the fact that
for any C∗-correspondence X, the universal J(X)-coisometric representation
(iA, iX) has the property that iA is injective if and only if the left action φ is
injective.

Proof of Theorem 5.1. Let T := (ker φ)N be the tail determined by kerφ,
and let Y := X ⊕ T be the C∗-correspondence over B := A ⊕ T formed by
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adding the tail T to X. By Theorem 4.3(c) we may identify (OX , πX , tX) with
(S, πY |A, tY |X) where S is the C∗-subalgebra of OY generated by

{πY (a,~0), tY (ξ,~0) : a ∈ A and ξ ∈ X}.

Since β : T → Aut(im ρ) is an action of T on im ρ, there exists a Hilbert space
HX , a faithful representation κ : im ρ → B(HX), and a unitary representation
U : T → U(HX) such that

κ(βz(x)) = Uzκ(x)U∗
z for all x ∈ im ρ and z ∈ T.

In addition, since τ := κ ◦ ρ is a ∗-homomorphism from S into B(HX) which is
faithful on πX(A), it follows from Theorem 4.3(a) that τ may be extended to
a ∗-homomorphism τ̃ : OY → B(HX ⊕HT ) with τ̃ faithful on πY (B).
We shall now define a unitary representation W : T → B(HX ⊕HT ) as follows.
We see from the proof of Theorem 4.3(a) that HT :=

⊕∞
i=1 Hi. Thus for

(h, (h1, h2, . . .)) ∈ HQ ⊕HT we define

Wz(h, (h1, h2, . . .)) := (Uzh, (z−1h1, z
−2h2, . . .)) for z ∈ T.

We may then define β̃ : T → Aut(B(HX ⊕ HT )) by β̃z(T0) := WzT0W
∗
z , and

we see that β̃ is a strongly continuous gauge action. Furthermore, if γ′ denotes
the gauge action of T on OY , then β̃z ◦ τ̃ = τ̃ ◦ γ′

z (to see this recall how the
extension τ̃ is defined in the proof of Theorem 4.3(a) and then simply check on

the generators {tY (ξ, ~f), πY (a,~g) : ξ ∈ X, a ∈ A, and ~f,~g ∈ T}). Thus by [6,
Theorem 4.1] we have that τ̃ is injective. Hence τ̃ |S = τ = κ ◦ ρ is injective,
and ρ is injective.

To conclude this section we shall interpret our result in the relative Cuntz-
Pimsner setting.

Remark 5.3. Katsura has shown in [12] that if O(K,X) is a relative Cuntz-
Pimsner algebra, then there exists a C∗-correspondence X ′ with the property
that OX′ is naturally isomorphic to O(K,X). Using this analysis one can
obtain the following interpretation of Theorem 5.1 for relative Cuntz-Pimsner
algebras.

Interpretation of Theorem 5.1 for Relative Cuntz-Pimsner Alge-
bras: Let X be a C∗-correspondence with left action φ : X → L(X), let K be
an ideal in J(X) := φ−1(K(X)), and let (πX , tX) be a universal K-coisometric
representation of X. If ρ : OX → C is a homomorphism between C∗-algebras
which satisfies the following three conditions:

(1) the restriction of ρ to πX(A) is injective

(2) if ρ(πX(a)) ∈ ρ(π
(1)
X (K(X))), then πX(a) ∈ πX(K)

(3) there is a strongly continuous action β : T → Aut(ρ(OX)) such that
βz ◦ ρ = ρ ◦ γz for all z ∈ T
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then ρ is injective.

Finally, we mention that if we define a map TK : J(X) → O(K,X) by

TK(a) := πX(a) − π
(1)
X (φ(a))

then the equation

TK(a)TK(b) = (πX(a) − π
(1)
X (φ(a)))(πX(b) − π

(1)
X (φ(b)))

= πX(ab) − π
(1)
X (φ(a))πX(b) − πX(a)π

(1)
X (φ(b)) + π

(1)
X (φ(ab))

= πX(ab) − π
(1)
X (φ(ab))

= TK(ab)

shows that this map is a homomorphism. If πX is injective (which by [15,
Proposition 2.21] occurs if and only if K ∩ ker φ = ∅), then we may replace
Condition (2) in the above statement by the condition

(2′) the restriction of ρ to TK(J(X)) is injective.

6 Gauge-Invariant Ideals

In this section we use Theorem 5.1 to characterize the gauge-invariant ideals
in C∗-algebras associated to certain correspondences.

Definition 6.1. Let X be a C∗-correspondence over A. We say that an ideal
I ⊳ A is X-invariant if φ(I)X ⊆ XI. We say that an X-invariant ideal I ⊳ A is
X-saturated if

a ∈ JX and φ(a)X ⊆ XI =⇒ a ∈ I.

Remark 6.2. In [9] the authors only considered Hilbert bimodules (i.e. C∗-
correspondences) for which φ is injective and φ(A) ⊆ K(X), and thus the
definition of X-saturated that they gave was that a ∈ A and φ(a)X ⊆ XI
implies a ∈ I. Since JX = A throughout their paper, this notion is equivalent
to the one defined in Definition 6.1. In [6, Remark 3.11] it was suggested that
the definition of X-saturated for general C∗-correspondences should also be
that a ∈ A and φ(a)X ⊆ XI implies a ∈ I. However, after considering how the
definition of saturated was extended to (or rather modified for) non-row-finite
graphs in [1, §3] and [3, §3] we believe that Definition 6.1 is the appropriate
generalization.

Recall that if I is an ideal of A, then

XI := {x ∈ X : 〈x, y〉A ∈ I for all y ∈ X}

is a right Hilbert A-module, and by the Hewitt-Cohen Factorization Theorem
XI = XI := {x · i : x ∈ X and i ∈ I} (see [6, §2]). Furthermore, X/XI is
a right Hilbert A/I-module in the obvious way [6, Lemma 2.1]. In order for
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X/XI to be a C∗-correspondence, we need the ideal I to be X-invariant. Let
qI : A → A/I and qXI : X → X/XI be the appropriate quotient maps. If I is
X-invariant, then one may define φA/I : A/I → L(X/XI) by

φA/I(q
I(a))(qXI(x)) := qXI(φ(a)(x))

and with this action X/XI is a C∗-correspondence over A/I [6, Lemma 3.2].

Lemma 6.3. Let X be a C∗-correspondence over a C∗-algebra A, and let I be
an X-saturated X-invariant ideal in A. If qI : A → A/I denotes the quotient
map, then

qI(JX) ⊆ JX/XI .

Furthermore, if X has the following two properties:

1. φ(A) ⊆ K(X)

2. ker φ is complemented in A (i.e. there exists an ideal J of A with the
property that A = J ⊕ ker φ),

then
qI(JX) = JX/XI .

Proof. Let a ∈ JX . Then a ∈ J(X), and it follows from [6, Lemma 2.7] that
qI(a) ∈ J(X/XI). Also, if qI(b) ∈ ker φA/I , then qI(ab) ∈ ker φA/I and for all
x ∈ X we have

qXI(φ(ab)(x)) = φA/I(ab)qXI(x) = 0

and thus
φ(ab)XI ⊆ XI. (3)

Since a ∈ JX and JX is an ideal, we see that ab ∈ JX . Now since I is
X-saturated, (3) implies that ab ∈ I and qI(a)qI(b) = qI(ab) = 0. Thus
qI(a) ∈ (ker φA/I)

⊥ and qI(a) ∈ JX/XI .
Now suppose that Conditions (1) and (2) in the statement of the lemma hold.
Since φ(A) ⊆ K(X) it follows that J(X) = A. In addition, [6, Lemma 2.7]
shows that qI(J(X)) = J(X/XI). From Condition (2) we know that A =
J⊕ker φ for some ideal J of A. However, the definition of JX then implies that
J = JX . Thus if a ∈ A and qI(a) ∈ JX/XI , then we may write a = b + c for
b ∈ JX and c ∈ ker φ. But then qI(b) ∈ JX/XI by the first part of the lemma,
and qI(c) = qI(a)− qI(b) ∈ JX/XI . Since c ∈ ker φ it follows that for all x ∈ X
we have

φA/I(q
I(c))qXI(x) = qXI(φ(c)(x)) = 0

and thus qI(c) ∈ ker φA/I . Thus qI(c) ∈ JX/XI ∩ ker φA/I = {0} so qI(c) = 0
and qI(a) = qI(b) ∈ qI(JX). Thus JX/XI ⊆ qI(JX).

The following theorem was proven in [9, Theorem 4.3] under the hypothe-
ses that φ is injective, A is unital, and X is full and finite projective as a
right A-module (so in particular, φ(A) ⊆ K(X)). However, Theorem 5.1 al-
lows us to give a fairly simple proof of the result for much more general C∗-
correspondences.
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Theorem 6.4. Let X be a C∗-correspondence with the following two properties:

1. φ(A) ⊆ K(X)

2. ker φ is complemented in A (i.e. there exists an ideal J of A with the
property that A = J ⊕ ker φ),

and let (πX , tX) be a universal J(X)-coisometric representation of X. Then
there is a lattice isomorphism from the X-saturated X-invariant ideals of A
onto the gauge-invariant ideals of OX given by

I 7→ I(I) := the ideal in OX generated by πX(I)

Proof. To begin we see that I(I) is in fact gauge invariant since

I(I) = span{tX(x1) . . .tX(xn)πX(a)tX(y1)
∗ . . . tX(ym)∗

: a ∈ I, x1 . . . xn ∈ X, y1 . . . ym ∈ X, and n,m ≥ 0}.

In addition, the map I 7→ I(I) is certainly inclusion preserving.
To see that the map is surjective, let I be a gauge-invariant ideal in OX .
If we define I := π−1

X (I), then it is straightforward to show that I is X-
invariant and X-saturated. Now clearly I(I) ⊆ I so there exists a quotient
map q : OX/I(I) → OX/I. Furthermore, by [6, Theorem 3.1] we have that
OX/I(I) is canonically isomorphic to O(qI(JX),X/XI), which by Lemma 6.3
is equal to OX/XI := O(JX/XI ,X/XI). If we identify OX/I(I) with OX/XI ,
then we see that q(πX/XI(q

I(a))) = 0 implies that πX(a) ∈ I so that a ∈ I and
qI(a) = 0. Thus q is faithful on πX/XI(A/I). Furthermore, since I is gauge
invariant, the gauge action on OX descends to an action on the quotient OX/I,
and q intertwines this action and the action on OX/XI . Therefore Theorem 5.1
implies that q is injective and consequently I(I) = I.
To see that the above map is injective it suffices to prove that πX(a) ∈ I(I) if
and only if a ∈ I. Now OX/I(I) is canonically isomorphic to OX/XI as in the
previous paragraph. Hence πX(a) ∈ I(I) implies πA/I(q

I(a)) = 0, but since
πX/XI is injective by Corollary 4.4 it follows that qI(a) = 0 and a ∈ I.

Remark 6.5. We mention that in [17] we have constructed examples which show
that the above theorem does not hold if either of the hypotheses (1) or (2) are
removed. We also mention that Katsura [12] has given a description of the
gauge-invariant ideals in C∗-algebras associated to general C∗-correspondences
in terms certain pairs of ideals in A.

7 Concluding Remarks

In Section 4 we gave a method for “adding tails to sinks” in C∗-correspondences;
that is, given a C∗-correspondence X we described how to form a C∗-
correspondence Y with the property that the left action of Y is injective and OX

is canonically isomorphic to a full corner in OY . The process of adding tails to
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C∗-correspondences provides a useful tool for extending results for augmented
Cuntz-Pimsner algebras (i.e. C∗-algebras associated to C∗-correspondences in
which φ is injective) to C∗-algebras associated to general C∗-correspondences.

We used this idea in Section 5 to extend the Gauge-Invariant Uniqueness The-
orem for augmented Cuntz-Pimsner algebras to the general case. More gen-
erally, however, we see that many questions about C∗-algebras associated to
correspondences may be reduced to the corresponding questions for augmented
Cuntz-Pimsner algebras. For example, we see that for any property that is pre-
served by Morita equivalence (e.g. simplicity, AF-ness, pure infiniteness), one
need only characterize when augmented Cuntz-Pimsner algebras will have this
property, and then by adding tails one may easily deduce a theorem for C∗-
algebras associated to general C∗-correspondences.

In addition, if p ∈ M(OY ) is the projection that determines OX as a full corner
of OY (so that OX

∼= pOY p), then the Rieffel correspondence from the lattice of
ideals of OY to the lattice of ideals of OX takes the form I 7→ pIp. Furthermore,
we see from Lemma 4.11 that p is gauge invariant, and consequently the Rieffel
correspondence preserves gauge invariance of ideals. Thus questions about the
ideal structure of OX , or about gauge-invariant ideals of OX , may be reduced to
the corresponding questions for ideals in the augmented Cuntz-Pimsner algebra
OY .

Finally, we mention that in [17, §4] the method of adding tails has proven very
useful in the analysis of topological quivers. Topological quivers, which were
first introduced in [16, Example 5.4], are generalizations of graphs in which the
sets of vertices and edges are replaced by topological spaces. By adding tails to
topological quivers in [17] the authors are able to reduce their analyses to the
case when there are no sinks, or equivalently, to the case when the left action
of the associated C∗-correspondence is injective. This simplifies the proofs
of many results for topological quivers and allows one to avoid a number of
technicalities.
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Abstract. We prove that the spectrum of a Schrödinger operator
with a potential which is periodic in certain directions and super-
exponentially decaying in the others is purely absolutely continuous.
Therefore, we reduce the operator using the Bloch-Floquet-Gelfand
transform in the periodic variables, and show that, except for at most
a set of quasi-momenta of measure zero, the reduced operators satisfies
a limiting absorption principle.

2000 Mathematics Subject Classification: 35J10, 35Q40, 81C10

1 Formulation of the result

There are many papers (see, for example, [1, 9]) devoted to the question of
the absolute continuity of the spectrum of differential operators with coeffi-
cients periodic in the whole space. In the present article, we consider the
situation where the coefficients are periodic in some variables and decay very
fast (super-exponentially) when the other variables tend to infinity. The corre-
sponding operator describes the scattering of waves on an infinite membrane or
filament. Recently, quite a few studies have been devoted to similar problems,
for periodic, quasi-periodic or random surface Hamiltonians (see, e.g. [3, 7, 2]).
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Chercheurs”.

2F.K.’s research was partially supported by the program RIAC 160 at Université Paris 13
and by the FNS 2000 “Programme Jeunes Chercheurs”.

Documenta Mathematica 9 (2004) 107–121



108 N. Filonov and F. Klopp

Let (x, y) denote the points of the space Rm+d. Define Ω = Rm × (0, 2π)d and
〈x〉 =

√
x2 + 1. For a ∈ R, introduce the spaces

Lp,a = {f : ea〈x〉f ∈ Lp(Ω)}, H2
a = {f : ea〈x〉f ∈ H2(Ω)},

where 1 ≤ p ≤ ∞ and H2(Ω) is the Sobolev space. Our main result is

Theorem 1.1. Consider in L2(Rm+d) the self-adjoint operator

Hu = −div(g∇u) + V u (1)

and assume that the functions g : Rm+d → R and V : Rm+d → R satisfy
following conditions:

1. ∀l ∈ Zd, ∀(x, y) ∈ Rm+d,

g(x, y + 2πl) = g(x, y), V (x, y + 2πl) = V (x, y);

2. there exists g0 > 0 such that (g − g0), ∆g, V ∈ L∞,a for any a > 0;

3. there exists c0 > 0 such that ∀(x, y) ∈ Rm+d, g(x, y) ≥ c0.

Then, the spectrum of H is purely absolutely continuous.

Remark 1.1. Operators with different values of g0 differ from one another only
by multiplication by a constant; so, without loss of generality, we can and, from
now on, do assume that g0 = 1.

Remark 1.2. If V ≡ 0, (1) is the acoustic operator. If g ≡ 1, it is the Schrö-
dinger operator with electric potential V .

The basic philosophy of our proof is the following. To prove the absolute conti-
nuity of the spectrum for periodic operators (i.e., periodic with respect to a non
degenerate lattice in Rd), one applies the Floquet-Bloch-Gelfand reduction to
the operator and one is left with proving that the Bloch-Floquet-Gelfand eigen-
values must vary with the quasi-momentum i.e., that they cannot be constant
on sets of positive measure (see e.g. [9]). If one tries to follow the same line in
the case of operators that are only periodic with respect to a sub-lattice, the
problem one encounters is that, as the resolvent of the Bloch-Floquet-Gelfand
reduction of the operator is not compact, its spectrum may contain continuous
components and some Bloch-Floquet-Gelfand eigenvalues may be embedded
in these continuous components. The perturbation theory of such embedded
eigenvalues (needed to control their behavior in the Bloch quasi-momentum)
is more complicated than that of isolated eigenvalues. To obtain a control on
these eigenvalues, we use an idea of the theory of resonances (see e.g. [13]): if
one analytically dilates Bloch-Floquet-Gelfand reduction of the operator, these
embedded eigenvalues become isolated eigenvalues, and thus can be controlled
in the usual way.
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Let us now briefly sketch our proof. We make the Bloch-Floquet-Gelfand trans-
formation with respect to the periodic variables (see section 3) and get a fam-
ily of operators H(k) in the cylinder Ω. Then, we consider the corresponding
resolvent in suitable weighted spaces. It analytically depends on the quasi-
momentum k and the spectral (non real) parameter λ. It turns out that we
can extend it analytically with respect to λ from the upper half-plane to the
lower one (see Theorem 5.1 below) and thus establish the limit absorption prin-
ciple. This suffices to prove the absolute continuity of the initial operator (see
section 7).

Note that an analytic extension of the resolvent of the operator (1) with co-
efficients g and V which decay in all directions is constructed in the paper [4]
(with m = 3, d = 0; see also [10] for g ≡ 1). In the case of a potential decaying
in all directions but one (i.e., if d = 1), the analytic extension of the resolvent
of the whole operator (1) (not only for the operator H(k) (see section 3)) is
investigated in [6] when g ≡ 1. Note also that our approach has shown to be
useful in the investigation of the perturbation of free operator in the half-plane
by δ-like potential concentrated on a line (see [5]); the wave operators are also
constructed there.

In section 2, we establish some auxiliary inequalities. In section 3, we define
the Floquet-Gelfand transformation and construct an analytic extension of the
resolvent of free operator in the cylinder Ω. In sections 4 and 5, we prove
a limiting absorption principle for the initial operator in the cylinder. An
auxiliary fact from theory of functions is established in section 6. Finally, the
proof of Theorem 1.1 is completed in section 7.

We denote by Bδ(k0) a ball in real space

Bδ(k0) = {k ∈ Rd : |k − k0| < δ}

and by k1 the first coordinate of k, k = (k1, k
′). We will use the spaces of

function in Ω with periodic boundary conditions,

H̃2 =

{
f ∈ H2(Ω) : f |yi=0= f |yi=2π,

∂f

∂yi
|yi=0=

∂f

∂yi
|yi=2π, i = 1, . . . , d

}
,

H̃2
loc=

{
f ∈ H2

loc(Ω) : f |yi=0= f |yi=2π,
∂f

∂yi
|yi=0=

∂f

∂yi
|yi=2π, i = 1, . . . , d

}
.

Finally B(X,Y ) is the space of all bounded operators from X to Y , and B(X) =
B(X,X), both endowed with their natural topology.

Thanks: the authors are grateful to Prof. P. Kuchment for drawing their
attention to the question addressed in the present paper, and to Prof. T. Suslina
for useful discussions.
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2 Auxiliary estimations

In this section, we assume that the pair (k0, λ0) ∈ Rd+1 satisfies

(k0 + n)2 6= λ0 ∀n ∈ Zd. (2)

The constants in all the inequalities in this section may depend on (k0, λ0).
The set

J = {n ∈ Zd : (k0 + n)2 < λ0} (3)

is finite. In a neighborhood of (k0, λ0), the partition of Zd into J and (Zd \ J)
is clearly the same. In other words, there exists δ = δ(k0, λ0) > 0 such that

if k ∈ Bδ(k0) and λ ∈ Bδ(λ0), then (k + n)2 < λ ⇔ n ∈ J. (4)

Choose k̃ ∈ Bδ(k0) with k̃1 /∈ Z and put

k(τ) := (k̃1 + iτ, k̃′) ∈ Cd, τ ∈ R,

and

M1 = M1(k0, λ0) := (Bδ(k0) ∪ {k(τ)}τ∈R) × Bδ(λ0). (5)

Lemma 2.1. There exists c > 0 such that, for all ζ ∈ Rm, (k, λ) ∈ M1,
n ∈ Zd \ J and τ ∈ R, we have

|ζ2 + (k + n)2 − λ| ≥ c,

|ζ2 + (k(τ) + n)2 − λ| ≥ c|τ |.

Proof. By virtue of (4), there exists c > 0 such that, for n ∈ Z \ J ,

∀k ∈ Bδ(k0), ∀λ ∈ Bδ(λ0), (k + n)2 − λ > c.

Hence, for ζ ∈ Rm, n ∈ Z \ J ,

∀k ∈ Bδ(k0), ∀λ ∈ Bδ(λ0), ζ2 + (k + n)2 − λ > c.

The second inequality is an immediate corollary of our choice of k̃1 and the
equality

Im(ζ2 + (k(τ) + n)2 − λ) = 2(k̃1 + n1)τ.

This completes the proof of Lemma 2.1.

In the remaining part of this section, we assume λ0 > 0. In this case, we
will need to change the integration path in the Fourier transformation; we now
describe the contour deformation. Fix η >

√
λ0 and, let γ be the contour in

the complex plane defined as

γ = {−ξ + iη}ξ∈[η,∞) ∪ {α(1 − i)}α∈[−η,η] ∪ {ξ − iη}ξ∈[η,∞). (6)

The following two assertions are clear.
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Lemma 2.2. If g ∈ L2(γ) and η0 > η then the function

h(t) = e−η0|t|
∫

γ

eitzg(z)dz

belongs to L2(R).

Lemma 2.3. Let Γ denote the open set between real axis and γ (it consists
of two connected components). Let g be an analytic function in Γ such that
g ∈ C(Γ) and |g(z)| ≤ C(1 + |Re z|)−2. Then,

∫

R

eitzg(z)dz =

∫

γ

eitzg(z)dz ∀t ∈ R.

Establish an analogue of Lemma 2.1 for n ∈ J and ζ ∈ γm i.e., ζ =
(ζ1, . . . , ζm) ∈ Cm, ζj ∈ γ.

Lemma 2.4. Let λ0 > 0, η >
√

λ0 and γ be defined by (6). There exists c > 0
such that, for all ζ ∈ γm, (k, λ) ∈ M1, n ∈ J and τ ∈ R, we have

|ζ2 + (k + n)2 − λ| ≥ c,

|ζ2 + (k(τ) + n)2 − λ| ≥ c|τ |. (7)

Proof. By virtue of (4), there exists c > 0 such that, for n ∈ J ,

∀k ∈ Bδ(k0), ∀λ ∈ Bδ(λ0), (k + n)2 − λ < −2c.

Hence, for ζ ∈ γm such that |ζ| ≤ √
c, one has

∀k ∈ Bδ(k0), ∀λ ∈ Bδ(λ0), Re(ζ2 + (k + n)2 − λ) < −c.

On the other hand, for ζ ∈ γm such that |ζ| ≥ √
c, one has

∀k ∈ Bδ(k0), ∀λ ∈ Bδ(λ0), Im(ζ2 + (k + n)2 − λ) < −c

if one chooses c sufficiently small. Thus, it remains to prove the second in-
equality. Therefore, we write

ζ2 = −2i
∑

p

α2
p +

∑

q

(ξq − iη)2,

where the indexes p correspond to the coordinates of ζ which are in the middle
part of γ (i.e., |Re ζp| < η) and the indexes q correspond to the extreme parts
of γ (i.e., |Re ζq| ≥ η); it is possible that there are only indexes p or only q.
Without loss of generality, we suppose that, for all q, ξq ≥ 0. Thus,

ζ2 + (k(τ) + n)2 − λ =
∑

q

(ξ2
q − η2) + (k̃ + n)2 − τ2 − λ

+ 2i

(
−

∑

p

α2
p −

∑

q

ξqη + (k̃1 + n1)τ

)
.
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Fix some σ ∈ (η−1
√

λ0, 1). If
∑

q ξq ≥ σ|τ | then,

∣∣Im(ζ2 + (k(τ) + n)2 − λ)
∣∣ ≥ 2

(
ση − |k̃1 + n1|

)
|τ | > 2(ση −

√
λ0)|τ |,

as (k̃ + n)2 < λ0. If
∑

q ξq ≤ σ|τ | then
∑

q ξ2
q ≤ σ2τ2 and

∣∣Re(ζ2 + (k(τ) + n)2 − λ)
∣∣ ≥ τ2 + λ − (k̃ + n)2 − σ2τ2 > (1 − σ2)τ2

again by virtue of (4). This completes the proof of Lemma 2.4.

3 The resolvent of free operator in the cylinder

Let us consider the Floquet-Gelfand transformation

(Uf)(k, x, y) =
∑

l∈Zd

ei〈k,y+2πl〉f(x, y + 2πl).

It is a unitary operator

U : L2(R
m+d) →

∫ ⊕

[0,1)d

L2(Ω)dk.

Introduce the family of operators (H(k))k∈Cd on the cylinder Ω where for k ∈
Cd, Dom H(k) = H̃2 and

H(k) =
(
i∇− (0, k)

)∗
g(x, y) (i∇− (0, k)) + V (x, y). (8)

Then, the Schrödinger operator (1) is unitarily equivalent to the direct integral
of these operators in Ω:

UHU∗ =

∫ ⊕

[0,1)d

H(k)dk.

In this section, we investigate the free operator

A(k) = −∆x +
(
i∇y − k

)∗
(i∇y − k) (9)

(which corresponds H(k) with g ≡ 1, V ≡ 0). For k ∈ Rd and λ 6∈ R, its
resolvent can be expressed as

(
(A(k) − λ)−1f

)
(x, y) =

∑

n∈Zd

∫

Rm

eiζx+iny(Ff)(ζ, n)dζ

ζ2 + (k + n)2 − λ
, (10)

where F denotes the Fourier transformation in the cylinder

(Ff)(ζ, n) = (2π)−m−d

∫

Ω

e−iζx−inyf(x, y) dx dy.

Let (k0, λ0) ∈ Rd+1 satisfy (2) and, J and M1 be defined respectively by
formulas (3) and (5) in the previous section.
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Lemma 3.1. There exists V1, a neighborhood of the set M1 in Cd+1 such that,
for (k, λ) ∈ V1, the operator R1(k, λ) given by

(R1(k, λ)f) (x, y) =
∑

n∈Zd\J

∫

Rm

eiζx+iny(Ff)(ζ, n)dζ

ζ2 + (k + n)2 − λ

is well defined and is bounded from L2(Ω) to H2(Ω). The B(L2(Ω),H2(Ω))-
valued function (k, λ) 7→ R1(k, λ) is analytic in V1. For τ 6= 0, the estimate

‖R1(k(τ), λ)‖B(L2(Ω)) ≤ C|τ |−1

holds.

Proof. It immediately follows from Lemma 2.1.

Lemma 3.2. Let λ0 > 0, η >
√

λ0, a > η
√

m and the contour γ be defined by
(6). Then, there exists a neighborhood of the set M1, say V2, such that, for
(k, λ) ∈ V2, the operator R2(k, λ) given by

(R2(k, λ)f) (x, y) =
∑

n∈J

∫

γ

· · ·
∫

γ

eiζx+iny(Ff)(ζ, n)

ζ2 + (k + n)2 − λ
dζ1 · · · dζm (11)

is well defined as a bounded operator from L2,a to H2
−a. The B(L2,a,H2

−a)-
valued function (k, λ) 7→ R2(k, λ) is analytic in V2. For τ 6= 0, the estimate

‖R2(k(τ), λ)‖B(L2,a, L2,−a) ≤ C|τ |−1

holds.

Proof. If f ∈ L2,a then the function (Ff)(·, n) is square integrable on γm. By
Lemma 2.4, the denominator in (11) never vanishes for (k, λ) ∈ M1; therefore,
in some neighborhood of M1. So

∣∣(ζ2 + (k + n)2 − λ)−1eiζx+iny
∣∣ ≤ C|eiζx|

where the constant does not depend on ζ ∈ γm and on x; the same is true for
the second derivatives of (ζ2 + (k + n)2 − λ)−1eiζx+iny with respect to (x, y).
Hence, R2(k, λ) ∈ B(L2,a,H2

−a) by virtue of Lemma 2.2. Estimation (7) yields
the estimation for the norm of R2(k(τ), λ).

Now, we construct an analytic extension of the resolvent of A(k).

Theorem 3.1. Let (k0, λ0) ∈ Rd+1 satisfy (2) and the set M1 be defined in (5).
Then, there exists a neighborhood of M1in Cd+1, say M0, a real number a and
a B(L2,a,H2

−a)-valued function, say (k, λ) 7→ RA(k, λ), defined and analytic in
M0, such that, for (k, λ) ∈ M0, k ∈ Rd, Im λ > 0 and f ∈ L2,a, one has

RA(k, λ)f = (A(k) − λ)−1f (12)

and
‖RA(k(τ), λ)‖B(L2,a, L2,−a) ≤ C|τ |−1. (13)
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Proof. If λ0 ≤ 0, we can take RA = R1 (R1 is constructed in Lemma 3.1; here,
J = ∅ and a = 0).

If λ0 > 0 then, we put RA = R1+R2, where R1, R2 and a are defined in Lemmas
3.1 and 3.2, and M0 is the intersection of V1 and V2 defined respectively in
Lemma 3.1 and Lemma 3.2. If f ∈ L2,a then (Ff)(·, n) is an analytic function in
the domain {ζ : | Im ζ| < a} and is uniformly bounded on {ζ : | Im ζ| ≤ η

√
m}.

If ζ ∈ Γ
m

where Γ is the open set between R and γ (see Lemma 2.3), then,
Im ζ2 ≤ 0; therefore, the integrand in (11) has no poles when Imλ > 0. Hence,
the integral in right hand side of (10) for n ∈ J coincides with the corresponding
integral in (11) due to Lemma 2.3, and (12) holds.

The estimate (13) is a simple corollary of the estimations of Lemmas 3.1 and
3.2.

4 Invertibility of operators of type (I + WRA)

Lemma 4.1. Let W ∈ L∞,b for b > 2a > 0. Then, the operator of multiplication
by W (we will denote it by the same letter) is

1. bounded as an operator from L2,−a to L2,a;

2. compact as an operator from H2
−a to L2,a.

Proof. The first assertion is evident. In order to prove the second it is enough
to introduce functions

Wρ(x, y) =

{
W (x, y), |x| < ρ,

0, |x| ≥ ρ,

and note that the multiplication by Wρ is a compact operator from H2
−a to

L2,a and that

‖W − Wρ‖B(L2,−a,L2,a) → 0

when ρ → ∞.

The next lemma is a well known result from analytic Fredholm theory (see,
e.g., [8, 11]).

Lemma 4.2. Let U be a domain in Cp, z0 ∈ U . Let z 7→ T (z) be an analytic
function with values in the set of compact operators in some Hilbert space H.
Then, there exists a neighborhood U0 of the point z0 and an analytic function
h : U0 → C such that, for z ∈ U0,

(I + T (z))
−1

exists if and only if h(z) = 0.

Now, we can establish the existence of the inverse of (I + WRA).
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Theorem 4.1. Let (k0, λ0) satisfy (2), RA(k, λ) and a be defined as in Theo-
rem 3.1. Pick b > 2a, and let (x, y, λ) 7→ W (x, y, λ) be a function which
belongs to L∞,b for all λ, and is analytic with respect to λ i.e., λ 7→ W (·, ·, λ) ∈
Hol(C, L∞,b).
Then, there exists ε > 0, an open set U ⊂ Cd+1 such that Bε(k0)×Bε(λ0) ⊂ U ,
and an analytic function h : U → C such that

∀λ ∈ Bε(λ0), ∃k ∈ Bε(k0) such that h(k, λ) 6= 0, (14)

and, for any (k, λ) ∈ U , the operator (I + W (λ)RA(k, λ)) is invertible in L2,a

if and only if h(k, λ) 6= 0.

Proof. Due to Theorem 3.1 and Lemma 4.1, the operator W (λ)RA(k(τ), λ) is
compact in L2,a and satisfies the inequality

‖W (λ)RA(k(τ), λ)‖B(L2,a) ≤ C|τ |−1, ∀λ ∈ Bε(λ0).

Therefore, for |τ | large enough, the operator (I + W (λ)RA(k(τ), λ))−1 exists
and is bounded on L2,a. The operator-valued function λ 7→ W (λ)RA(k, λ) is
analytic in M0 (defined in Theorem 3.1). The analytic Fredholm alternative
yields that, for each λ ∈ Bε(λ0), one can find k ∈ Bε(k0) such that the operator
(I + W (λ)RA(k, λ))−1 exists. Now, applying Lemma 4.2 with H = L2,a, z =
(k, λ) and T (z) = WRA, completes the proof of Theorem 4.1.

5 The resolvent of the operator H

We can reduce the general case of operator (1) with a “metric” g to the case
of “pure” Schrödinger operator due to the following lemma. This identity (for
the totally periodic case) is known (see [1]). We include the proof for the
convenience of the reader.

Lemma 5.1. Let the operators H(k) and A(k) be defined by (8) and (9) respec-
tively, and let the conditions of Theorem 1.1 be fulfilled with g0 = 1. If u ∈ H̃2

then,
(H(k) − λ) g−1/2u = g1/2 (A(k) + W (λ) − λ) u,

where

W (λ) =
1

g

(
∆g

2
− |∇g|2

4g
+ V + λ(g − 1)

)
. (15)

Remark 5.1. If g ≡ 1 then W (λ) ≡ V .

Proof. It is enough to prove the equality

(
i∇− (0, k)

)∗
g (i∇− (0, k)) (g−1/2u) = g1/2

(
A(k) +

∆g

2g
− |∇g|2

4g2

)
u. (16)

We have

(i∇− (0, k)) (g−1/2u) = ig−1/2∇u − i

2
g−3/2∇gu − (0, k)(g−1/2u).
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Therefore, the left hand side of (16) is equal to

(i∇− (0, k))∗
(

ig1/2∇u − i

2
g−1/2∇gu − (0, k)(g1/2u)

)

= −g1/2∆u +
1

2
div(g−1/2∇g)u − i〈k,∇y(g1/2u)〉C

− ig1/2〈∇yu, k〉C +
i

2
g−1/2〈∇yg, k〉Cu + k2g1/2u

= g1/2

(
−∆xu + (i∇y − k)∗(i∇y − k)u +

1

2
g−1/2 div(g−1/2∇g)u

)
.

This completes the proof of Lemma 5.1.

In the following theorem, we describe the meromorphic extension of the resol-
vent of H(k).

Theorem 5.1. Let the conditions of Theorem 1.1 be fulfilled, the operator H(k)
be defined by (8) and (k0, λ0) ∈ Rd+1 satisfy (2). Then, there exists numbers
a ≥ 0, ε > 0, a neighborhood U of (k0, λ0) in Cd+1 containing the set Bε(k0)×
Bε(λ0), a function h ∈ Hol(U) satisfying (14) and an operator-valued function
(k, λ) 7→ RH(k, λ) having the following properties:

1. RH is defined on the set {(k, λ) ∈ U : h(k, λ) 6= 0} and is analytic there;

2. for (k, λ) ∈ U such that h(k, λ) 6= 0, one has RH(k, λ) ∈ B(L2,a, L2,−a);

3. for (k, λ) ∈ U , k ∈ Rd, Im λ > 0, f ∈ L2,a, one has

RH(k, λ)f = (H(k) − λ)−1f. (17)

Remark 5.2. It will be seen from the proof that RH(k, λ) ∈ B(L2,a,H2
−a)

though we do not need this fact.

Proof. By the assumptions of Theorem 1.1, for any b > 0, ∇g ∈ L∞,b. So,
if we define W (λ) by (15), for any b > 0, W (λ) ∈ L∞,b. We can thus apply
Theorem 4.1. Let U , h, a and RA be as in this theorem. On the set where
h(k, λ) 6= 0, we put

RH(k, λ) = g−1/2RA(k, λ) (I + W (λ)RA(k, λ))
−1

g−1/2.

By Theorem 4.1, RH(k, λ) ∈ B(L2,a,H2
−a). Let f ∈ L2,a. Then,

(I + W (λ)RA(k, λ))
−1

g−1/2f ∈ L2,a (18)

and we can apply Lemma 5.1 to the function

u = RA(k, λ) (I + W (λ)RA(k, λ))
−1

g−1/2f ∈ H2
−a, (19)
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so

(H(k) − λ)RH(k, λ)f = g1/2 (A(k) + W (λ) − λ) u. (20)

For real k and non real λ, we have by (12) and (18)

(A(k) − λ)u = (I + W (λ)RA(k, λ))
−1

g−1/2f,

hence, by (19),

(A(k) + W (λ) − λ)u = g−1/2f,

and, finally, by (20)

(H(k) − λ)RH(k, λ)f = f. (21)

For Imλ > 0, the operators (H(k)− λ)−1 and (A(k)− λ)−1 are well defined in
L2(Ω). As RH(k, λ)f ∈ L2(Ω), (21) gives RH(k, λ)f = (H(k) − λ)−1f . This
completes the proof of Theorem 5.1.

6 One fact from the theory of functions

Lemma 6.1. Let V be an open subset of Rd. Let f be a real-analytic function
in a box (c, d) × V . Let Λ be a subset of V of measure zero, mes Λ = 0. Then,

mes{k ∈ (c, d) : ∃λ ∈ Λ s.t. f(k, λ) = 0 and ∂kf(k, λ) 6= 0} = 0. (22)

Proof. The Implicit Function Theorem implies that, for any point (k0, λ0) such
that f(k0, λ0) = 0 6= ∂kf(k0, λ0), we can find rational numbers k̃0, r̃0 > 0, a
vector λ̃0 = (λ̃1

0, · · · , λ̃d
0) with rational coordinates, and a cube Cr̃0

(k̃0, λ̃0)
where

(k0, λ0) ∈ Cr̃0
(k̃0, λ̃0) = (k̃0 − r̃0, k̃0 + r̃0) × Cr̃0

(λ̃0) ⊂ (c, d) × V

Cr̃0
(λ̃0) = (λ̃1

0 − r̃0, λ̃
1
0 + r̃0) × · · · × (λ̃d

0 − r̃0, λ̃
d
0 + r̃0)

and a real analytic function θ : Cr̃0
(λ̃0) → (k̃0 − r̃0, k̃0 + r̃0) such that

1. θ(λ0) = k0;

2. f(k, λ) = 0 ⇔ θ(λ) = k if (k, λ) ∈ Cr̃0
(k̃0, λ̃0).

Therefore,

mes{k : ∃λ ∈ Λ s.t. (k, λ) ∈ Cr̃0
(k̃0, λ̃0) and f(k, λ) = 0}

≤ mes θ(Λ ∩ Cr̃0
(λ̃0)) = 0.

The set

{(k, λ) : f(k, λ) = 0 and ∂kf(k, λ) 6= 0}

Documenta Mathematica 9 (2004) 107–121



118 N. Filonov and F. Klopp

can be covered by a countable number of cubes Cr̃(k̃, λ̃) constructed as above,
say (Cr̃i

(k̃i, λ̃i))i∈N; hence, the measure of the set under consideration in (22)
is also equal to zero as

{k ∈ (c, d) : ∃λ ∈ Λ s.t. f(k, λ) = 0 and ∂kf(k, λ) 6= 0}
⊂

⋃

i∈N

mes{k : ∃λ ∈ Λ s.t. (k, λ) ∈ Cr̃i
(k̃i, λ̃i) and f(k, λ) = 0}.

This completes the proof of Lemma 6.1.

Lemma 6.1 has a multidimensional analogue.

Lemma 6.2. Let U be an open subset of Rd, and V be an open subset of Rd′

.
Let f be a real-analytic function on the set U × V , and pick Λ ⊂ V such that
mes Λ = 0. For k ∈ U , we write k = (k1, k

′) where k1 is real and k′ ∈ Rd−1.
Then,

mes{k ∈ U : ∃λ ∈ Λ s.t. f(k, λ) = 0 and ∂k1
f(k, λ) 6= 0} = 0. (23)

Proof. Cover U with countably many open sets of the form (a, b) × Ũ i.e.,

U =
⋃

i∈N

(ai, bi) × Ũi.

For i ∈ N, one has

{k ∈ (ai, bi) × Ũi : ∃λ ∈ Λ s.t. f(k, λ) = 0 and ∂k1
f(k, λ) 6= 0}

⊂ {k1 ∈ (ai, bi) : ∃λ ∈ Λ s.t. f(k1, k
′, λ) = 0 and

∂k1
f(k1, k

′, λ) 6= 0} × Ũi.

(24)

By Lemma 6.1, the set in the right hand side of equation (24) has measure 0
(as Ũi × Λ has measure zero in Rd+d′−1). As

{k ∈ U : ∃λ ∈ Λ s.t. f(k, λ) = 0 and ∂k1
f(k, λ) 6= 0}

=
⋃

i∈N

{k ∈ (ai, bi) × Ũi : ∃λ ∈ Λ s.t. f(k, λ) = 0 and ∂k1
f(k, λ) 6= 0},

(23) holds, which completes the proof of Lemma 6.2.

Finally, we prove

Theorem 6.1. Let U be a region in Rd, Λ be a subset of an interval (a, b) such
that mes Λ = 0. Let h be a real-analytic function defined on the set U × (a, b)
and suppose that

∀λ ∈ Λ ∃k ∈ U such that h(k, λ) 6= 0. (25)

Then,
mes{k ∈ U : ∃λ ∈ Λ s.t. h(k, λ) = 0} = 0.
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Proof. For any k ∈ U and λ ∈ Λ, by assumption (25), there exists a multi-index
α ∈ Zd

+ such that ∂α
k h(k, λ) 6= 0. Therefore,

{k ∈ U : h(k, λ) = 0 for some λ ∈ Λ}

⊂
d⋃

j=1

⋃

α∈Zd
+

{
k ∈ U : ∂α

k h(k, λ) = 0, ∂kj
∂α

k h(k, λ) 6= 0 for some λ ∈ Λ
}

.

Reference to Lemma 6.2 then completes the proof of Theorem 6.1.

7 The proof of Theorem 1.1

The following lemma is well known (see for example [12]).

Lemma 7.1. Fix b > 0. Let B be a self-adjoint operator in L2(Ω). Suppose
that RB is an analytic function defined in a complex neighborhood of an interval
[α, β] except at a finite number of points {µ1, . . . , µN}, that the values of RB

are in B(L2,b, L2,−b) and that

RB(λ)ϕ = (B − λ)−1ϕ if Im λ > 0, ϕ ∈ L2,b.

Then, the spectrum of B in the set [α, β] \ {µ1, . . . , µN} is absolutely conti-
nuous. If Λ ⊂ [α, β], mes Λ = 0 and µj 6∈ Λ, j = 1, . . . , N , then EB(Λ) = 0,
where EB is the spectral projector of B.

Proof of Theorem 1.1. By Theorem 5.1, the set of all points (k, λ) ∈ Rd+1

satisfying (2) can be represented as the following union

{(k, λ) ∈ Rd+1 s.t. (2) be satisfied} =

∞⋃

j=1

Bεj
(kj) × Bεj

(λj), (26)

where, for every j, there exists

• a number aj ≥ 0,

• an analytic scalar function hj defined in a complex neighborhood of

Bεj
(kj) × Bεj

(λj) with the property

∀λ ∈ Bεj
(λj) ∃k ∈ Bεj

(kj) such that hj(k, λ) 6= 0,

• an analytic B(L2,aj
, L2,−aj

)-valued function R
(j)
H defined on the set where

hj(k, λ) 6= 0 and satisfying (17).

Now, pick Λ ⊂ R such that mes Λ = 0. Set

K0 = {k ∈ [0, 1]d : (k + n)2 = λ for some n ∈ Zd, λ ∈ Λ},
K1 = {k ∈ [0, 1]d : hj(k, λ) = 0 for some j ∈ N, λ ∈ Λ}.
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Thanks to Theorem 6.1, we know

mes K0 = mes K1 = 0. (27)

For k 6∈ K0, denote

Λj(k) = {λ ∈ Λ : (k, λ) ∈ Bεj
(kj) × Bεj

(λj)}.

It is clear that Λj(k) ⊂ (λj − εj , λj + εj), mes Λj(k) = 0, and, by (26),

Λ =

∞⋃

j=1

Λj(k) ∀k 6∈ K0. (28)

If k 6∈ (K0∪K1) and Λj(k) 6= ∅ then hj(k, λ) 6= 0 for λ ∈ Λj(k) and λ 7→ hj(k, λ)
has at most a finite number of zeros in [λj − εj , λj + εj ]. So we can apply
Lemma 7.1; therefore,

EH(k)(Λj(k)) = 0 ∀j.

This and (28) implies that
EH(k)(Λ) = 0.

Finally, one computes

EH(Λ) =

∫

[0,1]d
EH(k)(Λ) dk =

∫

[0,1]d\K0\K1

EH(k)(Λ) dk = 0

by virtue of (27). So, we proved that the spectral resolution of H vanishes on
any set of Lebesgue measure 0, which means, by definition, that the spectrum
of the operator H is purely absolutely continuous.
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Abstract. We show that any two-dimensional odd dihedral repre-
sentation ρ over a finite field of characteristic p > 0 of the absolute
Galois group of the rational numbers can be obtained from a Katz
modular form of level N , character ǫ and weight k, where N is the
conductor, ǫ is the prime-to-p part of the determinant and k is the
so-called minimal weight of ρ. In particular, k = 1 if and only if ρ is
unramified at p. Direct arguments are used in the exceptional cases,
where general results on weight and level lowering are not available.
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1 Introduction

In [S1] Serre conjectured that any odd irreducible continuous Galois represen-
tation ρ : GQ → GL2(Fp) for a prime p comes from a modular form in charac-
teristic p of a certain level Nρ, weight kρ ≥ 2 and character ǫρ. Later Edixhoven
discussed in [E2] a slightly modified definition of weight, the so-called minimal
weight, denoted k(ρ), by invoking Katz’ theory of modular forms. In particular,
one has that k(ρ) = 1 if and only if ρ is unramified at p.

The present note contains a proof of this conjecture for dihedral representations.
We define those to be the continuous irreducible Galois representations that are
induced from a character of the absolute Galois group of a quadratic number
field. Let us mention that this is equivalent to imposing that the projective
image is isomorphic to a dihedral group Dn with n ≥ 3.
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Theorem 1 Let p be a prime and ρ : GQ → GL2(Fp) an odd dihedral rep-
resentation. As in [S1] define Nρ to be the conductor of ρ and ǫρ to be the
prime-to-p part of det ◦ρ (considered as a character of (Z/(Nρp)Z)∗). Define
k(ρ) as in [E2].

Then there exists a normalised Katz eigenform f ∈ Sk(ρ)(Γ1(Nρ), ǫρ, Fp)Katz,
whose associated Galois representation ρf is isomorphic to ρ.

We will on the one hand show directly that ρ comes from a Katz modular form
of level Nρ, character ǫρ and minimal weight k(ρ) = 1, if ρ is unramified at p.
If on the other hand ρ is ramified at p, we will finish the proof by applying
the fundamental work by Ribet, Edixhoven, Diamond, Buzzard and others on
“weight and level lowering” (see Theorem 10).

Let us recall that in weight at least 2 every Katz modular form on Γ1 is clas-
sical, i.e. a reduction from a characteristic zero form of the same level and
weight. Hence multiplying by the Hasse invariant, if necessary, it follows from
Theorem 1 that every odd dihedral representation as above also comes from
a classical modular form of level Nρ and Serre’s weight kρ. However, if one
also wants the character to be ǫρ, one has to exclude in case p = 2 that ρ is
induced from Q(i) and in case p = 3 that ρ is induced from Q(

√
−3) (see [B],

Corollary 2.7, and [D], Corollary 1.2).

Edixhoven’s theorem on weight lowering ([E2], Theorem 4.5) states that mod-
ularity in level Nρ and the modified weight k(ρ) follows from modularity in
level Nρ and Serre’s weight kρ, unless one is in a so-called exceptional case. A
representation ρ : GQ → GL2(Fp) is called exceptional if the semi-simplification
of its restriction to a decomposition group at p is the sum of two copies of an
unramified character. Because of work by Coleman and Voloch the only open
case left is that of characteristic 2 (see the introduction of [E2]).

Exceptionality at 2 is a common phenomenon for mod 2 dihedral representa-
tions. One way to construct examples is to consider the Hilbert class field H
of a quadratic field K that is unramified at 2 and has a non-trivial class group.
One lets ρK be the dihedral representation obtained by induction to GQ of a
mod 2 character of the Galois group of H|K. If the prime 2 stays inert in OK ,
then 2OK splits completely in H and the order of ρK(Frob2) is 2, where Frob2

is a Frobenius element at 2. Consequently, ρK is exceptional. An example for
this behaviour is provided by K = Q(

√
229). If the prime 2 splits in OK and

the primes of OK lying above 2 are principal, then ρK(Frob2) is the identity
and hence ρK is exceptional. This happens for example for K = Q(

√
2089).

Let us point out that some of the weight one forms that we obtain cannot be
lifted to characteristic zero forms of weight one and the same level, so that the
theory of modular forms by Katz becomes necessary. Namely, if p = 2 and
the dihedral representation in question has odd conductor N and is induced
from a real quadratic field K of discriminant N , whose fundamental units have
norm −1, then there does not exist an odd characteristic zero representation
with conductor dividing N that reduces to ρ. The representation coming from
the quadratic field Q(

√
229) used above, can also here serve as an example.
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The fact that dihedral representations come from some modular form is well-
known (apparently already due to Hecke). So the subtle issue is to adjust
the level, character and weight. It should be noted that Rohrlich and Tunnell
solved many cases for p = 2 with Serre’s weight kρ by rather elementary means
in [R-T], however, with the more restrictive definition of a dihedral representa-
tion to be such that its image in GL2(F2), and not in PGL2(F2), is isomorphic
to a dihedral group.
Let us also mention that it is possible to do computations of weight one forms
in positive characteristic on a computer (see [W]) and thus to collect evidence
for Serre’s conjecture in some cases.
This note is organised as follows. The number theoretic ingredients on dihedral
representations are provided in Section 2. In Section 3 some results on oldforms,
also in positive characteristic, are collected. Section 4 is devoted to the proof
of Theorem 1. Finally, in Section 5 we include a result on the irreducibility of
certain mod p representations.

I wish to thank Peter Stevenhagen for helpful discussions and comments and
especially Bas Edixhoven for invaluable explanations and his constant support.

2 Dihedral representations

We shall first recall some facts on Galois representations. Let ρ : GQ → GL(V )
be a continuous representation with V a 2-dimensional vector space over an
algebraically closed discrete field k.
Let L be the number field such that Ker(ρ) = GL (by the notation GL we
always mean the absolute Galois group of L). Given a prime Λ of L dividing
the rational prime l, we denote by GΛ,i the i-th ramification group in lower
numbering of the local extension LΛ|Ql. Furthermore, one sets

nl(ρ) =
∑

i≥0

dim(V/V GΛ,i)

(GΛ,0 : GΛ,i)
.

This number is an integer, which is independent of the choice of the prime Λ
above l. With this one defines the conductor of ρ to be f(ρ) =

∏
l l

nl(ρ), where
the product runs over all primes l different from the characteristic of k. If k is
the field of complex numbers, f(ρ) coincides with the Artin conductor.
Let ρ be a dihedral representation. Then ρ is induced from a character
χ : GK → k∗ for a quadratic number field K such that χ 6= χσ, with
χσ(g) = χ(σ−1gσ) for all g ∈ GK , where σ is a lift to GQ of the non-trivial
element of GK|Q. For a suitable choice of basis we then have the following
explicit description of ρ: If an unramified prime l splits in K as Λσ(Λ), then

ρ(Frobl) =

(
χ(FrobΛ) 0

0 χσ(FrobΛ)

)
. Moreover, ρ(σ) is represented by the

matrix

(
0 1

χ(σ2) 0

)
. As ρ is continuous, its image is a finite group, say, of

order m.
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Lemma 2 Let ρ : GQ → GL2(Fp) be an odd dihedral representation that is
unramified at p. Define K, χ, σ and m as above. Let N be the conductor of ρ.
Let ζm a primitive m-th root of unity and P a prime of Q(ζm) above p.
Then one of the following two statements holds.

(a) There exists an odd dihedral representation ρ̂ : GQ → GL2(Z[ζm]), which
has Artin conductor N and reduces to ρ modulo P.

(b) One has that p = 2 and K is real quadratic. Moreover, there is an infinite
set S of primes such that for each l ∈ S the trace of ρ(Frobl) is zero, and
there exists an odd dihedral representation ρ̂ : GQ → GL2(Z[ζm]), which
has Artin conductor Nl and reduces to ρ modulo P.

Proof. Suppose that the quadratic field K equals Q(
√

D) with D square-free.
The character χ : GK → k∗ can be uniquely lifted to a character χ̃ : GK →
Z[ζm]∗ of the same order, which reduces to χ modulo P. Denote by ρ̃ the

continuous representation Ind
GQ

GK
χ̃. For the choice of basis discussed above the

matrices representing ρ can be lifted to matrices representing ρ̃, whose non-zero
entries are in the m-th roots of unity. Then for any open subgroup H of GQ,

one has that (Fp
2
)ρ(H) is isomorphic to (Z[ζm]2)ρ̃(H)⊗Fp. Hence the conductor

of ρ equals the Artin conductor of ρ̃, as ρ̃ is unramified at p. Alternatively, one
can first remark that the conductor of χ equals the conductor of χ̃ and then
use the formulae f(ρ) = NormK|Q(f(χ))D and f(ρ̃) = NormK|Q(f(χ̃))D.
Thus condition (a) is satisfied if ρ̃ is odd. Let us now consider the case when ρ̃
is even. This immediately implies p = 2 and that the quadratic field K is real,
as is the number field L whose absolute Galois group GL equals the kernel of ρ,
and hence also the kernel of χ̃. We shall now adapt “Serre’s trick” from [R-T],
p. 307, to our situation.
Let f be the conductor of χ̃. As L is totally real, f is a finite ideal of OK . Via
class field theory, χ̃ can be identified with a complex character of CLf

K , the ray
class group modulo f. Let ∞1,∞2 be the infinite places of K. Consider the
class

c = [{(λ) ∈ CL4Df∞1∞2

K | Norm(λ) < 0, λ ≡ 1mod 4Df}]
in the ray class group of K modulo 4Df∞1∞2. By Cebotarev’s density the-
orem the primes of OK are uniformly distributed over the conjugacy classes
of CL4Df∞1∞2

K . Hence, there are infinitely many primes Λ of degree 1 in the
class c. Take S to be the set of rational primes lying under them. Let a prime
Λ from the class c be given. It is principal, say Λ = (λ), and coprime to 4Df.

By construction we have c2 = [Λ2] = 1. As CLf
K is a quotient of CL4Df∞1∞2

K ,

the class of Λ in CLf
K has order 1 or 2. Since p = 2, the character χ has odd

order and we conclude that χ(Λ) = 1.
We have λ ≡ 1mod 4Df and Norm(λ) = −l for some odd prime l. Hence, the
extension K(

√
λ) has two real and two complex embeddings and is unramified

at 2 and at the primes dividing Df. We represent K(
√

λ) by the quadratic
character ξ : GK → {±1}. For the complex conjugation, the “infinite Frobenius
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element”, Frob∞1
, we have that ξ(Frob∞1

)ξσ(Frob∞1
) = −1. We now consider

the representation ρ̂ obtained by induction from the character χ̂ = χ̃ξ. Using
the same basis as in the discussion at the beginning of this section, an element g

of GK is represented by the matrix

(
χ̃(g)ξ(g) 0

0 χ̃σ(g)ξσ(g)

)
. In particular,

we obtain that the determinant of Frob∞ over Q equals −1, whence ρ̂ is odd.
Moreover, as l splits in K, one has that ρ(Frobl) is the identity matrix, so that
the trace of ρ(Frobl) is zero.
The reduction of ρ̂ equals ρ, as ξ is trivial in characteristic 2. Moreover, outside
Λ the conductor of χ̂ equals the conductor of χ̃. At the prime Λ the local
conductor of χ̂ is Λ, as the ramification is tame. Consequently, the Artin
conductor of ρ̂ equals Nl. ¤

Also without the condition that it is unramified at p, one can lift a dihedral
representation to characteristic zero, however, losing control of the Artin con-
ductor.

Lemma 3 Let ρ : GQ → GL2(Fp) be an odd dihedral representation. Define K,
χ, m, ζm and P as in the previous lemma.
There exists an odd dihedral representation ρ̂ : GQ → GL2(Z[ζm]), whose re-
duction modulo P is isomorphic to ρ.

Proof. We proceed as in the preceding lemma for the definitions of χ̃ and ρ̃.
If ρ̃ is even, then p = 2 and K is real. In that case we choose some λ ∈ OK −Z,
which satisfies Norm(λ) < 0. The field K(

√
λ) then has two real and two

complex embeddings and gives a character ξ : GK → Z[ζm]∗. As in the proof

of the preceding lemma one obtains that the representation ρ̂ = Ind
GQ

GK
χ̃ξ is

odd and reduces to ρ modulo P. ¤

3 On oldforms

In this section we collect some results on oldforms. We try to stay as much as
possible in the characteristic zero setting. However, we also need a result on
Katz modular forms.

Proposition 4 Let N, k, r be positive integers, p a prime and ǫ a Dirichlet
character of modulus N . The homomorphism

φN
pr :

(
Sk(Γ1(N), ǫ, C)

)r+1 →֒ Sk(Γ1(Npr), ǫ, C), (f0, f1, . . . , fr) 7→
r∑

i=0

fi(q
pi

)

is compatible with all Hecke operators Tn with (n, p) = 1.
Let f ∈ Sk(Γ1(N), ǫ, C) be a normalised eigenform for all Hecke operators.

Then the forms f(q), f(qp2

), . . . , f(qpr

) in the image of φN
pr are linearly inde-

pendent, and on their span the action of the operator Tp in level Npr is given
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by the matrix 


ap(f) 1 0 0 . . . 0
−δpk−1ǫ(p) 0 1 0 . . . 0

0 0 0 1 . . . 0
...

0 . . . 0 0 0 1
0 . . . 0 0 0 0




,

where δ = 1 if p ∤ N and δ = 0 otherwise.

Proof. The embedding map and its compatibility with the Hecke action
away from p is explained in [D-I], Section 6.1. The linear independence can be
checked on q-expansions. Finally, the matrix can be elementarily computed.

¤

Corollary 5 Let p be a prime, r ≥ 0 some integer and f ∈ Sk(Γ1(Npr), ǫ, C)
an eigenform for all Hecke operators. Then there exists an eigenform for all
Hecke operators f̃ ∈ Sk(Γ1(Npr+2), ǫ, C), which satisfies al(f̃) = al(f) for all
primes l 6= p and ap(f̃) = 0.

Proof. One computes the characteristic polynomial of the operator Tp of
Proposition 4 and sees that it has 0 as a root if the dimension of the matrix is
at least 3. Hence one can choose the desired eigenform f̃ in the image of φNpr

p2 .
¤

As explained in the introduction, Katz’ theory of modular forms ought to be
used in the study of Serre’s conjecture. Following [E3], we briefly recall this
concept, which was introduced by Katz in [K]. However, we shall use a “non-
compactified” version.
Let N ≥ 1 be an integer and R a ring, in which N is invertible. One defines
the category [Γ1(N)]R, whose objects are pairs (E/S/R,α), where S is an R-
scheme, E/S an elliptic curve (i.e. a proper smooth morphism of R-schemes,
whose geometric fibres are connected smooth curves of genus one, together with
a section, the “zero section”, 0 : S → E) and α : (Z/NZ)S → E[N ], the level
structure, is an embedding of S-group schemes. The morphisms in the category
are cartesian diagrams

E′ //

¤

E

S′ //
²²

S,
²²

which are compatible with the zero sections and the level structures. For every
such elliptic curve E/S/R we let ωE/S = 0∗ΩE/S . For every morphism π :
E′/S′/R → E/S/R the induced map ωE′/S′ → π∗ωE/S is an isomorphism.
A Katz cusp form f ∈ Sk(Γ1(N), R)Katz assigns to every object (E/S/R,α) of
[Γ1(N)]R an element f(E/S/R,α) ∈ ω⊗k

E/S(S), compatibly for the morphisms in
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the category, subject to the condition that all q-expansions (which one obtains
by adjoining all N -th roots of unity and plugging in a suitable Tate curve) only
have positive terms.
For the following definition let us remark that if m ≥ 1 is coprime to N
and is invertible in R, then any morphism of group schemes of the form
φNm : (Z/NmZ)S → E[Nm] can be uniquely written as φN ×S φm with
φN : (Z/NZ)S → E[N ] and φm : (Z/mZ)S → E[m].

Definition 6 A Katz modular form f ∈ Sk(Γ1(Nm), R)Katz is called inde-
pendent of m if for all elliptic curves E/S/R, all φN : (Z/N)S →֒ E[N ] and
all φm, φ′

m : (Z/m)S →֒ E[m] one has the equality

f(E/S/R, φN ×S φm) = f(E/S/R, φN ×S φ′
m) ∈ ω⊗k

E/S(S).

Proposition 7 Let N , m be coprime positive integers and R a ring, which
contains the Nm-th roots of unity and 1

Nm . A Katz modular form f ∈
Sk(Γ1(Nm), R)Katz is independent of m if and only if there exists a Katz mod-
ular form g ∈ Sk(Γ1(N), R)Katz such that

f(E/S/R, φNm) = g(E/S/R, φNm ◦ ψ)

for all elliptic curves E/S/R and all φNm : (Z/NmZ)S →֒ E[Nm]. Here ψ
denotes the canonical embedding (Z/NZ)S →֒ (Z/NmZ)S of S-group schemes.
In that case, f and g have the same q-expansion at ∞.

Proof. If m = 1, there is nothing to do. If necessary replacing m by m2, we
can hence assume that m is at least 3.
Let us now consider the category [Γ1(N ;m)]R, whose objects are triples
(E/S/R, φN , ψm), where S is an R scheme, E/S an elliptic curve, φN :
(Z/NZ)S →֒ E[N ] an embedding of group schemes and ψm(Z/mZ)2S

∼= E[m]
an isomorphism of group schemes. The morphisms are cartesian diagrams com-
patible with the zero sections, the φN and the ψm as before.
We can pull back the form f ∈ Sk(Γ1(Nm), R)Katz to a Katz form h
on [Γ1(N ;m)]R as follows. First let β : (Z/mZ)S →֒ (Z/mZ)2S be the em-
bedding of S-group schemes defined by mapping onto the first factor. Using
this, f gives rise to h by setting

h((E/S/R, φN , ψm)) = f((E/S/R, φN , ψm ◦ β)) ∈ ω⊗k
E/S(S).

As f is independent of m, it is clear that h is independent of ψm and thus
invariant under the natural GL2(Z/mZ)-action.
As m ≥ 3, one knows that the category [Γ1(N ;m)]R has a final ob-
ject (Euniv/Y1(N ;m)R/R, αuniv). In other words, h is an GL2(Z/mZ)-
invariant global section of ω⊗k

Euniv/Y1(N ;m)R
. Since this R-module is equal

to Sk(Γ1(N), R)Katz (see e.g. Equation 1.2 of [E3], p. 210), we find some
g ∈ Sk(Γ1(N), R)Katz such that f(E/S/R, φNm) = g(E/S/R, φNm ◦ ψ) for
all (E/S/R, φNm).
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Plugging in the Tate curve, one sees that the standard q-expansions of f and
g coincide. ¤

Corollary 8 Let N,m be coprime positive integers, p a prime not dividing
Nm and ǫ : (Z/NZ)∗ → Fp a character. Let f ∈ Sk(Γ1(Nm), ǫ, Fp)Katz be a
Katz cuspidal eigenform for all Hecke operators.
If f is independent of m, then there exists an eigenform for all Hecke operators
g ∈ Sk(Γ1(N), ǫ, Fp)Katz such that the associated Galois representations ρf and
ρg are isomorphic.

Proof. From the preceding proposition we get a modular form g ∈
Sk(Γ1(N), ǫ, Fp)Katz, noting that the character is automatically good. Because
of the compatibility of the embedding map with the operators Tl for primes
l ∤ m, we find that g is an eigenform for these operators. As the operators Tl

for primes l ∤ m commute with the others, we can choose a form of the desired
type. ¤

4 Proof of the principal result

We first cover the weight one case.

Theorem 9 Let p be a prime and ρ : GQ → GL2(Fp) an odd dihedral repre-
sentation of conductor N , which is unramified at p. Let ǫ denote the character
det ◦ρ.
Then there exists a Katz eigenform f in S1(Γ1(N), ǫ, Fp)Katz, whose associated
Galois representation is isomorphic to ρ.

Proof. Assume first that part (a) of Lemma 2 applies to ρ, and let ρ̂ be a lift
provided by that lemma. A theorem by Weil-Langlands (Theorem 1 of [S2])
implies the existence of a newform g in S1(Γ1(N),det ◦ρ̂, C), whose associated
Galois representation is isomorphic to ρ̂. Now reduction modulo a suitable
prime above p yields the desired modular form. In particular, one does not
need Katz’ theory in this case.
If part (a) of Lemma 2 does not apply, then part (b) does, and we let S be the
infinite set of primes provided. For each l ∈ S the theorem of Weil-Langlands
yields a newform f (l) in S1(Γ1(Nl), C), whose associated Galois representation
reduces to ρ modulo P, where P is the ideal from the lemma. Moreover, the
congruence aq(f

(l)) ≡ 0mod P holds for all primes q ∈ S different from l.

From Corollary 5 we obtain Hecke eigenforms f̃ (l) ∈ S1(Γ1(Nl3), C) such that

al(f̃
(l)) = 0 and aq(f̃

(l)) = aq(f
(l)) ≡ 0mod P for all primes q ∈ S, q 6= l. Re-

ducing modulo the prime ideal P, we get eigenforms g(l) ∈ S1(Γ1(Nl3), ǫ, Fp),
whose associated Galois representations are isomorphic to ρ. One also has
aq(g

(l)) = 0 for all q ∈ S.
The coefficients aq(f

(l)) for all primes q | N appear in the L-series of the com-
plex representation ρf(l) associated to f (l). As the image of ρf(l) is isomorphic
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to a fixed finite group G, not depending on l, there are only finitely many
possibilities for the value of aq(f

(l)). Hence the same holds for the g(l). Con-
sequently, there are two forms g1 = g(l1) and g2 = g(l2) for l1 6= l2 that have
the same coefficients at all primes q | N . For primes q ∤ Nl1l2 one has that
the trace of ρf(l1)(Frobq) is congruent to the trace of ρf(l2)(Frobq), whence
aq(g1) = aq(g2). Let us point out that this includes the case q = p = 2, as the
complex representation is unramified at p.
In the next step we embed g1 and g2 into S1(Γ1(Nl31l

3
2), ǫ, Fp)Katz via the

method in the statement of Proposition 7. As the q-expansions coincide, g1

and g2 are mapped to the same form h. But as h comes from g2, it is inde-
pendent of l1 and analogously also of l2. Since ρh = ρ, Theorem 9 follows
immediately from Corollary 8. ¤

We will deduce the cases of weight at least two from general results. The
current state of the art in “level and weight lowering” seems to be the following
theorem.

Theorem 10 [Ribet, Edixhoven, Diamond, Buzzard,. . . ] Let p be a prime and
ρ : GQ → GL2(Fp) a continuous irreducible representation, which is assumed
to come from some modular form. Define kρ and Nρ as in [S1]. If p = 2,
additionally assume either (i) that the restriction of ρ to a decomposition group
at 2 is not contained within the scalar matrices or (ii) that ρ is ramified at 2.
Then there exists a normalised eigenform f ∈ Skρ

(Γ1(Nρ), Fp) giving rise to ρ.

Proof. The case p 6= 2 is Theorem 1.1 of [D], and the case p = 2 with
condition (i) follows from Propositions 1.3 and 2.4 and Theorem 3.2 of [B],
multiplying by the Hasse invariant if necessary.
We now show that if p = 2 and ρ restricted to a decomposition group GQ2

at 2 is contained within the scalar matrices, then ρ is unramified at 2. Let
φ : GQ → F2

∗
be the character such that φ2 = det ◦ρ. As φ has odd order,

it is unramified at 2 because of the Kronecker-Weber theorem. If ρ restricted
to GQ2

is contained within the scalar matrices, then we have that ρ|GQ2
is(

φ|GQ2
0

0 φ|GQ2

)
, whence ρ is unramified at 2. ¤

Proof of theorem 1. Let ρ be the dihedral representation from the asser-
tion. If ρ is unramified at p, one has k(ρ) = 1, and Theorem 1 follows from
Theorem 9.
If ρ is ramified at p, then let ρ̂ be a characteristic zero representation lifting ρ,
as provided by Lemma 3. The theorem by Weil-Langlands already used above
(Theorem 1 of [S2]) implies the existence of a newform in weight one and
characteristic zero giving rise to ρ̂. So from Theorem 10 we obtain that ρ
comes from a modular form of Serre’s weight kρ and level Nρ. Let us note
that using Katz modular forms the character is automatically the conjectured
one ǫρ.
The weights kρ and k(ρ) only differ in two cases (see [E2], remark 4.4). The
first case is when k(ρ) = 1. The other case is when p = 2 and ρ is not finite
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at 2. Then one has k(ρ) = 3 and kρ = 4. In that case one applies Theorem 3.4
of [E2] to obtain an eigenform of the same level and character in weight 3, or
one applies Theorem 3.2 of [B] directly. ¤

5 An irreducibility result

We first study the relation between the level of an eigenform in characteristic p
and the conductor of the associated Galois representation.

Lemma 11 Let ρ : GQ → GL2(Fp) be a continuous representation of conduc-
tor N , and let k be a positive integer. If f ∈ Sk(Γ1(M), ǫ, Fp)Katz is a Hecke
eigenform giving rise to ρ, then N divides M .

Proof. By multiplying with the Hasse invariant, if necessary, we can assume
that the weight is at least 2. Hence the form f can be lifted to characteristic
zero (see e.g. [D-I], Theorem 12.3.2) in the same level. Thus there exists a
newform g, say of level L, whose Galois representation ρg reduces to ρ. Now
Proposition 0.1 of [L] yields that N divides L. As L divides M , the lemma
follows. ¤

We can derive the following proposition, which is of independent interest.

Proposition 12 Let f ∈ Sk(Γ0(N), Fp)Katz be a normalised Hecke eigenform
for a square-free level N with p ∤ N in some weight k ≥ 1.

(a) If p = 2, the associated Galois representation is either irreducible or trivial.

(b) For any prime p the associated Galois representation is either irreducible or
corresponds to a direct sum α⊕χk−1

p α−1, where χp is the mod p cyclotomic
character and α is a character factoring through G(Q(ζp)|Q) for a primitive
p-th root of unity ζp.

Proof. Let us assume that the representation ρ associated to f is reducible.
Since ρ is semi-simple, it is isomorphic to the direct sum of two characters
α ⊕ β. As the determinant is the (k − 1)-th power of the mod p cyclotomic
character χp, we have that β = χk−1

p α−1. Since the conductor of χk−1
p is 1, it

follows that the conductor of α equals that of β. Consequently, the conductor
of ρ is the square of the conductor of α. Lemma 11 implies that the conductor
of ρ divides N . As we have assumed this number to be square-free, we have
that ρ can only ramify at p.

The number field L with GL = Ker(ρ) is abelian. As only p can be ramified,
it follows that L is contained in Q(ζpn) for some pn-th root of unity. Since the
order of α is prime to p, we conclude that α factors through G(Q(ζp)|Q). In
characteristic p = 2 this implies that ρ is the trivial representation, as χ2 is the
trivial character. ¤
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Abstract. Lemma 6.1 and 6.2 in [1] are false as stated there. Below,
we correct the proof of Theorem 6.1 accordingly.

2000 Mathematics Subject Classification: 35J10, 35Q40, 81C10

6 One fact from the theory of functions

Lemma 6.1. Let U be an open subset of Rd. Let f be a real-analytic function
on the set U × (a, b), and pick Λ ⊂ (a, b) such that mes Λ = 0. Then

mes{k ∈ U : ∃λ ∈ Λ s.t. f(k, λ) = 0 and ∂k1
f(k, λ) 6= 0} = 0. (1)

Proof. The Implicit Function Theorem implies that, for any point (k∗, λ∗) such
that f(k∗, λ∗) = 0 6= ∂k1

f(k, λ∗), we can find rational numbers r̃ > 0, λ̃, a
vector k̃ with rational coordinates, and a real analytic function θ defined in
Br̃(k̃

′, λ̃) such that

1. (k∗, λ∗) ∈ Br̃(k̃, λ̃);

1N.F.’s research was partially supported by the FNS 2000 “Programme Jeunes
Chercheurs”.

2F.K.’s research was partially supported by the program RIAC 160 at Université Paris 13
and by the FNS 2000 “Programme Jeunes Chercheurs”.
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2. θ((k∗)′, λ) = k∗
1 ;

3. f(k, λ) = 0 ⇔ θ(k′, λ) = k1 if (k, λ) ∈ Br̃(k̃, λ̃).

The Jacobian of the map

(k′, λ) 7→ (θ(k′, λ), k′)

is bounded, so

mes{(θ(k′, λ), k′) : (k′, λ) ∈ Br̃(k̃
′, λ̃), λ ∈ Λ} = 0,

and therefore,

mes{k : ∃λ ∈ Λ s.t. (k, λ) ∈ Br̃(k̃, λ̃) and f(k, λ) = 0} = 0.

The set
{(k, λ) : f(k, λ) = 0 and ∂k1

f(k, λ) 6= 0}
can be covered by a countable number of balls Br̃i

(k̃i, λ̃i) constructed as above,
hence the measure of the set in (1) is also equal to zero.

Theorem 6.1. Let U be a region in Rd, Λ be a subset of an interval (a, b) such
that mes Λ = 0. Let h be a real-analytic function defined on the set U × (a, b)
and suppose that

∀λ ∈ Λ ∃k ∈ U such that h(k, λ) 6= 0. (2)

Then,
mes{k ∈ U : ∃λ ∈ Λ s.t. h(k, λ) = 0} = 0.

Proof. The proof of Theorem 6.1 is that given in [1] except that one uses
Lemma 6.1.
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Abstract. We establish the existence and uniqueness of finite free
resolutions - and their attendant Betti numbers - for graded commut-
ing d-tuples of Hilbert space operators. Our approach is based on the
notion of free cover of a (perhaps noncommutative) row contraction.
Free covers provide a flexible replacement for minimal dilations that
is better suited for higher-dimensional operator theory.

For example, every graded d-contraction that is finitely multi-cyclic
has a unique free cover of finite type - whose kernel is a Hilbert module
inheriting the same properties. This contrasts sharply with what can
be achieved by way of dilation theory (see Remark 2.5).

2000 Mathematics Subject Classification: 46L07, 47A99
Keywords and Phrases: Free Resolutions, Multivariable Operator
Theory

1. Introduction

The central result of this paper establishes the existence and uniqueness of
finite free resolutions for commuting d-tuples of operators acting on a common
Hilbert space (Theorem 2.6). Commutativity is essential for that result, since
finite resolutions do not exist for noncommuting d-tuples.

On the other hand, we base the existence of free resolutions on a general
notion of free cover that is effective in a broader noncommutative context.
Since free covers have applications that go beyond the immediate needs of this
paper, and since we intend to take up such applications elsewhere, we present
the general version below (Theorem 2.4). In the following section we give
precise statements of these two results, we comment on how one passes from
the larger noncommutative category to the commutative one, and we relate
these results to previous work that has appeared in the literature. Section 3
concerns generators for Hilbert modules, in which we show that the examples
of primary interest are properly generated. The next two sections are devoted
to proofs of the main results - the existence and uniqueness of free covers and
of finite free resolutions. In Section 6 we discuss examples.
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2. Statement of results

A row contraction of dimension d is a d-tuple of operators (T1, . . . , Td) acting
on a common Hilbert space H that has norm at most 1 when viewed as an
operator from H ⊕ · · · ⊕ H to H. A d-contraction is a row contraction whose
operators mutually commute, TjTk = TkTj , 1 ≤ j, k ≤ d. In either case,
one can view H as a module over the noncommutative polynomial algebra
C〈zd, . . . , zd〉 by way of

f · ξ = f(T1, . . . , Td)ξ, f ∈ C〈z1, . . . , zd〉,
and H becomes a contractive Hilbert module in the sense that

‖z1 · ξ1 + · · · + zd · ξd‖2 ≤ ‖ξ1‖2 + · · · + ‖ξd‖2, ξ1, . . . , ξd ∈ H.

The maps of this category are linear operators A ∈ B(H1,H2) that are homo-
morphisms of the module structure and satisfy ‖A‖ ≤ 1. It will be convenient
to refer to a Hilbert space endowed with such a module structure simply as a
Hilbert module.

Associated with every Hilbert module H there is an integer invariant that
we shall call the defect, defined as follows. Let Z · H denote the closure of the
range of the coordinate operators

Z · H = {z1ξ1 + · · · + zdξd : ξ1, . . . , ξd ∈ H}−.

Z · H is a closed submodule of H, hence the quotient H/(Z · H) is a Hilbert
module whose row contraction is (0, . . . , 0). One can identify H/(Z · H) more
concretely as a subspace of H in terms of the ambient operators T1, . . . , Td,

H/(Z · H) ∼ H ⊖ (Z · H) = kerT ∗
1 ∩ · · · ∩ ker T ∗

d .

Definition 2.1. A Hilbert module H is said to be properly generated if H ⊖
(Z · H) is a generator:

H = span{f · ζ : f ∈ C〈z1, . . . , zd〉 ζ ∈ H ⊖ (Z · H)}.
In general, the quotient Hilbert space H/(Z ·H) is called the defect space of H
and its dimension dim(H/(Z · H)) is called the defect.

The defect space of a finitely generated Hilbert module must be finite-
dimensional. Indeed, it is not hard to see that the defect is dominated by
the smallest possible number of generators. A fuller discussion of properly
generated Hilbert modules of finite defect will be found in Section 3.

The free objects of this category are defined as follows. Let Z be a Hilbert
space of dimension d = 1, 2, . . . and let F 2(Z) be the Fock space over Z,

F 2(Z) = C ⊕ Z ⊕ Z⊗2 ⊕ Z⊗3 ⊕ · · ·
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where Z⊗n denotes the full tensor product of n copies of Z. One can view F 2(Z)
as the completion of the tensor algebra over Z in a natural Hilbert space norm;
in turn, if we fix an orthonormal basis e1, . . . , ed for Z then we can define an
isomorphism of the noncommutative polynomial algebra C〈z1, . . . , zd〉 onto the
tensor algebra by sending zk to ek, k = 1, . . . , d. This allows us to realize
the Fock space as a completion of C〈z1, . . . , zd〉, on which the multiplication
operators associated with the coordinates z1, . . . , zd act as a row contraction.
We write this Hilbert module as F 2〈z1, . . . , zd〉; and when there is no possibility
of confusion about the dimension or choice of basis, we often use the more
compact F 2.

One forms free Hilbert modules of higher multiplicity by taking direct sums
of copies of F 2. More explicitly, let C be a Hilbert space of dimension r =
1, 2, . . . ,∞ and consider the Hilbert space F 2 ⊗ C. There is a unique Hilbert
module structure on F 2 ⊗ C satisfying

f · (ξ ⊗ ζ) = (f · ξ) ⊗ ζ, f ∈ C〈z1, . . . , zd〉, ξ ∈ F 2, ζ ∈ C,

making F 2 ⊗ C into a properly generated Hilbert module of defect r.
More generally, it is apparent that any homomorphism of Hilbert modules

A : H1 → H2 induces a contraction

Ȧ : H1/(Z · H1) → H2/(Z · H2)

that maps one defect space into the other.

Definition 2.2. Let H be a Hilbert module. By a cover of H we mean a
contractive homomorphism of Hilbert modules A : F → H that has dense
range and induces a unitary operator Ȧ : F/(Z · F ) → H/(Z · H) from one
defect space onto the other. A free cover of H is a cover A : F → H in which
F = F 2〈z1, . . . , zd〉 ⊗ C is a free Hilbert module.

Remark 2.3 (The Extremal Property of Covers). In general, if one is given
a contractive homomorphism with dense range A : F → H, there is no way
of relating the image A(F ⊖ (Z · F )) to H ⊖ (Z · H), even when A induces a

bijection Ȧ of one defect space onto the other. But since a cover is a contraction
that induces a unitary map of defect spaces, it follows that a cover must map
F ⊖ (Z · F ) isometrically onto H ⊖ (Z · H) (see Lemma 4.1). This extremal
property is critical, leading for example to the uniqueness assertion of Theorem
2.4 below.

It is not hard to give examples of finitely generated Hilbert modules H that
are degenerate in the sense that Z · H = H (see the proof of Proposition 3.4),
and in such cases, free covers A : F → H cannot exist when H 6= {0}. As we
will see momentarily, the notion of free cover is effective for Hilbert modules
that are properly generated. We emphasize that in a free cover A : F → H of
a finitely generated Hilbert module H with F = F 2 ⊗ C,

dim C = defect(F 2 ⊗ C) = defect H < ∞,
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so that for finitely generated Hilbert modules for which a free cover exists, the
free module associated with a free cover must be of finite defect. More generally,
we say that a diagram of Hilbert modules

F −→
A

G −→
B

H

is weakly exact at G if AF ⊂ ker B and the map A : F → ker B defines a
cover of kerB. This implies that AF is dense in ker B, but of course it asserts
somewhat more.

Any cover A : F → H of H can be converted into another one by composing
it with a unitary automorphism of F on the right. Two covers A : FA → H
and B : FB → H are said to be equivalent if there is a unitary isomorphism of
Hilbert modules U : FA → FB such that B = AU . Notice the one-sided nature
of this relation; in particular, two equivalent covers of a Hilbert module H
must have identical (non-closed) ranges. When combined with Proposition 3.2
below, the following result gives an effective characterization of the existence
of free covers.

Theorem 2.4. A contractive Hilbert module H over the noncommutative poly-
nomial algebra C〈z1, . . . , zd〉 has a free cover if, and only if, it is properly gen-
erated; and in that case all free covers of H are equivalent.

Remark 2.5 (The Rigidity of Dilation Theory). Let H be a pure, finitely gener-
ated, contractive Hilbert module over C〈z1, . . . , zd〉 (see [Arv98]). The methods
of dilation theory lead to the fact that, up to unitary equivalence of Hilbert
modules, H can be realized as a quotient of a free Hilbert module

H = (F 2〈z1, . . . , zd〉 ⊗ C)/M

where M is an invariant subspace of F 2 ⊗ C. In more explicit terms, there is
a contractive homomorphism L : F 2 ⊗ C → H of Hilbert modules such that
LL∗ = 1H . When such a realization is minimal, there is an appropriate sense
in which it is unique.

The problem with this realization of H as a quotient of a free Hilbert mod-
ule is that the coefficient space C is often infinite-dimensional; moreover, the
connecting map L is only rarely a cover. Indeed, in order for C to be finite-
dimensional it is necessary and sufficient that the “defect operator” of H,
namely

(2.1) ∆ = (1H − T1T
∗
1 − · · · − TdT

∗
d )1/2,

should be of finite rank. The fact is that this finiteness condition often fails,
even when the underlying operators of H commute.

For example, any invariant subspace K ⊆ H2 of the rank-one free commu-
tative Hilbert module H2, that is also invariant under the gauge group Γ0 (see
the following paragraphs), becomes a finitely generated graded Hilbert module
whose operators T1, . . . , Td are the restrictions of the d-shift to K. However,
the defect operator of such a K is of infinite rank in every nontrivial case -
namely, whenever K is nonzero and of infinite codimension in H2. Thus, even
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though dilation theory provides a realization of K as the quotient of another
free commutative Hilbert module K ∼= (H2 ⊗ C)/M , the free Hilbert module
H2 ⊗ C must have infinite defect.

One may conclude from these observations that dilation theory is too rigid
to provide an effective representation of finitely generated Hilbert modules as
quotients of free modules of finite defect, and a straightforward application of
dilation theory cannot lead to finite free resolutions in multivariable operator
theory. Our purpose below is to initiate an approach to the existence of free
resolutions that is based on free covers.

We first discuss grading in the general noncommutative context. By a grading
on a Hilbert module H we mean a strongly continuous unitary representation
of the circle group Γ : T → B(H) that is related to the ambient row contraction
as follows

(2.2) Γ(λ)TkΓ(λ)∗ = λTk, λ ∈ T, k = 1, . . . , d.

Thus we are restricting ourselves to gradings in which the given operators
T1, . . . , Td are all of degree one. The group Γ is called the gauge group of the
Hilbert module H. While there are many gradings of H that satisfy (2.2),
when we refer to H as a graded Hilbert module it is implicit that a particular
gauge group has been singled out. A graded morphism A : H1 → H2 of graded
Hilbert modules is a homomorphism A ∈ hom(H1,H2) that is of degree zero
in the sense that

AΓ1(λ) = Γ2(λ)A, λ ∈ T,

Γk denoting the gauge group of Hk.
The natural gauge group of F 2(Z) is defined by

Γ0(λ) =

∞∑

n=0

λnEn

where En is the projection onto Z⊗n. Thus, F 2 = F 2〈z1, . . . , zd〉 becomes a
graded contractive Hilbert module over C〈z1, . . . , zd〉 of defect 1. More generally,
let F = F 2 ⊗ C be a free Hilbert module of higher defect. Since the ambient
operators U1, . . . , Ud of F 2 generate an irreducible C∗-algebra, one readily ver-
ifies that the most general strongly continuous unitary representation Γ of the
circle group on F that satisfies Γ(λ)(Uk⊗1C)Γ(λ)∗ = λUk⊗1C for k = 1, . . . , d
must decompose into a tensor product of representations

Γ(λ) = Γ0(λ) ⊗ W (λ), λ ∈ T,

where W is an arbitrary strongly continuous unitary representation of T on the
coefficient space C. It will be convenient to refer to a Hilbert space C that has
been endowed with such a group W as a graded Hilbert space.

In order to discuss free resolutions, we shift attention to the more restricted
category whose objects are graded Hilbert modules over the commutative poly-
nomial algebra C[z1, . . . , zd] and whose maps are graded morphisms. In this
context, one replaces the noncommutative free module F 2 = F 2〈z1, . . . , zd〉
with its commutative counterpart H2 = H2[z1, . . . , zd], namely the completion
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of C[z1, . . . , zd] in its natural norm. While this notation differs from the no-
tation H2(Cd) used in [Arv98] and [Arv00], it is more useful for our purposes
here. The commutative free Hilbert module H2 is realized as a quotient of F 2

as follows. Consider the the operator A ∈ B(F 2,H2) obtained by closing the
map that sends a noncommutative polynomial f ∈ C〈z1, . . . , zd〉 to its commu-

tative image f̃ ∈ C[zd, . . . , zd]. This operator is a graded partial isometry with
range H2, whose kernel is the closure of the commutator ideal in C〈z1, . . . , zd〉,
(2.3) K = span{f · (zjzk − zkzj) · g : 1 ≤ j, k ≤ d, f, g ∈ C〈z1, . . . , zd〉}.
One sees this in more concrete terms after one identifies H2 ⊆ F 2 with the
completion of the symmetric tensor algebra in the norm inherited from F 2.
In that realization one has H2 = K⊥, and A can be taken as the projection
with range K⊥ = H2. The situation is similar for graded free modules having
multiplicity; indeed, for any graded coefficient space C the map

A ⊗ 1C : F 2 ⊗ C → H2 ⊗ C

defines a graded cover of the commutative free Hilbert module H2 ⊗ C.
The most general graded Hilbert module over the commutative polynomial

algebra C[z1, . . . , zd] is a graded Hilbert module over C〈z1, . . . , zd〉 whose un-
derlying row contraction (T1, . . . , Td) satisfies TjTk = TkTj for all j, k. Any
vector ζ in such a module H has a unique decomposition into a Fourier series
relative to the spectral subspaces of the gauge group,

ζ =

∞∑

n=−∞
ζn,

where Γ(λ)ζn = λnζn, n ∈ Z, λ ∈ T. ζ is said to have finite Γ-spectrum if all
but a finite number of the terms ζn of this series are zero. Finally, a graded
contractive module H is said to be finitely generated if there is a finite set of
vectors ζ1, . . . , ζs ∈ H, each of which has finite Γ-spectrum, such that sums of
the form

f1 · ζ1 + · · · + fs · ζs, f1, . . . , fs ∈ C〈z1, . . . , zd〉
are dense in H.

Our main result is the following counterpart of Hilbert’s syzygy theorem.

Theorem 2.6. For every finitely generated graded contractive Hilbert module
H over the commutative polynomial algebra C[z1, . . . , zd] there is a weakly exact
finite sequence of graded Hilbert modules

(2.4) 0 −→ Fn −→ · · · −→ F2 −→ F1 −→ H −→ 0

in which each Fk = H2 ⊗ Ck is a free graded commutative Hilbert module of
finite defect. The sequence (2.4) is unique up to a unitary isomorphism of
diagrams and it terminates after at most n = d steps.

Definition 2.7. The sequence (2.4) is called the free resolution of H.
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Remark 2.8 (Betti numbers, Euler characteristic). The sequence (2.4) gives
rise to a sequence of d numerical invariants of H

βk(H) =

{
defect(Fk), 1 ≤ k ≤ n,

0, n < k ≤ d.

and their alternating sum

χ(H) =

d∑

k=1

(−1)k+1βk(H)

is called the Euler characteristic of H. Notice that this definition makes
sense for any finitely generated (graded contractive) Hilbert module over
C[z1, . . . , zd], and generalizes the Euler characteristic of [Arv00] that was re-
stricted to Hilbert modules of finite rank as in Remark 2.5.

Remark 2.9 (Curvature and Index). The curvature invariant of [Arv00] is de-
fined only in the context of finite rank contractive Hilbert modules, hence the
index formula of [Arv02] that relates the curvature invariant to the index of a
Dirac operator is not meaningful in the broader context of Theorem 2.6. On
the other hand, the proof of that formula included an argument showing that
the Euler characteristic can be calculated in terms of the Koszul complex asso-
ciated with the Dirac operator, and that part of the proof is easily adapted to
this context to yield the following more general variation of the index theorem.
For any finitely generated graded Hilbert module H with Dirac operator D, both
ker D+ and ker D∗

+ are finite-dimensional, and

(−1)dχ(H) = dim kerD+ − dim ker D∗
+.

Remark 2.10 (Relation to Localized Dilation-Theoretic Resolutions). We have
pointed out in Remark 2.5 that for pure d-contractions (T1, . . . , Td) acting on
a Hilbert space, dilation-theoretic techniques give rise to an exact sequence of
contractive Hilbert modules and partially isometric maps

· · · −→ H2 ⊗ C2 −→ H2 ⊗ C1 −→ H −→ 0,

in which the coefficient spaces Ck of the free Hilbert modules are typically
infinite-dimensional, and which apparently fails to terminate in a finite num-
ber of steps. However, in a recent paper [Gre03], Greene studied “localiza-
tions” of the above exact sequence at various points of the unit ball, and he
has shown that when one localizes at the origin of Cd, the homology of his
localized complex agrees with the homology of Taylor’s Koszul complex (see
[Tay70a],[Tay70b]) of the underlying operator d-tuple (T1, . . . , Td) in all cases.
Interesting as these local results are, they appear unrelated to the global meth-
ods and results of this paper.

Remark 2.11 (Resolutions of modules over function algebras). We also point
out that our use of the terms resolution and free resolution differs substantially
from usage of similar terms in work of Douglas, Misra and Varughese [DMV00],
[DMV01], [DM03a], [DM03b]. For example, in [DM03b], the authors consider
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Hilbert modules over certain algebras A(Ω) of analytic functions on bounded
domains Ω ⊆ Cd. They introduce a notion of quasi-free Hilbert module that
is related to localization, and is characterized as follows. Consider an inner
product on the algebraic tensor product A(Ω)⊗ ℓ2 of vector spaces with three
properties: a) evaluations at points of Ω should be locally uniformly bounded,
b) module multiplication from A(Ω) × (A(Ω) ⊗ ℓ2) to A(Ω) ⊗ ℓ2 should be
continuous, and c) it satisfies a technical condition relating Hilbert norm con-
vergence to pointwise convergence throughout Ω. The completion of A(Ω)⊗ ℓ2

in that inner product gives rise to a Hilbert module over A(Ω), and such Hilbert
modules are called quasi-free.

The main result of [DM03b] asserts that “weak” quasi-free resolutions

· · · −→ Q2 −→ Q1 −→ H −→ 0

exist for certain Hilbert modules H over A(Ω), namely those that are higher-
dimensional generalizations of the Hilbert modules studied by Cowen and Dou-
glas in [CD78] for domains Ω ⊆ C. The modules Qk are quasi-free in the sense
above, but their ranks may be infinite and such sequences may fail to terminate
in a finite number of steps.

3. Generators

Throughout this section we consider contractive Hilbert modules over the
noncommutative polynomial algebra C〈z1, . . . , zd〉, perhaps graded.

Definition 3.1. Let H be a Hilbert module over C〈z1, . . . , zd〉. By a generator
for H we mean a linear subspace G ⊆ H such that

H = span {f · ζ : f ∈ C〈z1, . . . , zd〉, ζ ∈ G}.

We also say that H is finitely generated if it has a finite-dimensional genera-
tor, and in the category of graded Hilbert modules the term means a bit more,
namely, that there is a finite-dimensional graded generator.

According to Definition 2.1, a finitely generated Hilbert module H is properly
generated precisely when the defect subspace H⊖(Z ·H) is a finite-dimensional
generator. In general, the defect subspace H ⊖ (Z · H) of a finitely generated
Hilbert module is necessarily finite-dimensional, but it can fail to generate and
is sometimes {0} (for examples, see the proof of Proposition 3.4). In particular,
finitely generated Hilbert modules need not be properly generated. The purpose
of this section is to show that many important examples are properly generated,
and that many others are related to properly generated Hilbert modules in a
simple way.

The following result can be viewed as a noncommutative operator theoretic
counterpart of Nakayama’s Lemma ([Eis04], Lemma 1.4).

Proposition 3.2. Every finitely generated graded Hilbert module is properly
generated.
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Proof. The space G = H ⊖ (Z · H) is obviously a graded subspace of H, and
it is finite-dimensional because dimG = dim(H/(Z · H)) is dominated by the
cardinality of any generating set. We have to show that G is a generator.

For that, we claim that the spectrum of the gauge group Γ is bounded below.
Indeed, the hypothesis implies that there is a finite set of elements ζ1, . . . , ζs of
H, each having finite Γ-spectrum, which generate H. By enlarging the set of
generators appropriately and adjusting notation, we can assume that each ζk

is an eigenvector of Γ,

Γ(λ)ζk = λnkζk, λ ∈ T, 1 ≤ k ≤ s.

Let n0 be the minimum of n1, n2, . . . , ns. For any monomial f of respective
degrees p1, . . . , pd in the noncommuting variables z1, . . . , zd and every k =
1, . . . , s, f · ζk is an eigenvector of Γ satisfying

Γ(λ)(f · ζk) = λNf · ζk

with N = p1 + · · ·+ pd + nk ≥ n0. Since elements of this form have H as their
closed linear span, the spectrum of Γ is bounded below by n0.

Setting Hn = {ξ ∈ H : Γ(λ)ξ = λnξ, λ ∈ T} for n ∈ Z, we conclude that

H = Hn0
⊕ Hn0+1 ⊕ · · · ,

and one has Z · Hn ⊆ Hn+1 for all n ≥ n0.
Since G = H ⊖ (Z · H) is gauge-invariant it has a decomposition

G = Gn0
⊕ Gn0+1 ⊕ · · · ,

in which Gn0
= Hn0

, Gn = Hn ⊖ (Z ·Hn−1) for n > n0, and where only a finite
number of Gk are nonzero. Thus, each eigenspace Hn decomposes into a direct
sum

Hn = Gn ⊕ (Z · Hn−1), n > n0.

Setting n = n0 + 1 we have Hn0+1 = span(Gn0+1 + Z · Gn0
) and, continuing

inductively, we find that for all n > n0,

Hn = span(Gn + Z · Gn−1 + Z⊗2 · Gn−2 + · · · + Z⊗(n−n0) · Gn0
),

where Z⊗r denotes the space of homogeneous polynomials of total degree r.
Since H is spanned by the subspaces Hn, it follows that G is a generator. ¤

One obtains the most general examples of graded Hilbert submodules of
the rank-one free commutative Hilbert module H2 in explicit terms by choos-
ing a (finite or infinite) sequence of homogeneous polynomials φ1, φ2, . . . and
considering the closure in H2 of the set of all finite linear combinations
f1 ·φ1+ · · ·+fs ·φs, where f1, . . . , fs are arbitrary polynomials and s = 1, 2, . . . .
In Remark 2.5 above, we alluded to the fact that in all nontrivial cases, graded
submodules of H2 are Hilbert modules of infinite rank. However, Proposition
5.3 below implies that these examples are properly finitely generated, so they
have free covers of finite defect by Theorem 2.4.
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Remark 3.3 (Examples of Higher Degree). We now describe a class of infinite
rank ungraded examples with substantially different properties. Perhaps we
should point out that there is a more general notion of grading with respect
to which the ambient operators T1, . . . , Td in these examples are graded with
various degrees larger than one. For brevity, we retain the simpler definition
of grading (2.2) by viewing these examples as ungraded. Fix a d-tuple of
positive integers N1, . . . , Nd and consider the following d-contraction acting on
the Hilbert space H = H2(Cd)

(T1, . . . , Td) = (SN1
1 , . . . , SNd

d ),

where (S1, . . . , Sd) is the d-shift. The defect space of this Hilbert module

G = H ⊖ (T1H + · · · + TdH)−

coincides with the intersection of the kernels ker T ∗
1 ∩ · · · ∩ ker T ∗

d ; and in this
case one can compute these kernels explicitly, with the result

G = span{zn1
1 · · · znd

d : 0 ≤ nk < Nk, 1 ≤ k ≤ d}.
Moreover, for every set of nonnegative integers ℓ1, . . . , ℓd, the set of vectors
T ℓ1

1 · · ·T ℓd

d G contains all monomials of the form

zℓ1N1+n1
1 · · · zℓdNd+nd

d , 0 ≤ nk < Nk, 1 ≤ k ≤ d.

It follows from these observations that G is a proper generator for H, and
Theorem 2.4 provides a free cover of the form A : H2 ⊗ G → H.

Another straightforward computation with coefficients shows that the defect
operator of this Hilbert module is of infinite rank whenever at least one of
the integers N1, . . . , Nd is larger than 1. In more detail, each monomial zn =
zn1
1 · · · znd

d , n1, . . . , nd ≥ 0, is an eigenvector of the defect operator ∆ = (1 −
T1T

∗
1 −· · ·−TdT

∗
d )1/2; and when nk ≥ Nk for all k, a straightforward application

of the formulas on pp. 178–179 of [Arv98] shows that

∆ zn1
1 · · · znd

d = c(n)zn1
1 · · · znd

d

where the eigenvalues c(n) = c(n1, . . . , nd) satisfy 0 < c(n) < 1. Hence the
defect operator has infinite rank. We conclude that, while dilation theory
provides a coisometry B : H2 ⊗ C → H from another free Hilbert module to
H, it is necessary that C be an infinite dimensional Hilbert space. Needless to
say, such a B cannot define a free cover.

The preceding examples are all of infinite rank, and it is natural to ask
about finite rank d-contractions – which were the focus of [Arv98], [Arv00],
[Arv02]. Significantly, while the Hilbert module associated with a finite rank
d-contraction is frequently not properly generated, it can always be extended
to a properly generated one by way of a finite-dimensional perturbation.

Proposition 3.4. Every pure Hilbert module H of finite rank can be extended
trivially to a properly generated one in the sense that there is an exact sequence
of Hilbert modules

0 −→ K −→ H̃ −→
A

H −→ 0
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in which H̃ is is a properly generated pure Hilbert module of the same rank, K
is a finite-dimensional Hilbert submodule of H̃, and A is a coisometry.

Proof. A standard dilation-theoretic technique (see [Arv98] for the commuta-
tive case, the proof of which works as well in general) shows that a pure Hilbert
module of rank r is unitarily equivalent to a quotient of the form

H ∼= (F 2 ⊗ C)/M

where F 2 is the noncommutative free module of rank 1, C is an r-dimensional
coefficient space, and M is a closed submodule of F 2 ⊗C. We identify H with
the orthocomplement M⊥ of M in F 2 ⊗C, with operators T1, . . . , Td obtained
by compressing to M⊥ the natural operators U1 ⊗ 1C , . . . , Ud ⊗ 1C of F 2 ⊗C.

Consider H̃ = M⊥ + 1 ⊗ C. This is a finite-dimensional extension of M⊥

that is also invariant under U∗
k ⊗ 1C , hence it defines a pure Hilbert module

of rank r by compressing the natural operators in the same way to obtain
T̃1, . . . , T̃d ∈ B(H̃). Since H̃ contains H, the projection PM⊥ restricts to a

homomorphism of Hilbert modules A : H̃ → H. A is a coisometry, and the
kernel of A is finite-dimensional because dim(H̃/H) < ∞.

To see that H̃ is properly generated, one computes the defect operator ∆ of
H̃. Indeed, ∆ = (1H̃ − T̃1T̃

∗
1 − · · · − T̃dT̃

∗
d )1/2 is seen to be the compression of

the defect operator of U1⊗1C , . . . , Ud⊗1C to H̃, and the latter defect operator
is the projection onto 1⊗C. Since H̃ contains 1⊗C, the defect operator of H̃
is the projection on 1 ⊗ C.

Finally, we make use of the observation that a pure finite rank d-tuple is
properly generated whenever its defect operator is a projection. Indeed, the
range of the defect operator ∆ is always a generator, and when ∆ is a projection
its range coincides with ker T̃ ∗

1 ∩ · · · ∩ k̃erT ∗
d . ¤

4. Existence of Free Covers

We now establish the existence and uniqueness of free covers for properly
generated Hilbert modules over C〈z1, . . . , zd〉. A cover A : F → H induces a
unitary map of defect spaces; the following result implies that this isometry of
quotients lifts to an isometry of the corresponding subspaces.

Lemma 4.1. Let H be a Hilbert module and let A : F → H be a cover. Then
A restricts to a unitary operator from F ⊖ (Z · F ) to H ⊖ (Z · H).

Proof. Let Q ∈ B(H) be the projection onto H ⊖ (Z · H). The natural map
of H onto the quotient Hilbert space H/(Z · H) is a partial isometry whose
adjoint is the isometry

η + Z · H ∈ H/(Z · H) 7→ Qη ∈ H ⊖ (Z · H), η ∈ H.
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Thus we can define a unitary map Ã from F ⊖ (Z · F ) onto H ⊖ (Z · H) by
composing the three unitary operators

ζ ∈ F ⊖ (Z · F ) 7→ ζ + Z · F ∈ F/(Z · F ),

Ȧ : F/(Z · F ) → H/(Z · H),

η + Z · H ∈ H/(Z · H) 7→ Qη ∈ H ⊖ (Z · H), η ∈ H,

to obtain Ãζ = QAζ, ζ ∈ F ⊖ (Z · F ). We claim now that QAζ = Aζ for all
ζ ∈ F ⊖ (Z ·F ). To see that, note that Q⊥ is the projection onto Z ·H, so that
for all ζ ∈ F ⊖ (Z · F ) one has

‖QAζ‖ = ‖Aζ − Q⊥Aζ‖ = inf
η∈Z·H

‖Aζ − η‖

= ‖Ȧ(ζ + Z · F )‖H/(Z·H) = ‖ζ + Z · F‖F/(Z·F ) = ‖ζ‖.

Hence, ‖Aζ − QAζ‖2 = ‖Aζ‖2 − ‖QAζ‖2 = ‖Aζ‖2 − ‖ζ‖2 ≤ 0, and the claim
follows. We conclude that the restriction of A to F ⊖ (Z · F ) is an isometry
with range H ⊖ (Z · H). ¤

Proof of Theorem 2.4. Let H be a properly generated Hilbert module over
C〈z1, . . . , zd〉 and set C = H ⊖ (Z · H). The hypothesis asserts that C is
a generator. We will show that there is a (necessarily unique) contraction
A : F 2 ⊗ C → H satisfying

(4.1) A(f ⊗ ζ) = f · ζ, f ∈ C〈z1, . . . , zd〉, ζ ∈ C,

and that such an operator A defines a free cover. For that, consider the com-
pletely positive map defined on B(H) by φ(X) = T1XT ∗

1 + · · · + TdXT ∗
d , and

let ∆ = (1− φ(1))1/2 be the defect operator of (2.1). Since H ⊖ (Z ·H) is the
intersection of kernels ker T ∗

1 ∩ · · · ∩ ker T ∗
d = kerφ(1), it follows that

C = H ⊖ (Z · H) = {ζ ∈ H : ∆ζ = ζ}.

Thus, C is a subspace of the range of ∆ on which ∆ restricts to the identity
operator, and which generates H. We now use the “dilation telescope” to show
that there is a unique contraction L : F 2 ⊗ ∆H → H such that

(4.2) L(f ⊗ ζ) = f · ∆ζ, f ∈ C〈z1, . . . , zd〉, ζ ∈ ∆H.

Indeed, since the monomials {zi1 ⊗ · · · ⊗ zin
: i1, . . . , in ∈ {1, . . . , d}}, n =

1, 2, . . . , together with the constant polynomial 1, form an orthonormal basis
for F 2, the formal adjoint of L is easily computed and found to be

L∗ξ = 1 ⊗ ∆ξ +
∞∑

n=1

d∑

i1,...,in=1

zi1 ⊗ · · · ⊗ zin
⊗ ∆T ∗

in
· · ·T ∗

i1ξ, ξ ∈ H.
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One calculates norms in the obvious way to obtain

‖L∗ξ‖2 = ‖∆ξ‖2 +

∞∑

n=1

d∑

i1,...,in=1

‖∆T ∗
in
· · ·T ∗

i1ξ‖2

= 〈(1 − φ(1))ξ, ξ〉 +

∞∑

n=1

〈(φn(1 − φ(1))ξ, ξ〉

= 〈(1 − φ(1))ξ, ξ〉 +
∞∑

n=1

〈(φn(1) − φn+1(1))ξ, ξ〉

= ‖ξ‖2 − lim
n→∞

〈φn(1)ξ, ξ〉 ≤ ‖ξ‖2.

Hence ‖L‖ = ‖L∗‖ ≤ 1. Finally, let A be the restriction of L to the submodule
F 2 ⊗ C ⊆ F 2 ⊗ ∆H, where we now consider F 2 ⊗ C as a free Hilbert module
of possibly smaller defect. Since ∆ restricts to the identity on C, (4.1) follows
from (4.2).

By its definition, the restriction of A to 1 ⊗ C is an isometry with range
C = H ⊖ (Z · H), hence A induces a unitary operator of defect spaces

Ȧ : (F 2 ⊗ C)/(Z · (F 2 ⊗ C)) ∼= 1 ⊗ C → C = H ⊖ (Z · H) ∼= H/(Z · H).

The range of A is dense, since it contains

{f · ζ : f ∈ C〈z1, . . . , zd〉, ζ ∈ H ⊖ (Z · H)}
and H is properly generated. It follows that A : F 2 ⊗ C → H is a free cover.

For uniqueness, let B : F̃ = F 2 ⊗ C̃ → H be another free cover of H. We
exhibit a unitary isomorphism of Hilbert modules V ∈ B(F 2 ⊗ C̃, F 2 ⊗C) such
that BV = A as follows. We have already pointed out that the defect space
of F̃ = F 2 ⊗ C̃ (resp. F = F 2 ⊗ C)) is identified with 1 ⊗ C̃ (resp. 1 ⊗ C).
Similarly, the defect space of H is identified with H⊖(Z ·H). Since both A and
B are covers of H, Lemma 4.1 implies that they restrict to unitary operators,
from the respective spaces 1⊗C and 1⊗C̃, onto the same subspace H⊖(Z ·H)

of H. Thus there is a unique unitary operator V0 : C → C̃ that satisfies

A(1 ⊗ ζ) = B(1 ⊗ V0ζ), ζ ∈ C.

Let V = 1F 2 ⊗ V0 ∈ B(F 2 ⊗ C̃, F 2 ⊗ C). Obviously V is a unitary operator,
and it satisfies BV = A since for every polynomial f ∈ C〈z1, . . . , zd〉

BV (f ⊗ ζ) = B(f · (1 ⊗ V0ζ)) = f · B(1 ⊗ V0ζ) = f · A(1 ⊗ ζ) = A(f ⊗ ζ),

and one can take the closed linear span on both sides. V must implement
an isomorphism of modules since for any polynomials f, g ∈ C〈z1, . . . , zd〉 and

every ζ ∈ C̃ we have

V (f · (g ⊗ ζ)) = (1 ⊗ V0)(f · g ⊗ ζ) = f · (g ⊗ V0ζ) = f · V (g ⊗ ζ).

Conversely, if a Hilbert module H has a free cover A : F 2 ⊗ C → H, then
since 1 ⊗ C is the orthocomplement of Z · (F 2 ⊗ C), Lemma 4.1 implies that
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A(1 ⊗ C) = H ⊖ (Z · H)). Since A is a module homomorphism, we see that

A(span{f ⊗ ζ : f ∈ C, ζ ∈ C}) = span{f · ζ : f ∈ C, ζ ∈ H ⊖ (Z · H)}.
The closure of the left side is H because A has dense range, and we conclude
that H ⊖ (Z · H) is a generator of H. ¤

We require the following consequence of Theorem 2.4 for finitely generated
graded Hilbert modules.

Theorem 4.2. Every finitely generated graded Hilbert module H over the non-
commutative polynomial algebra has a graded free cover A : F 2 ⊗ C → H, and
any two graded graded free covers are equivalent.

If the underlying operators of H commute, then this free cover descends nat-
urally to a commutative graded free cover B : H2 ⊗ C → H.

Proof. Proposition 3.2 implies that the space C = H ⊖ (Z · H) is a finite-
dimensional generator. Moreover, since Z · H is invariant under the gauge
group, so is C, and the restriction of the gauge group to C gives rise to a
unitary representation W : T → B(C) of the circle group on C.

If we make the free Hilbert module F 2 ⊗C into a graded one by introducing
the gauge group

Γ(λ) = Γ0(λ) ⊗ W (λ), λ ∈ T,

then we claim that the map A : F 2 ⊗ C → H defined in the proof of Theorem
2.4 must intertwine Γ and ΓH . Indeed, this follows from the fact that for every
polynomial f ∈ C〈z1, . . . , zd〉, every ζ ∈ C, and every λ ∈ T, one has

ΓH(λ)A(f ⊗ ζ) = ΓH(λ)(f · ζ) = f(λz1, . . . , λzd) · ΓH(λ)ζ

= A(Γ0(λ)f ⊗ W (λ)ζ) = AΓ(λ)(f ⊗ ζ).

The proof of uniqueness in the graded context is now a straightforward vari-
ation of the uniqueness proof of Theorem 2.4. Finally, since H2 is naturally
identified with the quotient F 2/K where K is the closure of the commutator
ideal in C〈z1, . . . , zd〉, it follows that when the underlying operators commute,
the cover A : F 2⊗C → H factors naturally through (F 2/K)⊗C ∼ H2⊗C and
one can promote A to a graded commutative free cover B : H2 ⊗ C → H. ¤

5. Existence of Free Resolutions

We turn now to the proof of existence of finite resolutions for graded Hilbert
modules over the commutative polynomial algebra C[z1, . . . , zd]. We require
some algebraic results obtained by Hilbert at the end of the century before last
[Hil90], [Hil93]. While Hilbert’s theorems have been extensively generalized,
what we require are the most concrete versions of a) the basis theorem and b)
the syzygy theorem. We now describe these classical results in a formulation
that is convenient for our purposes, referring the reader to [Nor76], [Eis94] and
[Ser00] for more detail on the underlying linear algebra.

Let T1, . . . , Td be a set of commuting linear operators acting on a complex
vector space M . We view M as a module over C[z1, . . . , zd] in the usual way,
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with f · ξ = f(T1, . . . , Td)ξ, f ∈ C[z1, . . . , zd], ξ ∈ M . Such a module is said
to be graded if there is a specified sequence Mn, n ∈ Z, of subspaces that gives
rise to an algebraic direct sum decomposition

M =
∞∑

n=−∞
Mn

with the property TkMn ⊆ Mn+1, for all k = 1, . . . , d, n ∈ Z. Thus, every
element ξ of M admits a unique decomposition ξ =

∑
n ξn, where ξn belongs

to Mn and ξn = 0 for all but a finite number of n. We confine ourselves to
the standard grading on C[z1, . . . , zd] in which the generators z1, . . . , zd are all
of degree 1. Finally, M is said to be finitely generated if there is a finite set
ζ1, . . . , ζs ∈ M such that

M = {f1 · ζ1 + · · · + fs · ζs : f1, . . . , fd ∈ C[z1, . . . , zd]}.
A free module is a module of the form F = C[z1, . . . , zd] ⊗ C where C is a
complex vector space, the module action being defined in the usual way by
f · (g ⊗ ζ) = (f · g) ⊗ ζ. The rank of F is the dimension of C. A free module
can be graded in many ways, and for our purposes the most general grading
on F = C[z1, . . . , zd] ⊗ C is defined as follows. Given an arbitrary grading on
the “coefficient” vector space C

C =

∞∑

n=−∞
Cn,

there is a corresponding grading of the tensor product F =
∑

n Fn in which

Fn =

∞∑

k=0

Zk ⊗ Cn−k,

where Zk denotes the space of all homogeneous polynomials of degree k in
C[z1, . . . , zd], and where the sum on the right denotes the linear subspace of F
spanned by ∪{Zk ⊗ Cn−k : k ∈ Z}. If C is finite-dimensional, then there are
integers n1 ≤ n2 such that

C = Cn1
+ Cn1+1 + · · · + Cn2

,

so that

(5.1) Fn =

∞∑

k=0

Zk ⊗ Cn−k =

max(n−n1,0)∑

k=max(n−n2,0)

Zk ⊗ Cn−k

is finite-dimensional for each n ∈ Z, Fn = {0} for n < n1, and Fn is spanned
by Zn−n2 · Fn2

for n ≥ n2.
Homomorphisms of graded modules u : M → N are required to be of degree

zero

u(Mn) ⊆ Nn, n ∈ Z.

It will also be convenient to adapt Serre’s definition of minimality for homo-
morphisms of modules over local rings (page 84 of [Ser00]) to homomorphisms
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of graded modules over C[z1, . . . , zd], as follows. A homomorphism u : M → N
of modules is said to be minimal if it induces an isomorphism of vector spaces

u̇ : M/(z1 · M + · · · + zd · M) → u(M)/u(z1 · M + · · · + zd · M).

Equivalently, u is minimal iff ker u ⊆ z1 · M + · · · + zd · M .
A free resolution of an algebraic graded module M is a (perhaps infinite)

exact sequence of graded modules

· · · −→ Fn −→ · · · −→ F2 −→ F1 −→ M −→ 0,

where each Fr is free or 0. Such a resolution is said to be finite if each Fr

is of finite rank and Fr = 0 for sufficiently large r, and minimal if for every
r = 1, 2, . . . , the arrow emanating from Fr denotes a minimal homomorphism.

Theorem 5.1 (Basis Theorem). Every submodule of a finitely generated module
over C[z1, . . . , zd] is finitely generated.

Theorem 5.2 (Syzygy Theorem). Every finitely generated graded module M
over C[z1, . . . , zd] has a finite free resolution

0 −→ Fn −→ · · · −→ F2 −→ F1 −→ M −→ 0

that is minimal with length n at most d, and any two minimal resolutions are
isomorphic.

While we have stated the ungraded version of the basis theorem, all we re-
quire is the special case for graded modules. We base the proof of Theorem 2.6
on two operator-theoretic results, the first of which is a Hilbert space counter-
part of the basis theorem for graded modules.

Proposition 5.3. Let H be a finitely generated graded Hilbert module over
C[z1, . . . , zd] and let K ⊆ H be a closed gauge-invariant submodule. Then K
is a properly generated graded Hilbert module of finite defect.

Proof. We first collect some structural information about H itself. Let Γ be
the gauge group of H and consider the spectral subspaces of Γ

Hn = {ξ ∈ H : Γ(λ)ξ = λnξ}, n ∈ Z.

The finite-dimensional subspace G = H ⊖ (Z ·H) is invariant under the action
of Γ, and Proposition 3.2 implies that G is a generator. Writing Gn = G∩Hn,
n ∈ Z, it follows that G decomposes into a finite sum of mutually orthogonal
subspaces

G = Gn1
+ Gn1+1 + · · · + Gn2

,

where n1 ≤ n2 are fixed integers. A computation similar to that of (5.1) shows
that Hn = {0} for n < n1, and for n ≥ n1, Hn can be expressed in terms of
the Gk by way of

(5.2) Hn =

max(n−n1,0)∑

k=max(n−n2,0)

Zk · Gn−k. n ∈ Z;

in particular, each Hn is finite-dimensional.
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Consider the algebraic module

H0 = span{f · ζ : f ∈ C[z1, . . . , zd], ζ ∈ G}
generated by G. Formula (5.2) shows that H0 is linearly spanned by the spec-
tral subspaces of H,

(5.3) H0 = Hn1
+ Hn1+1 + · · · .

Now let K ⊆ H be a closed invariant subspace that is also invariant under the
action of Γ. Letting Kn = Hn∩K be the corresponding spectral subspace of K,
then we have a decomposition of K into mutually orthogonal finite-dimensional
subspaces

K = Kn1
⊕ Kn1+1 ⊕ · · · ,

such that zkKn ⊆ Kn+1, for 1 ≤ k ≤ d, n ≥ n1. Let K0 be the (nonclosed)
linear span

K0 = Kn1
+ Kn1+1 + · · · .

Obviously, K0 is dense in K and it is a submodule of the finitely generated
algebraic module H0. Theorem 5.1 implies that there is a finite set of vectors
ζ1, . . . , ζs ∈ K0 such that

K0 = {f1 · ζ1 + · · · + fs · ζs : f1, . . . , fs ∈ C[z1, . . . , zd]}.
Choosing p large enough that ζ1, . . . , ζs ∈ Kn1

+ · · · + Kp, we find that Kn1
+

· · · + Kp is a graded finite-dimensional generator for K. An application of
Proposition 3.2 now completes the proof. ¤

5.1. From Hilbert Modules to Algebraic Modules. A finitely gener-
ated graded Hilbert module H over C[z1, . . . , zd] has many finite-dimensional
graded generators G; if one fixes such a G then there is an associated algebraic
graded module M(H,G) over C[z1, . . . , zd], namely

M(H,G) = span{f · ζ : f ∈ C[z1, . . . , zd], ζ ∈ G}.
The second result that we require is that it is possible to make appropriate
choices of G so as to obtain a functor from Hilbert modules to algebraic mod-
ules. We now define this functor and collect its basic properties.

Consider the category Hd whose objects are graded finitely generated Hilbert
modules over C[z1, . . . , zd], with covers as maps. Thus, hom(H,K) consists of
graded homomorphisms A : H → K satisfying ‖A‖ ≤ 1, such that AH is dense
in K, and which induce unitary operators of defect spaces

Ȧ : H/(Z · H) → K/(Z · K).

Since we are requiring maps in hom(H,K) to have dense range, a straightfor-
ward argument (that we omit) shows that hom(·, ·) is closed under composition.

The corresponding algebraic category Ad has objects consisting of graded
finitely generated modules over C[z1, . . . , zd], in which u ∈ hom(M,N) means
that u is a minimal graded homomorphism satisfying u(M) = N .
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Proposition 5.4. For every Hilbert module H in Hd let H0 be the algebraic
module over C[z1, . . . , zd] defined by

H0 = span{f · ζ : f ∈ C[z1, . . . , zd], ζ ∈ H ⊖ (Z · H)}.
Then H0 belongs to Ad. Moreover, for every A ∈ hom(H,K) one has AH0 =
K0, and the restriction A0 of A to H0 defines an element of hom(H0,K0).
The association H → H0, A → A0 is a functor satisfying:

(i) For every H ∈ Hd, H0 = {0} =⇒ H = {0}.
(ii) For every A ∈ hom(H,K), A0 = 0 =⇒ A = 0.
(iii) For every free graded Hilbert module F of defect r, F 0 is a free algebraic

graded module of rank r.

Proof. Since the defect subspace H⊖(Z ·H) is finite-dimensional and invariant
under the action of the gauge group Γ, H0 is a finitely generated module over
the polynomial algebra that is invariant under the action of the gauge group.
Thus it acquires an algebraic grading H0 =

∑
n H0

n by setting

H0
n = H0 ∩ Hn = {ξ ∈ H0 : Γ(λ)ξ = λnξ, λ ∈ T}, n ∈ Z.

Let H,K ∈ Hd and let A ∈ hom(H,K). Lemma 4.1 implies that

A(H ⊖ (Z · H)) = K ⊖ (Z · K),

so that A restricts to a surjective graded homomorphism of modules A0 : H0 →
K0. We claim that A0 is minimal, i.e., kerA0 ⊆ z1 ·H0 + · · ·+ zd ·H0. To see
that, choose ξ ∈ H0 such that Aξ = 0. Since H0 decomposes into a sum

H0 = H ⊖ (Z · H) + z1 · H0 + · · · + zd · H0,

we can decompose ξ correspondingly

ξ = ζ + z1 · η1 + · · · + zd · ηd,

where ζ ∈ H ⊖ (Z · H) and ηj ∈ H0. Since Ȧ is an injective operator defined
on H/(Z ·H), ker A must be contained in Z ·H. It follows that ξ ∈ Z ·H, and
therefore ζ = ξ − z1 · η1 − · · · − zd · ηd ∈ Z · H = (H ⊖ (Z · H))⊥ is orthogonal
to itself. Hence ζ = 0, and we have the desired conclusion

ξ = z1 · η1 + · · · + zd · ηk ∈ z1 · H0 + · · · + zd · H0.

The restriction A0 of A to H0 is therefore a minimal homomorphism, whence
A0 ∈ hom(H0,K0).

The composition rule (AB)0 = A0B0 follows immediately, so that we have
defined a functor. Finally, both properties (i) and (ii) are consequences of the
fact that, by Proposition 3.2, H0 is dense in H, while (iii) is obvious. ¤

Proof of Theorem 2.6. Given a graded finitely generated Hilbert module H, we
claim that there is a weakly exact sequence

(5.4) · · · −→ Fn −→ · · · −→ F2 −→ F1 −→ H −→ 0,

in which each Fr is a free graded Hilbert module of finite defect. Indeed,
Proposition 5.3 implies that H is properly generated, and by Theorem 2.6, it
has a graded free cover A : F1 → H in which F1 = H2 ⊗ C1 is a graded free
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Hilbert module with dimC1 = defect(F1) = defect(H) < ∞. This gives a
sequence of graded Hilbert modules

(5.5) F1 −→
A

H −→ 0

that is weakly exact at H. Proposition 5.3 implies that kerA is a properly
generated graded Hilbert module of finite defect, so that another application
of Theorem 2.6 produces a graded free cover B : F2 → ker A in which F2 is
a graded free Hilbert module of finite defect. Thus we can extend (5.5) to a
longer sequence

F2 −→ F1 −→ H −→ 0

that is weakly exact at F1 and H. Continuing inductively, we obtain (5.4).
Another application of Theorem 2.6 implies that the sequence (5.4) is

uniquely determined by H up to a unitary isomorphism of diagrams. The
only issue remaining is whether its length is finite. To see that (5.4) must ter-
minate, consider the associated sequence of graded algebraic modules provided
by Proposition 5.4

· · · −→ F 0
n −→ · · · −→ F 0

2 −→ F 0
1 −→ H0 −→ 0.

Proposition 5.4 implies that this is a minimal free resolution of H0 into graded
free modules F 0

r of finite rank. The uniqueness assertion of Theorem 5.2 implies
that there is an integer n ≤ d such that F 0

r = 0 for all r > n. By Proposition
5.4 (i), we have Fr = 0 for r > n. ¤

Remark 5.5 (Noncommutative Generalizations). Perhaps it is worth pointing
out that there is no possibility of generalizing Theorem 2.6 to the noncom-
mutative setting, the root cause being that Hilbert’s basis theorem fails for
modules over the noncommutative algebra C〈z1, . . . , zd〉. More precisely, there
are finitely generated graded Hilbert modules H over C〈z1, . . . , zd〉 that do not
have finite free resolutions. Indeed, while Theorem 2.4 implies that for any
such Hilbert module H there is a graded free Hilbert module F1 = F 2⊗C with
dimC < ∞ and a weakly exact sequence of graded Hilbert modules

F1 −→
A

H −→ 0,

and while the kernel of A is a certainly a graded submodule of F 2 ⊗ C, the
kernel of A need not be finitely generated. For such a Hilbert module H,
this sequence cannot be continued beyond F1 within the category of Hilbert
modules of finite defect.

As a concrete example of this phenomenon, let N ≥ 2 be an integer, let
Z = Cd for some d ≥ 2, and consider the free graded noncommutative Hilbert
module

F 2 = C ⊕ Z ⊕ Z⊗2 ⊕ Z⊗3 ⊕ · · · .

We claim that there is an infinite sequence of unit vectors ζN , ζN+1, · · · ∈ F 2

such that ζn ∈ Z⊗n and, for all n ≥ N ,

ζn+1 ⊥ Mn = {fN ·ζN +fN+1 ·ζN+1 + · · ·+fn ·ζn : fN , . . . , fn ∈ C〈z1, . . . , zd〉}.
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Indeed, choose a unit vector ζN arbitrarily in Z⊗N and, assuming that
ζN , . . . , ζn have been defined with the stated properties, note that Mn is a
graded submodule of F 2 such that

Mn ∩ Z⊗(n+1) = Z⊗(n+1−N) · ζN + Z⊗(n−N) · ζN+1 + · · · + Z · ζn.

Recalling that dim Zk = dk, an obvious dimension estimate implies that

dim(Mn ∩ Z⊗(n+1)) ≤ dn+1−N + · · · + d = d
dn−N+1 − 1

d − 1

<
dn−N+2

d − 1
≤ dn−N+2 < dn+1 = dim(Z⊗(n+1)).

Hence there is a unit vector ζn+1 ∈ Z⊗(n+1) that is orthogonal to Mn. Now let
M be the closure of MN ∪MN+1∪· · · . M is a graded invariant subspace of F 2

with the property that M ⊖(Z ·M) contains the orthonormal set ζN , ζN+1, . . . ,
so that M cannot be finitely generated.

Finally, if we take H to be the Hilbert space quotient F 2/M , then H is a
graded Hilbert module over C〈z1, . . . , zd〉 having a single gauge-invariant cyclic
vector 1 + M , such that the natural projection A : F 2 → H = F 2/M is a
graded free cover of H where ker A = M is not finitely generated.

Notice that the preceding construction used the fact that the dimensions of
the spaces Z⊗k of noncommutative homogeneous polynomials grow exponen-
tially in k. If one attempts to carry out this construction in the commutative
setting, in which F 2 is replaced by H2, one will find that the construction of the
sequence ζN , ζN+1, . . . fails at some point because the dimensions of the spaces
Zk of homogeneous polynomials grow too slowly. Indeed, as reformulated in
Proposition 5.3, Hilbert’s remarkable basis theorem implies that this construc-
tion must fail in the commutative setting, since every graded submodule of H2

is finitely generated.

6. Examples of Free Resolutions

In this section we discuss some examples of free resolutions and their associ-
ated Betti numbers. There are two simple - and closely related - procedures for
converting a free Hilbert module into one that is no longer free, by changing
its ambient operators as follows.

(1) Append a number r of zero operators to the d-shift (S1, . . . , Sd) to
obtain a (d + r)-contraction acting on H2[z1, . . . , zd] that is not the
(d + r)-shift.

(2) Pass from H2[z1, . . . , zd] to a quotient H2[z1, . . . , zd]/K where K is the
closed submodule generated by some of the coordinates z1, . . . , zd.

We begin by pointing out that one can understand either of these examples
(1) or (2) by analyzing the other. We then calculate the Betti numbers of the
Hilbert modules of (1) in the case where one appends three zero operators to
the d-shift. In order to calculate the Betti numbers of a graded Hilbert module
one has to calculate its free resolution, and that is the route we follow.
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To see that (1) and (2) are equivalent constructions, consider the operator
(d + r)-tuple T̄ = (S1, . . . , Sd, 0, . . . , 0) obtained from the d-shift (S1, . . . , Sd)
acting on H2[z1, . . . , zd] by adjoining r zero operators. Let K be the closed
invariant subspace of H2[z1, . . . , zd+r] generated by zd+1, zd+2, . . . , zd+r. Re-
calling that H2[z1, . . . , zd] embeds isometrically in H2[z1, . . . , zd+r] with ortho-
complement K,

H2[z1, . . . , zd+r] = H2[z1, . . . , zd] ⊕ K,

one finds that the quotient Hilbert module H2[z1, . . . , zd+r]/K is identified with
H2[z1, . . . , zd] in such a way that the natural (d+r)-contraction defined by the
quotient is unitarily equivalent to T̄ .

Before turning to explicit computations we point out that, in order to calcu-
late free resolutions, one has to iteratively calculate free covers. The procedure
is summarized as follows.

Remark 6.1 (Free Covers and Free Resolutions). Let H be a finitely gener-
ated graded Hilbert module over C[z1, . . . , zd]. In order to calculate the free
resolution of H one has to iterate the following procedure.

(1) One first calculates the free cover A1 : H2[z1, . . . , zd] ⊗ G1 → H of
H, following the proof of Theorem 2.4. To carry that out, one must
calculate the unique proper generator G1 ⊆ H

G1 = H ⊖ (Z · H),

the connecting map A1 being the closure of the multiplication map

A(f ⊗ ζ) = f · ζ, f ∈ C[z1, . . . , zd], ζ ∈ G1,

where the free Hilbert module H2[z1, . . . , zd]⊗G1 is endowed with the
grading Γ0⊗W , W being the unitary representation of the circle group
on G defined by restricting the grading ΓH of H,

W (λ) = ΓH(λ) ↾G, λ ∈ T.

Notice that in order to carry out this step, one basically has to identify
Z · H and its orthocomplement in concrete terms.

(2) One then replaces H with the finitely generated graded Hilbert module
ker A1 ⊆ H2[z1, . . . , zd]⊗G1 and repeats the procedure. It is significant
that in order to continue, one must identify the kernel of A1 and its
proper generator G2 = kerA1 ⊖ (Z · ker A1).

According to Theorems 2.4 and 2.6, this process will terminate in the zero
Hilbert module after at most d steps, and the resulting sequence

0 −→ H2[z1, . . . , zd] ⊗ Gn −→
An

· · · −→
A2

H2[z1, . . . , zd] ⊗ G1 −→
A1

H −→ 0

is the free resolution of H. Once one has the free resolution, one can read off
the Betti numbers of H as the multiplicities of the various free Hilbert modules
that have appeared in the sequence, in their order of appearance.

We now discuss the examples of (1) for the case r = 3 and arbitrary d.
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Proposition 6.2. The Hilbert module associated with the (d + 3)-contraction
(S1, . . . , Sd, 0, 0, 0) acting on H2[z1, . . . , zd] has Euler characteristic zero, and
its sequence of Betti numbers is

(β1, . . . , βd+3) = (1, 3, 3, 1, 0, . . . , 0).

Sketch of Proof. We show that the free resolution of H has the form

0 −→ F4 −→ F3 −→ F2 −→ F1 −→ H −→ 0

where Fk = H2[z1, . . . , zd+3] ⊗ Gk, G1, G2, G3, G4 being graded coefficient
spaces of respective dimensions 1, 3, 3, 1. We will exhibit the modules Fk and
the connecting maps explicitly, but we omit the details of computations with
polynomials.

We first compute the proper generator H ⊖ (Z · H) of H. Writing

T1T
∗
1 + · · · + Td+3T

∗
d+3 = S1S

∗
1 + · · · + SdS

∗
d ,

one sees that the defect operator (1 − ∑
k TkT ∗

k )1/2 is the one-dimensional
projection [1] onto the constant polynomials. It follows that H has defect 1,
and its proper generator is the one-dimensional space C · 1.

Hence the first term in the free resolution of H is given by the free cover
A1 : H2[z1, . . . , zd+3] → H, where A1 is the closure of the map defined on
polynomials f ∈ C[z1, . . . , zd+3] by

A1f = f(S1, . . . , Sd, 0, 0, 0) · 1 = f(z1, . . . , zd, 0, 0, 0).

A1 is a coisometry, and further computation with polynomials shows that its
kernel is the closure K1 = (zd+1, zd+2, zd+3) of the ideal in C[z1, . . . , zd+3] gen-
erated by zd+1, zd+2, zd+3. This gives a sequence of contractive homomorphisms
of degree zero

0 −→ K1 −→ H2[z1, . . . , zd+3] −→ H −→ 0

that is exact at H2[z1, . . . , zd+3].
The kernel K1 is a graded submodule of H2[z1, . . . , zd+3], but the rank of

its defect operator is typically infinite. However, by Proposition 5.3, it has a
unique finite-dimensional proper generator G, given by

G = K1 ⊖ (Z · K1) = K1 ⊖ (z1 · K1 + · · · + zd+3 · K1).

To compute G, note that each of the elements zd+1, zd+2, zd+3 is of degree
one, while any homogeneous polynomial of Z · K1 is of degree at least two. It
follows that K1 = span{zd+1, zd+2, zd+3} ⊕ (Z · K1), and this identifies G as
the 3-dimensional Hilbert space

G = span{zd+1, zd+2, zd+3}.
The multiplication map A2 : F ⊗ G → F

A2(f ⊗ ζ) = f · ζ, f ∈ C[z1, . . . , zd+3], ζ ∈ G

is a contractive morphism that defines a free cover of K1; and A2 becomes a
degree zero map with respect to the gauge group Γ on H2[z1, . . . , zd+3] ⊗ G
defined by Γ = Γ0 ⊗ W where W is the restriction of the gauge group of
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H2[z1, . . . , zd+3] to its subspace G, namely W (λ) = λ1G, λ ∈ T. It follows that
the sequence

H2[z1, . . . , zd+3] ⊗ G −→
A2

H2[z1, . . . , zd+3] −→
A1

H −→ 0

is weakly exact at H2[z1, . . . , zd+3] and H.
Now consider K2 = ker A2 ⊆ H2[z1, . . . , zd+3] ⊗ G. Since every element of

H2[z1, . . . , zd+3] ⊗ G can be written uniquely in the form

ξ1 ⊗ zd+1 + ξ2 ⊗ zd+2 + ξ3 ⊗ zd+3, ξk ∈ H2[z1, . . . , zd+3]

we have

K2 = {ξ1 ⊗ zd+1 + ξ2 ⊗ zd+2 + ξ3 ⊗ zd+3 : zd+1 · ξ1 + zd+2 · ξ2 + zd+3 · ξ3 = 0}.
A nontrivial calculation with polynomials now shows that K2 is the closed

submodule of of H2 ⊗ G generated by the three “commutators” ζ1, ζ2, ζ3

ζ1 = zd+2 ⊗ zd+3 − zd+3 ⊗ zd+2 = zd+2 ∧ zd+3,

ζ2 = zd+1 ⊗ zd+3 − zd+3 ⊗ zd+1 = zd+1 ∧ zd+3

ζ3 = zd+1 ⊗ zd+2 − zd+2 ⊗ zd+1 = zd+1 ∧ zd+2.

Note, for example, that

f · ζ1 + g · ζ2 = −gzd+3 ⊗ zd+1 − fzd+3 ⊗ zd+2 + (gzd+1 + fzd+2) ⊗ zd+3.

These elements ζk are all homogeneous of degree two. Since any homogeneous
element of Z · K2 has degree at most three, it must be orthogonal to ζ1, ζ2, ζ3.
It follows that

K2 ⊖ (Z · K2) = span{ζ2, ζ2, ζ3}
is 3-dimensional, having 2−1/2ζ1, 2

−1/2ζ2, 2
−1/2ζ3 as an orthonormal basis.

Set G̃ = span{ζ2, ζ2, ζ3}, with its grading (in this case homogeneous of degree
2) as inherited from the grading of H2[z1, . . . , zd+3] ⊗ G. The corresponding

free cover A3 : H2[z1, . . . , zd+3] ⊗ G̃ → K2 is given by

A3(f1 ⊗ ζ1 + f2 ⊗ ζ2 + f3 ⊗ ζ3) = f1 · ζ1 + f2 · ζ2 + f2 · ζ3,

for polynomials f1, f2, f3, and the grading of H2[z1, . . . , zd+3] ⊗ G̃ is given by
Γ(λ)(f ⊗ ζ) = λ2(Γ0(λ)f ⊗ ζ), λ ∈ T.

Finally, consider the submodule K3 = kerA3 ⊆ H2[z1, . . . , zd+3] ⊗ G̃. An-
other computation with polynomials shows that K3 has a single generator

η = zd+1 ⊗ ζ1 − zd+2 ⊗ ζ2 + zd+3 ⊗ ζ3

= zd+1 ⊗ (zd+2 ∧ zd+3) − zd+2 ⊗ (zd+1 ∧ zd+3) + zd+3 ⊗ (zd+1 ∧ zd+2),

where as above, zj ∧ zk denotes zj ⊗ zk − zk ⊗ zj . The homogeneous element η
has degree 3, so that after appropriate renormalization it becomes a unit vector
spanning K3⊖(Z ·K3). Thus, we obtain a free cover A4 : H2[z1, . . . , zd+3] → K3

by closing the map of polynomials

A4(f) = f · η, f ∈ C[z1, . . . , zd+3].
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Notice that the grading that H2[z1, . . . , zd+3] acquires by this construction is
not the standard grading Γ0, but rather Γ(λ) = λ3Γ0(λ), λ ∈ T.

Since the kernel of A4 is obviously {0}, we have obtained a free resolution

0 −→ F
A4−−→ F ⊗ G̃

A3−−→ F ⊗ G
A2−−→ F

A1−−→ H −→ 0

in which F = H2[z1, . . . , zd+3].
This shows that H is a Hilbert module over C[z1, . . . , zd+3] whose Betti

numbers (β1, · · · , βd+3) are given by a nontrivial sequence (1, 3, 3, 1, 0, . . . , 0)
with alternating sum zero. ¤
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Abstract. We prove that every holomorphic vector bundle on a
noncommutative two-torus T can be obtained by successive exten-
sions from standard holomorphic bundles considered in [2]. This im-
plies that the category of holomorphic bundles on T is equivalent to
the heart of a certain t-structure on the derived category of coherent
sheaves on an elliptic curve.

1. Introduction

In this paper we continue the study of holomorphic bundles on noncommutative
two-tori that was begun in [2]. Recall that for every θ ∈ R \ Q and τ ∈ C \ R
we considered in [2] holomorphic vector bundles on a noncommutative complex
torus T = Tθ,τ . By definition, the algebra Aθ of smooth functions on T consists
of series

∑
(m,n)∈Z2 am,nUm

1 Un
2 where the coefficients am,n ∈ C decrease rapidly

at infinity and the multiplication is defined using the rule

U1U2 = exp(2πiθ)U2U1.

We consider the derivation δ = δτ : Aθ → Aθ defined by

δ(
∑

am,nUm
1 Un

2 ) = 2πi
∑

m,n

(mτ + n)am,nUm
1 Un

2

as an analogue of the ∂-operator. A holomorphic bundle over T is a pair (E,∇)
consisting of a finitely generated projective right Aθ-module E and an operator
∇ : E → E satisfying the Leibnitz identity

∇(ea) = ∇(e)a + eδ(a),

where e ∈ E, a ∈ Aθ. There is an obvious definition of a holomorphic map be-
tween holomorphic bundles, so we can define the category C(T ) of holomorphic
bundles on T .

1This work was partially supported by NSF grant DMS-0302215
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For every pair of relatively prime integers (c, d) such that cθ + d > 0 and a
complex number z we define a standard holomorphic bundle (Ed,c(θ),∇z) as
follows. If c 6= 0 then

Ed,c(θ) = S(R × Z/cZ) = S(R)|c|,

where S(R) is the Schwartz space of functions on R, with the Aθ-action defined
by

fU1(x, α) = f(x − 1

µ
, α − 1), fU2(x, α) = exp(2πi(x − αd

c
))f(x, α),

where x ∈ R, α ∈ Z/cZ, µ = c
cθ+d . The operator ∇z on this space is given by

∇z(f) =
∂f

∂x
+ 2πi(τµx + z)f. (1.1)

For c = 0 and d = 1 we set E1,0(θ) = Aθ with the natural right Aθ-action and

the operator ∇z is given by

∇z(a) = δ(a) + 2πiza.

We define degree, rank and slope of a bundle E = Ed,c(θ) by setting deg(E) = c,
rk(E) = cθ +d and µ(E) = deg(E)/ rk(E). Note that rk(E) > 0 and µ = µ(E)
in the formulae above.
According to the theorem of Rieffel (see [5]) every finitely generated projec-
tive right Aθ-module is isomorphic to E = Ed,c(θ)

⊕n for some (c, d) as above
and n ≥ 0. Moreover, the degree and rank defined above extend to additive
functions on the category of finitely generated projective Aθ-modules.
The category of holomorphic bundles C = C(T ) has a natural structure of a
C-linear exact category. In particular, for every pair of holomorphic bundles E1

and E2 we can form the vector space Ext1C(E1, E2) parametrizing extensions
of E1 by E2. Sometimes we will also use the notation Ext0C := HomC . Let
C′ ⊂ C be the minimal full subcategory of C containing all standard holomorphic
bundles and closed under extensions. Our main result is the following theorem.

Theorem 1.1. One has C′ = C.

Combining this theorem with the study of the category C′ in [2] we obtain the
following result.

Corollary 1.2. The category C is abelian. It is equivalent to the heart Cθ of
the t-structure on the derived category of coherent sheaves on the elliptic curve
C/Z + Zτ , associated with θ (see section 3 of [2] or section 3.1 below).

Remark. Recall that we always assume θ to be irrational. For rational θ the
category C will not be abelian.

Corollary 1.3. For every indecomposable holomorphic bundle E on T there
exists a standard holomorphic bundle E and a filtration 0 = E0 ⊂ E1 ⊂ . . . ⊂
En = E by holomorphic subbundles such that all quotients Ei/Ei−1 are iso-
morphic to E.
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The proof of Theorem 1.1 consists of two steps. First, we develop the coho-
mology theory for holomorphic bundles on T and prove the analogues of the
standard theorems for them (such as finiteness, Riemann-Roch and Serre du-
ality). Then we combine these results with the techniques of [4] where the
category C′ was described in terms of coherent modules over a certain algebra.
Acknowledgments. Parts of this paper were written during the author’s visits
to Max-Planck-Institut für Mathematik in Bonn and the Institut des Hautes
Études Scientifiques. I’d like to thank these institutions for hospitality and
support.

2. Cohomology of holomorphic bundles on noncommutative
two-tori

2.1. Cohomology and Ext-spaces. Let (E,∇) be a holomorphic bundle on
T = Tθ,τ . Then the cohomology of E is defined by

Hi(E) = Hi(E,∇) = Hi(E
∇→ E)

where i = 0 or i = 1. Thus, H0(E) = ker(∇), H1(E) = coker(∇). These
spaces are closely related to Exti-spaces in the category of holomorphic bundles
(where i = 0 or i = 1). To explain this connection we have to use Morita
equivalences between noncommutative tori. Recall that for every standard
bundle E0 = Ed,c(θ) the algebra of endomorphisms EndAθ

(E0) can be identified

with the algebra Aθ′ for some θ′ ∈ R. In fact, θ′ = aθ+b
cθ+d , where a and b are

chosen in such a way that

(
a b
c d

)
∈ SL2(Z). Furthermore, if E0 is equipped

with a standard holomorphic structure ∇ then the formula φ 7→ [∇, φ] defines a
derivation of EndAθ

(E0) ≃ Aθ′ , hence the corresponding torus Tθ′ is equipped
with a complex structure. In fact, this derivation on Aθ′ is equal to δτ/ rk(E0),
where τ is the same parameter that was used to define the complex structure
on Tθ (see Proposition 2.1 of [2]). Now one can define the Morita equivalence

C(Tθ′,τ ) → C(Tθ,τ ) : E 7→ E ⊗Aθ′ E0,

where the tensor product is equipped with the complex structure

∇(e ⊗ e0) =
1

rk(E0)
∇E(e) ⊗ e0 + e ⊗∇E0

(e0)

(see Propositions 2.1 and 3.2 of [2]). This functor sends standard holomorphic
bundles on Tθ′,τ to standard holomorphic bundles on Tθ,τ . The inverse functor
is

C(Tθ,τ ) → C(Tθ′,τ ) : E 7→ HomAθ
(E0, E), (2.1)

where the latter space has a natural right action of Aθ′ ≃ EndAθ
(E0). Now

we can formulate the connection between the cohomology and Ext-groups. For
every holomorphic bundle E and a standard holomorphic bundle E0 on T =
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Tθ,τ one has a natural isomorphism

Exti
C(E0, E) ≃ Hi(HomAθ

(E0, E)), (2.2)

where HomAθ
(E0, E) is viewed as a holomorphic bundle on Tθ′ (the proof is

similar to Proposition 2.4 of [2]). Note that for an arbitrary pair of holomor-
phic bundles E1 and E2 one can still define an operator ∇ on HomAθ

(E1, E2)
such that the analogue of isomorphism (2.2) holds. However, we have a natural
interpretation of HomAθ

(E1, E2) as a holomorphic bundle on some noncommu-
tative two-torus only in the case when one of the bundles E1 or E2 is standard
(see (2.3) below).

2.2. Duality and metrics. One can define the category of left holomorphic
bundles on T by replacing right Aθ-modules with left ones and changing the
Leibnitz identity appropriately. The definition of cohomology for these bundles
remains the same. There is a natural duality functor E 7→ E∨ that associates
to a (right) holomorphic bundle E the left holomorphic bundle HomAθ

(E,Aθ).
More generally, for every standard holomorphic bundle E0 we can consider
HomAθ

(E,E0) as a left module over EndAθ
(E0) ≃ Aθ′ equipped with an in-

duced holomorphic structure. Then the natural isomorphism

Exti
C(E,E0) ≃ Hi(HomAθ

(E,E0)) (2.3)

allows to view Exti
C(E,E0) as cohomology of a holomorphic bundle on Tθ′ .

Using duality, the functor (2.1) for a standard holomorphic bundle E0 can be
rewritten as the usual Morita functor due to the isomorphism

HomAθ
(E0, E) ≃ E ⊗Aθ

E∨
0 . (2.4)

For a standard holomorphic bundle E0 on Tθ,τ the dual bundle E∨
0 can also be

considered as a right holomorphic bundle on Tθ′,τ , where EndAθ
(E0) ≃ Aθ′ . In

fact, it is again a standard holomorphic bundle (see Corollary 2.3 of [2]). More

precisely, for E0 = Ed,c(θ) we have θ′ = aθ+b
cθ+d , where

(
a b
c d

)
∈ SL2(Z). The

left action of Aθ′ on Ed,c(θ) = S(R × Z/cZ) (where c 6= 0) is defined by the
formulae

U1f(x, α) = f(x − 1

c
, α − a), U2f(x, α) = exp(2πi(

x

cθ + d
− α

c
))f(x, α),

where x ∈ R, α ∈ Z/cZ. We can identify Ed,c(θ)
∨ considered as a right Aθ′-

module with Ea,−c(θ
′) using the natural pairing

t : Ea,−c(θ
′) ⊗ Ed,c(θ) → Aθ

constructed as follows (see Proposition 1.2 of [2]). First, we define the map

b : Ea,−c(θ
′) ⊗ Ed,c(θ) → C

by the formula

b(f1, f2) =
∑

α∈Z/cZ

∫

x∈R

f1(
x

cθ + d
, α)f2(x,−aα)dx.
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Then t is given by

t(f1, f2) =
∑

(m,n)∈Z2

Um
1 Un

2 b(U−n
2 U−m

1 f1 ⊗ f2).

The corresponding isomorphism

Ed,c(θ)
∨ ≃ Ea,−c(θ

′)

is compatible with the Aθ − Aθ′-bimodule structures and with holomorphic
structures (see Corollary 2.3 of [2]). Note that b = tr ◦t, where tr : Aθ → C is
the trace functional sending

∑
am,nUm

1 Un
2 to a0,0.

On the other hand, we can define a C-antilinear isomorphism

σ : Ed,c(θ) → Ea,−c(θ
′)

by the formula

σ(f)(x, α) = f((cθ + d)x,−aα).

This isomorphism satisfies

σ(bea) = a∗σ(e)b∗ (2.5)

for e ∈ Ed,c(θ), a ∈ Aθ, b ∈ Aθ′ , where ∗ : Aθ → Aθ is the C-antilinear anti-

involution sending Ui to U−1
i . In view of the identification of Ea,−c(θ

′) with the
dual bundle to Ed,c(θ) the isomorphism σ should be considered as an analogue
of the Hermitian metric on Ed,c(θ). The corresponding analogue of the scalar
product on global sections is simply the Hermitian form on Ed,c(θ) given by
the formula

〈f1, f2〉 = b(σ(f2), f1) =
∑

α∈Z/cZ

∫

x∈R

f1(x, α)f2(x, α)dx, (2.6)

where f1, f2 ∈ Ed,c(θ). We can also define the corresponding L2-norm: ||f ||20 =
〈f, f〉. The above Hermitian form is related to the structure of Aθ′ − Aθ-
bimodule on Ed,c(θ) in the following way:

〈f1, af2b〉 = 〈a∗f1b
∗, f2〉,

where a ∈ Aθ′ , b ∈ Aθ (this is a consequence of (2.5) and of Lemma 1.1 of [2]).
In the case of the trivial bundle E1,0(θ) = Aθ we can easily modify the above
definitions. First of all, θ′ = θ and the dual bundle is still Aθ. The role
of σ is played by ∗ : Aθ → Aθ and the Hermitian form on Aθ is given by
〈a, b〉 = tr(ab∗). The corresponding L2-norm is

||
∑

am,nUm
1 Un

2 ||20 =
∑

|am,n|2.

Note that the operator ∇z on Ed,c(θ) admits an adjoint operator ∇∗
z with

respect to the Hermitian metrics introduced above. Namely, for c 6= 0 it is
given by

∇∗
z(f) = −∂f

∂x
− 2πi(τµx + z)f,
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while for c = 0 we have ∇∗
z = −δτ − 2πiz id on Aθ. In either case we have

∇z∇
∗
z −∇∗

z∇z = λ · id (2.7)

for some constant λ ∈ R.
It follows that for an arbitrary holomorphic structure ∇ on E = Ed,c(θ)

⊕n there

exists an adjoint operator ∇∗
: E → E with respect to the above Hermitian

metric. Indeed, we can write ∇ = ∇0+φ, where ∇0 is the standard holomorphic

structure and set ∇∗
= ∇∗

0 + φ∗.

2.3. Sobolev spaces. The idea to consider Sobolev spaces for bundles on
noncommutative tori is due to M. Spera (see [7], [8]). Let (E,∇) be a standard
holomorphic bundle on Tθ,τ . For s ∈ Z, s ≥ 0 we define the s-th Sobolev norm
on E by setting

||e||2s =

s∑

i=0

||∇i
e||20,

where ||e||0 is the L2-norm on E. We define Ws(E) to be the completion of E
with respect to this norm. Note that there is a natural embedding Ws+1(E) ⊂
Ws(E). We can define analogous spaces for E⊕n in an obvious way.
All the definitions above make sense also for rational θ. Moreover, for θ ∈ Z
the space E can be identified with the space of smooth section of a holomorphic
vector bundle V on an elliptic curve C/Z + Zτ in such a way that ∇ corre-
sponds to the ∂-operator. Furthermore, the L2-norm above corresponds to the
L2-norm with respect to a Hermitian metric on V that has constant curvature.
This implies that in this case the Sobolev spaces Ws(E) coincide with the cor-
responding Sobolev spaces constructed for the holomorphic bundle V . Indeed,
using the equation (2.7) it is easy to see that the norm ||e||s is equivalent to
the norm given by

(||e||′s)2 =

s∑

i=0

〈e, (∇∗∇)ie〉

which is equivalent to the standard Sobolev norm.
An important observation is that the operator ∇z defined by (1.1) depends only
on τµ, where µ is the slope of the bundle, so it is the same for the bundle Ed,c(θ)
on Tθ,τ and the bundle Ed,c(sign(c)N) on the commutative torus Tsign(c)N,τ ′ ,
where N is a large enough integer so that |c|N +d > 0, τ ′ = (|c|N +d)/(cθ+d).
Therefore, the sequences of spaces (Ws(E)) in these two cases are the same.
Hence, the following standard results about Sobolev spaces in the commutative
case extend immediately to our situation (the first two are analogues of Rellich’s
lemma and Sobolev’s lemma). In all these results E is a direct sum of a finite
number of copies of a standard holomorphic bundle.

Lemma 2.1. The embedding Ws(E) ⊂ Ws−1(E) is a compact operator.

Lemma 2.2. One has E = ∩s≥0Ws(E).

Lemma 2.3. The operator ∇ extends to a bounded operator Ws(E) → Ws−1(E)
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The following result is the only noncommutative contribution to the techniques
of Sobolev spaces, however, it is quite easy.

Lemma 2.4. For every φ ∈ EndAθ
(E) the operator φ : E → E extends to a

bounded operator Ws(E) → Ws(E).

Proof. It suffices to prove that for every s ≥ 0 one has

||φe||s ≤ C · ||e||s
for some constant C > 0. By our assumption E ≃ E⊕N

0 for some standard
bundle E0. Identifying EndAθ

(E0) with Aθ′ for some θ′ ∈ R we can write
φ =

∑
am,nUm

1 Un
2 where U1 and U2 are unitary generators of Aθ′ , am,n are

complex N × N matrices. Since U1 and U2 act on E by unitary operators, it
follows that

||φe||0 ≤ C(φ) · ||e||0
for e ∈ E, where C(φ) =

∑
m,n ||am,n|| (here ||a|| denote the norm of a matrix

a). Applying the Leibnitz rule repeatedly we derive similarly that

s∑

i=0

||∇i
(φe)||20 ≤

s∑

i=0

ci · ||∇
i
e||20

for some constants ci > 0 which implies the result. ¤

It is convenient to extend the definition of the chain . . . ⊂ W1(E) ⊂ W0(S) to
the chain of embedded spaces

. . . ⊂ W1(E) ⊂ W0(S) ⊂ W−1(E) ⊂ . . .

by setting W−s(E) = Ws(E)
∗

(the space of C-antilinear functionals) and using
the natural Hermitian form of W0(E). It is easy to see that the results of this
section hold for all integer values of s.

Lemma 2.5. Let ∇ : E → E be a (not necessarily standard) holomorphic

structure on E. Then the operators ∇ and ∇∗
can be extended to bounded

operators Ws(E) → Ws−1(E) for every s ∈ Z.

Proof. Let ∇0 be a standard holomorphic structure on E. Then ∇ = ∇0+φ for
some φ ∈ EndAθ

(E). By Lemma 2.3 (resp., Lemma 2.4) there exist a contin-
uous extension ∇0 : Ws(E) → Ws−1(E) (resp., φ : Ws(E) → Ws(E)). Hence,
∇ extends to a family of continuous operators ∇(s) : Ws(E) → Ws−1(E) for

s ∈ Z. The extensions of ∇∗
are given by the adjoint operators ∇(−s + 1)∗ :

Ws(E) → Ws−1(E). ¤

2.4. Applications to cohomology. We begin our study of cohomology
with standard holomorphic bundles.

Proposition 2.6. Let (E,∇) be a direct sum of several copies of a standard
holomorphic bundle on Tθ,τ .
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(i) The cohomology spaces H0(E) and H1(E) are finite-dimensional and for
Im(τ) < 0 one has

χ(E) = dimH0(E) − dimH1(E) = deg(E).

(ii) There exists an operator Q : E → E such that

id−Q∇ = πker∇,

id−∇Q = π∇(E)⊥ ,

where ∇(E)⊥ ⊂ E is the orthogonal complement to ∇(E) ⊂ E, for a finite-
dimensional subspace V ⊂ E we denote by πV : E → V the orthogonal projec-
tion.
(iii) If Im(τ) < 0 and deg(E) > 0 then H1(E) = 0.
(iv) The operator Q : E → E extends to a bounded operator Ws(E) →
Ws+1(E).
(v) For every e ∈ W0(E) one has

||Qe||0 ≤ 1

2
√

π| Im(τ)µ(E)|
||e||0.

Proof. In the commutative case the assertions (i)-(iii) are well known. For

example, the operator Q is given by ∂
∗
G, where G is the Green operator for

the ∂-Laplacian. The condition Im(τ) < 0 corresponds to the way we define
the operator δτ on Aθ (see Proposition 3.1 of [2]). As before we can deduce (i)-
(iii) in general from the commutative case. One can also prove these assertions
directly in the noncommutative case (see Proposition 2.5 of [2] for the proofs
of (i) and (iii)). The assertion (iv) follows immediately from the identity

∇n
Q = ∇n−1

(id−π∇(E)⊥).

To prove (v) we can assume that E = Ed,c(θ), where c 6= 0 and ∇ = ∇z for
some z ∈ C. Then the space W0(E) is the orthogonal sum of |c| copies of
L2(R). Moreover, the operator ∇ respects this decomposition and restricts to
the operator

f 7→ f ′ + (ax + z)f

on each copy, where a = 2πiτµ(E). Hence, the operator Q also respects this
decomposition and it suffices to consider its restriction to one copy of L2(R).

Since Re(a) 6= 0, by making the unitary transformation of the form f̃(x) =
exp(itx)f(x + t′) for some t, t′ ∈ R we can reduce ourselves to the case z = 0.

Furthermore, the transformation of the form f̃ = exp(i Im(a)x2/2)f gives a
unitary equivalence with the operator ∇ : f 7→ f ′ + λxf where λ = Re(a).
Consider the following complete orthogonal system of functions in L2(R):

fn(x) = Hn(
√

|λ|x) exp(−|λ|x
2

2
), n = 0, 1, 2, . . . ,
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where Hn(x) = (−1)n exp(x2) dn

dxn (exp(−x2)) are Hermite polynomials ((fn) is

an eigenbasis of the operator f 7→ −f ′′ + λ2x2). Note that

||fn||20 =
1√
λ

∫

R

Hn(x)2 exp(−x2)dx =
2n · n! · √π√

λ
.

Assume first that λ > 0. Then using the formula H ′
n(x) = 2nHn−1(x) we

obtain
∇(fn) = 2n

√
λfn−1

for n > 0 and ∇(f0) = 0. Therefore, in this case

Q(fn) =
1

(2n + 2)
√

λ
fn+1

for all n ≥ 0. Hence,

||Q(fn)||0
||fn||0

=
||fn+1||0

(2n + 2)
√

λ||fn||0
=

1√
(2n + 2)λ

≤ 1√
2λ

which implies (v) in this case.
Now assume that λ < 0. Then using the formula H ′

n(x) = 2xHn(x)−Hn+1(x)
we find

∇(fn) = −
√
|λ|fn+1.

Hence,

Q(fn) = − 1√
|λ|

fn−1

for n > 0 and Q(f0) = 0. It follows that

||Q(fn)||0
||fn||0

=
||fn−1||0√
|λ|||fn||0

=
1√

2n|λ|
≤ 1√

2|λ|
for n ≥ 1, which again implies our statement. ¤

Now we are ready to prove results about cohomology of arbitrary holomorphic
bundles. We will use the following well known lemma.

Lemma 2.7. Let L : W → W ′ and L′ : W ′ → W be bounded operators be-
tween Banach spaces such that L′L = id +C, LL′ = id +C ′ for some compact
operators C : W → W and C ′ : W ′ → W ′. Then the operator L is Fredholm.

Theorem 2.8. (i) For every holomorphic bundle (E,∇) on Tθ,τ the spaces
H0(E) and H1(E) are finite-dimensional.
(ii) If Im τ < 0 then

χ(E) = dimH0(E) − dimH1(E) = deg(E).

(iii) Let us equip E with a metric by identifying it with the direct sum of several
copies of a standard bundle. Then one has the following orthogonal decompo-
sitions

E = ker(∇) ⊕∇∗
(E),

E = ker(∇∗
) ⊕∇(E),

where ∇∗
: E → E is the adjoint operator to ∇.
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Proof. Let us write the holomorphic structure on E in the form

∇ = ∇0 + φ,

where (E,∇0) is holomorphically isomorphic to the direct sum of several copies
of a standard holomorphic bundle, φ ∈ EndAθ

(E). By Lemma 2.5, ∇ has a
bounded extension to an operator ∇ : Ws(E) → Ws−1(E) for every s ∈ Z.
Consider the operator Q : E → E constructed in Proposition 2.6 for the holo-
morphic structure ∇0. Then Q extends to a bounded operator Ws(E) →
Ws+1(E) for every s ∈ Z. We have

Q∇ = Q∇0 + Qφ = id−π0 + Qφ,

where π0 is the orthogonal projection to the finite-dimensional space ker(∇0) ⊂
E. Clearly, π0 defines a bounded operator W0(E) → ker(∇0). Hence, the oper-
ator C = Q∇− id : Ws(E) → Ws(E) factors as a composition of some bounded
operator Ws(E) → Ws+1(E) with the embedding Ws+1(E) → Ws(E). By
Lemma 2.1 this implies that C is a compact operator. Similarly, the operator
C ′ = ∇Q − id : Ws(E) → Ws(E) is compact. Applying Lemma 2.7 we deduce
that ∇ : Ws(E) → Ws−1(E) is a Fredholm operator. This immediately implies
that H0(E) is finite-dimensional. Moreover, we claim that

ker(∇ : Ws(E) → Ws−1(E)) = H0(E) ⊂ E

for any s ∈ Z. Indeed, it suffices to check that if ∇(e) = 0 for e ∈ Ws(E) then
e ∈ E. Let us prove by induction in t ≥ s that e ∈ Wt(E). Assume that this
is true for some t. Then

e = Q∇(e) − C(e) = −C(e) ∈ Wt+1(E).

Since ∩tWt(E) = E by Lemma 2.2 we conclude that e ∈ E.
Let Q∗ : Ws(E) → Ws+1(E) be the adjoint operator to Q : W−s−1(E) →
W−s(E), where s ∈ Z. Then the operators Q∗∇∗− id = (C ′)∗ and ∇∗

Q∗− id =
C∗ are compact. Thus, the same argument as before shows that for every s ∈ Z
the operator ∇∗

: Ws(E) → Ws−1(E) is Fredholm and one has

ker(∇∗
: Ws(E) → Ws−1(E)) ⊂ E.

Next we claim that

E = ker(∇∗
) ⊕∇(E).

Since the orthogonal complement to ker(∇∗
) in W0(E) coincides with the image

of ∇ : W1(E) → W0(E), it suffices to prove that E∩∇(W1(E)) ⊂ ∇(E). But if
e = ∇(e1) for some e ∈ E, e1 ∈ W1(E), then we can easily prove by induction
in s ≥ 1 that e1 ∈ Ws(E). Indeed, assuming that e1 ∈ Ws(E) we have

e1 = Q∇(e1) − C(e1) = Q(e) − C(e1) ∈ Ws+1(E).

A similar argument using the operator Q∗ shows that

E = ker(∇) ⊕∇∗
(E).
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Thus, we checked that H0(E) and H1(E) are finite-dimensional and that χ(E)
coincides with the index of the Fredholm operator ∇ = ∇0 + φ : W1(E) →
W0(E). Note that

∇t := ∇0 + tφ : W1(E) → W0(E)

is a continuous family of Fredholm operators depending on t ∈ [0, 1]. It follows
that the index of ∇ = ∇1 is equal to the index of ∇0 computed in Proposition
2.6. ¤

Corollary 2.9. If one of the holomorphic bundles E1 and E2 is standard then
the spaces HomC(E1, E2) and Ext1C(E1, E2) are finite-dimensional and

χ(E1, E2) := dim HomC(E1, E2) − dim Ext1C(E1, E2)

= rk(E1) deg(E2) − rk(E2) deg(E1).

The following vanishing result will play a crucial role in the proof of Theorem
1.1.

Theorem 2.10. Assume that Im(τ) < 0. For every holomorphic bundle E on
T = Tθ,τ there exists a constant C = C(E) ∈ R such that for every standard

holomorphic bundle E0 on T with µ(E0) < C one has Ext1C(E0, E) = 0.

Proof. Let us choose a (non-holomorphic) isomorphism E ≃ E⊕N
1 , where E1

is a standard holomorphic bundle on Tθ,τ . Then we can write the holomorphic
structure on E as

∇E = ∇0 + φ,

where ∇0 comes from the standard holomorphic structure on E1, φ ∈
EndAθ

(E). Then for every standard holomorphic bundle E0 we can consider
the holomorphic bundle E′ = HomAθ

(E0, E) on Tθ′,τ , where EndAθ
(E0) = Aθ′ .

Note that Ext1C(E0, E) ≃ H1(E′), so we want to prove that the latter group

vanishes for µ(E0) << 0. Recall that the holomorphic structure ∇′
on E′ is

given by

∇′
(f)(e0) = rk(E0) · [∇(f(e0)) − f(∇E0

(e0))],

where e0 ∈ E0, f ∈ E′ (see section 2.2 of [2]). The isomorphism E ≃ E⊕N
1

induces an isomorphism E′ ≃ (E′
1)

⊕N , where E′
1 is the standard bundle

HomAθ
(E0, E1) on Tθ′,τ . Therefore, we have

∇′
= ∇′

0 + rk(E0)φ,

where ∇′
0 corresponds to the standard holomorphic structure on (E′

1)
⊕N and φ

is now considered as an Aθ′-linear endomorphism of E′. Note that by Proposi-

tion 2.6(iii) we have H1(E′,∇′
0) = 0 as long as µ(E′) > 0. It is easy to compute

that

rk(E′) = rk(E)/ rk(E0), deg(E′) = rk(E) rk(E0)(µ(E) − µ(E0)),

hence
µ(E′) = rk(E0)

2(µ(E) − µ(E0)).
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Therefore, µ(E′) > 0 provided that µ(E0) < µ(E). In this case the operator
Q on E′ constructed in Proposition 2.6 for the standard holomorphic structure

∇′
0 satisfies ∇′

0Q = id. Let C0 be a constant such that

||Qe′||0 ≤ C0√
µ(E′)

||e′||0

for e′ ∈ W0(E
′) (see Proposition 2.6(v)). Also, let us write φ ∈ EndAθ

(E) ≃
EndAθ

(E⊕N
1 ) in the form φ =

∑
am,nUm

1 Un
2 , where U1 and U2 are unitary

generators of EndAθ
(E1) and am,n are N × N complex matrices. Then we set

C(φ) =
∑

m,n ||am,n|| (the sum of the matrix norms of all coefficients). Now

we choose the constant C < µ(E) in such a way that

C0C(φ)√
µ(E) − C

< 1.

Then for µ(E0) < C we will have

rk(E0) · ||φQe′||0 ≤ rk(E0)C0C(φ)√
µ(E′)

||e′||0 <
C0C(φ)√
µ(E) − C

||e′||0 < r · ||e′||0

for some 0 < r < 1. It follows from the above estimate that the operator
id + rk(E0)φQ : W0(E

′) → W0(E
′) is invertible. Therefore, we can define the

operator

Q̃ = Q(id + rk(E0)φQ)−1 : W0(E
′) → W1(E

′)

that satisfies

(∇′
0 + rk(E0)φ)Q̃ = id .

Hence, the operator ∇′
= ∇′

0 + rk(E0)φ : W1(E
′) → W0(E

′) is surjective. But
H1(E′) can be identified with the cokernel of this operator (see the proof of
Theorem 2.8), so H1(E′) = 0. ¤

2.5. Serre duality. For every holomorphic bundle E we have a natural pair-
ing

E ⊗Aθ
E∨ → Aθ : e ⊗ f 7→ f(e).

It is compatible with the ∂-operators, so it induces a pairing

H1−i(E) ⊗ Hi(E∨) → H1(Aθ) ≃ C (2.8)

for i = 0, 1.

Theorem 2.11. The pairing (2.8) is perfect.

Proof. Since we can switch E and E∨, it suffices to consider the case i = 0. We
choose an isomorphism of E with a direct sum of several copies of a standard
holomorphic bundle E0, so that we can talk about standard metrics and Sobolev
spaces. Note that the isomorphism H1(Aθ) is induced by the trace functional
tr : Aθ → C :

∑
am,nUm

1 Un
2 7→ a0,0. Hence, the pairing (2.8) is induced by the

pairing

b : E ⊗ E∨ → C : e ⊗ f 7→ tr(f(e))
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that satisfies the identity

rk(E0)b(∇E(e), e∨) + b(e,∇E∨(e∨)) = 0, (2.9)

where e ∈ E, e∨ ∈ E∨ (see Proposition 2.2 of [2]). According to Theorem
2.8(iii) we have orthogonal decompositions

E∨ = ker(∇E∨) ⊕∇∗
E∨(E∨),

E = ker(∇∗
E) ⊕∇E(E).

Therefore, it suffices to check that b induces a perfect pairing between ker(∇∗
E)

and ker(∇E∨). Let σ : E → E∨ be the C-antilinear isomorphism defined in sec-

tion 2.2. We claim that σ maps ker(∇∗
E) isomorphically onto ker(∇E∨). Since

b(e1, σ(e2)) = 〈e1, e2〉 for e1, e2 ∈ E, the theorem would immediately follow

this. To prove the claim it is enough to check that ∇E∨ = − rk(E0)σ∇
∗
Eσ−1.

To this end let us rewrite (2.9) as follows:

rk(E0)〈∇E(e), σ−1e∨〉 = −〈e, σ−1∇E∨(e∨)〉.

Since the left-hand side is equal to rk(E0)〈e,∇
∗
Eσ−1e∨〉 we conclude that

rk(E0)∇
∗
Eσ−1 = −σ−1∇E∨ as required. ¤

Recall that we denote by C′ ⊂ C the full subcategory consisting of all successive
extensions of standard holomorphic bundles. Theorem 3.8 of [2] implies that
the derived category of C′ is equivalent to the derived category of coherent
sheaves on an elliptic curve. Therefore, the standard Serre duality gives a
functorial isomorphism

Ext1C′(E1, E2) ≃ HomC′(E2, E1)
∗

for E1, E2 ∈ C′. Note that we can replace here Exti
C′ with Exti

C . Now using
the above theorem we can extend this isomorphism to the case when only one
of the objects E1, E2 belongs to C′.

Corollary 2.12. For every holomorphic bundles E and E0 such that E0 ∈ C′

the natural pairings

Exti
C(E0, E) ⊗ Ext1−i

C (E,E0) → Ext1C(E0, E0) → C

for i = 0, 1 are perfect. Here the functional Ext1C(E0, E0) → C is induced by
the Serre duality on C′. Therefore, we have functorial isomorphisms

Ext1−i
C (E,E0)→̃Exti

C(E0, E)∗ (2.10)

for E ∈ C, E0 ∈ C′.

Proof. If E0 is standard the assertion follows from Theorem 2.11. It remains
to observe that if for fixed E ∈ C the map (2.10) is an isomorphism for some
E0, E

′
0 ∈ C′ then it is also an isomorphism for any extension of E0 by E′

0. ¤
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3. Ampleness

3.1. Ample sequences of standard holomorphic bundles. Let us start
by recalling some basic notions concerning ample sequences in abelian cate-
gories and associated Z-algebras. The reader can consult [3] for more details.

Definition.(see [9],[3]): Let (En)n∈Z be a sequence of objects in a C-linear
abelian category A such that Hom(En, E) is finite-dimensional for every E ∈ A
and every n ∈ Z. Then (En) is called ample if the following two conditions
hold:
(i) for every surjection E → E′ in A the induced map Hom(En, E) →
Hom(En, E′) is surjective for all n << 0;
(ii) for every object E ∈ A and every N ∈ Z there exists a surjection
⊕s

i=1Eni
→ E where ni < N for all i.

To a sequence (En)n∈Z one can associate a so called Z-algebra A = ⊕i≤jAij ,
where Aii = C, Aij = Hom(Ei, Ej) for i < j, the multiplications Ajk ⊗ Aij →
Aik are induced by the composition in C. One can define for Z-algebras all
the standard notions associated with graded algebras (see [3]). In particular,
we can talk about right A-modules: these have form M = ⊕i∈ZMi and the
right A-action is given by the maps Mj ⊗ Aij → Mi. The analogues of free
A-modules are direct sums of the modules Pn, n ∈ Z, defined by (Pn)i = Ani.
We say that an A-module M is finitely generated if there exists a surjection
⊕s

i=1Pni
→ M . A finitely generated A-module M is called coherent if for every

morphism f : P → M , where P is a finitely generated free module, the module
ker(f) is finitely generated. Finally, a Z-algebra A is called coherent if all the
modules Pn are coherent and in addition all one-dimensional A-modules are
coherent.
The main theorem of [3] asserts that if (En) is ample then the Z-algebra A is
coherent and the natural functor E 7→ ⊕i<0 Hom(Ei, E) gives an equivalence
of categories

A ≃ cohproj A (3.1)

where cohproj A is the quotient of the category of coherent right A-modules
by the subcategory of finite-dimensional modules. We are going to apply this
theorem to the category C′ generated by standard holomorphic bundles on
T = Tθ,τ . Recall that in [2] we identified this category with a certain abelian
subcategory Cθ of the derived category Db(X) of coherent sheaves on the elliptic
curve X = C/Z + Zτ . To define Cθ one has to consider two full subcategories
in the category Coh(X) of coherent sheaves on X: Coh<θ (resp., Coh>θ) is
the minimal subcategory of Coh(X) closed under extensions and containing all
stable bundles of slope < θ (resp., all stable bundles of slope > θ and all torsion
sheaves). Then by the definition

Cθ = {K ∈ Db(X) : H>0(K) = 0,H0(K) ∈ Coh>θ,

H−1(K) ∈ Coh<θ,H
<−1(K) = 0}.
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Thus, Cθ contains Coh>θ and Coh<θ[1] and these two subcategories generate
Cθ in an appropriate sense. The fact that Cθ is abelian follows from the torsion
theory (see [1]). Note that the vectors (deg(K), rk(K)) ∈ Z2 for K ∈ Cθ are
characterized by the inequality

deg(K) − θ rk(K) > 0.

In [2] we showed that a version of Fourier-Mukai transform gives an equivalence
S : C′→̃Cθ (this S differs from the transform studied in section 3.3 of [2] by the
shift K 7→ K[1]). Standard holomorphic bundles correspond under S to stable
objects of Cθ: the latter are structure sheaves of points and objects of the form
V [n] where V is a stable bundle, n ∈ {0, 1}. Moreover, one has

degS(Ed,c(θ)) = d, rkS(Ed,c(θ)) = −c.

It follows that

rk(S(E)) = −deg(E), µ(S(E)) = θ − µ(E)−1.

The following criterion of ampleness in C′ is essentially contained in the proof
of Theorem 3.5 of [4], where we showed the existence of ample sequences in C′.

Theorem 3.1. Let (En) be a sequence of standard holomorphic bundles on T
such that µ(En) → −∞ as n → −∞ and rk(En) > c for all n << 0 for some
constant c > 0. Then (En) is an ample sequence in C′. Moreover, for every
E ∈ C′ the natural morphism Hom(En, E) ⊗C En → E in C is surjective for
n << 0.

Proof. Let Fn = S(En) be the corresponding sequence of stable objects of Cθ.
Then rk(Fn) = −deg(En) → +∞ and µ(Fn) = θ − µ(En)−1 → θ as n → −∞.
Moreover, we have

µ(Fn) − θ =
rk(En)

rk(Fn)
>

c

rk(Fn)
.

Therefore, the same proof as in Theorem 3.5 of [4] (where we considered only
the special case c = 1) shows that the sequence (Fn) is ample in Cθ and that for
every F ∈ Cθ the morphism Hom(Fn,F) ⊗C Fn → F is surjective for n << 0.
Hence, the same assertions hold for the sequence (En) in C′. ¤

Theorem 3.2. Let (En) be a sequence as in Theorem 3.1 and let A =
⊕i≤j HomC(Ei, Ej) be the corresponding Z-algebra. Then for every holomor-
phic bundle E on T the A-module M(E) = ⊕i<0 HomC(Ei, E) is coherent.
Also, for every sufficiently small i0 the canonical morphism of A-modules

HomC(Ei0 , E) ⊗ Pi0 → M(E)

has finite-dimensional cokernel.

First, we need a criterion for finite generation of modules M(E) with a weaker
assumption on (En).
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Lemma 3.3. Let E be a holomorphic bundle on T and let C = C(E) be the
corresponding constant from Theorem 2.10. Let (Ei) be a sequence of standard
holomorphic bundles such that µ(Ei) → µ as i → −∞, where µ ∈ R ∪ {−∞}.
Assume that for some ǫ > 0 one has rk(Ei)

2(µ(Ei)− µ) > 1 + ǫ for all i << 0
(this condition is vacuous if µ = −∞). Then
(i) for every sufficiently small i0 ∈ Z there exists i1 = i1(i0) such that for all
i < i1 there exists a standard holomorphic bundle Fi fitting into the following
short exact sequence in C′:

0 → Ei
can→ HomC(Ei, Ei0)

∗ ⊗ Ei0 → Fi → 0, (3.2)

where can is the canonical morphism.
(ii) Assume in addition that µ < C and if µ = −∞ then for some c > 0 one
has rk(Ei) > c for all i << 0. Then for all sufficiently small i0 there exists
i1 such that for i < i1 one has Ext1(Fi, E) = 0, where Fi is defined by (3.2).
Under the same assumptions the A-module M(E) is finitely generated.

Proof. (i) Let us denote ri = rk(Ei), µi = µ(Ei). If µ is finite then for every
sufficiently small i0 one has r2

i0
(µi0 − µ) > 1. Therefore, we can find i1 < i0

such that for i < i1 one has r2
i0

(µi0 − µi) > 1. If µ = −∞ then we can take
any i0 and then still find i1 < i0 such that for i < i1 the above inequality
holds. We are going to construct Fi in this situation. Using the equivalence

S : C′→̃Cθ ⊂ Db(X) we can first define F̃i ∈ Db(X) from the exact triangle

S(Ei) → HomC(Ei, Ei0)
∗ ⊗ S(Ei0) → F̃i → S(Ei)[1].

In other words, F̃i is the image of Ei under the equivalence REi0
: Db(X) →

Db(X) given by the right twist with respect to Ei0 (see [4], sec.2.3, or [6]; our

functor differs from that of [6] by a shift). It follows that HomDb(E)(F̃i, F̃i) ≃
HomC(Ei, Ei) ≃ C, so F̃i is a stable object and either F̃i ∈ Cθ or F̃i ∈ Cθ[1].

To prove that F̃i ∈ Cθ it suffices to check that deg(F̃i) − θ rk(F̃i) > 0. But

deg(F̃i) − θ rk(F̃i) = χ(Ei, Ei0)ri0 − ri = ((µi0 − µi)r
2
i0 − 1)ri > 0

by our choice of i. Hence, we have F̃i ∈ Cθ and we can set Fi = S−1(F̃i).
(ii) If µ is finite then we can choose i0 such that r2

i0
(µi0 − µ) > 1 + ǫ and

µi0 + ǫ−1(µi0 −µ) < C. If µ = −∞ then we choose i0 such that µi0 +2r−2
i0

< C
(here we use the assumption that ri > c for i << 0). In either case for
sufficiently small i we have short exact sequence (3.2). Applying to it the
functor Hom(?, E) we get the long exact sequence

0 → HomC(Fi, E) → HomC(Ei0 , E) ⊗ HomC(Ei, Ei0)

→ HomC(Ei, E) → Ext1C(Fi, E).

Thus, vanishing of Ext1C(Fi, E) for all i << 0 would imply that the A-module
M(E) is finitely generated. By the definition of the constant C this vanishing
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would follow from the inequality µ(Fi) < C. In the case µ 6= −∞ we have for
i << 0

µ(Fi) = µi0 +
µi0 − µi

r2
i0

(µi0 − µi) − 1
< µi0 + ǫ−1(µi0 − µi),

so the required inequality follows for i << 0 from our choice of i0. In the case
µ = −∞ we can finish the proof similarly using the inequality

µ(Fi) < µi0 +
2

r2
i0

that holds for all i << 0. ¤

Proof of Theorem 3.2. By Lemma 3.3 for any sufficiently small i0 there exists i1
(depending on i0) such that we have short exact sequence (3.2) and the induced
sequence of A-modules

0 → ⊕i<i1 HomC(Fi, E) → HomC(Ei0 , E) ⊗ (Pi0)<i1 → M(E)<i1 → 0

is exact, where for every A-module M = ⊕Mi we set M<n = ⊕i<nMi. This
immediately implies the last assertion of the theorem. Note that the structure
of the A-module on ⊕HomC(Fi, E) is defined using the natural isomorphisms
HomC(Fi, Fj) ≃ HomC(Ei, Ej) coming from the equality Fi = REi0

(Ei), where
REi0

is the right twist with respect to Ei0 . It suffices to prove that the module

M ′(E) := ⊕i<i1 HomC(Fi, E) is finitely generated. Indeed, this would imply
that the module M(E)<i1 is finitely presented and hence coherent (since A is
coherent), therefore, the module M(E) is also coherent. To check that M ′(E)
is finitely generated we will use the criterion of Lemma 3.3 for the sequence
(Fi). We have

µ(Fi) → µ = µi0 + 1/r2
i0

as i → −∞. Also,

rk(Fi)
2(µ(Fi) − µ) =

((µi0 − µi)r
2
i0
− 1)r2

i

r2
i0

>
((µi0 − µi)r

2
i0
− 1)c2

r2
i0

→ +∞

as i → −∞. Hence, the conditions of Lemma 3.3 will be satisfied once we
show that µ = µi0 + 1/r2

i0
can be made smaller than any given constant by an

appropriate choice of i0. But this is of course true since µi0 +1/r2
i0

< µi0 +1/c2

and µi0 → −∞ as i0 → −∞. ¤

3.2. Proof of Theorem 1.1. Let us pick a sequence (En)n∈Z of stable holo-
morphic bundles satisfying conditions of Theorem 3.1 (it is easy to see that
such a sequence exists, see the proof of Theorem 3.5 in [4]). Let E be a holo-
morphic bundle on T . Then by Theorem 3.2 the module M = ⊕i HomC(Ei, E)
is coherent, hence, we can consider the object E′ ∈ C′ corresponding to this
module via the equivalence (3.1). By the definition this means that there is an
isomorphism of A-modules

M(E′)<i0 ≃ M(E)<i0 (3.3)
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for some i0. By Theorem 3.2 assuming that i0 is small enough we can ensure
that for all i < i0 the canonical morphism M(E′)i ⊗ Pi → M(E′) has finite-
dimensional cokernel. We claim that there exists a morphism f : E′ → E in
C that induces the same isomorphism of A-modules M(E′)<i1 ≃ M(E)<i1 for
some i1 < i0 as the isomorphism (3.3). Indeed, by Theorem 3.1 we can find a
resolution for E′ in C′ of the form

. . . → V1 ⊗ En1
→ V0 ⊗ En0

→ E′ → 0 (3.4)

where V0 = Hom(En0
, E′) and nj < i0 for all j ≥ 0. Using this resolution we

can compute HomC(E′, E):

HomC(E′, E) ≃ ker(V ∗
0 ⊗ HomC(En0

, E) → V ∗
1 ⊗ HomC(En1

, E)).

Using isomorphism (3.3) we can identify this space with

ker(V ∗
0 ⊗ HomC(En0

, E′) → V ∗
1 ⊗ HomC(En1

, E′)) ≃ HomC(E′, E′).

Thus, we obtain an isomorphism HomC(E′, E) ≃ HomC(E′, E′). We de-
fine f ∈ HomC(E′, E) to be the element corresponding to the identity in
HomC(E′, E′). Let us check that f induces the same isomorphism as (3.3) on
some truncations of the modules M(E′) and M(E). The definition of f implies
that the composition of the induced morphism f∗ : M(E′) → M(E) with the
natural morphism V0 ⊗ Pn0

= M(V0 ⊗ En0
) → M(E′) coincides with the mor-

phism V0 ⊗ Pn0
→ M(E) induced by the isomorphism V0 = Hom(En0

, E′) ≃
Hom(En0

, E) induced by (3.3). Therefore, our claim follows from the fact that
the above morphism V0 ⊗ Pn0

→ M(E′) induces a surjective morphism on
appropriate truncations.
Thus, we can assume from the beginning that the isomorphism (3.3) is induced
by a morphism f : E′ → E. Next, we are going to construct a morphism
g : E′ → E such that g ◦ f = idE′ . To do this we note that by Serre duality
HomC(E,E′) ≃ Ext1C(E′, E)∗ (see Corollary 2.12). Let us make n0 smaller if
needed so that Ext1C(En0

, E) = Ext1C(En0
, E′) = 0. Then the space Ext1C(E′, E)

can be computed using resolution (3.4):

Ext1C(E′, E) ≃ H1[V ∗
0 ⊗ HomC(En0

, E)

→ V ∗
1 ⊗ HomC(En1

, E) → V ∗
2 ⊗ HomC(En2

, E)]. (3.5)

Indeed, let us define K1 ∈ C′ from the short exact sequence

0 → K1 → V0 ⊗ En0
→ E′ → 0,

so that we have the following resolution for K1:

. . . → V2 ⊗ En2
→ V1 ⊗ En1

→ K1 → 0.

Then the isomorphism (3.5) can be derived from the induced exact sequences

HomC(V0⊗, En0
, E) → HomC(K1, E) → Ext1C(E′, E) → Ext1C(V0⊗En0

, E) = 0,

0 → HomC(K1, E) → HomC(V1 ⊗ En1
, E) → HomC(V2 ⊗ En2

, E).

Using the fact that isomorphism (3.5) is functorial in E such that
Ext1C(En0

, E) = 0 we derive that the morphism Ext1C(E′, E′) → Ext1C(E′, E)
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induced by f is an isomorphism. But there is a natural functional
φ′ ∈ Ext1C(E′, E′)∗ given by Serre duality. Let φ ∈ Ext1C(E′, E)∗ be the
corresponding functional. The isomorphism Ext1C(E′, E)∗→̃HomC(E,E′)
maps φ to some element g ∈ HomC(E,E′). By functoriality of the Serre
duality the following diagram is commutative:

HomC(E,E′)
α
- Ext1C(E′, E)∗

HomC(E′, E′)

f∗

? α′
- Ext1C(E′, E′)∗

f∗

?

where the vertical arrows are induced by f . Since φ′ = α′(idE′), f∗(φ) = φ′

and α(g) = φ we deduce that f∗(g) = idE′ , i.e. g◦f = idE′ . Therefore, we have
E ≃ E′ ⊕ E′′ for some holomorphic bundle E′′ such that HomC(Ei, E

′′) = 0
for i < i0. But Theorem 2.10 implies that Ext1C(Ei, E

′′) = 0 for all sufficiently
negative i. Together with Corollary 2.9 this implies that E′′ = 0. ¤
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Abstract. For a central simple algebra with an orthogonal involu-
tion (A, σ) over a field k of characteristic different from 2, we relate the
multipliers of similitudes of (A, σ) with the Clifford algebra C(A, σ).
We also give a complete description of the group of multipliers of simil-
itudes when deg A ≤ 6 or when the virtual cohomological dimension
of k is at most 2.
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Introduction

A. Weil has shown in [22] how to obtain all the simple linear algebraic groups
of adjoint type Dn over an arbitrary field k of characteristic different from 2:
every such group is the connected component of the identity in the group
of automorphisms of a pair (A, σ) where A is a central simple k-algebra of
degree 2n and σ : A → A is an involution of orthogonal type, i.e., a linear map
which over a splitting field of A is the adjoint involution of a symmetric bilinear
form. (See [7] for background material on involutions on central simple algebras
and classical groups.) Every automorphism of (A, σ) is inner, and induced by
an element g ∈ A× which satisfies σ(g)g ∈ k×. The group of similitudes of
(A, σ) is defined by that condition,

GO(A, σ) = {g ∈ A× | σ(g)g ∈ k×}.
1The first author gratefully acknowledges the generous support of the Université

catholique de Louvain, Belgium and the ETH-Z, Switzerland.
2Work supported in part by the European Community’s Human Potential Programme

under contract HPRN-CT-2002-00287, KTAGS. The second author is supported in part by
the National Fund for Scientific Research (Belgium).
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The map which carries g ∈ GO(A, σ) to σ(g)g ∈ k× is a homomorphism

µ : GO(A, σ) → k×

called the multiplier map. Taking the reduced norm of each side of the equation
σ(g)g = µ(g), we obtain

NrdA(g)2 = µ(g)2n,

hence NrdA(g) = ±µ(g)n. The similitude g is called proper if NrdA(g) = µ(g)n,
and improper if NrdA(g) = −µ(g)n. The proper similitudes form a subgroup
GO+(A, σ) ⊂ GO(A, σ). (As an algebraic group, GO+(A, σ) is the connected
component of the identity in GO(A, σ).)
Our purpose in this work is to study the multipliers of similitudes of a cen-
tral simple k-algebra with orthogonal involution (A, σ). We denote by G(A, σ)
(resp. G+(A, σ), resp. G−(A, σ)) the group of multipliers of similitudes of (A, σ)
(resp. the group of multipliers of proper similitudes, resp. the coset of multi-
pliers of improper similitudes),

G(A, σ) = {µ(g) | g ∈ GO(A, σ)},
G+(A, σ) = {µ(g) | g ∈ GO+(A, σ)},
G−(A, σ) = {µ(g) | g ∈ GO(A, σ) \ GO+(A, σ)}.

When A is split (A = Endk V for some k-vector space V ), hyperplane reflections
are improper similitudes with multiplier 1, hence

G(A, σ) = G+(A, σ) = G−(A, σ).

When A is not split however, we may have G(A, σ) 6= G+(A, σ).
Multipliers of similitudes were investigated in relation with the discriminant
discσ by Merkurjev–Tignol [14]. Our goal is to obtain similar results relating
multipliers of similitudes to the next invariant of σ, which is the Clifford algebra
C(A, σ) (see [7, §8]). As an application, we obtain a complete description of
G(A, σ) when deg A ≤ 6 or when the virtual cohomological dimension of k is
at most 2.

To give a more precise description of our results, we introduce some more
notation. Throughout the paper, k denotes a field of characteristic different
from 2. For any integers n, d ≥ 1, let µ2n be the group of 2n-th roots of unity in

a separable closure of k and let Hd(k, µ
⊗(d−1)
2n ) be the d-th cohomology group

of the absolute Galois group with coefficients in µ
⊗(d−1)
2n (= Z/2nZ if d = 1).

Denote simply

Hdk = lim−→
n

Hd(k, µ
⊗(d−1)
2n ),

so H1k and H2k may be identified with the 2-primary part of the character
group of the absolute Galois group and with the 2-primary part of the Brauer
group of k, respectively,

H1k = X2(k), H2k = Br2(k).
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In particular, the isomorphism k×/k×2 ≃ H1(k,Z/2Z) derived from the Kum-
mer sequence (see for instance [7, (30.1)]) yields a canonical embedding

k×/k×2 →֒ H1k. (1)

The Brauer class (or the corresponding element in H2k) of a central simple
k-algebra E of 2-primary exponent is denoted by [E].
If K/k is a finite separable field extension, we denote by NK/k : HdK → Hdk
the norm (or corestriction) map. We extend the notation above to the case
where K ≃ k × k by letting Hd(k × k) = Hdk × Hdk and

N(k×k)/k(ξ1, ξ2) = ξ1 + ξ2 for (ξ1, ξ2) ∈ Hd(k × k).

Our results use the product

· : k× × Hdk → Hd+1k for d = 1 or 2

induced as follows by the cup-product: for x ∈ k× and ξ ∈ Hdk, choose

n such that ξ ∈ Hd(k, µ
⊗(d−1)
2n ) and consider the cohomology class (x)n ∈

H1(k, µ2n) corresponding to the 2n-th power class of x under the isomorphism
H1(k, µ2n) = k×/k×2n

induced by the Kummer sequence; let then

x · ξ = (x)n ∪ ξ ∈ Hd+1(k, µ⊗d
2n ) ⊂ Hd+1k.

In particular, if d = 1 and ξ is the square class of y ∈ k× under the embed-
ding (1), then x · ξ is the Brauer class of the quaternion algebra (x, y)k.
Throughout the paper, we denote by A a central simple k-algebra of even
degree 2n, and by σ an orthogonal involution of A. Recall from [7, (7.2)] that
discσ ∈ k×/k×2 ⊂ H1k is the square class of (−1)n NrdA(a) where a ∈ A×

is an arbitrary skew-symmetric element. Let Z be the center of the Clifford
algebra C(A, σ); thus, Z is a quadratic étale k-algebra, Z = k[

√
discσ], see

[7, (8.10)]. The following relation between similitudes and the discriminant is
proved in [14, Theorem A] (see also [7, (13.38)]):

Theorem 1. Let (A, σ) be a central simple k-algebra with orthogonal involution
of even degree. For λ ∈ G(A, σ),

λ · disc σ =

{
0 if λ ∈ G+(A, σ),

[A] if λ ∈ G−(A, σ).

For d = 2 (resp. 3), let (Hdk)/A be the factor group of Hdk by the subgroup
{0, [A]} (resp. by the subgroup k× · [A]). Theorem 1 thus shows that for λ ∈
G(A, σ)

λ · discσ = 0 in (H2k)/A.

Our main results are Theorems 2, 3, 4, and 5 below.
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Theorem 2. Suppose A is split by Z. There exists an element γ(σ) ∈ H2k
such that γ(σ)Z = [C(A, σ)] in H2Z. For λ ∈ G(A, σ),

λ · γ(σ) = 0 in (H3k)/A.

Remark 1. In the conditions of the theorem, the element γ(σ) ∈ H2k is not
uniquely determined if Z 6≃ k × k. Nevertheless, if λ · disc σ = 0 in (H2k)/A,
then λ · γ(σ) ∈ (H3k)/A is uniquely determined. Indeed, if γ, γ′ ∈ H2k are
such that γZ = γ′

Z , then there exists u ∈ k× such that γ′ = γ +u ·disc σ, hence

λ · γ′ = λ · γ + λ · u · disc σ.

The last term vanishes in (H3k)/A since λ · disc σ = 0 in (H2k)/A.

The proof of Theorem 2 is given in Section 1. It shows that in the split case,
where A = Endk V and σ is adjoint to some quadratic form q on V , we may
take for γ(σ) the Brauer class of the full Clifford algebra C(V, q). Note that the
statement of Theorem 2 does not discriminate between multipliers of proper
and improper similitudes, but Theorem 1 may be used to distinguish between
them. Slight variations of the arguments in the proof of Theorem 2 also yield
the following result on multipliers of proper similitudes:

Theorem 3. Suppose the Schur index of A is at most 4. If λ ∈ G+(A, σ), then
there exists z ∈ Z× such that λ = NZ/k(z) and

NZ/k

(
z · [C(A, σ)]

)
= 0 in (H3k)/A.

The proof is given in Section 1. Note however that the theorem holds without
the hypothesis that indA ≤ 4, as follows from Corollaries 1.20 and 1.21 in [12].
Using the Rost invariant of Spin groups, these corollaries actually yield an
explicit element z as in Theorem 3 from any proper similitude with multiplier
λ.

Remark 2. The element NZ/k

(
z · [C(A, σ)]

)
∈ (H3k)/A depends only on

NZ/k(z) and not on the specific choice of z ∈ Z. Indeed, if z, z′ ∈ Z× are
such that NZ/k(z) = NZ/k(z′), then Hilbert’s Theorem 90 yields an element
u ∈ Z× such that, denoting by ι the nontrivial automorphism of Z/k,

z′ = zuι(u)−1,

hence

NZ/k

(
z′ · [C(A, σ)]

)
=

NZ/k

(
z · [C(A, σ)]

)
+ NZ/k

(
u · [C(A, σ)]

)
− NZ/k

(
ι(u) · [C(A, σ)]

)
.

Since NZ/k ◦ ι = NZ/k and since the properties of the Clifford algebra (see [7,
(9.12)]) yield

[C(A, σ)] − ι[C(A, σ)] = [A]Z ,
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it follows that

NZ/k

(
u · [C(A, σ)]

)
− NZ/k

(
ι(u) · [C(A, σ)]

)
= NZ/k

(
u · [A]Z

)
.

By the projection formula, the right side is equal to NZ/k(u) · [A]. The claim
follows.

Remark 3. Theorems 2 and 3 coincide when they both apply, i.e., if A is split
by Z (hence indA = 1 or 2), and λ ∈ G+(A, σ). Indeed, if λ = NZ/k(z) and
γ(σ)Z = [C(A, σ)] then the projection formula yields

NZ/k

(
z · [C(A, σ)]

)
= λ · γ(σ).

Remarkably, the conditions in Theorems 1 and 2 turn out to be sufficient for
λ to be the multiplier of a similitude when deg A ≤ 6 or when the virtual
cohomological 2-dimension3 of k is at most 2.

Theorem 4. Suppose n ≤ 3, i.e., deg A ≤ 6.

• If A is not split by Z , then every similitude is proper,

G(A, σ) = G+(A, σ), G−(A, σ) = ∅.

Moreover, for λ ∈ k×, we have λ ∈ G(A, σ) if and only if there exists
z ∈ Z× such that λ = NZ/k(z) and

NZ/k

(
z · [C(A, σ)]

)
= 0 in (H3k)/A.

• If A is split by Z, let γ(σ) ∈ H2k be as in Theorem 2. For λ ∈ k×, we
have λ ∈ G(A, σ) if and only if

λ · disc σ = 0 in (H2k)/A and λ · γ(σ) = 0 in (H3k)/A.

The proof is given in Section 2.

Note that if deg A = 2, then A is necessarily split by Z and we may choose
γ(σ) = 0, hence Theorem 4 simplifies to

λ ∈ G(A, σ) if and only if λ · disc σ = 0 in (H2k)/A,

a statement which is easily proved directly. (See [14, p. 15] or [7, (12.25)].)

If deg A = 4, multipliers of similitudes can also be described up to squares as
reduced norms from a central simple algebra E of degree 4 such that [E] = γ(σ)
if A is split by Z (see Corollary 4.5) or as norms of reduced norms of C(A, σ)
if A is not split by Z (see Corollary 2.1).

3The authors are grateful to Parimala for her suggestion to investigate the case of low
cohomological dimension.
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For the next statement, recall that the virtual cohomological 2-dimension of
k (denoted vcd2 k) is the cohomological 2-dimension of k(

√
−1). If v is an

ordering of k, we let kv be a real closure of k for v and denote simply by
(A, σ)v the algebra with involution (A ⊗k kv, σ ⊗ Idkv

).

Theorem 5. Suppose vcd2 k ≤ 2, and A is split by Z. For λ ∈ k×, we have
λ ∈ G(A, σ) if and only if

λ > 0 at every ordering v of k such that (A, σ)v is not hyperbolic,

λ · disc σ = 0 in (H2k)/A and λ · γ(σ) = 0 in (H3k)/A.

The proof is given in Section 3.

1 Proofs of Theorems 2 and 3

Theorems 2 and 3 are proved by reduction to the split case, which we consider
first. We thus assume A = Endk V for some k-vector space V of dimension 2n,
and σ is adjoint to a quadratic form q on V . Then disc σ = disc q and C(A, σ)
is the even Clifford algebra C(A, σ) = C0(V, q). We denote by C(V, q) the full
Clifford algebra of q, which is a central simple k-algebra, and by Imk the m-th
power of the fundamental ideal Ik of the Witt ring Wk.

Lemma 1.1. For λ ∈ k×, the following conditions are equivalent:

(a) λ · disc q = 0 in H2k and λ · [C(V, q)] = 0 in H3k;

(b) 〈λ〉 · q ≡ q mod I4k.

Proof. For α1, . . . , αm ∈ k×, let

〈〈α1, . . . , αm〉〉 = 〈1,−α1〉 ⊗ · · · ⊗ 〈1,−αm〉.

Let e2 : I2k → H2k be the Witt invariant and e3 : I3k → H3k be the Arason
invariant. By a theorem of Merkurjev [9] (resp. of Merkurjev–Suslin [13] and
Rost [17]), we have ker e2 = I3k and ker e3 = I4k. Therefore, the lemma follows
if we prove

λ · disc q = 0 if and only if 〈〈λ〉〉 · q ∈ I3k, (2)

and that, assuming that condition holds,

e3(〈〈λ〉〉 · q) = λ · [C(V, q)]. (3)

Let δ ∈ k× be such that disc q = (δ)1 ∈ H1(k,Z/2Z) ⊂ H1k. Then

q ≡ 〈〈δ〉〉 mod I2k, (4)

hence
e2(〈〈λ〉〉 · q) = e2(〈〈λ, δ〉〉) = λ · disc q,
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proving (2). Now, assuming λ · disc q = 0, we have 〈〈λ, δ〉〉 = 0 in Wk, hence

〈〈λ〉〉 · q = 〈〈λ〉〉 · (q ⊥ 〈〈δ〉〉).

By (4), we have q ⊥ 〈〈δ〉〉 ∈ I2k, hence

e3(〈〈λ〉〉 · q) = λ · e2(q ⊥ 〈〈δ〉〉). (5)

The computation of Witt invariants in [8, Chapter 5] yields

e2(q ⊥ 〈〈δ〉〉) = [C(V, q)] + (−1) · disc q. (6)

Since λ · disc q = 0 by hypothesis, (3) follows from (5) and (6).

Proof of Theorem 2. If A is split, then using the same notation as in Lemma 1.1
we may take γ(σ) = [C(V, q)], and Theorem 2 readily follows from Lemma 1.1.
For the rest of the proof, we may thus assume A is not split, hence disc σ 6= 0
since Z is assumed to split A. Let G = {Id, ι} be the Galois group of Z/k. The
properties of the Clifford algebra (see for instance [7, (9.12)]) yield

[C(A, σ)] − ι[C(A, σ)] = [A]Z = 0.

Therefore, [C(A, σ)] lies in the subgroup (BrZ)G of BrZ fixed under the action
of G. The “Teichmüller cocycle” theory [6] (or the spectral sequence of group
extensions, see [19, Remarque, p. 126]) yields an exact sequence

Br k → (Br Z)G → H3(G,Z×).

Since G is cyclic, H3(G,Z×) = H1(G,Z×). By Hilbert’s Theorem 90,
H1(G,Z×) = 1, hence (Br Z)G is the image of the scalar extension map
Br k → Br Z, and there exists γ(σ) ∈ Br k such that γ(σ)Z = [C(A, σ)]. Then,
by [7, (9.12)],

2γ(σ) = NZ/k

(
[C(A, σ)]

)
=

{
0 if n is odd,

[A] if n is even,
(7)

hence 4γ(σ) = 0. Therefore, γ(σ) ∈ Br2(k) = H2k.
Note that indA = 2, since A is split by the quadratic extension Z/k, hence A
is Brauer-equivalent to a quaternion algebra Q. Let X be the conic associated
with Q; the function field k(X) splits A. Since Theorem 2 holds in the split
case, we have

λ · γ(σ) ∈ ker
(
H3k → H3k(X)

)
.

By a theorem of (Arason–) Peyre [16, Proposition 4.4], the kernel on the right
side is the subgroup k× · [A] ⊂ H3k, hence

λ · γ(σ) = 0 in (H3k)/A.
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Proof of Theorem 3. Suppose first A is split, and use the same notation as in
Lemma 1.1. If λ ∈ G(A, σ), then 〈λ〉 · q ≃ q and Lemma 1.1 yields

λ · disc q = 0 in H2k and λ · [C(V, q)] = 0 in H3k.

The first equation implies that λ = NZ/k(z) for some z ∈ Z×. Since

[C(A, σ)] = [C0(V, q)] = [C(V, q)]Z ,

the projection formula yields

NZ/k

(
z · [C(A, σ)]

)
= NZ/k(z) · [C(V, q)] = λ · [C(V, q)] = 0,

proving the theorem if A is split.
If A is not split, we extend scalars to the function field k(X) of the Severi–
Brauer variety of A. For λ ∈ G+(A, σ), there still exists z ∈ Z× such that
λ = NZ/k(z), by Theorem 1. Since Theorem 3 holds in the split case, we have

NZ/k

(
z · [C(A, σ)]

)
∈ ker

(
H3k → H3k(X)

)
,

and Peyre’s theorem concludes the proof. (Note that applying Peyre’s theorem
requires the hypothesis that indA ≤ 4.)

2 Algebras of low degree

We prove Theorem 4 by considering separately the cases ind A = 1, 2, and 4.

2.1 Case 1: A is split

Let A = Endk V , dim V ≤ 6, and let σ be adjoint to a quadratic form q on V .
Since C(A, σ) = C0(V, q), we may choose γ(σ) = [C(V, q)]. The equations

λ · disc σ = 0 in (H2k)/A and λ · γ(σ) = 0 in (H3k)/A

are then equivalent to

λ · disc q = 0 in H2k and λ · [C(V, q)] = 0 in H3k,

hence, by Lemma 1.1, to 〈〈λ〉〉 · q ∈ I4k. Since dim q = 6, the Arason–Pfister
Hauptsatz [8, Chapter 10, Theorem 3.1] shows that this relation holds if and
only if 〈〈λ〉〉 · q = 0, i.e., λ ∈ G(V, q) = G(A, σ), and the proof is complete.

2.2 Case 2: indA = 2

Let Q be a quaternion (division) algebra Brauer-equivalent to A. We repre-
sent A as A = EndQ U for some 3-dimensional (right) Q-vector space. The
involution σ is then adjoint to a skew-hermitian form h on U (with respect to
the conjugation involution on Q), which defines an element in the Witt group
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W−1(Q). Let X be the conic associated with Q. The function field k(X) splits
Q, hence Morita equivalence yields an isomorphism

W−1
(
Q ⊗ k(X)

)
≃ Wk(X).

Moreover, Dejaiffe [4] and Parimala–Sridharan–Suresh [15] have shown that
the scalar extension map

W−1(Q) → W−1
(
Q ⊗ k(X)

)
≃ Wk(X) (8)

is injective. Let (V, q) be a quadratic space over k(X) representing the image
of (U, h) under (8). We may assume dimV = deg A ≤ 6 and σ is adjoint to q
after scalar extension to k(X). An element λ ∈ k× lies in G(V, q) if and only
if 〈〈λ〉〉 · q = 0; by the injectivity of (8), this condition is also equivalent to
〈〈λ〉〉 · h = 0 in W−1(Q), i.e., to λ ∈ G(A, σ). Therefore,

G(V, q) ∩ k× = G(A, σ). (9)

Suppose first A is not split by Z. Theorem 1 then shows that every similitude
of (A, σ) is proper, and it only remains to show that if λ = NZ/k(z) for some
z ∈ Z× such that

NZ/k

(
z · [C(A, σ)]

)
= 0 in (H3k)/A,

then λ ∈ G(A, σ). Extending scalars to k(X), we derive from the last equation
by the projection formula

NZ(X)/k(X)(z) · [C(V, q)] = 0 in H3k(X).

Therefore, by Lemma 1.1, 〈λ〉 · q ≡ q mod I4k(X), i.e.,

〈〈λ〉〉 · q ∈ I4k(X).

Since dim q ≤ 6, the Arason–Pfister Hauptsatz implies 〈〈λ〉〉 · q = 0, hence
λ ∈ G(V, q) and therefore λ ∈ G(A, σ) by (9). Theorem 4 is thus proved when
indA = 2 and A is not split by Z.
Suppose next A is split by Z. In view of Theorems 1 and 2, it suffices to show
that if λ ∈ k× satisfies

λ · disc σ = 0 in (H2k)/A and λ · γ(σ) = 0 in (H3k)/A,

then λ ∈ G(A, σ). Again, extending scalars to k(X), the conditions become

λ · disc q = 0 in H2k(X) and λ · [C(V, q)] = 0 in H3k(X).

By Lemma 1.1, these equations imply 〈〈λ〉〉 · q ∈ I4k(X), hence 〈〈λ〉〉 · q = 0
by the Arason–Pfister Hauptsatz since dim q ≤ 6. It follows that λ ∈ G(V, q),
hence λ ∈ G(A, σ) by (9).
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2.3 Case 3: indA = 4

Since deg A ≤ 6, this case arises only if deg A = 4, i.e., A is a division algebra.
This division algebra cannot be split by the quadratic k-algebra Z, hence all the
similitudes are proper, by Theorem 1. Theorem 3 shows that if λ ∈ G(A, σ),
then there exists z ∈ Z× such that λ = NZ/k(z) and NZ/k

(
z · [C(A, σ)]

)
= 0

in (H3k)/A, and it only remains to prove the converse.
Let z ∈ Z× be such that NZ/k

(
z · [C(A, σ)]

)
= u · [A] for some u ∈ k×. Since

by [7, (9.12)], NZ/k

(
[C(A, σ)]

)
= [A], it follows that

NZ/k

(
u−1z · [C(A, σ)]

)
= 0 in H3k. (10)

Since deg A = 4, the Clifford algebra C(A, σ) is a quaternion algebra over Z.
Let

C(A, σ) = (z1, z2)Z .

Suppose first discσ 6= 0, i.e., Z is a field. Let s : Z → k be a k-linear map
such that s(1) = 0, and let s∗ : WZ → Wk be the corresponding (Scharlau)
transfer map. By [2, Satz 3.3, Satz 4.18], Equation (10) yields

s∗
(
〈〈u−1z, z1, z2〉〉

)
∈ I4k.

However, the form s∗
(
〈〈u−1z, z1, z2〉〉

)
is isotropic since 〈〈u−1z, z1, z2〉〉 repre-

sents 1 and s(1) = 0. Moreover, its dimension is 24, hence the Arason–Pfister
Hauptsatz implies

s∗
(
〈〈u−1z, z1, z2〉〉

)
= 0 in Wk.

It follows that
s∗

(
〈u−1z〉 · 〈〈z1, z2〉〉

)
= s∗

(
〈〈z1, z2〉〉

)
,

hence the form on the left side is isotropic. Therefore, the form 〈u−1z〉·〈〈z1, z2〉〉
represents an element v ∈ k×. Then v−1u−1z is represented by 〈〈z1, z2〉〉, which
is the reduced norm form of C(A, σ), hence z ∈ k× Nrd(C(A, σ)×), and

NZ/k(z) ∈ k×2NZ/k

(
Nrd(C(A, σ)×)

)
.

By [7, (15.11)], the group on the right is G+(A, σ). We have thus proved
NZ/k(z) ∈ G(A, σ), and the proof is complete when Z is a field.
Suppose finally discσ = 0, i.e., Z ≃ k × k. Then C(A, σ) ≃ C ′ × C ′′ for some
quaternion k-algebras C ′ = (z′1, z

′
2)k and C ′′ = (z′′1 , z′′2 )k, and [7, (15.13)] shows

G(A, σ) = Nrd(C ′×)Nrd(C ′′×).

We also have z = (z′, z′′) for some z′, z′′ ∈ k×, and (10) becomes

u−1z′ · [C ′] + u−1z′′ · [C ′′] = 0 in H3k.

It follows that
〈〈u−1z′, z′1, z

′
2〉〉 ≃ 〈〈u−1z′′, z′′1 , z′′2 〉〉.
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By [2, Lemma 1.7], there exists v ∈ k× such that

〈〈u−1z′, z′1, z
′
2〉〉 ≃ 〈〈v, z′1, z

′
2〉〉 ≃ 〈〈v, z′′1 , z′′2 〉〉 ≃ 〈〈u−1z′′, z′′1 , z′′2 〉〉,

hence v−1u−1z′ ∈ Nrd(C ′) and v−1u−1z′′ ∈ Nrd(C ′′). Therefore,

NZ/k(z) = z′z′′ ∈ Nrd(C ′×)Nrd(C ′′×),

and the proof of Theorem 4 is complete.

To finish this section, we compare the descriptions of G+(A, σ) for deg A = 4
or 6 in [7] with those which follow from Theorem 4 (and Remark 3).

Corollary 2.1. Suppose deg A = 4. If disc σ 6= 0, then

G+(A, σ) = k×2NZ/k

(
Nrd(C(A, σ)×)

)

= {NZ/k(z) | NZ/k

(
z · [C(A, σ)]

)
= 0 in (H3k)/A}.

If disc σ = 0, then C(A, σ) ≃ C ′ × C ′′ for some quaternion k-algebras C ′, C ′′,
and

G+(A, σ) = Nrd(C ′×)Nrd(C ′′×)

= {z′z′′ | z′ · [C ′] + z′′ · [C ′′] = 0 in (H3k)/A}.

Proof. See [7, (15.11)] for the case disc σ 6= 0 and [7, (15.13)] for the case
discσ = 0.

Corollary 2.2. Suppose deg A = 6. If discσ 6= 0, let ι be the nontrivial
automorphism of the field extension Z/k and let σ be the canonical (unitary)
involution of C(A, σ). Let also

GU(C(A, σ), σ) = {g ∈ C(A, σ) | σ(g)g ∈ k×}.

Then

G+(A, σ) =

{NZ/k(z) | zι(z)−1 = (σ(g)g)−2 Nrd(g) for some g ∈ GU(C(A, σ), σ)}
= {NZ/k(z) | NZ/k

(
z · [C(A, σ)]

)
= 0 in (H3k)/A}.

If disc σ = 0, then C(A, σ) ≃ C × Cop for some central simple k-algebra C of
degree 4, and

G+(A, σ) = k×2 Nrd(C×)

= {z ∈ k× | z · [C] = 0 in (H3k)/A}.
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Proof. See [7, (15.31)] for the case disc σ 6= 0 and [7, (15.34)] for the case
discσ = 0. In the latter case, Theorem 3 shows that G+(A, σ) consists of
products z′z′′ where z′, z′′ ∈ k× are such that

z′ · [C] + z′′ · [Cop] = 0 in (H3k)/A.

However, [Cop] = −[C], and 2[C] = [A] by [7, (9.15)], hence

z′ · [C] + z′′ · [Cop] = z′z′′ · [C] in (H3k)/A.

Note that the equation

k×2 Nrd(C×) = {z ∈ k× | z · [C] = 0 in (H3k)/A}

can also be proved directly by a theorem of Merkurjev [11, Proposition 1.15].

3 Fields of low virtual cohomological dimension

Our goal in this section is to prove Theorem 5. Together with Theorem 2, the
following lemma completes the proof of the “only if” part:

Lemma 3.1. If λ ∈ G(A, σ), then λ > 0 at every ordering v such that (A, σ)v

is not hyperbolic.

Proof. If (A, σ)v is not hyperbolic, then Av is split, by [18, Chapter 10, The-
orem 3.7]. We may thus represent Av = Endkv

V for some kv-vector space V ,
and σ ⊗ Idkv

is adjoint to a non-hyperbolic quadratic form q. If λ ∈ G(A, σ),
then λ ∈ G(V, q), hence

〈λ〉 · q ≃ q.

Comparing the signatures of each side, we obtain λ > 0.

For the “if” part, we use the following lemma:

Lemma 3.2. Let F be an arbitrary field of characteristic different from 2. If
vcd2 F ≤ 3, then the torsion part of the 4-th power of IF is trivial,

I4
t F = 0.

Proof. Our proof uses the existence of the cohomological invariants en : InF →
Hn(F, µ2), and the fact that ker en = In+1F , proved for fields of virtual coho-
mological 2-dimension at most 3 by Arason–Elman–Jacob [3].
Suppose first −1 /∈ F×2. From vcd2 F ≤ 3, it follows that Hn(F (

√
−1), µ2) = 0

for n ≥ 4, hence the Arason exact sequence

Hn(F (
√
−1), µ2)

N−→ Hn(F, µ2)
(−1)1∪−−−−→ Hn+1(F, µ2) → Hn+1(F (

√
−1), µ2)
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(see [2, Corollar 4.6] or [7, (30.12)]) shows that the cup-product with (−1)1 is
an isomorphism Hn(F, µ2) ≃ Hn+1(F, µ2) for n ≥ 4. If q ∈ I4

t F , there is an
integer ℓ such that 2ℓq = 0, hence the 4-th invariant e4(q) ∈ H4(F, µ2) satisfies

(−1)1 ∪ · · · ∪ (−1)1︸ ︷︷ ︸
ℓ

∪e4(q) = 0 in Hℓ+4(F, µ2).

Since (−1)1∪ is an isomorphism, it follows that e4(q) = 0, hence q ∈ I5
t F .

Repeating the argument with e5, e6, . . . , we obtain q ∈ ⋂
n InF , hence q = 0

by the Arason–Pfister Hauptsatz [8, p. 290].
If −1 ∈ F×2, then the hypothesis implies that Hn(F, µ2) = 0 for n ≥ 4, hence
for q ∈ I4F we get successively e4(q) = 0, e5(q) = 0, etc., and we conclude as
before.

Proof of Theorem 5. As observed above, the “only if” part follows from Theo-
rem 2 and Lemma 3.1. The proof of the “if” part uses the same arguments as
the proof of Theorem 2 in the case where indA = 2.
We first consider the split case. If A = Endk V and σ is adjoint to a quadratic
form q on V , then we may choose γ(σ) = C(V, q), and the conditions

λ · disc σ = 0 in (H2k)/A and λ · γ(σ) = 0 in (H3k)/A

imply, by Lemma 1.1, that 〈〈λ〉〉 · q ∈ I4k. Moreover, for every ordering v on k,
the signature sgnv(〈〈λ〉〉 ·q) vanishes, since λ > 0 at every v such that sgnv(q) 6=
0. Therefore, by Pfister’s local-global principle [8, Chapter 8, Theorem 4.1],
〈〈λ〉〉 · q is torsion. Since the hypothesis on k implies, by Lemma 3.2, that
I4
t k = 0, we have 〈〈λ〉〉 · q = 0, hence λ ∈ G(V, q) = G(A, σ). Note that

Lemma 3.2 yields I4
t k = 0 under the weaker hypothesis vcd2 k ≤ 3. Therefore,

the split case of Theorem 5 holds when vcd2 k ≤ 3.
Now, suppose A is not split. Since A is split by Z, it is Brauer-equivalent to a
quaternion algebra Q. Let k(X) be the function field of the conic X associated
with Q. This field splits A, hence there is a quadratic space (V, q) over k(X)
such that A⊗ k(X) may be identified with Endk(X) V and σ ⊗ Idk(X) with the
adjoint involution with respect to q. As in Section 2 (see Equation (9)), we
have

G(V, q) ∩ k× = G(A, σ).

Therefore, it suffices to show that the conditions on λ imply λ ∈ G(V, q).
If v is an ordering of k such that (A, σ)v is hyperbolic, then qw is hyperbolic
for any ordering w of k(X) extending v, since hyperbolic involutions remain
hyperbolic over scalar extensions. Therefore, λ > 0 at every ordering w of k(X)
such that qw is not hyperbolic. Moreover, the conditions

λ · disc σ = 0 in (H2k)/A and λ · γ(σ) = 0 in (H3k)/A

imply

λ · disc q = 0 in H2k(X) and λ · [C(V, q)] = 0 in H3k(X).
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Since X is a conic, Proposition 11, p. 93 of [20] implies

vcd2 k(X) = 1 + vcd2 k ≤ 3.

As Theorem 5 holds in the split case over fields of virtual cohomological 2-
dimension at most 3, it follows that λ ∈ G(V, q).

Remark. The same arguments show that if vcd2 k ≤ 2 and indA = 2, then
G+(A, σ) consists of the elements NZ/k(z) where z ∈ Z× is such that

NZ/k

(
z · [C(A, σ)]

)
= 0 in (H3k)/A.

4 Examples

In this section, we give an explicit description of the element γ(σ) of Theorem 2
in some special cases. Throughout this section, we assume the algebra A is not
split, and is split by Z (hence Z is a field and discσ 6= 0). Our first result is
easy:

Proposition 4.1. If A is split by Z and σ becomes hyperbolic after scalar
extension to Z, then we may choose γ(σ) = 0.

Proof. Let ι be the nontrivial automorphism of Z/k. Since Z is the center of
C(A, σ),

C(A, σ) ⊗k Z ≃ C(A, σ) × ιC(A, σ). (11)

On the other hand, C(A, σ) ⊗k Z ≃ C(A ⊗k Z, σ ⊗ IdZ), and since σ becomes
hyperbolic over Z, one of the components of C(A⊗k Z, σ ⊗ IdZ) is split, by [7,
(8.31)]. Therefore,

[C(A, σ)] = [ιC(A, σ)] = 0 in BrZ.

Corollary 4.2. In the conditions of Proposition 4.1, if deg A ≤ 6 or vcd2 k ≤
2, then

G+(A, σ) = {λ ∈ k× | λ · disc σ = 0 in H2k}

and

G−(A, σ) = {λ ∈ k× | λ · disc σ = [A] in H2k}.

Proof. This readily follows from Proposition 4.1 and Theorem 2 or 5.

To give further examples where γ(σ) can be computed, we fix a particular
representation of A as follows. Since A is assumed to be split by Z, it is
Brauer-equivalent to a quaternion k-algebra Q containing Z. We choose a
quaternion basis 1, i, j, ij of Q such that Z = k(i). Let A = EndQ U for some
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right Q-vector space U , and let σ be the adjoint involution of a skew-hermitian
form h on U with respect to the conjugation involution on Q. For x, y ∈ U ,
we decompose

h(x, y) = f(x, y) + jg(x, y) with f(x, y), g(x, y) ∈ Z.

It is easily verified that f (resp. g) is a skew-hermitian (resp. symmetric bilinear)
form on U viewed as a Z-vector space. (See [18, Chapter 10, Lemma 3.1].) We
have

A ⊗k Z = (EndQ U) ⊗k Z = EndZ U.

Moreover, for x, y ∈ U and ϕ ∈ EndQ U , the equation

h
(
x, ϕ(y)

)
= h

(
σ(ϕ)(x), y

)

implies
g
(
x, ϕ(y)

)
= g

(
σ(ϕ)(x), y

)
,

hence σ ⊗k IdZ is adjoint to g.

Proposition 4.3. With the notation above,

[C(A, σ)] = [C(U, g)] in Br Z.

Proof. Since σ ⊗ IdZ is the adjoint involution of g,

C(A ⊗k Z, σ ⊗ IdZ) ≃ C0(U, g). (12)

Now, discσ is a square in Z, hence C0(U, g) decomposes into a direct product

C0(U, g) ≃ C ′ × C ′′ (13)

where C ′, C ′′ are central simple Z-algebras Brauer-equivalent to C(U, g). The
proposition follows from (11), (12), and (13).

To give an explicit description of g, consider an h-orthogonal basis (e1, . . . , en)
of U . In the corresponding diagonalization of h,

h ≃ 〈u1, . . . , un〉,

each uℓ ∈ Q is a pure quaternion, since h is skew-hermitian. Let u2
ℓ = aℓ ∈ k×

for ℓ = 1, . . . , n. Then

disc σ = (−1)n Nrd(u1) . . . Nrd(un) = a1 . . . an,

so we may assume i2 = a1 . . . an. Write

uℓ = µℓi + jvℓ where µℓ ∈ k and vℓ ∈ Z. (14)

Each eℓQ is a 2-dimensional Z-vector space, and we have a g-orthogonal de-
composition

U = e1Q ⊕ · · · ⊕ enQ.
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If vℓ = 0, then g(eℓ, eℓ) = 0, hence eℓQ is hyperbolic. If vℓ 6= 0, then (eℓ, eℓuℓ)
is a g-orthogonal basis of eℓQ, which yields the following diagonalization of the
restriction of g:

〈vℓ,−aℓvℓ〉.
Therefore,

g = g1 + · · · + gn (15)

where

gℓ =

{
0 if vℓ = 0,

〈vℓ〉〈1,−aℓ〉 if vℓ 6= 0.
(16)

We now consider in more detail the cases n = 2 and n = 3.

4.1 Algebras of degree 4

Suppose deg A = 4, i.e., n = 2, and use the same notation as above. If
v1 = 0, then squaring each side of (14) yields a1 = µ2

1a1a2, hence a2 ∈ k×2,
a contradiction since Q is assumed to be a division algebra. The case v2 = 0
leads to the same contradiction. Therefore, we necessarily have v1 6= 0 and
v2 6= 0. By (15) and (16),

g = 〈v1〉〈1,−a1〉 + 〈v2〉〈1,−a2〉,

hence by [8, p. 121],

[C(A, σ)] = (a1, v1)Z + (a2, v2)Z + (a1, a2)Z

= (a1,−v1v2)Z . (17)

Since the division algebra Q contains the pure quaternions u1, u2 and i with
u2

1 = a1, u2
2 = a2 and i2 = a1a2, we have a1, a2, a1a2 /∈ k×2 and we may

consider the field extension

L = k(
√

a1,
√

a2).

We identify Z with a subfield of L by choosing in L a square root of a1a2, and
denote by ρ1, ρ2 the automorphisms of L/k defined by

ρ1(
√

a1) = −√
a1, ρ2(

√
a1) =

√
a1,

ρ1(
√

a2) =
√

a2, ρ2(
√

a2) = −√
a2.

Thus, Z ⊂ L is the subfield of ρ1 ◦ ρ2-invariant elements. Let j2 = b. Then
(14) yields

a1 = µ2
1a1a2 + bNZ/k(v1), a2 = µ2

2a1a2 + bNZ/k(v2),

hence NZ/k(−v1v2) = a1a2b
−2(1 − µ2

1a2)(1 − µ2
2a1) and

−v1v2

ρ1(−v1v2)
=

−v1v2

ρ2(−v1v2)
=

a1a2

b2ρ1(−v1v2)2
(1 − µ2

1a2)(1 − µ2
2a1).
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Since L = Z(
√

a1) = Z(
√

a2), it follows that 1 − µ2
1a2 and 1 − µ2

2a1 are norms
from L/Z. Therefore, the preceding equation yields

−v1v2

ρ1(−v1v2)
=

−v1v2

ρ2(−v1v2)
= NL/Z(ℓ) for some ℓ ∈ L×.

Since NZ/k(−v1v2ρ1(−v1v2)
−1) = 1, we have NL/k(ℓ) = 1. By Hilbert’s Theo-

rem 90, there exists b1 ∈ L× such that

ρ1(b1) = b1 and b1ρ2(b1)
−1 = ℓρ1(ℓ). (18)

Set b2 = −v1v2ρ1(ℓ)b
−1
1 . Computation yields

ρ2(b2) = b2 and ρ1(b2)b
−1
2 = ℓρ2(ℓ). (19)

Define an algebra E over k by

E = L ⊕ Lr1 ⊕ Lr2 ⊕ Lr1r2

where the multiplication is defined by

r1x = ρ1(x)r1, r2x = ρ2(x)r2 for x ∈ L,

r2
1 = b1, r2

2 = b2, and r1r2 = ℓr2r1.

Since b1, b2 and ℓ satisfy (18) and (19), the algebra E is a crossed product, see
[1]. It is thus a central simple k-algebra of degree 4.

Proposition 4.4. With the notation above, we may choose γ(σ) = [E] ∈ Br k.

Proof. The centralizer CEZ of Z in E is L ⊕ Lr1r2. Computation shows that

(r1r2)
2 = −v1v2.

Since conjugation by r1r2 maps
√

a1 ∈ L to its opposite, it follows that

CEZ = (a1,−v1v2)Z .

Since [CEZ] = [E]Z , the proposition follows from (17).

Corollary 4.5. Let

E+ = CEZ = {x ∈ E× | xz = zx for all z ∈ Z}

and

E− = {x ∈ E× | xz = ρ1(z)x for all z ∈ Z}.

Then

G+(A, σ) = k×2 NrdE(E+) and G−(A, σ) = k×2 NrdE(E−).
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Proof. As observed in the proof of Proposition 4.4, CEZ ≃ C(A, σ). Since, by
[5, Corollary 5, p. 150],

NrdE(x) = NZ/k(NrdCEZ x) for x ∈ CEZ,

the description of G+(A, σ) above follows from [7, (15.11)] (see also Corol-
lary 2.1).
To prove k×2 NrdE(E−) ⊂ G−(A, σ), it obviously suffices to prove NrdE(E−) ⊂
G−(A, σ). From the definition of E, it follows that r1 ∈ E−. By [10, p. 80],

NrdE(r1) · [E] = 0 in H3k. (20)

Let L1 ⊂ L be the subfield fixed under ρ1. We have r2
1 = b1 ∈ L1, hence

NrdE(r1) = NL1/k(b1).

On the other hand, the centralizer of L1 is

CEL1 = L ⊕ Lr1 ≃ (a1a2, b1)L1
,

hence

[NL1/k(CEL1)] =
(
a1a2, NL1/k(b1)

)
k

= NrdE(r1) · disc σ in H2k. (21)

Since [CEL1] = [EL1
], we have [NL1/k(CEL1)] = 2[E]. But 2[E] = 2γ(σ) = [A]

by (7), hence (21) yields

NrdE(r1) · disc σ = [A] in H2k. (22)

From (20), (22) and Theorems 1, 2 it follows that NrdE(r1) ∈ G−(A, σ).
Now, suppose x ∈ E−. Then r1x ∈ E+, hence NrdE(r1x) ∈ G+(A, σ) by the
first part of the corollary. Since

G+(A, σ)G−(A, σ) = G−(A, σ)

it follows that

NrdE(x) ∈ NrdE(r1)G+(A, σ) = G−(A, σ).

We have thus proved k×2 NrdE(E−) ⊂ G−(A, σ).
To prove the reverse inclusion, consider λ ∈ G−(A, σ). Since

G−(A, σ)G−(A, σ) = G+(A, σ),

we have λ NrdE(r1) ∈ G+(A, σ), hence by the first part of the corollary,

λ NrdE(r1) ∈ k×2 NrdE(E+).

It follows that
λ ∈ k×2 NrdE(r1E+) = k×2 NrdE(E−).
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4.2 Algebras of degree 6

Suppose deg A = 6, i.e., n = 3, and use the same notation as in the beginning
of this section. If σ (i.e., h) is isotropic, then h is Witt-equivalent to a rank 1
skew-hermitian form, say 〈u〉. Hence i2 = disc σ = u2 ∈ k×. Hence we may
assume that h is Witt-equivalent to the rank 1 skew-hermitian form 〈µi〉 for
some µ ∈ k×. This implies that the form g is hyperbolic and C(U, g) is split.
Hence we may choose γ(σ) = 0. By Theorem 4, we then have λ ∈ G(A, σ) if
and only if λ.disc σ = 0 in (H2k)/A. If σ becomes isotropic over Z, the form
g is isotropic, hence we may choose a diagonalization of h

h ≃ 〈u1, u2, u3〉

such that g(u3, u3) = 0, i.e., in the notation of (14), u3 = µ3i. Raising each
side to the square, we obtain

a3 = µ2
3a1a2a3,

hence a1 ≡ a2 mod k×2. It follows that u2 is conjugate to a scalar multiple of
u1, i.e., there exists x ∈ Q× and θ ∈ k× such that

u2 = θxu1x
−1 = θ NrdQ(x)−1xu1x.

Since 〈u1〉 ≃ 〈xu1x〉, we may let ν = −θ Nrd(x)−1 ∈ k× to obtain

h ≃ 〈u1,−νu1, µ3i〉.

If v1 = 0, then g is hyperbolic, hence we may choose γ(σ) = 0 by Proposi-
tion 4.1. If v1 6= 0, then (15) and (16) yield

g = 〈v1〉〈1,−a1〉 + 〈−νv1〉〈1,−a1〉 = 〈v1〉〈〈a1, ν〉〉.

The Clifford algebra of g is the quaternion algebra (a1, ν)Z , hence we may
choose

γ(σ) = (a1, ν)k.

Suppose finally that σ does not become isotropic over Z, hence v1, v2, v3 6= 0.
Then

g = 〈v1〉〈1,−a1〉 + 〈v2〉〈1,−a2〉 + 〈v3〉〈1,−a3〉
and, by Proposition 4.3,

[C(A, σ)] = (a1, v1)Z + (a2, v2)Z + (a3, v3)Z + (a1, a2)Z + (a1, a3)Z + (a2, a3)Z .

Since Z = k(
√

a1a2a3), the right side simplifies to

[C(A, σ)] = (a1, v1v3)Z + (a2, v2v3)Z + (a1, a2)Z + (a1a2,−1)Z . (23)

By [7, (9.16)], NZ/kC(A, σ) is split, hence

(
a1, NZ/k(v1v3)

)
k

= (a2, NZ/k(v2v3)
)
k

in Br k.
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By the “common slot lemma” (see for instance [2, Lemma 1.7]), there exists
α ∈ k× such that

(
a1, NZ/k(v1v3)

)
k

=
(
α,NZ/k(v1v3)

)
k

=
(
α,NZ/k(v2v3)

)
k

=
(
a2, NZ/k(v2v3)

)
k
.

Then

(αa1, NZ/k(v1v3)
)
k

= (αa2, NZ/k(v2v3)
)
k

=
(
α,NZ/k(v1v2)

)
k

= 0.

By [21, (2.6)], there exist β1, β2, β3 ∈ k× such that

(αa1, v1v3)Z = (αa1, β1)Z , (αa2, v2v3)Z = (αa2, β2)Z ,

(α, v1v2)Z = (α, β3)Z .

Since

(a1, v1v3)Z + (a2, v2v3)Z = (αa1, v1v3)Z + (αa2, v2v3)Z + (α, v1v2)Z ,

it follows from (23) that

[C(A, σ)] = (αa1, β1)Z + (αa2, β2)Z + (α, β3)Z + (a1, a2)Z + (a1a2,−1)Z .

We may thus take

γ(σ) = (a1, β1)k + (a2, β2)k + (α, β1β2β3)k + (a1, a2)k + (a1a2,−1)k

= (a1,−a2β1)k + (a2,−β2)k + (α, β1β2β3)k.
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Université de Rennes 1
F-35042 Rennes, France
preeti.raman@math.univ-rennes1.fr

J.-P. Tignol
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Abstract. Theorem 29 and Corollary 30 of [1] are incorrect. This
only concerns the application of tropical convexity to phylogenetic
trees. None of the results on tropical convexity itself is affected.

2000 Mathematics Subject Classification: 52A30; 92B10

Theorem 29 and Corollary 30 of [1] are not correct. If D is a symmetric matrix
which represents a finite metric, then the tropical polytope PD always contains
Isbell’s injective hull of the metric, but in general these two polyhedral spaces
are not equal. The flaw lies in the statement (made in the proof of Theorem 29)
that for any vertex (y, z) of P−D, the vector y is a column of −D. The tropical
polytope P−D can have vertices for which this is not the case, corresponding
to vertices in the tropical convex hull which are not in the generating set. The
injective hull of D is the intersection of P−D with the linear space {y = z}. If
the metric D is a tree metric, then the tropical polytope PD is one-dimensional
and is indeed equal to the given tree, so Theorem 28 is correct as stated.

For instance, for a generic metric D on four points, the tropical tetrahedron PD

given by the tropical convex hull of the negated columns of the matrix is three-
dimensional, while the injective hull is a two-dimensional complex consisting of
four edges emanating from a quadrangle [2, Figure A3]. Even in this case, there
does not seem be a straightforward relationship between the combinatorial
structure of the tropical tetrahedron PD and that of the injective hull of D.

While the connection between metrics and regular subdivisions of products of
simplices via tropical convex hulls is invalid, metrics are intimately related to
subdivisions of other polytopes, namely hypersimplices, as shown in [3].
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Abstract. It is shown that bounded solutions to semilinear elliptic
Fuchsian equations obey complete asymptotic expansions in terms of
powers and logarithms in the distance to the boundary. For that pur-
pose, Schulze’s notion of asymptotic type for conormal asymptotic ex-
pansions near a conical point is refined. This in turn allows to perform
explicit computations on asymptotic types — modulo the resolution
of the spectral problem for determining the singular exponents in the
asymptotic expansions.
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1 Introduction

In this paper, we study solutions u = u(x) to semilinear elliptic equations of
the form

Au = F (x,B1u, . . . , BKu) on X◦ = X \ ∂X. (1.1)

Here, X is a smooth compact manifold with boundary, ∂X, and of dimension
n + 1, A, B1, . . . , BK are Fuchsian differential operators on X◦, see Defini-
tion 2.1, with real-valued coefficients and of orders µ, µ1, . . . , µK , respectively,
where µJ < µ for 1 ≤ J ≤ K, and F = F (x, ν) : X◦ × RK → R is a smooth
function subject to further conditions as x → ∂X. In case A is elliptic in the
sense of Definition 2.2 (a) we shall prove that bounded solutions u : X◦ → R
to Eq. (1.1) possess complete conormal asymptotic expansion of the form

u(t, y) ∼
∞∑

j=0

mj∑

k=0

t−pj logk t cjk(y) as t → +0. (1.2)

Here, (t, y) ∈ [0, 1) × Y are normal coordinates in a neighborhood U of ∂X,
Y is diffeomorphic to ∂X, and the exponents pj ∈ C appear in conjugated
pairs, Re pj → −∞ as j → ∞, mj ∈ N, and cjk(y) ∈ C∞(Y ). Note that such
conormal asymptotic expansions are typical of solutions u to linear equations
of the form (1.1), i.e., in case F (x) = F (x, ν) is independent of ν ∈ RK .

The general form (1.2) of asymptotics was first thoroughly investigated by
Kondrat’ev in his nowadays classical paper [9]. After that to assign asymp-
totic types to conormal asymptotic expansions of the form (1.2) has proved
to be very fruitful. In its consequence, it provides a functional-analytic frame-
work for treating singular problems, both linear and non-linear ones, of the kind
(1.1). Function spaces with asymptotics will be discussed in Sections 2.4, 3.1.
In its standard setting, going back to Rempel–Schulze [14] in case n = 0
(when Y is always assumed be a point) and Schulze [15] in the general case,
an asymptotic type P for conormal asymptotic expansions of the form (1.2) is
given by a sequence {(pj ,mj , Lj)}∞j=0, where pj ∈ C, mj ∈ N are as in (1.2),
and Lj is a finite-dimensional linear subspace of C∞(Y ) to which the coeffi-
cients cjk(y) for 0 ≤ k ≤ mj are required to belong. (In case n = 0, the spaces
Lj = C disappear.) A function u(x) is said to have conormal asymptotics of
type P as x → ∂X if u(x) obeys a conormal asymptotic expansion of the form
(1.2), with the data given by P .
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When treating semilinear equations we shall encounter asymptotic types be-
longing to bounded functions u(x), i.e., asymptotic types P for which

{
p0 = 0, m0 = 0, L0 = span{1},
Re pj < 0 for all j ≥ 1,

(1.3)

where 1 ∈ L0 is the function on Y being constant 1.
It turns out that this notion of asymptotic type resolves asymptotics not fine
enough to suit a treatment of semilinear problems. The difficulty with it is
that only the aspect of the production of asymptotics is emphasized — via the
finite-dimensionality of the spaces Lj — but not the aspect of their annihilation.
For semilinear problems, however, the latter affair becomes crucial. Therefore,
in Section 2, we shall introduce a refined notion of asymptotic type, where
additionally linear relations between the various coefficients cjk(y) ∈ Lj , even
for different j, are taken into account.

Let As(Y ) be the set of all these refined asymptotic types, while As♯(Y ) ⊂
As(Y ) denotes the set of asymptotic types belonging to bounded functions
according to (1.3). For R ∈ As(Y ), let C∞

R (X) be the space of smooth functions
u ∈ C∞(X◦) having conormal asymptotic expansions of type R, and C∞

R (X ×
RK) = C∞(RK ;C∞

R (X)), where C∞
R (X) is equipped with its natural (nuclear)

Fréchet topology. In the formulation of Theorem 1.1, below, we will assume
that F ∈ C∞

R (X × RK), where

ω(t)tµ−µ̄−εC∞
R (X) ⊂ L∞(X) (1.4)

for some ε > 0. Here, µ̄ = max1≤J≤K µJ < µ and ω = ω(t) is a cut-off function
supported in U , i.e., ω ∈ C∞(X), suppω ⋐ U . Here and in the sequel, we
always assume that ω = ω(t) depends only on t for 0 < t < 1 and ω(t) = 1
for 0 < t ≤ 1/2. Condition (1.4) means that, given the operator A and then
compared to the operators B1, . . . , BK , functions in C∞

R (X) cannot be too
singular as t → +0.
There is a small difference between the set Asb(Y ) of all bounded asymptotic
types and the set As♯(Y ) of asymptotic types as described by (1.3); As♯(Y ) (
Asb(Y ). The set As♯(Y ) actually appears as the set of multiplicatively closable
asymptotic types, see Lemma 3.4. This shows up in the fact that when only
boundedness is presumed asymptotic types belonging to Asb(Y ) — but not
to As♯(Y ) — need to be excluded from the considerations by the following
non-resonance type condition (1.5), below:
Let H−∞,δ(X) =

⋃
s∈R Hs,δ(X) for δ ∈ R be the space of distributions u =

u(x) on X◦ having conormal order at least δ. (The weighted Sobolev space
Hs,δ(X), where s ∈ R is Sobolev regularity, is introduced in (2.31).) Note that⋃

δ∈R H−∞,δ(X) is the space of all extendable distributions on X◦ that in turn
is dual to the space C∞

O (X) of all smooth functions on X vanishing to infinite
order at ∂X. Note also that the conormal order δ for δ → ∞ is the parameter
in which the asymptotics (1.2) are understood.
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Now, fix δ ∈ R and suppose that a real-valued u ∈ H−∞,δ(X) satisfying Au ∈
C∞

O (X) has an asymptotic expansion of the form

u(x) ∼ Re




∞∑

j=0

mj∑

k=0

tl+j+iβ logk t cjk(y)


 as t → +0,

where l ∈ Z, β ∈ R, β 6= 0 (and l > δ − 1/2 provided that c0m0
(y) 6≡ 0 due to

the assumption u ∈ H−∞,δ(X)). Then, for each 1 ≤ J ≤ K, it is additional
required that

BJu = O(1) as t → +0 implies BJu = o(1) as t → +0, (1.5)

where O and o are Landau’s symbols. Condition (1.5) means that there is
no real-valued u ∈ H−∞,δ(X) with Au ∈ C∞

O (X) such that BJu admits an
asymptotic series starting with the term Re(tiβd(y)) for some β ∈ R \ {0},
d(y) ∈ C∞(Y ). This condition is void if δ ≥ 1/2 + µ̄.
Our main theorem states:

Theorem 1.1. Let δ ∈ R and A ∈ Diffµ
Fuchs(X) be elliptic in the sense of

Definition 2.2 (a), BJ ∈ DiffµJ

Fuchs(X) for 1 ≤ J ≤ K, where µJ < µ, and F ∈
C∞

R (X × Rk) for some asymptotic type R ∈ As(Y ) satisfying (1.4). Further,
let the non-resonance type condition (1.5) be satisfied. Then there exists an
asymptotic type P ∈ As(Y ) expressible in terms of A, B1, . . . , BK , R, and δ
such that each solution u ∈ H−∞,δ(X) to Eq. (1.1) satisfying BJu ∈ L∞(X)
for 1 ≤ J ≤ K belongs to the space C∞

P (X).

Under the conditions of Theorem 1.1, interior elliptic regularity already implies
u ∈ C∞(X◦). Thus, the statement concerns the fact that u possesses a com-
plete conormal asymptotic expansion of type P near ∂X. Furthermore, the
asymptotic type P can at least in principle be calculated once A, B1, . . . , BK ,
R, and δ are known.
Some remarks about Theorem 1.1 are in order: First, the solution u is asked
to belong to the space H−∞,δ(X). Thus, if the non-resonance type condition
(1.5) is satisfied for all δ ∈ R — which is generically true — then the foregoing
requirement can be replaced by the requirement for u being an extendable
distribution. In this case, Pδ 4 Pδ′ for δ ≥ δ′ in the natural ordering of
asymptotic types, where Pδ denotes the asymptotic type associated with the
conormal order δ. Moreover, jumps in this relation occur only for a discrete
set of values of δ ∈ R and, generically, Pδ eventually stabilizes as δ → −∞.
Secondly, for a solution u ∈ C∞

P (X) to Eq. (1.1), neither u nor the right-
hand side F (x,B1u(x), . . . , BKu(x)) need be bounded. Unboundedness of u,
however, requires that, up to a certain extent, asymptotics governed by the
elliptic operator A are canceled jointly by the operators B1, . . . , BK . Again,
this is a non-generic situation. Furthermore, in applications one often has that
one of the operators BJ , say B1, is the identity — belonging to Diff0

Fuchs(X) —
i.e., B1u = u for all u. Then this leads to u ∈ L∞(X) and explains the term
“bounded solutions” in the paper’s title.
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Remark 1.2. Theorem 1.1 continues to hold for sectional solutions in vec-
tor bundles over X. Let E0, E1, E2 be smooth vector bundles over X, A ∈
Diffµ

Fuchs(X;E0, E1) be elliptic in the above sense, B ∈ Diffµ−1
Fuchs(X;E0, E2),

and F ∈ C∞
R (X,E2;E1). Then, under the same technical assumptions as

above, each solution u to Au = F (x,Bu) in the class of extendable distribu-
tions with Bu ∈ L∞(X;E2) belongs to the space C∞

P (X;E0) for some resulting
asymptotic type P .

Theorem 1.1 has actually been stated as one, though basic example for a more
general method for deriving — and then justifying — conormal asymptotic
expansions for solutions to semilinear elliptic Fuchsian equations. This method
always works if one has boundedness assumptions as made above, but bound-
edness can often successfully be replaced by structural assumptions on the
nonlinearity. An example is provided in Section 3.4. The proposed method
works indeed not only for elliptic Fuchsian equations, but for other Fuchsian
equations as well. In technical terms, what counts is the invertible of the com-
plete sequence of conormal symbols in the algebra of complete Mellin symbols
under the Mellin translation product, and this is equivalent to the elliptic-
ity of the principal conormal symbol (which, in fact, is a substitute for the
non-characteristic boundary in boundary problems). For elliptic Fuchsian dif-
ferential operator, this latter condition is always fulfilled.

The derivation of conormal asymptotic expansions for solutions to semilinear
Fuchsian equations is a purely algebraic business once the singular exponents
and their multiplicities for the linear part are known. However, a strict justifi-
cation of these conormal asymptotic expansions — in the generality supplied in
this paper — requires the introduction of the refined notion of asymptotic type
and corresponding function spaces with asymptotics. For this reason, from a
technical point of view the main result of this paper is Theorem 2.42 which
states the existence of a complete sequence of holomorphic Mellin symbols
realizing a given proper asymptotic type in the sense of exactly annihilating
asymptotics of that given type. (The term “proper” is introduced in Defini-
tion 2.22.) The construction of such Mellin symbols relies on the factorization
result of Witt [21].

Remark 1.3. Behind part of the linear theory, there is Schulze’s cone pseu-
dodifferential calculus. The interested reader should consult Schulze [15, 16].
We do not go much into the details, since for most of the arguments this is
not needed. Indeed, the algebra of complete Mellin symbols controls the pro-
duction and annihilation of asymptotics, and it is this algebra that is detailed
discussed.

The relation with conical points is as follows: A conical point leads — via blow-
up, i.e., the introduction of polar coordinates — to a manifold with boundary.
Vice versa, each manifold with boundary gives rise to a space with a conical
point — via shrinking the boundary to a point. Since in both situations the
analysis is taken place over the interior of the underlying configuration, i.e.,
away from the conical point and the boundary, respectively, there is no essential
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difference between these two situations. Thus, the geometric situation is given
by the kind of degeneracy admitted for, say, differential operators. In the case
considered in this paper, this degeneracy is of Fuchsian type.

The first part of this paper, Section 2, is devoted to the linear theory and the
introduction of the refined notion of asymptotic type. Then, in a second part,
Theorem 1.1 is proved in Section 3.

2 Asymptotic types

In this section, we introduce the notion of discrete asymptotic type. A compar-
ison of this notion with the formerly known notions of weakly discrete asymp-
totic type and strongly discrete asymptotic type, respectively, can be found in
Figure 1. The definition of discrete asymptotic type is modeled on part of the
Gohberg-Sigal theory of the inversion of finitely meromorphic, operator-valued
functions at a point, see Gohberg-Sigal [4]. See also Witt [18] for the corre-
sponding notion of local asymptotic type, i.e., asymptotic types at one singular
exponent p ∈ C in (1.2) only. Finally, in Section 2.4, function spaces with
asymptotics are introduced. The definition of these function spaces relies on
the existence of complete (holomorphic) Mellin symbols realizing a prescribed
proper asymptotic type. The existence of such complete Mellin symbols is
stated and proved in Theorem 2.42.

Added in proof. To keep this article of reasonable length, following the referee’s

advice, proofs of Theorems 2.6, 2.30, and 2.42 and Propositions 2.28 (b), 2.31, 2.32,

2.35, 2.36, 2.40, 2.44, 2.46, 2.47, 2.48, 2.49, and 2.52 are only sketchy or missing at

all. They are available from the second author’s homepage1.

2.1 Fuchsian differential operators

Let X be a compact C∞ manifold with boundary, ∂X. Throughout, we fix a
collar neighborhood U of ∂X and a diffeomorphism χ : U → [0, 1)× Y , with Y
being a closed C∞ manifold diffeomorphic to ∂X. Hence, we work in a fixed
splitting of coordinates (t, y) on U , where t ∈ [0, 1) and y ∈ Y . Let (τ, η) be
the covariables to (t, y). The compressed covariable tτ to t is denoted by τ̃ ,
i.e., (τ̃ , η) is the linear variable in the fiber of the compressed cotangent bundle
T̃ ∗X

∣∣
U . Finally, let dimX = n + 1.

Definition 2.1. A differential operator A with smooth coefficients of order µ
on X◦ = X \ ∂X is called Fuchsian if

χ∗
(
A

∣∣
U
)

= t−µ

µ∑

k=0

ak(t, y,Dy)
(
−t∂t

)k
, (2.1)

where ak ∈ C∞([0, 1);Diffµ−k(Y )) for 0 ≤ k ≤ µ. The class of all Fuchsian
differential operators of order µ on X◦ is denoted by Diffµ

Fuchs(X).

1 http://www.ma.imperial.ac.uk/̃ ifw/asymptotics.html
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Weakly discrete
asymptotic types

Singular exponents with multiplicities, (pj , mj), are
prescribed, the coefficients cjk(y) ∈ C∞(Y ) are ar-
bitrary. The general form of asymptotics is ob-
served, cf., e.g., Kondrat’ev (1967), Melrose
(1993), Schulze (1998).

?

Strongly discrete
asymptotic types

Singular exponents with multiplicities, (pj , mj), are
prescribed, cjk(y) ∈ Lj ⊂ C∞(Y ), where dim Lj <
∞. The production of asymptotics is observed,
cf. Rempel–Schulze (1989), Schulze (1991).

?

Discrete
asymptotic types

Linear relation between the various coefficients
cjk(y) ∈ Lj , even for different j, are additionally al-
lowed. Thus the production/annihilation of asymp-
totics is observed, cf. this article.

Figure 1: Schematic overview of asymptotic types

Henceforth, we shall suppress writing the restriction ·
∣∣
U and the operator push-

forward χ∗ in expressions like (2.1). For A ∈ Diffµ
Fuchs(X), we denote by

σµ
ψ(A)(t, y, τ, η) = t−µ

µ∑

k=0

σµ−k
ψ (ak(t))(y, η)(itτ)k

the principal symbol of A, by σ̃µ
ψ(A)(t, y, τ̃ , η) its compressed principal symbol

related to σµ
ψ(A)(t, y, τ, η) via

σµ
ψ(A)(t, y, τ, η) = t−µσ̃µ

ψ(A)(t, y, tτ, η)

in (T̃ ∗X \ 0)
∣∣
U , and by σµ

M (A)(z) its principal conormal symbol,

σµ
M (A)(z) =

µ∑

k=0

ak(0)zk, z ∈ C.

Further, we introduce the jth conormal symbol σµ−j
M (A)(z) for j = 1, 2, . . . by

σµ−j
M (A)(z) =

µ∑

k=0

1

j!

∂jak

∂tj
(0)zk, z ∈ C.

Note that σ̃µ
ψ(A)(t, y, τ̃ , η) is smooth up to t = 0 and that σµ−j

M (z) for j =
0, 1, 2, . . . is a holomorphic function in z taking values in Diffµ(Y ). Moreover,
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if A ∈ Diffµ
Fuchs(X), B ∈ Diffν

Fuchs(X), then AB ∈ Diffµ+ν
Fuchs(X),

σµ+ν−l
M (AB)(z) =

∑

j+k=l

σµ−j
M (A)(z + ν − k)σν−k

M (B)(z) (2.2)

for all l = 0, 1, 2, . . . This formula is called the Mellin translation product (due
to the shifts of ν − k in the argument of the first factors).

Definition 2.2. (a) The operator A ∈ Diffµ
Fuchs(X) is called elliptic if A is an

elliptic differential operator on X◦ and

σ̃µ
ψ(A)(t, y, τ̃ , η) 6= 0, (t, y, τ̃ , η) ∈ (T̃ ∗X \ 0)

∣∣
U . (2.3)

(b) The operator A ∈ Diffµ
Fuchs(X) is called elliptic with respect to the weight

δ ∈ R if A is elliptic in the sense of (a) and, in addition,

σµ
M (A)(z) : Hs(Y ) → Hs−µ(Y ), z ∈ Γ(n+1)/2−δ, (2.4)

is invertible for some s ∈ R (and then for all s ∈ R). Here, Γβ = {z ∈ C; Re z =
β} for β ∈ R.

Under the assumption of interior ellipticity of A, (2.3) can be reformulated as

µ∑

k=0

σµ−k
ψ (ak(0))(y, η)

(
iτ̃

)k 6= 0

for all (0, y, τ̃ , η) ∈ (T̃ ∗X\0)
∣∣

∂U . This relation implies that σµ
M (A)(z)

∣∣
Γ(n+1)/2−δ

is parameter-dependent elliptic as an element in Lµ
cl

(
Y ; Γ(n+1)/2−δ

)
, where the

latter is the space of classical pseudodifferential operators on Y of order µ with
parameter z varying in Γ(n+1)/2−δ, for

σµ
ψ(σµ

M (A))(y, z, η)
∣∣
z=(n+1)/2−δ−τ̃

= σ̃µ
ψ(A)(0, y, τ̃ , η),

where σµ
ψ(·) on the left-hand side denotes the parameter-dependent principal

symbol. Thus, if (a) is fulfilled, then it follows that σµ
M (A)(z) in (2.4) is

invertible for z ∈ Γ(n+1)/2−δ, |z| large enough.

Lemma 2.3. If A ∈ Diffµ
Fuchs(X) is elliptic, then there exists a discrete set

D ⊂ C with D ∩ {z ∈ C; c0 ≤ Re z ≤ c1} is finite for all −∞ < c0 < c1 < ∞
such that (2.4) is invertible for all z ∈ C \ D. In particular, there is a discrete
set D ⊂ R such that A is elliptic with respect to the weight δ for all δ ∈ R \D;
D = ReD.

Proof. Since σµ
M (A)(z)

∣∣
Γβ

∈ Lµ(Y ; Γβ) is parameter-dependent elliptic for all

β ∈ R, for each c > 0 there is a C > 0 such that σµ
M (A)(z) ∈ Lµ(Y ) is invertible

for all z with |Re z| ≤ c, | Im z| ≥ C. Then the assertion follows from results on
the invertibility of holomorphic operator-valued functions. See Proposition 2.5,
below, or Schulze [16, Theorem 2.4.20].
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Next, we introduce the class of meromorphic functions arising in point-wise
inverting parameter-dependent elliptic conormal symbols σµ

M (A)(z). The fol-
lowing definition is taken from Schulze [16, Definition 2.3.48]:

Definition 2.4. (a) Mµ
O(Y ) for µ ∈ Z∪{−∞} is the space of all holomorphic

functions f(z) on C taking values in Lµ
cl(Y ) such that f(z)

∣∣
z=β+iτ

∈ Lµ
cl(Y ; Rτ )

uniformly in β ∈ [β0, β1] for all −∞ < β0 < β1 < ∞.
(b) M−∞

as (Y ) is the space of all meromorphic functions f(z) on C taking values
in L−∞(Y ) that satisfy the following conditions:
(i) The Laurent expansion around each pole z = p of f(z) has the form

f(z) =
f0

(z − p)ν
+

f1

(z − p)ν−1
+ · · · + fν−1

z − p
+

∑

j≥0

fν+j(z − p)j , (2.5)

where f0, f1, . . . , fν−1 ∈ L−∞(Y ) are finite-rank operators.
(ii) If the poles of f(z) are numbered someway, p1, p2, . . . , then |Re pj | → ∞
as j → ∞ if the number of poles is infinite.
(iii) For any

⋃
j{pj}-excision function χ(z) ∈ C∞(C), i.e., χ(z) = 0 if

dist(z,
⋃

j{pj}) ≤ 1/2 and χ(z) = 1 if dist(z,
⋃

j{pj}) ≥ 1, we have

χ(z)f(z)
∣∣
z=β+iτ

∈ L−∞(Y ; Rτ ) uniformly in β ∈ [β0, β1] for all −∞ < β0 <

β1 < ∞.
(c) Finally, we set Mµ

as(Y ) = Mµ
O(Y ) + M−∞

as (Y ) for µ ∈ Z. (Note that
Mµ

O(Y ) ∩M−∞
as (Y ) = M−∞

O (Y ).)
Functions f(z) belonging to Mµ

as(Y ) are called Mellin symbols of order µ.
⋃

µ∈Z Mµ
as(Y ) is a filtered algebra under pointwise multiplication.

For f ∈ Mµ
as(Y ) for µ ∈ Z and f(z) = f0(z) + f1(z), where f0 ∈ Mµ

O(Y ),
f1 ∈ M−∞

as (Y ), the parameter-dependent principal symbol σµ
ψ

(
f0(z)

∣∣
z=β+iτ

)

is independent of the choice of the decomposition of f and also independent of
β ∈ R. It is called the principal symbol of f . The Mellin symbol f ∈ Mµ

as(Y )
is called elliptic if its principal symbol is everywhere invertible.
For the next result, see Schulze [16, Theorem 2.4.20]:

Proposition 2.5. The Mellin symbol f ∈ Mµ
as(Y ) for µ ∈ Z is invertible

in the filtered algebra
⋃

µ∈Z Mµ
as(Y ), i.e., there is a g ∈ M−µ

as (Y ) such that
(fg)(z) = (gf)(z) = 1 on C, if and only if f is elliptic.

For f ∈ Mµ
as(Y ), p ∈ C, and N ∈ N, we denote by [f(z)]Np the Laurent series

of f(z) around z = p truncated after the term containing (z − p)N , i.e.,

[f(z)]Np =
f−ν

(z − p)ν
+ · · · + f−1

z − p
+ fν + f1(z − p) + · · · + fN (z − p)N . (2.6)

Furthermore, [f(z)]∗p = [f(z)]−1
p denotes the principal part of the Laurent series

of f(z) around z = p.
In various constructions, it is important to have examples of elliptic Mellin
symbols f ∈ Mµ

as(Y ) of controlled singularity structure:
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Theorem 2.6. Let µ ∈ Z and {pj}j=1,2,... ⊂ C be a sequence obeying the prop-
erty mentioned in Definition 2.4 (b) (ii). Let, for each j = 1, 2, . . . , operators
f j
−νj

, . . . , f j
Nj

in Lµ
cl(Y ), where νj ≥ 0, Nj + νj ≥ 0, be given such that

• f j
−νj

, . . . , f j
min{Nj ,0} ∈ L−∞(Y ) are finite-rank operators,

• there is an elliptic g ∈ Mµ
O(Y ) such that, for all j, 0 ≤ k ≤ Nj ,

f j
k − 1

k!
g(k)(pj) ∈ L−∞(Y ) (2.7)

(in particular, f j
k ∈ Lµ−k

cl (Y ) for 0 ≤ k ≤ Nj and f j
0 ∈ Lµ

cl(Y ) is elliptic
of index zero).

Then there is an elliptic Mellin symbol f(z) ∈ Mµ
as(Y ) such that, for all j,

[f(z)]Nj
pj

=
f j
−νj

(z − pj)νj
+ · · · + f j

−1

z − pj
+ f j

0 + · · · + f j
Nj

(z − pj)
Nj , (2.8)

while f(q) ∈ Lµ
cl(Y ) is invertible for all q ∈ C \ ⋃

j=1,2,...{pj}.

If n = 0, condition (2.7) is void. In case n > 0, however, this condition expresses

several compatibility conditions among the σµ−l
ψ (f j

k), where j = 0, 1, 2, . . . ,
0 ≤ k ≤ Nj , and l ≥ k, and also certain topological obstructions that must be
fulfilled. For instance, for any f ∈ Mµ

O(Y ),

σµ−j
ψ (f(z))(y, η) =

j∑

k=0

(z − p)k

k!
σµ−j

ψ (f (k)(p))(y, η), j = 0, 1, 2, . . .

in local coordinates (y, η) — showing, among others, that σµ−j
ψ (f(z)) is poly-

nomial of degree j with respect to z ∈ C. The point is that we do not assume
g(q) ∈ Lµ

cl(Y ) be invertible for q ∈ C \ ⋃
j=1,2,...{pj}.

Proof of Theorem 2.6. This can be proved using the results of Witt [21]. In
particular, the factorization result there gives directly the existence of f(z) if
the sequence {pj} ⊂ C is void.

Now, we are going to introduce the basic object of study — the algebra of
complete conormal symbols. This algebra will enable us to introduce the refined
notion of asymptotic type and to study the behavior of conormal asymptotics
under the action of Fuchsian differential operators.

Definition 2.7. (a) For µ ∈ Z, the space Symbµ
M (Y ) consists of all sequences

Sµ = {sµ−j(z); j ∈ N} ⊂ Mµ
as(Y ).

(b) An element Sµ ∈ Symbµ
M (Y ) is called holomorphic if Sµ = {sµ−j(z);

j ∈ N} ⊂ Mµ
O(Y ).
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(c)
⋃

µ∈Z Symbµ
M (Y ) is a filtered algebra under the Mellin translation product,

denoted by ♯M . Namely, for Sµ = {sµ−j(z); j ∈ N} ∈ Symbµ
M (Y ), Tν =

{tν−k(z); k ∈ N} ∈ Symbν
M (Y ), we define Uµ+ν = Sµ♯MTν ∈ Symbµ+ν

M (Y ),
where Uµ+ν = {uµ+ν−l(z); l ∈ N}, by

uµ+ν−l(z) =
∑

j+k=l

sµ−j(z + ν − k)tν−k(z) (2.9)

for l = 0, 1, 2, . . . See also (2.2).

From Proposition 2.5, we immediately get:

Lemma 2.8. Sµ = {sµ−j(z); j ∈ N} ∈ Symbµ
M (Y ) is invertible in the filtered

algebra
⋃

µ∈Z Symbµ
M (Y ) if and only if sµ(z) ∈ Mµ

as(Y ) is elliptic.

In the case of the preceding lemma, Sµ ∈ Symbµ
M (Y ) is called elliptic. A

holomorphic elliptic Sµ ∈ Symbµ
M (Y ) is called elliptic with respect to the

weight δ ∈ R if the line Γ(n+1)/2−δ is free of poles of sµ(z)−1. Notice that a
holomorphic elliptic Sµ ∈ Symbµ

M (Y ) is elliptic for all, but a discrete set of
δ ∈ R. The inverse to Sµ with respect to the Mellin translation product is
denoted by (Sµ)−1. The set of elliptic elements of Symbµ

M (Y ) is denoted by
Ell Symbµ

M (Y ).
There is a homomorphism of filtered algebras,

⋃

µ∈N

Diffµ
Fuchs(X) →

⋃

µ∈Z

Symbµ
M (Y ), A 7→

{
σµ−j

M (A)(z); j ∈ N
}
.

By the remark preceding Lemma 2.3,
{
σµ−j

M (A)(z); j ∈ N
}

∈ Symbµ
M (Y ) is

elliptic if A ∈ DiffFuchs(X) is elliptic in the sense of Definition 2.2 (a).

2.2 Definition of asymptotic types

We now start to introduce discrete asymptotic types.

2.2.1 The spaces Eδ(Y ) and EV (Y )

Here, we construct the “coefficient” space Eδ(Y ) =
⋃

V ∈Cδ EV (Y ) that admits
the non-canonical isomorphism (2.13), below,

C∞,δ
as (X)

/
C∞

O (X)
∼=−→ Eδ(Y ),

where C∞,δ
as (X) is the space of smooth functions on X◦ obeying conormal

asymptotic expansions of the form (1.2) of conormal order at least δ, i.e.,
Re pj < (n + 1)/2 − δ holds for all j (with the condition that the singular
exponents pj appear in conjugated pairs dropped), and C∞

O (X) is the subspace
of all smooth functions on X◦ vanishing to infinite order at ∂X.
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Definition 2.9. A carrier V of asymptotics for distributions of conormal order
δ is a discrete subset of C contained in the half-space {z ∈ C; Re z < (n+1)/2−
δ} such that, for all β0, β1 ∈ R, β0 < β1, the intersection V ∩ {z ∈ C; β0 <
Re z < β1} is finite. The set of all these carriers is denoted by Cδ.

In particular, Vp = p − N for p ∈ C is such a carrier of asymptotics. Note that
Vp ∈ Cδ if and only if Re p < (n + 1)/2 − δ. We set T ̺V = ̺ + V ∈ C−̺+δ for
̺ ∈ R and V ∈ Cδ. We further set C =

⋃
δ∈R Cδ.

Let [C∞(Y )]∞ =
⋃

m∈N[C∞(Y )]m be the space of all finite sequences in
C∞(Y ), where the sequences (φ0, . . . , φm−1) and (0, . . . , 0︸ ︷︷ ︸

h times

, φ0, . . . , φm−1) for

h ∈ N are identified. For V ∈ Cδ, we set EV (Y ) =
∏

p∈V [C∞(Y )]∞p , where

[C∞(Y )]∞p is an isomorphic copy of [C∞(Y )]∞, and define Eδ(Y ) to be the

space of all families Φ ∈ EV (Y ) for some V ∈ Cδ depending on Φ. Thereby,
Φ ∈ EV (Y ), Φ′ ∈ EV ′(Y ) for possibly different V, V ′ ∈ Cδ are identified if
Φ(p) = Φ′(p) for p ∈ V ∩ V ′, while Φ(p) = 0 for p ∈ V \ V ′, Φ′(p) = 0 for
p ∈ V ′ \ V . Under this identification,

Eδ(Y ) =
⋃

V ∈Cδ

EV (Y ). (2.10)

Moreover, EV (Y ) ∩ EV ′(Y ) = EV ∩V ′(Y ).
On [C∞(Y )]∞, we define the right shift operator T by

(φ0, . . . , φm−2, φm−1) 7→ (φ0, . . . , φm−2).

On Eδ(Y ), the right shift operator T acts component-wise, i.e., (TΦ)(p) =
T (Φ(p)) for Φ ∈ EV (Y ) and all p ∈ V .

Remark 2.10. To designate different shift operators with the same symbol T ,
once T ̺ for ̺ ∈ R for carriers of asymptotics, once T, T 2, etc. for vectors in
Eδ(Y ) should not confuse the reader.

For Φ ∈ Eδ(Y ), we define c-ord(Φ) = (n + 1)/2 − max{Re p; Φ(p) 6= 0}. In
particular, c-ord(0) = ∞. Note that c-ord(Φ) > δ if Φ ∈ Eδ(Y ). For Φi ∈
Eδ(Y ), αi ∈ C for i = 1, 2, . . . satisfying c-ord(Φi) → ∞ as i → ∞, the sum

Φ =

∞∑

i=1

αiΦi, (2.11)

is defined in Eδ(Y ) in an obvious fashion: Let Φi ∈ EVi
(Y ), where Vi ∈ Cδi ,

δi ≥ δ, and δi → ∞ as i → ∞. Then V =
⋃

i Vi ∈ Cδ, and Φ ∈ EV (Y ) is
defined by Φ(p) =

∑∞
i=1 αiΦi(p) for p ∈ V , where, for each p ∈ V , the sum on

the right-hand side is finite.

Lemma 2.11. Let Φi ∈ Eδ(Y ) for i = 1, 2, . . . , c-ord(Φi) → ∞ as i → ∞. Then
(2.11) holds if and only if

c-ord(Φ −
N∑

i=1

αiΦi) → ∞ as N → ∞. (2.12)
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Note that (2.12) already implies that c-ord(αiΦi) → ∞ as i → ∞.

Definition 2.12. Let Φi, i = 1, 2, . . . , be a sequence in Eδ(Y ) with the prop-
erty that c-ord(Φi) → ∞ as i → ∞. Then this sequence is called linearly
independent if, for all αi ∈ C,

∞∑

i=1

αiΦi = 0

implies that αi = 0 for all i. A linearly independent sequence Φi for i = 1, 2, . . .
in J for a linear subspace J ⊆ Eδ(Y ) is called a basis for J if every vector Φ ∈ J
can be represented in the form (2.11) with certain (then uniquely determined)
coefficients αi ∈ C.

Note that
∑∞

i=1 αiΦi = 0 in Eδ(Y ) if and only if c-ord(
∑N

i=1 αiΦi) → ∞ as
N → ∞ according to Lemma 2.11. We also obtain:

Lemma 2.13. Let Φi, i = 1, 2, . . . , be a sequence in Eδ(Y ) such that
c-ord(Φi) → ∞ as i → ∞. Further, let {δj}∞j=1 be a strictly increasing se-
quence such that δj > δ for all j and δj → ∞ as j → ∞. Assume that the
Φi are numbered in such a way that c-ord(Φi) ≤ δj if and only if 1 ≤ i ≤ ej.
Then the sequence Φi, i = 1, 2, . . . , is linearly independent provided that, for
each j = 1, 2, . . . ,

Φ1, . . . ,Φej
are linearly independent over the space Eδj (Y ).

We now introduce the notion of characteristic basis:

Definition 2.14. Let J ⊆ Eδ(Y ) be a linear subspace, TJ ⊆ J , and Φi for
i = 1, 2, . . . be a sequence in J . Then Φi, i = 1, 2, . . . , is called a characteristic
basis of J if there are numbers mi ∈ N∪{∞} such that TmiΦi = 0 if mi < ∞,
while the sequence {T kΦi; i = 1, 2, . . . , 0 ≤ k < mi} forms a basis for J .

Remark 2.15. This notion generalizes a notion of Witt [18]: There, given
a finite-dimensional linear space J and a nilpotent operator T : J → J , the
sequence Φ1, . . . ,Φe in J has been called a characteristic basis, of characteristic
(m1, . . . ,me), if

Φ1, TΦ1, . . . , T
m1−1Φ1, . . . ,Φe, TΦe, . . . , T

me−1Φe,

constitutes a Jordan basis of J . The numbers m1, . . . ,me appear as the sizes of
Jordan blocks; dimJ = m1+· · ·+me. The tuple (m1, . . . ,me) is also called the
characteristic of J (with respect to T ), e is called the length of its characteristic,
and Φ1, . . . ,Φe is sometimes said to be a an (m1, . . . ,me)-characteristic basis
of J . The space {0} has empty characteristic of length e = 0.

The question of the existence of a characteristic basis obeying one more special
property is taken up in Proposition 2.20.
We also need following notion:
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Definition 2.16. Φ ∈ Eδ(Y ) is called a special vector if Φ ∈ Eδ
Vp

(Y ) for some
p ∈ C.

Thus, Φ ∈ EV (Y ) is a special vector if there is a p ∈ C, Re p < (n+1)/2−δ such
that Φ(p′) = 0 for all p′ ∈ V , p′ /∈ p−N. Obviously, if Φ 6= 0, then p is uniquely
determined by Φ, by the additional requirement that Φ(p) 6= 0. We denote this
complex number p by γ(Φ). In particular, c-ord(Φ) = (n + 1)/2 − Re γ(Φ).

2.2.2 First properties of asymptotic types

In the sequel, we fix a splitting of coordinates U → [0, 1) × Y , x 7→ (t, y), near
∂X. Then we have the non-canonical isomorphism

C∞,δ
as (X)

/
C∞

O (X)
∼=−→ Eδ(Y ), (2.13)

assigning to each formal asymptotic expansion

u(x) ∼
∑

p∈V

∑

k+l=mp−1

(−1)k

k!
t−p logk t φ

(p)
l (y) as t → +0 (2.14)

for some V ∈ Cδ, mp ∈ N, the vector Φ ∈ EV (Y ) given by

Φ(p) =

{(
φ

(p)
0 , φ

(p)
1 , . . . , φ

(p)
mp−1

)
if p ∈ V ,

0 otherwise,

see also (2.30). “Non-canonical” in (2.13) means that the isomorphism depends
explicitly on the chosen splitting of coordinates U → [0, 1)×Y , x 7→ (t, y), near
∂X. Coordinate invariance is discussed in Proposition 2.32.
Note the shift from mp to mp −1 that for notational convenience has appeared
in formula (2.14) compared to formula (1.2).

Definition 2.17. An asymptotic type, P , for distributions as x → ∂X, of
conormal order at least δ, is represented — in the given splitting of coordinates
near ∂X — by a linear subspace J ⊂ EV (Y ) for some V ∈ Cδ such that the
following three conditions are met:
(a) TJ ⊆ J .
(b) dimJδ+j < ∞ for all j ∈ N, where Jδ+j = J/(J ∩ Eδ+j(Y )).
(c) There is a sequence {pj}M

j=1 ⊂ C, where M ∈ N∪{∞}, Re pj < (n+1)/2−δ,

and Re pj → −∞ as j → ∞ if M = ∞, such that V ⊆ ⋃M
j=1 Vpj

and

J =

M⊕

j=1

(
J ∩ EVpj

(Y )
)

. (2.15)

The empty asymptotic type, O, is represented by the trivial subspace {0} ⊂
Eδ(Y ). The set of all asymptotic types of conormal order δ is denoted by
Asδ(Y ).
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Definition 2.18. Let u ∈ C∞,δ
as (X) and P ∈ Asδ(Y ) be represented by J ⊂

EV (Y ). Then u is said to have asymptotics of type P if there is a vector Φ ∈ J
such that

u(x) ∼
∑

p∈V

∑

k+l=mp−1

(−1)k

k!
logk t φ

(p)
l (y) as t → +0, (2.16)

where Φ(p) = (φ
(p)
0 , φ

(p)
1 , . . . , φ

(p)
mp−1) for p ∈ V . The space of all these u is

denoted by C∞
P (X).

Thus, by representation of an asymptotic type it is meant that P that — in
the philosophy of asymptotic algebras, see Witt [20] — is the same as the
linear subspace C∞

P (X)
/
C∞

O (X) ⊂ C∞,δ
as (X)

/
C∞

O (X), is mapped onto J by
the isomorphism (2.13).
For P ∈ Asδ represented by J ⊂ EV (Y ), we introduce

δP = min{c-ord(Φ); Φ ∈ J}, (2.17)

Notice that δP > δ and δP = ∞ if and only if P = O.

Obviously, Asδ(Y ) ⊆ Asδ′

(Y ) if δ ≥ δ′. We likewise set

As(Y ) =
⋃

δ∈R

Asδ(Y ).

On asymptotic types P ∈ Asδ(Y ), we have the shift operation T ̺ for ̺ ∈ R,
namely T ̺P is represented by the space

T ̺J =
{
Φ ∈ E̺+δ

T ̺V (Y ); Φ(p) = Φ̄(p − ̺), p ∈ C, for some Φ̄ ∈ J
}
,

where J ⊂ EV (Y ) represents P .
Furthermore, for J ⊂ EV (Y ) as in Definition 2.17,

Jp = {Φ(p); Φ ∈ J} ⊂ [C∞(Y )]∞

for p ∈ C is the localization of J at p. Note that TJp ⊆ Jp and dimJp < ∞;
thus, Jp is a local asymptotic type in the sense of Witt [18].

We now investigate common properties of linear subspaces J ⊂ EV (Y ) satisfy-
ing (a) to (c) of Definition 2.17. Let Πj : J → Jδ+j be the canonical surjection.

For j′ > j, there is a natural surjective map Πjj′ : Jδ+j′ → Jδ+j such that
Πjj′′ = Πjj′Πj′j′′ for j′′ > j′ > j and

(
J,Πj

)
= proj lim

j→∞

(
Jδ+j ,Πjj′

)
. (2.18)

Note that T : Jδ+j → Jδ+j is nilpotent, where T denotes the map induced by
T : J → J . Furthermore, for j′ > j, the diagram

Jδ+j′ Πjj′−−−−→ Jδ+j

T

y
yT

Jδ+j′ Πjj′−−−−→ Jδ+j

(2.19)
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commutes and the action of T on J is that one induced by (2.18), (2.19).

Proposition 2.19. Let J ⊂ EV (Y ) be a linear subspace for some V ∈ Cδ. Then
there is a sequence Φi for i = 1, 2, . . . of special vectors with c-ord(Φi) → ∞
as i → ∞ such that the vectors T kΦi for i = 1, 2, . . . , k = 0, 1, 2 . . . span J if
and only if J fulfills conditions (a), (b), and (c).

In the situation just described, we write J = 〈Φ1,Φ2, . . . 〉.

Proof. Let J ⊂ EV (Y ) fulfill conditions (a) to (c). Due to (c) we may assume
that V = Vp for some p ∈ C. Suppose that the special vectors Φ1, . . . ,Φe ∈ J
have already been chosen (where e = 0 is possible). Then we choose the vector
Φe+1 among the special vectors Φ ∈ J which do not belong to 〈Φ1, . . . ,Φe〉
such that Re γ(Φe+1) is minimal. We claim that J = 〈Φ1,Φ2, . . . 〉. In fact,
c-ord(Φi) = (n + 1)/2 − Re γ(Φi) → ∞ as i → ∞ and, if Φ is a special vector
in J , then Φ ∈ 〈Φ1, . . . ,Φe〉, where e is such that Re γ(Φe) ≤ Re γ(Φ), while
Re γ(Φe+1) > Re γ(Φ). Otherwise, Φe+1 would not have been chosen in the
(e + 1)th step.
The other direction is obvious.

For j ≥ 1, let (mj
1, . . . ,m

j
ej

) denote the characteristic of the space Jδ+j , see
Remark 2.15

Proposition 2.20. Let J ⊂ EV (Y ) be a linear subspace and assume that the
special vectors Φi for i = 1, 2, . . . , e, where e ∈ N ∪ {∞}, as constructed in
Proposition 2.19, form a characteristic basis of J . Then the following condi-
tions are equivalent:
(a) For each j, ΠjΦ1, . . . ,ΠjΦ

j
ej

is an (mj
1, . . . ,m

j
ej

)-characteristic basis of

Jδ+j;

(b) For each j, Tmj
1−1Φ1, . . . , T

mej
−1Φej

are linearly independent over the

space Eδ+j(Y ), while T kΦi ∈ Eδ+j(Y ) if either 1 ≤ i ≤ ej, k ≥ mj
i or i > ej.

In particular, if (a), (b) are fulfilled, then, for any j′ > j, Πjj′Φj′

1 , . . . ,Πjj′Φj′

ej

is a characteristic basis of Jδ+j, while Πjj′Φj′

ej+1 = · · · = Πjj′Φj′

e′
j

= 0. Here,

Φj′

i = Πj′Φi for 1 ≤ i ≤ ej′ .

Proof. This is a consequence of Lemma 2.13 and Witt [18, Lemma 3.8].

Notice that, for a linear subspace J ⊂ EV (Y ) satisfying conditions (a) to (c)
of Definition 2.17, a characteristic basis possessing the equivalent properties of
Proposition 2.20 need not exist. We provide an example:

Example 2.21. Let the space J = 〈Φ1,Φ2〉 ⊂ EVp
(Y ) for some p ∈ C, Re p <

(n+1)/2−δ, be spanned by two vectors Φ1, Φ2 in the sense of Proposition 2.19.
We further assume that Φ1(p) = (ψ0, ⋆), Φ1(p− 1) = (ψ1, ⋆, ⋆), Φ2(p) = 0, and
Φ2(p−1) = (ψ1, ⋆), where ψ0, ψ1 ∈ C∞(Y ) are not identically zero and ⋆ stands
for arbitrary entries, see Figure 2. Then, the asymptotic type represented
by J is non-proper. In fact, assume that Re p ≥ (n + 1)/2 − δ + 1. Then
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︸ ︷︷ ︸
Φ1

︸ ︷︷ ︸
Φ2

p − 1 p p − 1 p

ψ1

⋆

⋆

ψ0

⋆

ψ1

⋆

Figure 2: Example of a non-proper asymptotic type

Π2Φ1, TΠ2Φ1 − Π2Φ2 is a (3, 1)-characteristic basis of Jδ+2, and any other
characteristic basis of Jδ+2 is, up to a non-zero multiplicative constant, of the
form {

Π2Φ1 + α1TΠ2Φ1 + α2T
2Π2Φ1 + α3Π2Φ2,

β1(TΠ2Φ1 − Π2Φ2) + β2T
2Π2Φ1,

(2.20)

where α1, α2, α3, β1, β2 ∈ C and β1 6= 0. But then the conclusion in Propo-
sition 2.20 is violated, since both vectors in (2.20) have non-zero image under
the projection Π12, while Π1Φ1 is a (2)-characteristic basis of Jδ+1.

Definition 2.22. An asymptotic type P ∈ Asδ(Y ) represented by the lin-
ear subspace J ⊂ EV (Y ) is called proper if J admits a characteristic basis
Φ1, Φ2, . . . satisfying the equivalent conditions in Proposition 2.20. The set of
all proper asymptotic types is denoted by Asδ

prop(Y ) ( Asδ(Y ).

For Φ ∈ Eδ(Y ), p ∈ C, and Φ(p) = (φ
(p)
0 , φ

(p)
1 , . . . , φ

(p)
mp−1) we shall use, for any

q ∈ C, the notation

Φ(p)[z − q] =
φ

(p)
0

(z − q)mp
+

φ
(p)
1

(z − q)mp−1
+ · · · +

φ
(p)
mp−1

z − q
∈ Mq(C

∞(Y )),

where Mq(C
∞(Y )) is the space of germs of meromorphic functions at z = q

taking values in C∞(Y ). Analogously, Aq(C
∞(Y )) is the space of germs of

holomorphic functions at z = p taking values in C∞(Y ).

Definition 2.23. For Sµ = {sµ−j(z); j ∈ N} ∈ Symbµ
M (Y ), the linear space

Lδ
Sµ ⊆ C∞,δ

as (X)
/
C∞

O (X) is represented by the space of Φ ∈ Eδ(Y ) for which

there are functions φ̃ (p)(z) ∈ Ap(C
∞(Y )) for p ∈ C, Re p < (n+1)/2− δ, such

that

[(n+1)/2−δ+µ−Re q]−∑

j=0

sµ−j(z − µ + j)

(
Φ(q − µ + j)[z − q]

+ φ̃ (q−µ+j)(z − µ + j)

)
∈ Aq(C

∞(Y )) (2.21)
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for all q ∈ C, Re q < (n + 1)/2 − δ + µ. Here, [a]− for a ∈ R is the largest
integer strictly less than a, i.e., [a]− ∈ Z and [a]− < a ≤ [a]− + 1.

Remark 2.24. (a) If Φ ∈ EV (Y ) for V ∈ Cδ, then condition (2.21) is effective
only if

q ∈
[(n+1)/2−δ+µ−Re q]−⋃

j=0

Tµ−jV.

(b) If Φ ∈ Eδ(Y ) belongs to the representing space of Lδ
Sµ , and if u ∈ C∞,δ

as (X)
possesses asymptotics given by the vector Φ according to (2.16), then there is
a v ∈ C∞

O (X) such that

∞∑

j=0

ω(cjt)t
−µ+j op

(n+1)/2−δ
M

(
sµ−j(z)

)
ω̃(cjt) (u + v) ∈ C∞

O (X).

Here, the numbers cj > 0 are chosen so that cj → ∞ as j → ∞ sufficiently

fast so that the infinite sum converges. For the notation op
(n+1)/2−δ
M (. . . ) see

(2.35), below.

Definition 2.25. For P ∈ Asδ(Y ) being represented by J ⊂ EV (Y ) and Sµ ∈
Symbµ

M (Y ), the push-forward Qδ−µ(P ;Sµ) of P under Sµ is the asymptotic

type in Asδ−µ(Y ) represented by the linear subspace K ⊂ ET−µV (Y ) consisting
of all vectors Ψ ∈ ET−µV (Y ) such that there is a Φ ∈ J and there are functions

φ̃ (p)(z) ∈ Ap(C
∞(Y )) for p ∈ V such that

Ψ(q)[z − q] =

[(n+1)/2−δ+µ−Re q]−∑

j=0
[
sµ−j(z − µ + j)

(
Φ(q − µ + j)[z − q] + φ̃ (q−µ+j)(z − µ + j)

)]∗
q
, (2.22)

holds for all q ∈ TµV , see (2.6).

Remark 2.26. For a holomorphic Sµ ∈ Symbµ
M (Y ), one needs not to refer to

the holomorphic functions φ̃ (p)(z) ∈ Ap(C
∞(Y )) for p ∈ V in order to define

the push-forward Qδ−µ(P ;Sµ) in (2.22). We then also write Q(P ;Sµ) instead
of Qδ−µ(P ;Sµ).

Extending the notion of push-forward from asymptotic types to arbitrary linear
subspaces of C∞,δ

as (X)
/
C∞

O (X), the space Lδ
Sµ ⊆ C∞,δ

as (X)
/
C∞

O (X) for Sµ ∈
Symbµ

M (Y ) appears as the largest subspace of C∞,δ
as (X)

/
C∞

O (X) for which

Qδ−µ(Lδ
Sµ ;Sµ) = Qδ−µ(O;Sµ). (2.23)

In this sense, it characterizes the amount of asymptotics of conormal order at
least δ annihilated by Sµ ∈ Symbµ

M (Y ).
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Definition 2.27. A partial ordering on Asδ(Y ) is defined by P 4 P ′ for
P, P ′ ∈ Asδ(Y ) if and only if J ⊆ J ′, where J, J ′ ⊂ Eδ(Y ) are the representing
spaces for P and P ′, respectively.

Proposition 2.28. (a) The p.o. set (Asδ(Y ),4) is a lattice in which each
non-empty subset S admits a meet,

∧S, represented by
⋂

P∈S JP , and each
bounded subset T admits a join,

∨ T , represented by
∑

Q∈T JQ, where JP

and JQ represent the asymptotic types P and Q, respectively. In particular,∧
Asδ(Y ) = O.

(b) For P ∈ Asδ(Y ), Sµ ∈ Symbµ
M (Y ), we have Qδ−µ(P ;Sµ) ∈ Asδ−µ(Y ).

Proof. (a) is immediate from the definition of asymptotic type and (b) can be
checked directly on the level of (2.22).

Remark 2.29. Each element Sµ ∈ Symbµ
M (Y ) induces a natural action

C∞,δ
as (X) → C∞,δ

as (X)
/
C∞

O (X). Its expression in the splitting of coordinates
U → [0, 1) × Y , x 7→ (t, y), is given by (2.22).
In the language of Witt [20], this means that the quadruple(⋃

µ∈Z Symbµ
M (Y ), C∞,δ

as (X), C∞
O (X),Asδ(Y )

)
is an asymptotic algebra that is

even reduced ; thus providing justification for the above choice of the notion of
asymptotic type.

Theorem 2.30. For a holomorphic Sµ ∈ Ell Symbµ
M (Y ), we have Lδ

Sµ ∈
Asδ

prop(Y ).

Proof. Let Sµ = {sµ−j(z); j ∈ N} ⊂ Mµ
O(Y ). Assume that, for some p ∈ C,

Re p < (n + 1)/2 − δ, Φ0 ∈ Lsµ(z) at z = p, with the obvious meaning, for
this see Witt [18]. (Notice that Lsµ(z) at z = p is contained in the space
[C∞(Y )]∞.) We then successively calculate the sequence Φ0, Φ1, Φ2, . . . from
the relations, at z = p,

sµ(z − j)Φj [z − p] + sµ−1(z − j + 1)Φj−1[z − p]

+ · · · + sµ−j(z)Φ0[z − p] ∈ Ap(C
∞(Y )), j = 0, 1, 2, . . . , (2.24)

see (2.22) and Remark 2.26. In each step, we find Φj ∈ [C∞(Y )]∞ uniquely
determined modulo Lsµ(z) at z = p − j such that (2.24) holds. We obtain the
vector Φ ∈ EVp

(Y ) define by Φ(p− j) = Φj that belongs to the linear subspace
J ⊂ Eδ(Y ) representing Lδ

Sµ .
Conversely, each vector in J is a sum like in (2.11) of vectors Φ obtained in
that way. Thus, upon choosing in each space Lsµ(z) at z = p a characteristic
basis and then, for each characteristic basis vector Φ0 ∈ [C∞(Y )]∞, exactly
one vector Φ ∈ EVp

(Y ) as just constructed, we obtain a characteristic basis of
J in the sense of Definition 2.14 consisting completely of special vectors (since
Lsµ(z) at z = p equals zero for all p ∈ C, Re p < (n + 1)/2 − δ, but a set of p

belonging to Cδ). In particular, J ⊂ EV (Y ) for some V ∈ Cδ and (a) to (c) of
Definition 2.17 are satisfied. By its very construction, this characteristic basis
fulfills condition (b) of Proposition 2.20. Therefore, the asymptotic type Lδ

Sµ

represented by J is proper.
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In conclusion, we obtain:

Proposition 2.31. Let Sµ ∈ Ell Symbµ
M (Y ). Then:

(a) Lδ
Sµ = Qδ(O; (Sµ)−1) and Lδ−µ

(Sµ)−1 = Qδ−µ(O;Sµ).

(b) There is an order-preserving bijection

{
P ∈ Asδ(Y ); P < Lδ

Sµ

}
→

{
Q ∈ Asδ−µ(Y ); Q < Lδ−µ

(Sµ)−1

}
, (2.25)

P 7→ Qδ−µ(P ;Sµ),

with the inverse given by Q 7→ Qδ(Q; (Sµ)−1).

Proof. Using Proposition 2.28 (b), the proof consists of a word-by-word repeti-
tion of the arguments given in the proof of Witt [18, Proposition 2.5].

In its consequence, Proposition 2.31 enables one to perform explicit calculations
on asymptotic types.
We conclude this section with the following basic observation:

Proposition 2.32. The notion of asymptotic type, as introduced above, is
invariant under coordinates changes.

Proof. Let κ : X → X be a C∞ diffeomorphism and let κ∗ : C∞(X◦) →
C∞(X◦) be the corresponding push-forward on the level of functions, i.e.,
(κ∗u)(x) = u(κ−1(x)) for u ∈ C∞(X◦), where κ−1 denotes the inverse C∞ dif-
feomorphism to κ. As is well-known, κ∗ restricts to κ∗ : C∞,δ

as (X) → C∞,δ
as (X)

for any δ ∈ R, see, e.g., Schulze [15, Theorem 1.2.1.11].
We have to prove that, for each P ∈ Asδ(Y ), there is a κ∗P ∈ Asδ(Y ) so that
the push-forward κ∗ restricts further to a linear isomorphism κ∗ : C∞

P (X) →
C∞

κ∗P (X), i.e., we have to show that there is a κ∗P ∈ Asδ(Y ) so that
κ∗(C∞

P (X)) = C∞
κ∗P (X). Using Proposition 2.19, we eventually have to prove

that, for each u ∈ C∞,δ
as (X) such that

u(x) ∼
∞∑

j=0

∑

k+l=mj−1

(−1)k

k!
logk t φ

(j)
l (y) as t → +0, (2.26)

where Φ ∈ EVp
(Y ) for a certain p ∈ C, Re p < (n + 1)/2 − δ, and Φ(p − j) =

(φ
(j)
0 , φ

(j)
1 , . . . , φ

(j)
mj−1) for all j ∈ N, see (2.16), the push-forward κ∗u is again

of the form (2.26), with some other κ∗Φ ∈ EVp
(Y ) in place of Φ ∈ EVp

(Y ).
But this is immediate from a direct computation.

2.2.3 Characteristics of proper asymptotic types

We introduce the notion of characteristic of a proper asymptotic type. This
will be the main ingredient in the prove of Theorem 2.42.
Let P ∈ Asδ

prop(Y ) be represented by J ⊂ EV (Y ) and let Φ1,Φ2, . . . by a char-

acteristic basis of J according to Definition 2.22. As before, let (mj
1, . . . ,m

j
ej

)
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be the characteristic of the space Jδ+j . From Proposition 2.20, we conclude
that e1 ≤ e2 ≤ . . . In the next lemma, we find a suitable “path through”
the numbers mj

i for j ≥ ji, where ji = min{j; ej ≥ i}, i.e., an appropriate

re-ordering of the tuples (mj
1, . . . ,m

j
ej

).

Lemma 2.33. The numbering within the tuples (mj
1, . . . ,m

j
ej

) can be chosen in

such a way that, for each j ≥ 1, there is a characteristic (mj
1, . . . ,m

j
ej

)-basis

(Φj
1, . . . ,Φ

j
ej

) of Jδ+j such that, for all j′ > j,

Πjj′Φj′

i =

{
Φj

i if 1 ≤ i ≤ ej,

0 if ej + 1 ≤ i ≤ ej′

holds.
Furthermore, the scheme

e1 rows





e2 − e1 rows





e3 − e2 rows




{

m1
1 m2

1 m3
1 m4

1 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
m1

e1
m2

e1
m3

e1
m4

e1
. . .

m2
e1+1 m3

e1+1 m4
e1+1 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . .
m2

e2
m3

e2
m4

e2
. . .

m3
e2+1 m4

e2+1 . . .
. . . . . . . . . . . . . . . . .
m3

e3
m4

e3
. . .

...
. . . ,

(2.27)

where in the jth column the characteristic of the space Jδ+j appears, is uniquely
determined up to permutation of the kth and the k′th row, where ej+1 ≤ k, k′ ≤
ej+1 for some j (e0 = 0).

Proof. This is a reformulation of Proposition 2.20 in terms of the character-
istics of the spaces Jδ+j . Notice that one can recover the characteristic basis
Φ1, Φ2, . . . of J , that was initially given, from the property that ΠjΦi = Φj

i

holds for all 1 ≤ i ≤ ej , while ΠjΦi = 0 for i > ej .

Performing the constructions of the foregoing lemma for each space J∩EVpj
(Y )

in (2.15) separately, one sees that the following notion is correctly defined:

Definition 2.34. Let P ∈ Asδ
prop(Y ) and J ⊂ EV (Y ) represent P . If

Φ1,Φ2, . . . is a characteristic basis of J according to Definition 2.22 and if
the tuples (mj

1, . . . ,m
j
ej

) are re-ordered according to Lemma 2.33, then the
sequence

charP =
{(

γ(Φi)
∣∣ mji

i ,mji+1
i ,mji+2

i , . . .
)}e

i=1
(2.28)

is called the characteristic of P .
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The characteristic char P of an asymptotic type P ∈ Asδ
prop(Y ) is unique up

to permutation of the kth and the k′th entry, where ej + 1 ≤ k, k′ ≤ ej+1 for
some j. So far, it is an invariant associated with the representing space J ; so
it still depends on the splitting of coordinates. However, we have:

Proposition 2.35. The characteristic char P of an asymptotic type P ∈
Asδ

prop(Y ) is independent of the chosen splitting of coordinates U → [0, 1)×Y ,
x 7→ (t, y), near ∂X.

Proof. Follow the proof of Proposition 2.32 to get the assertion.

Now, let
{
(pi |mji

i ,mji+1
i , . . . )

}e

i=1
⊂ C×NN be any given sequence, where we

additionally assume that Re pi < (n+1)/2− δ for all i, Re pi → −∞ as i → ∞
when e = ∞, the pi are ordered so that Re pi ≥ (n + 1)/2 − δ − j holds if and
only if i ≤ ej for a certain (then uniquely determined) sequence e1 ≤ e2 ≤ . . .
satisfying e = supj ej , and

1 ≤ mji

i ≤ mji+1
i ≤ mji+2

i ≤ . . . ,

where ji = min{j; ej ≥ i} as above.

Proposition 2.36. Let the characteristic
{(

pi

∣∣ mji

i ,mji+1
i , . . .

)}e

i=1
satisfy the

properties just mentioned. If n = 0, then we assume, in addition, that pi 6= pi′

for i 6= i′ and, for all i, k > 0,

mji+k
i − mji+k−1

i = a > 0 ⇐⇒ pi′ = pi − k for some i′ and m
ji′

i′ = a

(where ji′ = ji + k). Then there exists a holomorphic Sµ ∈ Symbµ
M (Y ) that is

elliptic with respect to the weight δ ∈ R such that Lδ
Sµ ∈ Asδ

prop(Y ) has exactly
this characteristic.

Proof. Multiplying Sµ by an elliptic element T−µ = {t−µ(z), 0, 0, . . . } such
that t−µ(z) ∈ M−µ

O and t−µ(z)−1 ∈ Mµ
O, we can assume µ = 0.

If n = 0, then we choose an elliptic s0(z) ∈ M0
O that has zeros precisely at

z = pi of order mji

i for i = 1, 2, . . . according to Theorem 2.6.
In case dim Y > 0, let {φi}e

i=1 be an orthonormal set in C∞(Y ) with respect
to a fixed C∞-density dµ on Y . Let Πi for i = 1, . . . , e be the orthogonal
projection in L2(Y, dµ) onto the subspace spanned by φi. We then choose an
elliptic sµ(z) ∈ Mµ

O(Y ) such that, for every p ∈ Vpi
and all i,

[sµ(z)]Np
p =

(
1 −

∑

pi′−k=p

Πi′

)
+

∑

pi′−k=p

(z − p)m
j
i′+k

i′ Πi′

where the sums are extended over all i′, k such that pi′ − k = p, for some Np

sufficiently large, while sµ(q) ∈ Lµ
cl(Y ) is invertible for all q ∈ C \ V , again

according to Theorem 2.6.
In both cases, we set Sµ = {sµ−j(z)}∞j=0 with sµ−j(z) ≡ 0 for j > 0. Then
Sµ ∈ Symbµ

M (Y ) is elliptic with respect to the weight δ, and the proper asymp-

totic type Lδ
Sµ has characteristic

{
(pi |mji

i ,mji+1
i , . . . )

}e

i=1
.
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2.2.4 More properties of asymptotic types

Here, we study further properties of asymptotic types. First, asymptotic types
are composed of elementary building blocks:

Proposition 2.37. (a) An asymptotic type P ∈ Asδ(Y ) is join-irreducible,
i.e., P 6= O and P = P0 ∨ P1 for P0, P1 ∈ Asδ(Y ) implies P = P0 or P = P1,
if and only if there is a Φ ∈ Eδ(Y ), Φ 6= 0, such that the representing space, J ,
for P , in the given splitting of coordinates near ∂X, has characteristic basis Φ,
i.e., J = 〈Φ〉. In particular, every join-irreducible asymptotic type is proper.
(b) The join-irreducible asymptotic types are join-dense in Asδ(Y ).

Proof. (a) Let P 6= O. Assume that, for some j ≥ 1, Jδ+j has characteristic of
length larger 1. Then Jδ+j = K0 + K1 for certain linear subspaces Ki ( Jδ+j

satisfying TKi ⊆ Ki, for i = 0, 1. Setting Ji = {Φ ∈ J ; ΠjΦ ∈ Ki}, we get
that J = J0 + J1, Ji ( J , and TJi ⊆ Ji for i = 0, 1. Since this decomposition
can be chosen compatible with (2.15), we obtain that a necessary condition for
P to be join-irreducible is that each space Jδ+j for j ≥ 1 has characteristic of
length at most 1, i.e., J = 〈Φ〉 for some Φ 6= 0. Vice versa, if J = 〈Φ〉 for some
Φ 6= 0, then P is join-irreducible, since the subspace 〈T kΦ〉 ⊆ J for k ∈ N are
the only subspaces of J that are invariant under the action of T .
(b) This follows directly from Proposition 2.19.

Note that, by the foregoing proposition, also the proper asymptotic types are
join-dense in Asδ(Y ). We will utilize this fact in the definition of cone Sobolev
spaces with asymptotics.
In constructing asymptotic types P ∈ Asδ(Y ) obeying certain properties, one
often encounters a situation in which P is successively constructed on strips
{z ∈ C; (n + 1)/2 − δ − βh ≤ Re z < (n + 1)/2 − δ} of finite width, where the
sequence {βh}∞h=0 ⊂ R+ is strictly increasing and βh → ∞ as h → ∞. We will
meet an example in Section 3.3.
To formulate the result, we need one more definition:

Definition 2.38. Let P, P ′ ∈ Asδ(Y ) be represented by J ⊂ EV (Y ) and
J ′ ⊂ EV (Y ), respectively. Then, for ϑ ≥ 0, the asymptotic types P and P ′

are said to be equal up to the conormal order δ + ϑ if ΠϑJ = ΠϑJ ′, where
Πϑ : J → J

/
(J ∩Eδ+ϑ(Y )) is the canonical projection. Similarly, P and P ′ are

said to be equal up to the conormal order δ + ϑ − 0 if they are equal up to the
conormal order δ + ϑ − ǫ, for any ǫ > 0. (Similarly for the order relation 4
instead of equality.)

Proposition 2.39. Let {Pι}ι∈I ⊂ Asδ(Y ) be an increasing net of asymptotic
types. Then the join

∨
ι∈I Pι exists if and only if, for each j ≥ 1, there is an

ιj ∈ I such that Pι = Pι′ up to the conormal order δ + j for all ι, ι′ ≥ ιj.

Proof. The condition is obviously sufficient.
Conversely, suppose that the join

∨
ι∈I Pι exists. Let Pι be represented by the

subspace Jι ⊂ EVι
(Y ) for Vι ∈ Cδ. Since the join

∨
ι∈I Pι exists, the carriers Vι
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can be chosen in such way that
⋃

ι∈I Vι ⊆ V for some V ∈ Cδ. Thus Jι ⊂ EV (Y )

for all ι. Now, for each j ≥ 1, dim
(∑

ι∈I Jδ+j
ι

)
< ∞, otherwise

∨
ι∈I Pι does

not exist. But since the net {Jδ+j
ι }ι∈I is increasing, this already implies that

there is some ιj ∈ I such that Jδ+j
ι = Jδ+j

ι′ for ι, ι′ ≥ ιj , i.e., Pι = Pι′ up to
the conormal order δ + j for ι, ι′ ≥ ιj .

An equivalent condition is that the net {Pι}ι∈I ⊂ Asδ(Y ) of asymptotic types
be bounded on each strip {z ∈ C; (n + 1)/2 − δ − j ≤ Re z < (n + 1)/2 − δ} of
finite width.

2.3 Pseudodifferential theory

Here, we establish an analogue of Witt [18, Theorem 1.2]. We need:

Proposition 2.40. Let P, P0 ∈ Asδ
prop(Y ), Q ∈ Asδ−µ

prop(Y ) for µ ∈ R. Assume
that P ∧ P0 = O. Then there is a holomorphic Sµ ∈ Ell Symbµ

M (Y ) that is
elliptic with respect to the weight δ such that Lδ

Sµ = P0 and Q(P ;Sµ) = Q if
and only if P and Q have the same characteristic shifted by µ, i.e., we have
char P = char Q − µ (with the obvious meaning of char Q − µ).

Proof. It is readily seen that P ∈ Asδ
prop(Y ), Q ∈ Asδ−µ

prop(Y ) have the same
characteristic shifted by µ if there is a holomorphic Sµ ∈ Ell Symbµ

M (Y ) such
that Q(P ;Sµ) = Q.
Suppose that charP = char Q − µ. First, we deal with the case P0 = O. Let
the asymptotic types P, Q be represented by J ⊂ EV (Y ) and K ⊂ ET µV (Y ),
respectively. Let {Φi}e

i=1 and {Ψi}e
i=1 be characteristic bases of J and K

corresponding to charP and charQ, respectively.
We have to choose the sequence {sµ−k(z); k ∈ N} ⊂ Mµ

O(Y ). By Theorem 2.6,

it suffices to construct the finite parts [sµ−k(z)]
Np′k

p′ for p′ ∈ V , k ∈ N, and Np′k

sufficiently large appropriately. Thereby, we can assume that V = Vp for some
p ∈ C, Re p < (n + 1)/2 − δ.
Let e1 ≤ e2 ≤ . . . , where e = supj∈N ej , be such that γ(Φi) = γ(Ψi)−µ = p−j

for ej−1 + 1 ≤ i ≤ ej (and e0 = 0). Then the finite parts [sµ−k(z)]m
j+k

p−j for all
j, k must be chosen so that, for each j ∈ N,

Φi(p − j)[s
µ(z)]m

j

p−j + Φi(p − j + 1)[s
µ−1(z)]m

j

p−j+1

+ · · · + Φi(p)[s
µ−j(z)]m

j

p = Ψi(p + µ − j) (2.29)

for 1 ≤ i ≤ ej , where mj = sup1≤i≤ej
mj

i , and Φi(p − k) = 0 if ek + 1 ≤
i ≤ ej . Here, (mj

1, . . . ,m
j
ej

) is the characteristic of Jδ+j and, for Φ =

(φ0, . . . , φm−1), Ψ = (ψ0, . . . , ψm−1) ∈ [C∞(Y )]∞, and s(z) ∈ Mµ
O(Y ), the

relation

Φ[s(z)]mp = Ψ
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stands for the linear system

s(p)φ0 = ψ0,

s(p)φ1 +
s′(p)

1!
φ0 = ψ1,

...

s(p)φm−1 +
s′(p)

1!
φm−2 + · · · + s(m−1)(p)

(m − 1)!
φ0 = ψm−1.

System (2.29) can successively be solved for [sµ(z − k)]m
j

p−j+k for j = 0, 1, 2, . . .

and 0 ≤ k ≤ j. In fact, this can be done by choosing [sµ−k(z)]m
j

p−j+k for k > 0

arbitrarily. In particular, we may choose sµ−k(z) ≡ 0 for k > 0.
The case P0 6= O can be reduced to the case P0 = O as in the proof of Witt
[18, Lemma 3.16], since the three rules from Witt [18, Lemma 2.3] applied
there continues to hold in the present situation.

Remark 2.41. (a) The proof of Proposition 2.40 shows that the holomorphic
Sµ = {sµ−j ; j ∈ N} ∈ Ell Symbµ

M (Y ) satisfying Lδ
Sµ = P0 and Q(P ;Sµ) = Q

can always be chosen so that sµ−j(z) ≡ 0 for j > 0.
(b) Proposition 2.40 in connection with Theorem 2.30 also shows that
Asδ

prop(Y ) consists precisely of those asymptotic types that are of the form

Lδ
Sµ for some holomorphic Sµ ∈ Ell Symbµ

M (Y ) that is elliptic with respect to
the weight δ. (Choose P = Q = O in Proposition 2.40.)

Now, we reach the final aim of this section:

Theorem 2.42. Let P ∈ Asδ
prop(Y ) and Q ∈ Asδ−µ

prop(Y ). Then there exists a

Sµ ∈ Symbµ
M (Y ) that is elliptic with respect to the weight δ such that Lδ

Sµ = P

and Lδ−µ
(Sµ)−1 = Q always when dim Y > 0 and if and only if P ∧ T−µQ = O

when dimY = 0.

Proof. The condition P ∧ T−µQ = O is obviously necessary if dimY = 0.
In the general case, choose P1 ∈ Asδ

prop(Y ), Q1 ∈ Asδ−µ
prop(Y ) having the same

characteristics as P and Q, respectively, such that P1 ∧ T−µQ1 = O. As in
the proof of Witt [18, Theorem 1.2], it then suffices to construct holomorphic
S0 ∈ Ell Symbµ

M (Y ), T0 ∈ Ell Symb−µ
M (Y ) that are elliptic with respect to the

weight δ such that

Lδ
S0 = P1, Qδ(Q1;S

0) = Q, Lδ
T0 = Q1, Qδ(P1;T

0) = P.

This is achieved by using Proposition 2.40.

2.4 Function spaces with asymptotics

The definition of cone Sobolev spaces with asymptotics is based on the Mellin
transformation. See Schulze [15, Sections 1.2, 2.1] for this idea and also
Remark 2.45. For more details on the Mellin transformation, see Jean-
quartier [5].
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2.4.1 Weighted cone Sobolev spaces

Let Mu(z) = ũ(z) =
∫ ∞
0

tz−1u(t) dt, z ∈ C, be the Mellin transformation, first
defined for u ∈ C∞

0 (R+) and then extended to larger distribution classes. In
particular, u will be allowed to be vector-valued. Recall the following properties
of M :

Mt→z

{
(−t∂t − p)u

}
(z) = (z − p)ũ(z),

Mt→z

{
t−pu

}
(z) = ũ(z − p), p ∈ C,

whenever both sides are defined, M : L2(R+) → L2(Γ1/2; (2πi)−1dz) is an isom-
etry, and

Mt→z

{
(−1)k

k!
t−p logk t χ(0,1)(t)

}
(z) =

1

(z − p)k+1
, (2.30)

where χ(0,1) is the characteristic function of the interval (0, 1). We infer that

h(z) = Mt→z

{
(−1)kω(t)t−p logk t/k!

}
(z) ∈ M−∞

as is a meromorphic function

of z having a pole precisely at z = p, and the principal part of the Lau-
rent expansion around this pole is given by the right-hand side of (2.30), i.e.,
[h(z)]∗p = (z − p)−(k+1). Here, ω(t) is a cut-off function near t = 0.

For s, δ ∈ R, let Hs,δ(X) denote the space of u ∈ Hs
loc(X

◦) such that
Mt→z{ωu}(z) ∈ L2

loc

(
Γ(n+1)/2−δ;H

s(Y )
)

and the expression

‖u‖Hs,δ(X) =

{
1

2πi

∫

Γ(n+1)/2−δ

∥∥Rs(z)Mt→z{ωu}(z)
∥∥2

L2(Y )

}1/2

(2.31)

is finite. Here, Rs(z) ∈ Ls
cl(Y ; Γ(n+1)/2−δ) is an order-reducing family , i.e.,

Rs(z) is parameter-dependent elliptic and Rs(z) : Hr(Y ) → Hr−s(Y ) is an
isomorphism for some r ∈ R (and then for all r ∈ R) and all z ∈ Γ(n+1)/2−δ.
For instance, if f(z) ∈ Ms

O(Y ) is elliptic and the line Γ(n+1)/2−δ is free of poles
of f(z)−1, then f(z) is such an order-reduction. We will employ this observation
in the next section when defining cone Sobolev spaces with asymptotics.

2.4.2 Cone Sobolev spaces with asymptotics

Let s, δ ∈ R, P ∈ Asδ
prop(Y ). By Theorem 2.42, there is an elliptic Mellin

symbol hs
P (z) ∈ Ms

O(Y ) such that the line Γ(n+1)/2−δ is free of poles of hs
P (z)−1

and Lδ
Ss = P for Ss =

{
hs

P (z), 0, 0, . . .
}
∈ Symbs

M (Y ).

Definition 2.43. Let s, δ ∈ R, ϑ ≥ 0, and P ∈ Asδ(Y ).

(a) For P ∈ Asδ
prop(Y ), the space Hs,δ

P,ϑ(X) consists of all functions u ∈ Hs,δ(X)

such that Mt→z{ωu}(z), which is a priori holomorphic in
{
z ∈ C; Re z >

(n + 1)/2 − δ
}

taking values in Hs(Y ), possesses a meromorphic continuation

to the half-space
{
z ∈ C; Re z > (n + 1)/2 − δ − ϑ

}
, moreover,

hs
P (z)Mt→z{ωu}(z) ∈ A

(
{z ∈ C; Re z > (n + 1)/2 − δ − ϑ};L2(Y )

)
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and the expression

sup
δ<δ′<δ+ϑ

{
1

2πi

∫

Γ(n+1)/2−δ′

∥∥hs
P (z)Mt→z{ωu}(z)

∥∥2

L2(Y )
dz

}1/2

(2.32)

is finite.
(b) For a general P ∈ Asδ(Y ), represented as the join P =

∨
ι∈I Pι for a

bounded family {Pι}ι∈I ⊂ Asδ
prop(Y ), we define Hs,δ

P,ϑ(X) =
∑

ι∈I Hs,δ
Pι,ϑ

(X).

It is readily seen that Definition 2.43 (a) is independent of the choice of the
Mellin symbol hs

P (z). Moreover, under the condition that (2.32) is finite the
limit

hs
P (z)Mt→z{ωu}(z)

∣∣
z=(n+1)/2−δ′+iτ

→ w(τ) as δ′ → δ + ϑ − 0

exists in L2(Rτ ;L2(Y )). Thus, Hs,δ
P,ϑ(X) is a Hilbert space with the norm

‖u‖Hs,δ
P,ϑ(X) =

{
‖w‖2

L2(Rτ ;L2(Y )) + ‖u‖2
Hs,δ(X)

}1/2

. (2.33)

Definition 2.43 (b) is justified by Proposition 2.37 (b), since we obviously have

Hs,δ
P,ϑ(X) = Hs,δ+ϑ(X) for P ∈ Asδ

prop(Y ) and δP > δ+ϑ. Again, this definition
is seen to be independent of the choice of the representing family {Pι}ι∈I ⊂
Asδ

prop(Y ), and it also yields a Hilbert space structure for Hs,δ
P,ϑ(X).

Proposition 2.44. Let s, δ ∈ R, ϑ ≥ 0, and P ∈ Asδ
prop(Y ). Further, let Ss =

{ss−j(z) j = 0, 1, 2, . . . } ∈ Symbs
M (Y ) be elliptic with respect to the weight δ

and Lδ
Ss = P , Lδ−s

(Ss)−1 = O. (Condition Lδ−s
(Ss)−1 = O means that the Mellin

symbols ss−j(z) are holomorphic when Re z > (n + 1)/2− δ.) Then a function

u ∈ Hs,δ(X) belongs to the space Hs,δ
P,ϑ(X) if and only if Mt→z{ωu}(z) possesses

a meromorphic continuation to the half-space
{
z ∈ C; Re z > (n+1)/2−δ−ϑ

}
,

M∑

j=0

ss−j(z − s + j)Mt→z{ωu}(z − s + j)

∈ A
(
{z ∈ C; Re z > (n + 1)/2 − δ + s − ϑ};L2(Y )

)
,

and the expression

sup
δ<δ′<δ+ϑ

{
1

2πi

∫

Γ(n+1)/2−δ′+s

∥∥∥
M∑

j=0

ss−j(z − s + j)Mt→z{ωu}(z − s + j)
∥∥∥

2

L2(Y )
dz

}1/2

is finite. Here, M is any integer larger than ϑ.
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Proof. This is an application (of an adapted version) of Witt [18, Proposi-
tion 2.6]. Note that ss−j(z − s + j)Mt→z{ωu}(z − s + j) ∈ A

(
{z ∈ C; Re z >

(n + 1)/2− δ + s− j};L2(Y )
)

so that the condition is actually independent of
the choice of the integer M > ϑ.

For s, δ ∈ R, ϑ > 0, and P ∈ Asδ(Y ), we will also employ the spaces

Hs,δ
P,ϑ−0(X) =

⋂

ǫ>0

Hs,δ
P,ϑ−ǫ(X). (2.34)

These space Hs,δ
P,ϑ−0(X) are Fréchet-Hilbert spaces, i.e., Fréchet spaces whose

topology is given by a countable family of Hilbert semi-norms. We will also
use notations like

H∞,δ
P,ϑ (X) =

⋂

s∈R

Hs,δ
P,ϑ(X), H−∞,δ

P,ϑ (X) =
⋃

s∈R

Hs,δ
P,ϑ(X),

Hs,δ
P,ϑ+0(X) =

⋃

ǫ>0

Hs,δ
P,ϑ+ǫ(X), etc.

Remark 2.45. In case P is a strongly discrete asymptotic type, the spaces
Hs,δ

P,ϑ−0(X) are the function spaces introduced by Schulze [15, Section 2.1.1].

There, the notation Hs,δ
P (X)∆ with the half-open interval ∆ = (−ϑ, 0] has been

used. The definition of the function spaces Hs,δ
P (X)∆ refers to fixed splitting

of coordinates near ∂X and is, in general, not coordinate invariant.

2.4.3 Functional-analytic properties

We list some properties of the function spaces Hs,δ
P,ϑ(X):

Proposition 2.46. Let s, s′, δ, δ′ ∈ R, ϑ ≥ 0, P ∈ Asδ(Y ), P ′ ∈ Asδ′

(Y ),
and {Pι}ι∈I ⊂ Asδ(Y ) be a family of asymptotic types. Then:

(a) Hs,δ
P,0(X) = Hs,δ(X).

(b) Hs,δ
P,ϑ(X) = Hs,δ−a

P,ϑ+a(X) for any a > 0.

(c) Hs,δ
O,ϑ(X) = Hs,δ+ϑ(X).

(d) We have

Hs,δ
P,ϑ(X) = Hs,δ

O,ϑ(X)

⊕
{

ω(t)
∑

p∈V,
Re p>(n+1)/2−δ−ϑ

∑

k+l=mp−1

(−1)k

k!
t−p logk t φ

(p)
l (y);

Φ(p) = (φ
(p)
0 , . . . , φ

(p)
mp−1) for some Φ ∈ J

}
,

where J ⊂ EV (Y ) is the linear subspace representing the asymptotic type P ,
provided that Re p 6= (n + 1)/2 − δ − ϑ holds for all p ∈ V .
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(e) We have Hs,δ
P,ϑ(X) ⊆ Hs′,δ′

P ′,ϑ′(X) if and only if s ≥ s′, δ + ϑ ≥ δ′ + ϑ′, and
P 4 P ′ up to the conormal order δ′ + ϑ′.
(f) Hs,δ∧

ι∈I Pι,ϑ
(X) =

⋂
ι∈I Hs,δ

Pι,ϑ
(X) if the family {Pι}ι∈I is non-empty.

(g) Hs,δ∨
ι∈I Pι,ϑ

(X) =
∑

ι∈I Hs,δ
Pι,ϑ

(X) if the family {Pι}ι∈I is bounded (where

the sum sign stands for the non-direct sum of Hilbert spaces);

(h) C∞
P (X) =

⋂
s∈R, ϑ≥0 H

s,δ
P,ϑ(X).

(i) C∞
P (X) is dense in Hs,δ

P,ϑ(X).

Proof. The proofs of (a) to (i) are straightforward.

From (e) we get, in particular, Hs,δ
P,ϑ(X) = Hs′,δ′

P ′,ϑ′(X) if and only if s = s′,
δ + ϑ = δ′ + ϑ′, and P = P ′ up to the conormal order δ + ϑ. (b) and also (c),
in view of (a), are special cases.

Proposition 2.47. For δ ∈ R, P ∈ Asδ(Y ), and any a ∈ R, the family{
Hs,δ

P,s−a(X); s ≥ a
}

of Hilbert spaces forms an interpolation scale with respect
to the complex interpolation method.

Proof. This is immediate from the definition.

Proposition 2.48. The spaces Hs,δ
P,ϑ(X) are invariant under coordinate

changes, where this has to be understood in the sense of Proposition 2.32.

Proof. Basically, this follows from the invariance of the spaces C∞
P (X) under

coordinate changes, where the latter is just a reformulation of the fact that the
asymptotic types in Asδ(Y ) are coordinate invariant.

2.4.4 Mapping properties and elliptic regularity

We finally take the step from the algebra of complete conormal symbols to
elliptic Fuchsian differential operators and their parametrices. These paramet-
rices are cone pseudodifferential operators, where for the latter we refer to
Schulze [16, Chapter 2]. While for general cone pseudodifferential operators,
there might be a difference between the conormal asymptotics produced on the
level of complete conormal symbols and operators, respectively — due to the
appearance of so-called singular Green operators — for Fuchsian differential
operators this does not happen.
In cone pseudodifferential calculus, one encounters operators of the form

ω(t)t−µ op
(n+1)/2−δ
M (h) ω̃(t), where h(t, z) ∈ C∞(R+;Mµ

as(Y )). Here,

op
(n+1)/2−δ
M (h(t, z))u =

1

2πi

∫

Γ(n+1)/2−δ

t−zh(t, z)ũ(z) dz (2.35)

is a pseudodifferential operator, whose definition is based on the Mellin trans-
formation instead of the Fourier transformation. The mapping properties of
these operators in the spaces Hs,δ

P,ϑ(X) are as follows:

Documenta Mathematica 9 (2004) 207–250



236 Xiaochun Liu and Ingo Witt

Proposition 2.49. Let h(t, z) ∈ C∞(R+;Mµ
as(Y )) and assume that the line

Γ(n+1)/2−δ is free of poles of ∂jh(0, z)
/
∂tj for all j = 0, 1, 2, . . . Then, for all

P ∈ Asδ(Y ), s ∈ R, ϑ ≥ 0,

ω(t)t−µ op
(n+1)/2−δ
M (h) ω̃(t) : Hs,δ

P,ϑ(X) → Hs−µ,δ−µ
Q,ϑ (X),

where ω(t), ω̃(t) are cut-off functions, Sµ =
{

1
j!

∂jh
∂tj (0, z); j = 0, 1, 2, . . .

}
∈

Symbµ
M (Y ), and Q = Qδ−µ(P,Sµ) ∈ Asδ−µ(Y ).

Proof. The previous definitions are made to let this result hold.

Notation. Proposition 2.49 implies that, given a cone pseudodifferential oper-
ator A in Schulze’s cone calculus Cµ(X, (δ, δ − µ, (−∞, 0])), see Schulze [16,
Chapter 2] again, for each P ∈ Asδ(Y ), there is a Q ∈ Asδ−µ(Y ) such that, for
all s ∈ R, ϑ ≥ 0,

A : Hs,δ
P,ϑ(X) → Hs−µ,δ−µ

Q,ϑ (X). (2.36)

Given P ∈ Asδ(Y ), the minimal such asymptotic type Q ∈ Asδ−µ(Y ), that
exists by virtue of Proposition 2.28 (a) and Proposition 2.46 (f), is denoted by
Qδ−µ(P ;A). If A is elliptic, given Q ∈ Asδ−µ(Y ), the minimal asymptotic type

P ∈ Asδ(Y ) such that, for all s ∈ R, ϑ ≥ 0, u ∈ H−∞,δ(X), Au ∈ Hs−µ,δ−µ
Q,ϑ (X)

implies u ∈ Hs,δ
P,ϑ(X) is denoted by Pδ(Q;A).

We shall employ this push-forward notation also if more than one operator A
is involved, i.e., Qδ−µ(P ;A1, . . . , Am) denotes the minimal asymptotic type Q

for which Aj : Hs,δ
P,ϑ(X) → Hs−µ,δ−µ

Q,ϑ (X) for 1 ≤ j ≤ m.

Theorem 2.50. For A ∈ Diffµ
Fuchs(X), P ∈ Asδ(Y ), Q ∈ Asδ−µ(Y ), we

have Qδ−µ(P ;A) = Qδ−µ(P ;Sµ), where Sµ = {σµ−j
M (A)(z); j = 0, 1, . . . } ∈

Symbµ
M (Y ), as well as, in case A is elliptic, Pδ(Q;A) = Qδ(Q; (Sµ)−1).

Proof. In fact, Qδ−µ(P ;A) = Qδ−µ(P ;Sµ) follows from Proposition 2.49.

Furthermore, it is known that formal asymptotic solutions u ∈ C∞
as (X) to the

equation Au = f for f ∈ C∞
R (X) and any R ∈ Asδ−µ(Y ) can be constructed,

see, e.g. Melrose [13, Lemma 5.13]. More precisely, it can be shown that
there is a right parametrix B to A, B : Hs−µ,δ−µ(X) → Hs,δ(X) for all s ∈ R,
such that

AB = I + R, R : H−∞,δ−µ(X) → C∞
O (X),

i.e., R is smoothing over X◦ and flattening to infinite order near ∂X. In fact,
B ∈ C−µ(X, (δ − µ, δ, (−∞, 0])) and, in particular, B ∈ L−µ

cl (X◦).
Now let BA = I + R0. Obviously, R0 is smoothing over X◦ such that
R0 : Hs,δ(X) → H∞,δ−µ(X) for any s ∈ R. Furthermore, A(I + R0) = ABA =
(I + R)A so that

AR0 = RA.

Documenta Mathematica 9 (2004) 207–250



Semilinear Fuchsian Equations 237

We conclude that R0 : Hs,δ(X) → C∞
P0

(X), where P0 = Qδ(O; (Sµ)−1). Hence,

for u ∈ H−∞,δ(X), Au = f ∈ Hs−µ,δ−µ
Q,ϑ (X), we get

u = Bf − R0u ∈ Hs,δ
P,ϑ(X),

where P = Qδ(Q; (Sµ)−1). Thus Pδ(Q;A) = Qδ(Q; (Sµ)−1) as claimed. See
also Witt [20, Remark after Proposition 5.5].

Notation. For A ∈ Diffµ
Fuchs(X), Qδ−µ(P ;A) is even independent of δ ∈ R in

view of the holomorphy of the conormal symbols σµ−j
M (A)(z) for j = 0, 1, 2, . . .

In this case, we simply write Q(P ;A) = Qδ−µ(P ;A).

Proposition 2.51. Let A ∈ Diffµ
Fuchs(X) be elliptic. Then there is an order-

preserving bijection

{
P ∈ Asδ(Y ); P < Lδ

Sµ

}
→ Asδ−µ(Y ), P 7→ Q(P ;A), (2.37)

with its inverse given by Q 7→ Pδ(Q;A). In particular, Lδ
Sµ is mapped to the

empty asymptotic type, O.

Proof. This is implied by Proposition 2.31 and Theorem 2.50. Note that
Lδ−µ

(Sµ)−1 = O, since the σµ−j
M (A)(z) for j = 0, 1, 2, . . . are holomorphic.

Eventually, we have the following locality principle:

Proposition 2.52. Let A ∈ Diffµ
Fuchs(X) be elliptic, Q0, Q1 ∈ Asδ−µ(Y ), and

P0 = Pδ(Q0;A), P1 = Pδ(Q1;A). Then, for any ϑ > 0, P0 = P1 up to the
conormal order δ + ϑ if Q0 = Q1 up to the conormal order δ − µ + ϑ.

Proof. This follows from P0 = Qδ(Q0; (S
−µ)−1), P1 = Qδ(Q1; (S

−µ)−1),
where Sµ = {σµ−j

M (A)(z); j ∈ N} ∈ Ell Symbµ
M (Y ).

Remark 2.53. Combined with Theorem 2.30, Theorem 2.50 shows that each so-
lution u ∈ C∞,δ

as (X) to the equation Au = f ∈ C∞
O (X), where A ∈ Diffµ

Fuchs(X)
is elliptic, can be written over finite weight intervals as a finite sum of func-
tions of the form (2.16) modulo the corresponding flat class, where the Φ
are taken from a characteristic basis of the linear subspace of Eδ(Y ) rep-
resenting Pδ(O;A). If Φ(p) = (φ0, . . . , φm−1) for such a vector Φ, where
p = γ(Φ), then we say that A admits an asymptotic series starting with the
term t−p logm−1 t φ0. Since this is then the most singular term (when γ(Φ)
is highest possible), if it coefficient can be shown to vanish, then the whole
series must vanish, up to the next appearance of a starting term for another
asymptotic series.
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3 Applications to semilinear equations

In this section, Theorem 1.1 is proved. To this end, multiplicatively closable and
multiplicatively closed asymptotic types are investigated in Section 3.1. This
allows the derivation of results concerning the action of nonlinear superposition
operators on cone Sobolev spaces with asymptotics. In Section 3.2, the general
scheme for establishing results of the type of Theorem 1.1 is established. This
scheme is specified to multiplicatively closable asymptotic types in Section 3.3,
then completing the proof of Theorem 1.1.

3.1 Multiplicatively closed asymptotic types

Here, we investigate multiplicative properties of asymptotic types and the be-
havior of cone Sobolev spaces Hs,δ

P,ϑ(X) under the action of nonlinear superpo-
sition.

Notation. In connection with pointwise multiplication, it is useful to employ
the following notation:

Hs
P,ϑ(X) =

{
Hs,δ

P,δP −δ+ϑ(X) if ϑ ≥ 0,

Hs,δP +ϑ(X) otherwise,

where P ∈ Asδ(Y ), P 6= O, and δ < δP in the first line. (Proposition 2.46 (b)
shows that this definition is independent of the choice of δ.) Thus, starting
from δP , the conormal order is improved by ϑ upon allowing asymptotics of
type P . Similarly for Hs

P,ϑ−0(X).

Furthermore, we write {ϑ} if we mean either ϑ or ϑ− 0. For instance, {ϑ} ≥ 0
means ϑ ≥ 0 if {ϑ} = ϑ and ϑ > 0 if {ϑ} = ϑ − 0.

3.1.1 Multiplication of asymptotic types

The result admitting nonlinear superposition for function spaces with asymp-
totics is stated first:

Lemma 3.1. Given P ∈ As(Y ), Q ∈ As(Y ), there is a minimal asymptotic
type, P ◦ Q ∈ As(Y ), such that

C∞
P (X) × C∞

Q (X) → C∞
P◦Q(X), (u, v) 7→ uv. (3.1)

Proof. Suppose that the asymptotic types P, Q are represented by subspaces
J ⊂ EV (Y ) and K ⊂ EW (Y ), respectively, for suitable V, W ∈ C. Then the
asymptotic type P ◦Q is carried by the set V +W , and it is represented by the
linear subspace of EV +W (Y ) consisting of all Θ ∈ EV +W (Y ) for which there are
Φ ∈ J , Ψ ∈ K such that Θ(r) =

∑
p+q=r,

p∈V, q∈W
Φ(p)×Ψ(q) holds for all r ∈ V +W .

Documenta Mathematica 9 (2004) 207–250



Semilinear Fuchsian Equations 239

Here,

Φ × Ψ =

((
m + n

m

)
φ0ψ0,

(
m + n − 1

m

)
φ0ψ1 +

(
m + n − 1

m − 1

)
φ1ψ0,

(
m + n − 2

m

)
φ0ψ2 +

(
m + n − 2

m − 1

)
φ1ψ1 +

(
m + n − 2

m − 2

)
φ0ψ2,

. . . ,

(
1

1

)
φm−1ψn +

(
1

0

)
φmψn−1,

(
0

0

)
φmψn

)

for Φ = (φ0, φ1, . . . , φm), Ψ = (ψ0, ψ1, . . . , ψn) ∈ [C∞(Y )]∞. For this, see
(2.16). Note that T (Φ × Ψ) = (TΦ) × Ψ + Φ × (TΨ) and, for Φ ∈ EVp

(Y ),
Ψ ∈ EVq

(Y ), we have Φ × Ψ ∈ EVp+q
(Y ) showing that the linear subspace of

EV +W (Y ) described above actually represents an asymptotic type.

The multiplication of asymptotic types possesses a unit, denoted by 1, that is
represented by the space span{(1)} ⊂ E{0}(Y ), where 1 is the function identi-
cally 1 on Y .

Definition 3.2. An asymptotic type Q ∈ As(Y ) is called multiplicatively
closed if Q ◦ Q = Q. An asymptotic type Q ∈ As(Y ) is called multiplica-
tively closable if it is dominated by a multiplicatively closed asymptotic type.
In this case, the minimal multiplicatively closed asymptotic type dominating
Q is called the multiplicative closure of Q and is denoted by Q̃.

From the proof of Lemma 3.1,

δP◦Q ≥ δP + δQ − (n + 1)/2, (3.2)

where equality holds if P = Q or if dimY = 0. Especially, δQ = (n + 1)/2 if Q
is multiplicatively closed and δQ ≥ (n + 1)/2 if Q is multiplicatively closable.
Furthermore, it is also seen Q < 1 for any multiplicatively closed asymptotic
type Q, see also Lemma 3.4 below.

3.1.2 The class As♯(Y ) of multiplicatively closable asymptotic
types

We study the class of asymptotic types that belong to bounded functions.
It turns out that this class is intimately connected to the multiplication of
asymptotic types.

Definition 3.3. (a) The class Asb(Y ) of bounded asymptotic types consists of
all asymptotic types Q ∈ As(Y ) for which δQ ≥ (n + 1)/2. Equivalently, a
bounded asymptotic type Q is represented by a subspace J ⊂ EV (Y ) for some
V ∈ C, where V ⊂ {z ∈ C; Re z ≤ 0}.
(b) The class As♯(Y ) consists of all bounded asymptotic types Q represented
by a subspace J ⊂ E(Y ) such that J0 ⊆ span{(1)} and Jp = {0} for Re p = 0,
p 6= 0.
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Lemma 3.4. For Q ∈ As(Y ), the following conditions are equivalent:
(a) Q is multiplicatively closable;
(b) the join

∨
k≥1 Qk does exist, where Qk = Q ◦ · · · ◦ Q︸ ︷︷ ︸

k times

is the k-fold product ;

(c) Q ∈ As♯(Y ).

In case (a) to (c) are fulfilled, we have Q̃ = 1 ∨ ∨
k≥1 Qk.

Proof. (a) and (b) are obviously equivalent. Moreover, (c) implies (b).
It remains to show that (a) also implies (c). If Q is multiplicatively closable,

then Q̃ exists and δQ̃ = (n + 1)/2. In particular, Q̃ ∈ Asb(Y ). Let Q̃ be

represented by J ⊂ EV (Y ) for some V ∈ C, V ⊂ {z ∈ C; Re z ≤ 0}. Suppose
that φ ∈ Jp for p ∈ C, Re p = 0, where φ 6= 0. We immediately get φl ∈ Jlp for
any l ∈ N, l ≥ 1. For p 6= 0, we obtain the contradiction {lp; l ∈ N} ⊆ V ∈ C.
For p = 0 and φ not being constant, we obtain a contradiction to the fact that
dimJ0 < ∞. Thus, Q̃ ∈ As♯(Y ) and, therefore, Q ∈ As♯(Y ).

Lemma 3.5. For each Q ∈ As(Y ), there are asymptotic types Qb ∈ Asb(Y )
and Q♯ ∈ As♯(Y ) which are maximal among all asymptotic types possessing the
property

Qb 4 Q and Q♯ 4 Q, (3.3)

respectively. In particular, Q♯ 4 Qb.

Proof. The proof is straightforward.

3.1.3 Nonlinear superposition

We investigate expressions like F (x, v(x)), where F (x, ν) ∈ C∞
R (X×R) for some

R ∈ As(Y ) and v ∈ Hs
Q,ϑ(X) ∩ L∞(X) with s ≥ 0, ϑ > 0, and Q ∈ As♯(Y ).

For later reference, we recall the following facts:

Proposition 3.6. (a) For s > (n + 1)/2, 0 ≤ s′ ≤ s, γ, δ ∈ R, pointwise
multiplication induces a bilinear continuous map

Hs,γ(X) ×Hs′,δ(X) → Hs′,γ+δ−(n+1)/2(X). (3.4)

(b) For s, δ ∈ R, Hs,δ(X) ⊂ L∞(X) if and only if s > (n+1)/2, δ ≥ (n+1)/2.
(c) For s ≥ 0, γ, δ ≥ (n + 1)/2, pointwise multiplication induces a bilinear
continuous map

(
Hs,γ(X) ∩ L∞(X)

)
×

(
Hs,δ(X) ∩ L∞(X)

)
→ Hs,γ+δ−(n+1)/2(X) ∩ L∞(X).

(d) For s ≥ 0, δ ∈ R, p ∈ C, c(y) ∈ C∞(Y ), the multiplication operator

ω(t)t−pc(y) : Hs,δ(X) → Hs,δ−Re p(X),

where ω(t) is a cut-off function, is continuous.
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(e) For s ≥ 0, v1, . . . , vK ∈
(
1 + Hs,(n+1)/2(X)

)
∩ L∞(X), and F ∈ C∞(RK),

we have
F (v1, . . . , vK) ∈

(
1 + Hs,(n+1)/2(X)

)
∩ L∞(X). (3.5)

The map
((

1 + Hs,(n+1)/2(X)
)
∩ L∞(X)

)K →
(
1 + Hs,(n+1)/2(X)

)
∩ L∞(X)

induced by (3.5) is continuous and sends bounded sets to bounded sets.

Proof. A proof of (3.4) in case s′ = s has been supplied by Witt [19,
Lemma 2.7] using a result of Dauge [2, Theorem (AA.3)]. The other proofs
are similar.

Remark 3.7. Property (d) fails if logarithms appear and has to be replaced by

ω(t)t−p logk t c(y) : Hs,δ(X) → Hs,δ−Re p−0(X)

is continuous when k ∈ N, k ≥ 1.

First, Lemma 3.1 is sharpened:

Proposition 3.8. For s > (n + 1)/2, 0 ≤ s′ ≤ s, ϑ > 0, and P, Q ∈ As(Y ),
pointwise multiplication induces a bilinear continuous map

Hs
P,ϑ−0(X) × Hs′

Q,ϑ−0(X) → Hs′

P◦Q,ϑ−0(X). (3.6)

Proof. Let u ∈ Hs
P,ϑ−0(X), v ∈ Hs′

Q,ϑ−0(X). Then u = u0 + u1, v = v0 + v1,
where

u0 =

M∑

j=0

mj∑

k=0

ω(t)t−pj logk t cjk(y), v0 =

N∑

j′=0

nj′∑

k′=0

ω(t)t−qj′ logk′

t dj′k′(y),

(3.7)
ω(t) is a cut-off function, the sequences {(pj ,mj , cjk)}, {(qj′ , nj′ , dj′k′)} are
given by the asymptotic types P and Q, respectively, according to Def-
inition 2.18, and M , N are chosen so that u1 ∈ Hs,δP +ϑ−0(X), v1 ∈
Hs′,δQ+ϑ−0(X). Since u0 ∈ H∞,δP −0(X), v0 ∈ H∞,δQ−0(X), we obtain

uv = u0v0 + u1v0 + u0v1 + u1v1,

where u1v0 + u0v1 + u1v1 ∈ Hs′,δP◦Q+ϑ−0(X) by (3.4) and

u0v0 =

M,N∑

j,j′=0

mj ,nj′∑

k,k′=0

ω2(t)t−(pj+qj′ ) logk+k′

t cjk(y)dj′k′(y) ∈ H∞
P◦Q,ϑ−0(X),

for ω2(t) is a cut-off function and the sequence

{
(rj′′ , oj′′ ,

∑

pj+qj′=rj′′

∑

k+k′=k′′

cjkdj′k′)
}
,

where oj′′ = max{mj + nj′ ; pj + qj′ = rj′′}, is associated with an asymptotic
type that equals P ◦Q up to the conormal order δP◦Q+ϑ−0. This immediately

gives uv ∈ Hs′

P◦Q,ϑ−0(X).
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The significance of the class Asb(Y ) is uncovered by the next result:

Proposition 3.9. For s ≥ 0, δ ∈ R, δ + {ϑ} ≥ (n + 1)/2, and Q ∈ Asδ(Y ),

Hs,δ
Q,{ϑ}(X) ∩ L∞(X) = Hs,δ

Qb,{ϑ}(X) ∩ L∞(X). (3.8)

Proof. Let u ∈ Hs,δ
Q,{ϑ}(X) ∩ L∞(X) and write

u(x) =

M∑

j=0

mj∑

k=0

ω(t)t−pj logk t cjk(y) + u1(x),

where the sequences {(pj ,mj , cjk)} is given by the asymptotic type Q and M
is chosen so that u1 ∈ Hs,(n+1)/2−0(X). Since u ∈ L∞(X) ⊂ H0,(n+1)/2−0(X),

we get that
∑M

j=0

∑mj

k=0 ω(t)t−pj logk t cjk(y) ∈ H0,(n+1)/2−0(X) which implies

cjk(y) = 0 for Re pj > 0. Thus u ∈ Hs,δ
Qb,ϑ

(X).

Lemma 3.10. For s ≥ 0, ϑ > 0, and P, Q ∈ Asb(Y ), pointwise multiplication
induces a bilinear continuous map
(
Hs

P,ϑ−0(X) ∩ L∞(X)
)
×

(
Hs

Q,ϑ−0(X) ∩ L∞(X)
)
→ Hs

P◦Q,ϑ−0(X) ∩ L∞(X).

Proof. Represent u = u0 + u1 ∈ Hs
P,ϑ−0(X) ∩ L∞(X), v = v0 + v1 ∈

Hs
Q,ϑ−0(X)∩L∞(X) as in the proof of Proposition 3.8. Since u0, v0 ∈ L∞(X)

due to the assumption P, Q ∈ Asb(Y ), we get that u1 ∈ Hs,δP +ϑ−0(X) ∩
L∞(X), v1 ∈ Hs,δQ+ϑ−0(X) ∩ L∞(X) and, therefore, u1v0 + u0v1 + u1v1 ∈
Hs,δP◦Q+ϑ−0(X) ∩ L∞(X) in view of Proposition 3.6 (c). The assertion fol-
lows.

A more precise statement is possible if P, Q ∈ As♯(Y ):

Lemma 3.11. For s ≥ 0, ϑ ≥ 0, and P, Q ∈ As♯(Y ) satisfying P < 1, Q < 1,
pointwise multiplication induces a bilinear continuous map

(
Hs

P,ϑ(X) ∩ L∞(X)
)
×

(
Hs

Q,ϑ(X) ∩ L∞(X)
)
→ Hs

P◦Q,ϑ(X) ∩ L∞(X). (3.9)

Especially, for s ≥ 0, ϑ ≥ 0, and Q ∈ As♯(Y ) being multiplicatively closed,
Hs

Q,ϑ(X) ∩ L∞(X) is an algebra under pointwise multiplication.

Proof. We may assume that ϑ > 0. Write u = u0 + u1 ∈ Hs
P,ϑ(X) ∩ L∞(X),

v = v0 + v1 ∈ Hs
Q,ϑ(X) ∩ L∞(X) as in the proof of Proposition 3.8, where

u0 = u00 + u01, v0 = v00 + v01, u00 = ω(t)c00, and v00 = ω(t)d00 with c00, d00

being constants and in the expressions for u01, v01 only appear exponents with
Re pj < 0 and Re qj′ < 0, respectively. Then

u1v01 + u01v1 + u1v1 ∈ Hs,(n+1)/2+ϑ+0(X),

u00v ∈ Hs
Q,ϑ(X) ⊆ Hs

P◦Q,ϑ(X), uv00 ∈ Hs
P,ϑ(X) ⊆ Hs

P◦Q,ϑ(X), and

u01v01 ∈ H∞
P◦Q,ϑ+0(X),

which proves the assertion.
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The fact which has actually been used in the last proof is that Proposi-
tion 3.6 (d) applies to the function ω(t)1 (p = 0, c(y) ≡ 1). This is also
used in part (b) of the next result:

Lemma 3.12. (a) Let s ≥ 0, ϑ > 0, and R, Q ∈ As(Y ). Then pointwise
multiplication induces a continuous map

C∞
R (X) × Hs

Q,ϑ−0(X) → Hs
R◦Q,ϑ−0(X). (3.10)

(b) If, in addition, R ∈ As(Y ) is so that the multiplicities of its highest singular
values are one, i.e., Jr ⊆ [C∞(Y )]1 for each r ∈ V , Re r = (n+1)/2−δR, where
J ⊂ EV (Y ) represents R, then pointwise multiplication induces a continuous
map

C∞
R (X) × Hs

Q,ϑ(X) → Hs
R◦Q,ϑ(X).

Proof. (a) is immediate from Proposition 3.8. To get (b), we argue as in the
proof of Lemma 3.11.

Proposition 3.13. Let s ≥ 0, ϑ ≥ 0, and Q ∈ As♯(Y ) be multiplicatively
closed. Then v1, . . . , vK ∈ Hs

Q,ϑ(X) ∩ L∞(X) and F ∈ C∞(RK) implies that

F (v1, . . . , vK) ∈ Hs
Q,ϑ(X) ∩ L∞(X). (3.11)

Proof. We are allowed to assume that ϑ > 0. Then v ∈ Hs
Q,ϑ(X) implies that

v
∣∣
∂X

is a constant, where v
∣∣
∂X

means the factor in front of t0 in the asymptotic

expansion (1.2) (with u replaced with v) of v as t → +0. Let βJ = vJ

∣∣
∂X

for
1 ≤ J ≤ K be these constants. Using Taylor’s formula, we obtain

F (v1, . . . , vK) =
∑

|α|<N

1

α!
(∂αF )(β1, . . . , βK)(v1 − β1)

α1 . . . (vK − βK)αK

+ N
∑

|α|=N

∫ 1

0

(1 − σ)N−1

α!
(∂αF )(β1 + σ(v1 − β1), . . . , βK + σ(vK − βK)) dσ

× (v1 − β1)
α1 . . . (vK − βK)αK . (3.12)

By Lemma 3.11, (v1 − β1)
α1 . . . (vK − βK)αK ∈ Hs

Q,ϑ(X) ∩ L∞(X) for any

α ∈ NK , thus the first summand on the right-hand side of (3.12) belongs
to Hs

Q,ϑ(X) ∩ L∞(X). On the other hand, choosing N sufficiently large, we

can arrange that (v1 − β1)
α1 . . . (vK − βK)αK ∈ Hs,(n+1)/2+ϑ(X) ∩ L∞(X)

for |α| ≥ N , since vJ − βJ ∈ Hs,(n+1)/2+0(X) ∩ L∞(X) for 1 ≤ J ≤ K.
By (3.5),

{
(∂αF )(β1 + σ(v1 − β1), . . . , βK + σ(vK − βK)) dσ; 0 ≤ σ ≤ 1

}

is a bounded set in
(
1 + Hs,(n+1)/2(X)

)
∩ L∞(X) for any α ∈ NK . This

shows that the second summand on the right-hand side of (3.12) belongs to
Hs,(n+1)/2+ϑ(X) ∩ L∞(X).
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Proposition 3.14. (a) Let s ≥ 0, ϑ > 0. Further let Q ∈ As♯(Y ) be multi-
plicatively closed and R ∈ As(Y ). Then v1, . . . , vK ∈ Hs

Q,ϑ−0(X)∩L∞(X) and

F ∈ C∞
R (X × RK) implies that

F (x, v1, . . . , vK) ∈ Hs
R◦Q,ϑ−0(X). (3.13)

(b) If, in addition, R satisfies the assumption of Lemma 3.12 (b), then
v1, . . . , vK ∈ Hs

Q,ϑ(X) ∩ L∞(X) and F ∈ C∞
R (X × RK) implies that

F (x, v1, . . . , vK) ∈ Hs
R◦Q,ϑ(X).

Proof. We prove (a), (b) is analogous. Since C∞
R (X × RK) = C∞

R (X)⊗̂π

C∞(RK), we can write

F (x, υ) =

∞∑

j=0

αj ϕj(x)Fj(υ),

where {αj}∞j=0 ∈ l1 and {ϕj}∞j=0 ⊂ C∞
R (X) and {Fj}∞j=0 ⊂ C∞(RK), respec-

tively, are null sequences. By the preceeding proposition,

Fj(v1, . . . , vK) → 0 as j → ∞ in Hs
Q,ϑ−0(X).

By Lemma 3.12,

ϕj(x)Fj(v1, . . . , vK) → 0 as j → ∞ in Hs
R◦Q,ϑ−0(X).

Thus

F (x, v1, . . . , vK) =

∞∑

j=0

αj ϕj(x)Fj(v1, . . . , vK) ∈ Hs
R◦Q,ϑ−0(X),

where the sum on the right-hand side is absolutely convergent.

3.2 The bootstrapping argument

We consider the equation
Au = Π(u), (3.14)

where A ∈ Diffµ
Fuchs(X) is an elliptic Fuchsian differential operator. Properties

of the nonlinear operator u 7→ Π(u) are discussed below. The method proposed
for deriving elliptic regularity for solutions to (3.14) amounts to balancing two
asymptotic types — one for the left-hand and the other one for the right-hand
side of (3.14).
We assume: There are asymptotic types P̄ ∈ Asδ(Y ), Q̄ ∈ Asδ−µ(Y ), numbers
a, b, s0, ϑ0 ∈ R with

a < µ, b < δQ̄ − δP̄ + µ, s0 ≥ a+, δP̄ + {ϑ0} ≥ δ,
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and a subset U ⊆ Hs0

P̄ ,{ϑ0}(X) such that the following conditions are met:

(A) A is elliptic with respect to the conormal order δ and P̄ < Pδ(Q̄;A), i.e.,
u ∈ H−∞,δ(X), Au ∈ C∞

Q̄
(X) implies u ∈ C∞

P̄
(X);

(B) For s ≥ s0, ϑ ≥ ϑ0, we have

Π: U ∩ Hs
P̄ ,{ϑ}(X) → Hs−a

Q̄,{ϑ}−b
(X).

Note that {ϑ0} − b + δQ̄ ≥ δ − µ.

Proposition 3.15. Under the conditions (A), (B), each solution u ∈ U ⊆
Hs0

P̄ ,{ϑ0}(X) to (3.14) belongs to the space C∞
P̄

(X).

Proof. We prove by induction on j that

u ∈ H
s0+j(µ−a)

P̄ ,{ϑ0}+j(µ−b+δQ̄−δP̄ )
(X) (3.15)

for all j ∈ N. Since µ − a > 0, µ − b + δQ̄ − δP̄ > 0, this implies u ∈ C∞
P̄

(X).
By assumption, (3.15) holds for j = 0. Now suppose that (3.15) for
some j has already been proven. From (B) we conclude that Π(u) ∈
H

s0+j(µ−a)−a

Q̄,{ϑ0}+j(µ−b+δQ̄−δP̄ )−b
(X). In view of (A), elliptic regularity gives u ∈

H
s0+(j+1)(µ−a)

P̄ ,{ϑ0}+(j+1)(µ−b+δQ̄−δP̄ )
(X).

Example 3.16. Here, we provide an example for a nonlinearity Π satisfying (B).
Let Π(u) = K0(u)

/
K1(u), where K0, K1 are polynomials of degree m0 and m1,

respectively. Let u ∈ Hs
P,ϑ−0(X), where s > (n+1)/2, δP +ϑ > (n+1)/2, and

ϑ > 0. Further, we assume that the multiplicities of the highest singular values
for P are simple and the coefficient functions for these singular values nowhere
vanish on Y . Then we have K0(u) ∈ Hs

P0,ϑ−0(X), K1(u) ∈ Hs
P1,ϑ−0(X) for re-

sulting asymptotic types P0, P1. In particular, P0 is dominated by 1∨∨m0

k=1 P k

and P1 is dominated by 1 ∨ ∨m1

k=1 P k. Furthermore, it is readily seen that
v ∈ Hs

P1,ϑ−0(X) and v 6= 0 everywhere on X◦ implies that 1/v ∈ Hs
Q1,ϑ′−0(X)

for some resulting asymptotic type Q1. Hence, we are allowed to set P̄ = P ,
Q̄ = P0 ◦ Q1, and

U =
{
u ∈ Hs

P,ϑ−0(X); K1(u) 6= 0 everywhere on X◦}.

The condition s > (n + 1)/2 can be replaced by s ≥ 0. Then we additionally
need u ∈ L∞

loc(X
◦).

3.3 Proof of the main theorem

The main step consists in constructing asymptotic types P̄ , Q̄ so that Propo-
sition 3.15 applies. Thereby, upon choosing δ ∈ R even smaller if necessary, we
can assume that

δ ≤ µ̄ + (n + 1)/2

and that A ∈ Diffµ
Fuchs(X) is elliptic with respect to the conormal order δ.

Set ∆ = δR + (µ − µ̄) − (n + 1)/2. By assumption (1.4), ∆ > 0.
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3.3.1 Construction of asymptotic types P , Q

We construct by induction on h sequences {Ph}∞h=0 ⊂ Asδ(Y ) and {Qh}∞h=0 ⊂
As♯(Y ) of asymptotic types as follows: Set P0 = Pδ(O;A). Suppose that
P0, . . . , Ph and Q0, . . . , Qh−1 for some h have already been constructed. Then

Qh =
(
Q(Ph;B1, . . . , BK)♯

)
,̃ (3.16)

Ph+1 = Pδ(R ◦ Qh;A). (3.17)

Lemma 3.17. For each h ≥ 0,

Ph = Ph+1 up to the conormal order δR + µ + h∆ − 0, (3.18)

Qh = Qh+1 up to the conormal order δR + (µ − µ̄) + h∆ − 0. (3.19)

In particular, the joins P =
∨∞

h=0 Ph and Q =
∨∞

h=0 Qh exist.

Proof. We set Q−1 = O and proceed by induction on h. (3.19) holds for
h = −1, since Q0 ∈ As♯(Y ) and, therefore, Q0 = O up to the conormal order
(n + 1)/2 − 0.

Suppose that Qh−1 = Qh up to the conormal order δR +(µ− µ̄)+ (h− 1)∆− 0
for some h ≥ 0 has already been proved. Then R ◦ Qh−1 = R ◦ Qh up to
the conormal order δR + h∆ − 0 and Ph = Ph+1 up to the conormal order
δR + µ + h∆ − 0, since Ph = Pδ(R ◦ Qh;A), Ph+1 = Pδ(R ◦ Qh+1;A).

Now suppose that Ph = Ph+1 up to the conormal order δR + µ + h∆ − 0.
We obtain Q(Ph;B1, . . . , BK) = Q(Ph+1;B1, . . . , BK) up to the conormal or-
der δR + (µ − µ̄) + h∆ − 0 and, therefore, Qh = Qh+1 up to the conormal
order δR + (µ − µ̄) + h∆ − 0, since Qh =

(
Q(Ph;B1, . . . , BK)♯

)
,̃ Qh+1 =(

Q(Ph+1;B1, . . . , BK)♯
)

.̃

This completes the inductive proof.

Lemma 3.18. The asymptotic types P =
∨∞

h=0 Ph ∈ Asδ(Y ), Q =
∨∞

h=0 Qh ∈
As♯(Y ) satisfy:

(a) Q(P ;B1, . . . , BK)b = Q(P ;B1, . . . , BK)♯ and Q =
(
Q(P ;B1, . . . , BK)♯

)
;̃

(b) P = Pδ(R ◦ Q;A);

(c) Q is multiplicatively closed.

Furthermore, P, Q are minimal among all asymptotic types in Asδ(Y ) and
As♯(Y ), respectively, satisfying (a) to (c).

Proof. The assertions immediately follow from the description of the asymp-
totic types Ph, Qh given in the previous lemma.

Only Q(P ;B1, . . . , BK)b = Q(P ;B1, . . . , BK)♯ needs an argument: But P =
P0 up to the conormal order δR + µ − 0, so we get Q(P ;B1, . . . , BK) =
Q(P0;B1, . . . , BK) up to the conormal order δR+(µ−µ̄)−0 = (n+1)/2+∆−0 >
(n + 1)/2, and Q(P0;B1, . . . , BK)b = Q(P0;B1, . . . , BK)♯ is exactly the non-
resonance condition (1.5).
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Note that, by the non-resonance condition (1.5) and Proposition 3.9,

BJu ∈ Hs−µ̄,δ−µ̄
Q(P ;B1,...,BK),ϑ−0(X) ∩ L∞(X)

⊆ Hs−µ̄,δ−µ̄
Q(P ;B1,...,BK)♯,ϑ−0

(X) ⊆ Hs−µ̄,δ−µ̄
Q,ϑ−0 (X) (3.20)

if u ∈ Hs,δ
P,ϑ−0(X), δ − µ̄ + ϑ > (n + 1)/2, and BJu ∈ L∞(X).

3.3.2 End of the proof of Theorem 1.1

Since BJu ∈ L∞(X) ⊂ H0,(n+1)/2−0(X) for all 1 ≤ J ≤ K, we have
F (x,B1u, . . . , BKu) ∈ H0,δR−0(X) and

u ∈ Hµ
P0,δR+µ−δP −0(X) = Hµ

P,δR+µ−δP −0(X)

by elliptic regularity.
To conclude the proof of Theorem 1.1, we apply Proposition 3.15 with Πu =
F (x,B1u, . . . , BKu), P̄ = P , Q̄ = R ◦Q, where P ∈ Asδ(Y ), Q ∈ As♯(Y ) have
been constructed in Lemmas 3.17, 3.18, s0 = µ, {ϑ0} = δR +µ− δP − 0, a = µ̄,
b = (n + 1)/2 − δP + µ̄, and

U =
{
u ∈ Hµ

P,δR+µ−δP −0(X); BJu ∈ L∞(X), 1 ≤ J ≤ K
}
. (3.21)

Then a < µ, b < δR◦Q − δP + µ for δR◦Q = δR, ∆ > 0, and δP + ϑ0 = δR + µ >
µ̄ + (n + 1)/2 ≥ δ, i.e., δP + {ϑ0} ≥ δ. Moreover, condition (A) is fulfilled.
To check condition (B), note that u ∈ U∩Hs

P,ϑ−0(X) for s ≥ µ, ϑ ≥ δR+µ−δP

implies
F (x,B1u, . . . , BKu) ∈ Hs−µ̄

R◦Q,δP −µ̄−(n+1)/2+ϑ−0(X)

by (3.20) and Proposition 3.14.
Thus Proposition 3.15 applies to yield u ∈ C∞

P (X).

Remark 3.19. From (3.21) it is seen that the asymptotic type P ∈ Asδ(Y )
can be taken smaller, namely instead of P = Pδ(R ◦ Q;A) we can choose the
asymptotic type

∨{
P ′ ∈ Asδ(Y ); P ′ 4 Pδ(R ◦ Q;A), Q(P ′;B1, . . . , BK) ∈ As♯(Y )

}
.

In concrete problems, the resulting asymptotic type for u can be even smaller,
e.g., due to nonlinear interaction caused by the special structure of the nonlin-
earity.

3.4 Example: The equation ∆u = Au2 + B(x)u in three space dimensions

Let Ω be a bounded, smooth domain in R3 containing 0. We are going to study
singular solutions to the equation

∆u = Au2 + B(x)u on Ω \ {0}, (3.22)

γ0u = c0, u
∣∣
∂Ω

= φ, (3.23)
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where γ0u = limx→0 |x|u(x), A ∈ R, and B ∈ C∞(Ω) is real-valued. Since the
quadratic polynomial Au2 + B(x)u rather than a general nonlinearity F (x, u)
enters, we may admit complex-valued solutions u to (3.22). In particular,
c0 ∈ C.

Remark 3.20. By results in Véron [17], one expects the limit limx→0 |x|u(x)
exist for the solutions u = u(x) to (3.22).

On Ω\{0}, we introduce polar coordinates (t, y) ∈ R+ ×S2, t = |x|, y = x/|x|.
We further introduce the function spaces

X 2 =
{
c0t

−1 + c11 log t + u0(x); c0, c11 ∈ C, u0 ∈ H2(Ω)
}
,

Y0 =
{
d0t

−2 + v0(x); d0 ∈ C, v0 ∈ L2(Ω)
}
,

the definition of which is suggested by formal asymptotic analysis. On the
space X 2, we have the trace operators γ0, γ1, γ11, where γ11u = limt→+0

(
u(x)−

(γ0u)t−1
)
/ log t, γ1u = limt→+0

(
u(x) − (γ0u)t−1 − (γ11u) log t

)
.

Proposition 3.21. Suppose that B(x) ≥ 0 for all x ∈ Ω. Then, for all c0 ∈ C,
φ ∈ H3/2(∂Ω) with |c0|+‖φ‖H3/2(∂Ω) small enough, the boundary value problem

(3.22), (3.23) admits a unique small solution u ∈ X 2. This solution u = u(x)
obeys a complete conormal asymptotic expansion as x → 0 that can successively
be calculated. Especially,

c11 = Ac2
0, (3.24)

where c11 = γ11u.

Proof. Let us consider the nonlinear operator

Ψ: X 2 → Y0 × C × H3/2(∂Ω), u 7→
(
∆u − Au2 − B(x)u, γ0u, u

∣∣
∂Ω

)
.

It is readily seen that the linearization of Ψ about u = 0 is an isomorphism
between the indicated spaces. Thus, the existence of a unique small solution
u ∈ X 2 to (3.22), (3.23) is implied by the inverse function theorem. (3.24)
likewise follows.
Furthermore, writing this solution in the form u(x) = c0t

−1 + c11 log t + u0(x),
where u0 ∈ H2(Ω), we get that u0 fulfills the equation

c11t
−2 + ∆u0 = A

(
c2
0t

−2 + 2c0c11t
−1 log t + c2

11 log2 t
)

+ 2A
(
c0t

−1 + c11 log t
)
u0 + Au2

0 + B(x)
(
c0t

−1 + c11 log t
)

+ B(x)u0. (3.25)

This can be brought into the form (1.1) with A = ∆,

F (x, ν) =
(
2Ac0c11t

−1 log t + B(x)c0t
−1 + Ac2

11 log2 t + B(x)c11 log t
)

+
(
2Ac0t

−1 + 2Ac11 log t + B(x)
)
ν + Aν2,

since ∆ = t−2
(
(−t∂t)

2 − (−t∂t) + ∆S2

)
∈ Diff2

Fuchs(Ω \ {0}), where 0 ∈ Ω is
considered as conical point with cone base S2 = {x ∈ R3; |x| = 1}, cf. Re-
mark 1.3, and ∆S2 being the Laplace-Beltrami operator on S2. The conditions
(1.4), (1.5) are obviously satisfied.
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Thus, Theorem 1.1 applies to u0 ∈ H2(Ω) ⊂ L∞(Ω) to yield that u0 and,
therefore, u obey a complete conormal asymptotic expansion.

Remark 3.22. (a) Taking for P the asymptotic type in As0(S2) that comes out
of the calculation of the conormal asymptotic expansion for u, i.e., we have
u ∈ C∞

P (Ω \ {0}), and for Q the resulting asymptotic type in As−2(S2) for
the right-hand side of (3.22), we are in a situation in which Proposition 3.15
directly applies without having boundedness assumptions for u.
(b) Allowing more general functions B ∈ C∞

R (Ω\{0}) for some R ∈ As−1/2(S2)
(the conormal order −1/2 ensures that the term Ac2

0t
−2 dominates on the right-

hand side of (3.25)) rather than B ∈ C∞
P0

(Ω \ {0}), where P0 is the asymptotic
type for Taylor asymptotics, one can perform the same analysis as before upon
replacing the space H2(Ω) in the definition of X 2 accordingly.
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Abstract. The following bounds for the anticanonical bundle K∗
X =

det TX of a complex homogeneous projective rational manifold X of
dimension n are established:

3n ≤ dimH0(X,K∗
X) ≤

(
2n + 1

n

)
and 2nn! ≤ deg K∗

X ≤ (n + 1)n

with equality in the lower bounds if and only if X is a flag manifold
and equality in the upper bounds if and only if X is complex projective
space. None of these bounds holds for general Fano manifolds.

2000 Mathematics Subject Classification: Primary 14M17; Secondary
14M15, 32M10

The homogeneous compact complex manifolds X that admit an equivariant
embedding in projective space are precisely the quotients X = G/P where G
is a semisimple complex Lie group and P is a parabolic subgroup. Moreover,
any such quotient is rational and has a very ample anticanonical bundle, K∗

X =
det TX . In particular, X is a Fano manifold.
Various bounds have been established for the numerical invariants of K∗

X when
X is a general Fano manifold, see [6, 8, 9, 10]. For example, there exists a
constant c(n) that depends only on n = dimX such that deg K∗

X ≤ c(n)n. In
this article we establish the following bounds when X = G/P :

3n ≤ dimH0(X,K∗
X) ≤

(
2n + 1

n

)
and 2nn! ≤ deg K∗

X ≤ (n + 1)n

with equality in the lower bounds if and only if X is a flag manifold (i.e., P is
a Borel subgroup of G), and equality in the upper bounds if and only if X is
complex projective space, Pn.

Documenta Mathematica 9 (2004) 251–263



252 Dennis Snow

These bounds do not hold for general Fano manifolds. For example, let X =
P(OPn−1 ⊕OPn−1(n − 1)). Then X is a P1-bundle over Pn−1, π : X → Pn−1,
and K∗

X = π∗OPn−1(1)⊗ξ2 where ξ is the tautological line bundle on X whose
restriction to any fiber P1 of π gives ξ|P1 ∼= OP1(1). It follows that X is
a Fano manifold with dimH0(X,K∗

X) = n +
(
2n−1
n−1

)
+

(
3n−2
n−1

)
and deg K∗

X =
((2n − 1)n − 1)/(n − 1). An example where the lower bounds do not hold is
given by X = S × (P1)n−2 where S is a del Pezzo surface.
In the homogeneous case there are well-known formulas from representation
theory that can be used to calculate dimH0(X,K∗

X) and deg K∗
X exactly. How-

ever, these formulas, which are products of rational numbers indexed by the
roots of the group, do not easily lend themselves to comparison with expres-
sions in n = dim X. The point of this paper is to overcome this difficulty.
The bounds are proved by first reducing to the case of simple Lie groups and
then showing for each classical type that the known formulas can be broken up
into subproducts of certain simple sequences. These subproducts are shown to
satisfy inequalities that can be combined to yield the desired inequalities for
the full product. The bounds for the exceptional types are verified through
exhaustive calculations.
The above upper bounds can be trivially extended to any homogeneous compact
complex manifold X = G/H. The sections of K∗

X define an equivariant map
of X to projective space that coincides with the normalizer fibration G/H →
G/N , N = NG(H0), [1, p.79]. Since the base Y = G/N is a homogeneous
projective rational manifold, the upper bounds hold for Y and hence for X.
For a homogeneous projective rational manifold X, the dimension of the holo-
morphic automorphism group, dim Aut(X) = dimH0(X,TX), never exceeds
n(n+2). In fact, this bound holds when X is any homogeneous compact Kähler
manifold [5]. However, there are homogeneous compact complex manifolds for
which dim Aut(X) grows exponentially in n, see [12]. In [13], the above estimate
for dimH0(X,K∗

X) plays an important role in establishing the following bound

for the non-Kähler case: dim Aut(X) ≤ n2−1+
(
2n−1
n−1

)
∼ O(22n−1/

√
(n − 1)π).

1 Roots and Weights

In this section we introduce some notation and well-known facts about semisim-
ple Lie groups [2, 7], and recall a formula for finding the weight µX associated
to the line bundle K∗

X when X = G/P [4, 11].
Let G be a semisimple complex Lie group and let T be a maximal torus of G.
Let Lie(G) and Lie(T ) be the corresponding Lie algebras. Let Φ ⊂ Lie(T )∗

denote the roots of G with respect to T and let {α1, . . . , αℓ} be a system
of simple roots. Let Φ+ denote the subset of positive roots—those that are
positive integral combinations of the simple roots. For any root α ∈ Φ, let
eα ∈ Lie(G) be the corresponding root vector: [x, eα] = α(x)eα for all x ∈
Lie(T ).
Let λ1, . . . , λℓ be the fundamental dominant weights of G—those weights de-
fined by 〈λi, αj〉 = 2(λi, αj)/(αj , αj) = δij where ( , ) denotes the Killing form.
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Any weight µ ∈ Lie(T )∗ can be written µ =
∑ℓ

i=1〈µ, αi〉λi.
A Borel subgroup is a maximal solvable subgroup of G, and any such subgroup
is conjugate to the subgroup B generated by T and the root groups expCeα,
for all α ∈ −Φ+. Let P be a parabolic subgroup of G, that is, a subgroup
containing a Borel subgroup. We may assume that P contains B. Let P = R·S
be a Levi decomposition of P where R is a maximal solvable normal subgroup
of P and S is semisimple. We let ΦP denote the subsystem of roots of S and let
Φ+

P = ΦP ∩ Φ+. Let I denote the subset of indexes, I ⊂ {1, . . . , ℓ}, such that
Φ+

P ∩{α1, . . . , αℓ} = {αi}i∈I . The conjugacy class of P is uniquely determined
by I and any such choice of indexes is associated to a parabolic subgroup of G.
Let X = G/P , and define Φ+

X = Φ+ \ Φ+
P . Since TX is generated at the

identity coset by the root vectors eα for α ∈ Φ+
X , the anticanonical bundle

K∗
X = detTX , n = dimX, is the homogeneous line bundle associated to the

weight

µX =
∑

α∈Φ+
X

α

The weight µX is dominant: 〈µX , αi〉 > 0 for i /∈ I, and 〈µX , αi〉 = 0 for i ∈ I.
In particular, K∗

X is a very ample line bundle and µX is orthogonal to the
roots Φ+

P . If P = B, X is called a flag manifold.
We now recall a simple formula for calculating the coefficients 〈µX , αi〉 of µX ,
see [11]: A set of indexes J is called connected if the subdiagram of the Dynkin
diagram of G corresponding to the simple roots αj , j ∈ J , is connected. An
index i is said to be adjacent to J if i 6∈ J and J0 ∪ {i} is connected for some
connected component J0 of J . The set of indexes adjacent to J is denoted by
∂J . The number of elements in J is denoted |J |.

Definition 1 Let J be a connected set of indexes. For i 6∈ ∂J define νi(J) = 0.
For i ∈ ∂J define νi(J) to be the number next to the appropriate diagram below.
The black nodes correspond to J and the white node corresponds to i. Symmetry
of Dynkin diagrams is tacitly assumed.

◦ • · · · • • |J |,
◦ • · · · •>• 2|J | − 1, • • · · · •>◦ 2|J |,
◦ • · · · •<• 2|J |, • • · · · •<◦ |J |,
◦ • · · · • •

•
• 2|J | − 2, • • · · · • •

•
◦ 2|J | − 2,

◦ • •
•

• • 10, • • •
◦

• • 9,

◦ • • •
•

• • 16, • • • •
•

• ◦ 15,

• • • •
◦

• • 12, ◦ • • • •
•

• • 27,

• • • • •
•

• ◦ 21, • • • • •
◦

• • 15,

◦ •>• • 6, • •>• ◦ 9,
◦<• 3, •<◦ 1,
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For an arbitrary set of indexes I define νi(I) = νi(I1) + · · · + νi(Ip) where
I1, . . . , Ip are the connected components of I.

Proposition 1 ([11]) Let X = G/P where G is a semisimple complex Lie
group and P is a parabolic subgroup defined by a set of indexes I. Let µX be
the weight of the anticanonical bundle K∗

X of X. Then

µX =
∑

i6∈I

(2 + νi(I))λi

2 Estimating Products

We now prove some estimates for various products that appear in the proof of
the main theorem.

Lemma 1 For any non-negative integers s and t,
(

2t + 1

t

)(
2s + 1

s

)
≤

(
2(t + s) + 1

t + s

)
(1)

(t + 1)t

t!
· (s + 1)s

s!
≤ (t + s + 1)t+s

(t + s)!
(2)

with equality if and only if t or s is 0.

Proof. The inequalities are obviously equalities when s or t is 0. So we assume
t, s > 0 and show strict inequalities hold for (1) and (2) by fixing s and applying
induction on t. They are easily seen to hold for t = 1. Let g(t) =

(
2t+1

t

)
(resp.,

(t+1)t/t!), and let f(t) = g(t+1)/g(t) = 4−2/(t+2) (resp., [1+1/(t+1)]t+1),
an increasing function of t > 0. By the induction hypothesis,

g(t + 1)g(s) = f(t)g(t)g(s) < f(t)g(t + s) < f(t + s)g(t + s) = g(t + s + 1)

2

Definition 2 Let t and s be positive integers. A simple sequence (of length
s) is a set S of rational numbers of the form

S = S(t, s) =
{3t + s − 1 + i

t + i

∣∣∣ 0 ≤ i ≤ s − 1
}

The shifted sequence of S(t, s) is

S′ = S′(t, s) =
{3t + s − 1 + i

t + i
− 1

∣∣∣ 0 ≤ i ≤ s − 1
}

The products of the numbers in S and S′ are denoted by

ΠS =

s−1∏

i=0

3t + s − 1 + i

t + i
=

(
3t + 2s − 2

s

)/(
t + s − 1

s

)

ΠS′ =
s−1∏

i=0

2t + s − 1

t + i
=

(2t + s − 1)s(t − 1)!

(t + s − 1)!
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Lemma 2 Let S(t, s) be a simple sequence and let S′(t, s) be the shifted sequence
of S(t, s).

1. If the first and last elements of S(t, s) are removed, the remaining set is
the simple sequence S(t + 1, s − 2).

2. ΠS(t, s) and ΠS′(t, s) are decreasing in t. In particular,

3s = lim
t→∞

ΠS(t, s) ≤ ΠS(t, s) ≤ ΠS(1, s) =

(
2s + 1

s

)

2s = lim
t→∞

ΠS′(t, s) ≤ ΠS′(t, s) ≤ ΠS′(1, s) =
(s + 1)s

s!

Proof. The first assertion is immediate from the definition. To prove the second
assertion, let f(t) = ΠS(t, s) and let m = [(s − 1)/2] be the least integer
≤ (s − 1)/2. Then, for t > 0,

d

dt
log f(t) =

s−1∑

i=0

2i − (s − 1)

(3t + s − 1 + i)(t + i)

=

m∑

i=0

− s − 1 − 2i

(3t + s − 1 + i)(t + i)
+

s − 1 − 2i

(3t + 2s − 2 − i)(t + s − 1 − i)
≤ 0

and hence f is decreasing.
Now let g(t) = ΠS′(t, s) and define h(t) = g(t + 1)/g(t) = [1 + 2/(2t + s −
1)]st/(t + s). Then

d

dt
log h(t) =

s(s2 − 1)

t(t + s)((2t + s)2 − 1)
≥ 0

so h is increasing and approaches 1 as t → ∞. Therefore, g is decreasing. 2

3 Bounds for K∗
X

Theorem 1 Let X be a homogeneous projective rational manifold of dimen-
sion n. Then

3n ≤ dim H0(X,K∗
X) ≤

(
2n + 1

n

)
and 2nn! ≤ deg K∗

X ≤ (n + 1)n

with equality in the lower bounds if and only if X is a flag manifold and equality
in the upper bounds if and only if X = Pn.

Proof. Write X = G/P where G is a semisimple Lie group and P is a
parabolic subgroup. Let I be the subset of indexes that defines P , and let
I1, . . . , Im be the connected components of I. Let µX be the weight of the
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anticanonical bundle as given in Proposition 1 so that H0(X,K∗
X) is the irre-

ducible representation of G with highest weight µX =
∑

i/∈I(2 + νi(I))λi. Set
δ = (1/2)

∑
α>0 α = λ1 + · · · + λℓ. By the Weyl dimension formula [7],

h = dim H0(X,K∗
X) =

∏

α∈Φ+
X

(µX + δ, α)

(δ, α)
(3)

and the degree of K∗
X is given by [4]

d = deg K∗
X = n!

∏

α∈Φ+
X

(µX , α)

(δ, α)
(4)

Let G1, . . . , Gr be the simple factors of G. Then X = X1 × · · · × Xr where
Xi = Gi/Gi ∩ P . Let n = dimX, ni = dim Xi, hi = dim H0(Xi,K

∗
Xi

) and

di = deg K∗
Xi

, 1 ≤ i ≤ r. If 3ni ≤ hi ≤
(
2ni+1

ni

)
and 2nini! ≤ di ≤ (ni + 1)ni ,

1 ≤ i ≤ r, then the above formulas along with Lemma 1 imply 3n ≤ h =
h1 · · ·hr ≤ ∏r

i=1

(
2ni+1

ni

)
≤

(
2n+1

n

)
and 2nn! ≤ d = n! (d1/n1!) · · · (dr/nr!) ≤

n!
∏r

i=1(ni + 1)ni/ni! ≤ (n + 1)n, since n = n1 + · · · + nr. We may therefore
assume that G is simple.

The theorem can be verified by direct calculation for each of the exceptional
simple Lie groups and their finite number of conjugacy classes of parabolic
subgroups. While the details are too lengthy to include in this article, the
results can be summarized as follows. The minimum of h is 3n and is achieved
only for Borel subgroups. The maximum of h is always strictly less than

(
2n+1

n

)
.

In fact, the minimum of
(
2n+1

n

)
/h over all parabolic subgroups for each type is

greater than 3.11 for E6, 9.96 for E7, 758.2 for E8, 3.24 for F4, and 1.22 for G2,
and this minimum is achieved for the maximal parabolic subgroups defined by
I = {2, . . . , ℓ}, or {1, 2, 3} for F4 (the simple roots are indexed from left to
right in the diagrams shown in Definition 1).

The proof for the classical types Aℓ, Bℓ, Cℓ and Dℓ is accomplished by show-
ing that the product (3) can be written as a product of simple sequences
S1, . . . , Sσ. For, if we know that h = ΠS1 · · ·ΠSσ, it follows from (4)
that d = n! ΠS′

1 · · ·ΠS′
σ, and by Lemmas 1 and 2, we obtain 3n ≤ h ≤∏σ

i=1

(
2|Si|+1

|Si|
)
≤

(
2n+1

n

)
and 2nn! ≤ d ≤ n!

∏σ
i=1(|Si| + 1)|Si|/|Si|! ≤ (n + 1)n,

since n = |S1| + · · · + |Sσ|. We now prove that such a decomposition of (3) is
possible for each simple classical type.

Type Aℓ: Let µX + δ = m1λ1 + · · ·+mℓλℓ, where mi = 〈µX , αi〉+1, 1 ≤ i ≤ ℓ,
and let ǫ1, . . . , ǫℓ+1 denote the standard orthonormal basis of Rℓ+1. The simple
roots for type Aℓ are αi = ǫi − ǫi+1, 1 ≤ i ≤ ℓ and the positive roots are
αi + · · ·+αj−1 = ǫi−ǫj , 1 ≤ i < j ≤ ℓ+1. The dimension formula (3) becomes
h =

∏
aij where aij = (mi + · · · + mj−1)/(j − i) and the product is taken

over all indexes i < j that are not both in same connected component of I.

Documenta Mathematica 9 (2004) 251–263



Bounds for the Anticanonical Bundle 257

According to Proposition 1, the coefficients m1, . . . ,mℓ are given by

mi =





1 if i ∈ I
3 + |Iν | if i ∈ ∂Iν for some ν
3 + |Iν | + |Iν+1| if i ∈ ∂Iν ∩ ∂Iν+1 for some ν
3 otherwise

(5)

An example is given by the list of numbers at the top of Figure 1 (the indexes
in I correspond to black nodes).
The numbers in the product h =

∏
aij can be arranged into rectangular arrays

as follows. Let i1 < · · · < ik be an ordered list of those indexes i not in I and
set i0 = 0, ik+1 = ℓ + 1. For 1 ≤ p ≤ q ≤ k, define Rpq = {aij | ip−1 < i ≤
ip, iq < j ≤ iq+1}, as illustrated in Figure 1.

Figure 1: Type Aℓ decomposition

3 5 1 1 8 1 1 1 6
◦ ◦ • • ◦ • • • ◦
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5
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6
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7
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5
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7

9
2
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3

11
4

12
5

18
6

8
1

9
2

10
3

11
4

17
5

9
4

8
3

7
2

6
1

Then h is the product of the numbers in all the rectangular arrays Rpq, 1 ≤
p ≤ q ≤ k. Each Rpq consists of rational numbers whose numerators and
denominators both increase by 1 in each row and column, starting in the lower
left corner, aip(iq+1). From (5) it follows that aip(iq+1) has the form (3t+s−1)/t
where t = iq − ip +1 and s is the number of rows+columns− 1 = (ip − ip−1)+
(iq+1 − iq) − 1. Therefore, Rpq may be decomposed into simple sequences,
Rpq = S0∪. . .∪Sσ where S0 = {aij | i = ip−1+1 or j = iq+1} = S(t, s) is the set
of numbers in the left column and the top row of Rpq, and Si = S(t+i, s−2i) is
obtained by removing the lower left and top right number from Si−1, 1 ≤ i ≤ σ,
as illustrated in Figure 2.
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Figure 2: Type Aℓ rectangular array
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Repeating this procedure for each rectangular array Rpq, 1 ≤ p ≤ q ≤ k, shows
that for type Aℓ the product (3) can be decomposed into a product of simple
sequences.
Type Bℓ: We now show the same type of decomposition is possible for type
Bℓ by embedding the appropriate numbers into a diagram for type A2ℓ−1. We
again write µX + δ = m1λ1 + · · · + mℓλℓ, mi = 〈µX , αi〉 + 1, 1 ≤ i ≤ ℓ,
and let ǫ1, . . . , ǫℓ denote the standard orthonormal basis of Rℓ. The simple
roots are αi = ǫi − ǫi+1, 1 ≤ i ≤ ℓ − 1, and αℓ = ǫℓ. The positive roots
are αi + · · · + αj−1 = ǫi − ǫj , αi + · · · + αj−1 + 2αj + · · · + 2αℓ = ǫi + ǫj ,
1 ≤ i < j ≤ ℓ, and αi + · · · + αℓ = ǫi, 1 ≤ i ≤ ℓ. The dimension formula (3)
becomes h =

∏
aij ×

∏
bij where aij = (mi + · · ·+mj−1)/(j−i), 1 ≤ i < j ≤ ℓ,

bij = (mi + · · ·+mj−1 +2mj + · · ·+2mℓ−1 +mℓ)/(2ℓ− i−j +1), 1 ≤ i ≤ j ≤ ℓ.
To avoid trivial factors, these products should be taken over i, j not in the same
connected component of I, although in the following arguments it is convenient
to include all terms.
Define Î = {i | i ∈ I or 2ℓ − i ∈ I}. Then Î defines a parabolic subgroup P̂
of a simple group Ĝ of type A2ℓ−1. Let X̂ = Ĝ/P̂ . By Proposition 1, the
coefficients of µX + δ appear as the first half of the coefficients of µX̂ + δ, see
Figure 3.

Figure 3: Conversion of type Bℓ to type A2ℓ−1

m1 m2 mℓ−1 mℓ mℓ−1 m2 m1

• • · · · • • • · · · • •

For a fixed i the product hi =
∏

aij ×
∏

bij can be arranged as

mi

1
· mi + mi+1

2
· · · mi + · · · + mℓ

ℓ − i + 1
· si + mℓ−1

ℓ − i + 2
· · · si + mℓ−1 + · · · + mi

2(ℓ − i) + 1

where si = mi + · · · + mℓ. Therefore, the non-trivial terms in h correspond
to the numbers in the upper left half of the rectangular arrays Rpq defined
for type A2ℓ−1. These triangular arrays can clearly be broken up into simple
sequences, see Figure 4, showing that h is a product of simple sequences.
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Figure 4: Type Bℓ decomposition

1 1 1 9 1 1 1 9 1 1 1
• • • > ◦ −→ • • • ◦ • • •
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4
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10
2

11
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9
1

Type Cℓ: The proof for this case is almost identical to type Bℓ. The simple
roots are αi = ǫi − ǫi+1, 1 ≤ i ≤ ℓ − 1, and αℓ = 2ǫℓ. The positive roots are
αi + · · · + αj−1 = ǫi − ǫj , αi + · · · + αj−1 + 2αj + · · · + 2αℓ−1 + αℓ = ǫi + ǫj ,
1 ≤ i < j ≤ ℓ, and 2αi + · · · + 2αℓ + αℓ = 2ǫi, 1 ≤ i ≤ ℓ. The dimension
formula (3) becomes h =

∏
aij ×

∏
bij where aij = (mi + · · · + mj−1)/(j − i),

1 ≤ i < j ≤ ℓ, bij = (mi + · · · + mj−1 + 2mj + · · · + 2mℓ)/(2ℓ − i − j + 2),
1 ≤ i ≤ j ≤ ℓ.
Define Î = {i | i ∈ I or 2ℓ − i + 1 ∈ I}. Then Î defines a parabolic subgroup
P̂ of a simple group Ĝ of type A2ℓ. Let X̂ = Ĝ/P̂ . By Proposition 1, the
coefficients of µX + δ appear as the first half of the coefficients of µX̂ + δ, see
Figure 5.

Figure 5: Conversion of type Cℓ to type A2ℓ

m1 m2 mℓ−1 mℓ mℓ mℓ−1 m2 m1

• • · · · • • • • · · · • •

For a fixed i the product hi =
∏

aij ×
∏

bij can be arranged as

mi

1
· mi + mi+1

2
· · · mi + · · · + mℓ

ℓ − i + 1
· si + mℓ

ℓ − i + 2
· · · si + mℓ + · · · + mi+1

2(ℓ − i) + 1

where si = mi + · · · + mℓ. Therefore, the non-trivial terms in h correspond
to the numbers in the upper left half (above the diagonal) of the rectangular
arrays Rpq defined for type A2ℓ. These triangular arrays can be broken up into
simple sequences as before, see Figure 6, showing that h is a product of simple
sequences.
Type Dℓ: The proof for this case must be handled somewhat differently than
the previous two cases. The simple roots are αi = ǫi − ǫi+1, 1 ≤ i ≤ ℓ− 1, and
αℓ = ǫℓ−1 + ǫℓ. The positive roots are αi + · · · + αj−1 = ǫi − ǫj , 1 ≤ i < j ≤ ℓ,
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Figure 6: Type Cℓ decomposition

1 1 1 6 1 1 1 6 6 1 1 1
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αi + · · · + αj−1 + 2αj + · · · + 2αℓ−2 + αℓ−1 + αℓ = ǫi + ǫj , 1 ≤ i < j ≤ ℓ − 1,
and αi + · · · + αℓ−2 + αℓ = ǫi + ǫℓ, 1 ≤ i ≤ ℓ − 2. The dimension formula (3)
becomes h =

∏
aij × ∏

bij × ∏
ci where aij = (mi + · · · + mj−1)/(j − i),

1 ≤ i < j ≤ ℓ, bij = (mi+· · ·+mj−1+2mj+· · ·+2mℓ−2+mℓ−1+mℓ)/(2ℓ−i−j),
1 ≤ i < j ≤ ℓ − 1, ci = (mi + · · · + mℓ−2 + mℓ)/(ℓ − i), 1 ≤ i ≤ ℓ − 2, and
cℓ−1 = mℓ.
By symmetry of the Dynkin diagram, we may assume mℓ−1 ≤ mℓ. We first
assume mℓ−1 = mℓ. Define Î = {i | i ∈ I or 2ℓ − i − 1 ∈ I (and i > ℓ)}.
Then Î defines a parabolic subgroup P̂ of a simple group Ĝ of type A2ℓ−2. Let
X̂ = Ĝ/P̂ . By Proposition 1, the coefficients of µX + δ appear as the first half
of the coefficients of µX̂ + δ, see Figure 7.

Figure 7: Conversion of type Dℓ to type A2ℓ−2

m1 m2 mℓ−1 mℓ mℓ−2 m2 m1

• • · · · • • • · · · • •

For a fixed i the product hi =
∏

aij ×
∏

bij can be arranged as

mi

1
· mi + mi+1

2
· · · mi + · · · + mℓ

ℓ − i + 1
· si + mℓ−2

ℓ − i + 2
· · · si + mℓ−2 + · · · + mi+1

2(ℓ − i) − 1

where si = mi + · · ·+ mℓ. Therefore, the non-trivial terms in
∏

hi correspond
to the numbers in the upper left half (above the diagonal) of the rectangular
arrays Rpq defined for type A2ℓ−2. These triangular arrays can be broken up
into simple sequences as before, see Figure 8. The numbers in the remain-
ing product,

∏
ci, are easily seen to form a product of simple sequences by

Proposition 1. Therefore, the full product h is a product of simple sequences.
We now assume mℓ−1 < mℓ. In this case, the product h is organized in a
slightly different way. For fixed i, the previous product hi is split into two
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Figure 8: Type Dℓ decomposition, mℓ−1 = mℓ

1 8 1 1 1 8 1 1 1 1 8 1
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terms with ci inserted at the beginning of the second term:

mi

1
· mi + mi+1

2
· · · mi + · · · + mℓ−1

ℓ − i

mi + · · · + mℓ−2 + mℓ

ℓ − i
· si

ℓ − i + 1
· si + mℓ−2

ℓ − i + 2
· · · si + mℓ−2 + · · · + mi+1

2(ℓ − i) − 1

Therefore, the non-trivial terms in the product h come from two arrays, the first
corresponding to the numbers in the rectangular arrays Rpq defined for type
Aℓ−1 and the second corresponding to the numbers in the upper half of certain
rectangular arrays Rpq defined for type A2ℓ−3. As before, these rectangular
and triangular arrays can be broken up into simple sequences, see Figure 9,
and hence the product h is a product of simple sequences.

Figure 9: Type Dℓ decomposition, mℓ−1 < mℓ
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It remains to show that equality is obtained only in the designated cases. From
Lemmas 1 and 2 is is clear that if h = 3n then all the simple sequences making
up h must have length one and each consists of the number 3. Consequently,
mi = 3 for 1 ≤ i ≤ ℓ, so that µX = 2δ, and, by Proposition 1, X is a flag
manifold. Likewise, if h =

(
2n+1

n

)
, then h must be the product of just one

simple sequence, h = S(1, n). By Proposition 1, this situation occurs either in
type An when m1 = n + 2 and mi = 1, 2 ≤ i ≤ n (or mn = n + 2 and mi = 1,
1 ≤ i ≤ n − 1), or in type Cℓ when n = 2ℓ − 1, m1 = n + 2 = 2ℓ + 1, and
mi = 1, 2 ≤ i ≤ ℓ. In both of these cases the underlying manifold is projective
space, Pn. If the degree is d = 2nn! (resp. (n + 1)n), then from (3) and (4),
h = 3n (resp.

(
2n+1

n

)
), and the same argument applies. 2
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Abstract. Here we focus on the compactification of the moduli
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point of view.
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Introduction

Let X be a smooth curve of genus g. As it is well known (see for instance
[Bea96], p. 104, or [ACGH85], Appendix B, § 2, 13.), a square root of OX

corresponds to an unramified double cover of X.
A compactification Rg of the moduli space of curves of genus g together with
an unramified double cover was constructed by Arnaud Beauville ([Bea77],
Section 6; see also [DS81], Theorem 1.1) by means of admissible double covers
of stable curves. This moduli space was introduced as a tool to compactify the
mapping which associates to a curve plus a 2-sheeted cover the corresponding
Prym variety; however, we believe that it is interesting also in its own and
worthy of a closer inspection.
Here we explore some of the geometrical and combinatorial properties of Rg.
In order to do that, we present a description of this scheme which is different
from the original one and is inspired by the construction performed by Maurizio

Documenta Mathematica 9 (2004) 265–281



266 E. Ballico, C. Casagrande, and C. Fontanari

Cornalba in [Cor89] of the moduli space of spin curves Sg. This is a natural
compactification over Mg of the space of pairs (X, ζ), where ζ ∈ Pic X is a
square root of the canonical bundle KX .

In Section 1 we define a Prym curve to be just the analogue of a spin curve;
Cornalba’s approach can be easily adapted to our context and allows us to put
a structure of projective variety on the set Prg of isomorphism classes of Prym

curves of genus g. This variety has two irreducible components Pr
−
g and Pr

+

g ,

where Pr
−
g ≃ Mg contains “trivial” Prym curves; moreover, by comparing

Prym curves and admissible double covers, we give an explicit isomorphism

between Pr
+

g and Rg over Mg.

Next, in Section 2 we reproduce the arguments in [Fon02] in order to show that
Prg is endowed with a natural injective morphism into the compactification of
the universal Picard variety constructed by Lucia Caporaso in [Cap94], just
like Sg.

Finally, in Section 3 we turn to the combinatorics of Prg. Applying the same
approach used in [CC03] for spin curves, we study the ramification of the
morphism Prg → Mg over the boundary. We describe the numerical properties
of the scheme-theoretical fiber PrZ over a point [Z] ∈ Mg, which turn out to
depend only on the dual graph ΓZ of Z. From this combinatorial description,
it follows that the morphisms Prg → Mg and Sg → Mg ramify in a different
way.

The moduli space Rg of admissible double covers has been studied also by
Mira Bernstein in [Ber99], where Rg is shown to be of general type for g =
17, 19, 21, 23 ([Ber99], Corollary 3.1.7) (for g ≥ 24 it is obvious, since Mg is).

We work over the field C of complex numbers.

We wish to thank Lucia Caporaso for many fruitful conversations. We are also
grateful to the anonymous referee for pointing out a gap in a previous version
of this paper.

1 Prym curves and admissible double covers

1.1. Defining the objects. Let X be a Deligne-Mumford semistable curve
and E an irreducible component of X. One says that E is exceptional if it is
smooth, rational, and meets the other components in exactly two points. More-
over, one says that X is quasistable if any two distinct exceptional components
of X are disjoint. The stable model of X is the stable curve Z obtained from
X by contracting each exceptional component to a point. In the sequel, X̃ will
denote the subcurve X r ∪iEi obtained from X by removing all exceptional
components.

We fix an integer g ≥ 2.

Definition 1. A Prym curve of genus g is the datum of (X, η, β) where X is a
quasistable curve of genus g, η ∈ Pic X, and β : η⊗2 → OX is a homomorphism
of invertible sheaves satisfying the following conditions:
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(i) η has total degree 0 on X and degree 1 on every exceptional component
of X;

(ii) β is non zero at a general point of every non-exceptional component of
X.

We say that X is the support of the Prym curve (X, η, β).
An isomorphism between two Prym curves (X, η, β) and (X ′, η′, β′) is an iso-
morphism σ : X → X ′ such that there exists an isomorphism τ : σ∗(η′) → η
which makes the following diagram commute 2

σ∗(η′)⊗2

σ∗(β′)

²²

τ⊗2
// η⊗2

β

²²
σ∗(OX′)

∼ // OX .

Let (X, η, β) be a Prym curve and let E1, . . . , Er be the exceptional components
of X. From the definition it follows that β vanishes identically on all Ei and
induces an isomorphism

η⊗2|X̃
∼−→ OX̃(−q1

1 − q2
1 − · · · − q1

r − q2
r),

where {q1
i , q2

i } = X̃ ∩Ei for i = 1, . . . , r. In particular, when X is smooth, η is
just a point of order two in the Picard group of X. The number of such points,
as it is well-known, is exactly 22g.
We denote by Aut(X, η, β) the group of automorphisms of the Prym curve
(X, η, β). As in [Cor89], p. 565, one can show that Aut(X, η, β) is finite.
We say that an isomorphism between two Prym curves (X, η, β) and (X, η′, β′)
having the same support is inessential if it induces the identity on the stable
model of X. We denote by Aut0(X, η, β) ⊆ Aut(X, η, β) the subgroup of
inessential automorphisms. We have the following

Lemma 2 ([Cor89], Lemma 2.1). There exists an inessential isomorphism
between two Prym curves (X, η, β) and (X, η′, β′) if and only if

η|X̃ ≃ η′|X̃ .

So the set of isomorphism classes of Prym curves supported on X is in bijection
with the set of square roots of OX̃(−q1

1 − q2
1 − · · · − q1

r − q2
r) in Pic X̃, modulo

the action of the group of automorphisms of X̃ fixing q1
1 , q2

1 , . . . , q1
r , q2

r .
A family of Prym curves is a flat family of quasistable curves f : X → S with
an invertible sheaf η on X and a homomorphism

β : η⊗2 −→ OX
2Observe that we are adopting the convention that the datum of τ is not included in the

definition of isomorphism, as in [Cor89]. This is different from the convention in [Cor91]; see
[Cor91], end of section 2, for a discussion about this.
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such that the restriction of these data to any fiber of f gives rise to a Prym
curve. An isomorphism between two families of Prym curves (X → S,η,β)
and (X ′ → S,η′,β′) over S is an isomorphism σ : X → X ′ over S such that
there exists an isomorphism τ : σ∗(η′) → η compatible with the canonical
isomorphism between σ∗(OX ′) and OX .

We define the moduli functor associated to Prym curves in the obvious way:
Prg is the contravariant functor from the category of schemes to the one of
sets, which to every scheme S associates the set Prg(S) of isomorphism classes
of families of Prym curves of genus g over S.

1.2. The universal deformation. Fix a Prym curve (X, η, β), call Z the
stable model of X and denote by E1, . . . , Er the exceptional components of
X. Let Z ′ → B′ be the universal deformation of Z, where B′ is the unit
policylinder in C3g−3 with coordinates t1, . . . , t3g−3 such that {ti = 0} ⊂ B′ is
the locus where the node corresponding to Ei persists for i = 1, . . . , r. Let B be
another unit policylinder in C3g−3 with coordinates τ1, . . . , τ3g−3, and consider
the map B → B′ given by ti = τ2

i for 1 ≤ i ≤ r and ti = τi for i > r. Call Z the
pull-back of Z ′ to B. For i ∈ {1, . . . , r} the family Z|{τi=0} → {τi = 0} ⊂ B
has a section Vi, corresponding to the locus of the ith node. Let X → Z be
the blow-up of V1, . . . , Vr and call E1, . . . , Er the exceptional divisors.

X //

ÂÂ@
@@

@@
@@

@ Z

²²

// Z ′

²²
B // B′

The variety X is smooth and X → B is a family of quasistable curves, with
X as central fiber. Up to an inessential automorphism, we can assume that
η⊗2 ≃ OX (−∑

i Ei)|X and that this isomorphism is induced by β. By shrinking
B if necessary, we can extend η to η ∈ PicX such that η⊗2 ≃ OX (−∑

i Ei).
Denote by β the composition of this isomorphism with the natural inclusion
OX (−∑

i Ei) →֒ OX . Then (X → B,η,β) is a family of Prym curves, and
there is a morphism ψ : X → X which induces an isomorphism of Prym curves
between (X, η, β) and the fiber of the family over b0 = (0, . . . , 0) ∈ B. This
family provides a universal deformation of (X, η, β):

Theorem 3. Let (X ′ → T,η′,β′) be a family of Prym curves and let
ϕ : X → X ′ be a morphism which induces an isomorphism of Prym curves
between (X, η, β) and the fiber of the family over t0 ∈ T .

Then, possibly after shrinking T , there exists a unique morphism γ : T → B
satisfying the following conditions:

(i) γ(t0) = b0;
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(ii) there is a cartesian diagram X ′

²²

δ // X

²²
T

γ // B ;

(iii) η′ ≃ δ∗(η) and β′ = δ∗(β);

(iv) δ ◦ ϕ = ψ.

Since the proof of [Cor89], Proposition 4.6 applies verbatim to our case, we
omit the proof of Theorem 3.

1.3. The moduli scheme. Let Prg be the set of isomorphism classes of
Prym curves of genus g. We define a natural structure of analytic variety on
Prg following [Cor89], § 5.
Consider a Prym curve (X, η, β) and its universal deformation (X → B,η,β)
constructed in 1.2. By the universality, the group Aut(X, η, β) acts on B and
on X . This action has the following crucial property:

Lemma 4 ([Cor89], Lemma 5.1). Let b1, b2 ∈ B and let (Xb1 , ηb1 , βb1) and
(Xb2 , ηb2 , βb2) be the fibers of the universal family over b1 and b2 respectively.
Then there exists σ ∈ Aut(X, η, β) such that σ(b1) = b2

3 if and only if the
Prym curves (Xb1 , ηb1 , βb1) and (Xb2 , ηb2 , βb2) are isomorphic.

Lemma 4 implies that the natural (set-theoretical) map B → Prg, associating
to b ∈ B the isomorphism class of the fiber over b, descends to a well-defined,
injective map

J : B/Aut(X, η, β) −→ Prg.

This allows to define a complex structure on the subset Im J ⊆ Prg. Since Prg

is covered by these subsets, in order to get a complex structure on Prg we just
have to check that the complex structures are compatible on the overlaps.
This compatibility will follow from the following remark, which is an immediate
consequence of the construction of the universal family in 1.2:

• the family of Prym curves (X → B,η,β) is a universal deformation for any
of its fibers.

In fact, assume that there are two Prym curves (X1, η1, β1) and (X2, η2, β2)
such that the images of the associated maps J1, J2 intersect. Choose a Prym
curve (X3, η3, β3) corresponding to a point in ImJ1∩ ImJ2. Let Bi (i = 1, 2, 3)
be the basis of the universal deformation of (Xi, ηi, βi). Then by the remark
above, for i = 1, 2 there are natural open immersions hi : B3 →֒ Bi, equivariant
with respect to the actions of the automorphism groups. Hence hi induces an
open immersion hi : B3/Aut(X3, η3, β3) →֒ Bi/Aut(Xi, ηi, βi), and J3 = Ji ◦hi.

3Where we still denote by σ the automorphism of B induced by σ.
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Observe now that the morphisms

B/Aut(X, η, β) −→ B′/Aut(Z)

glue together and yield a morphism p : Prg → Mg. Clearly p is finite, as a
morphism between analytic varieties (see [Ray71]). Hence Prg is projective,
because Mg is. The variety Prg has finite quotient singularities; in particular,
it is normal.
The degree of p is 22g. The fiber over a smooth curve Z is just the set of
points of order two in its Picard group, modulo the action of Aut(Z) if non
trivial. When Z is a stable curve, the set-theoretical fiber over [Z] consists of
isomorphism classes of Prym curves (X, η, β) such that the stable model of X
is Z. In section 3 we will describe precisely the scheme-theoretical fiber over

[Z], following [Cor89] and [CC03]. We will show that p is étale over M0

g rDirr,

where M0

g is the locus of stable curves with trivial automorphism group and
Dirr is the boundary component whose general member is an irreducible curve
with one node.
Finally, Prg is a coarse moduli space for the functor Prg. For any family of
Prym curves over a scheme T , the associated moduli morphism T → Prg is
locally defined by Theorem 3.

Let Pr
−
g be the closed subvariety of Prg consisting of classes of Prym curves

(X, η, β) where η ≃ OX . Observe that when η is trivial, the curve X is stable.

So Pr
−
g is the image of the obvious section of p : Prg → Mg, and it is an

irreducible (and connected) component of Prg, isomorphic to Mg.

Let Pr
+

g be the complement of Pr
−
g in Prg, and denote by Pr+

g its open subset

consisting of classes of Prym curves supported on smooth curves. Then Pr+
g

parametrizes connected unramified double covers of smooth curves of genus g;
it is well-known that this moduli space is irreducible, being a finite quotient of
the moduli space of smooth curves of genus g with a level 2 structure, which is

irreducible by [DM69]. So Pr
+

g is an irreducible component of Prg.

1.4. Admissible double covers. Consider a pair (C, i) where C is a stable
curve of genus 2g − 1 and i is an involution of C such that:

• the set I of fixed points of i is contained in Sing C;

• for any fixed node, i does not exchange the two branches of the curve.

Then the quotient Z := C/i is a stable curve of genus g, and π : C → Z is a
finite morphism of degree 2, étale over Z r π(I). This is called an admissible
double cover. Remark that π is not a cover in the usual sense, since it is not
flat at I.
The moduli space Rg of admissible double covers of stable curves of genus g is
constructed [Bea77], Section 6 (see also [DS81, ABH01]), as the moduli space
for pairs (C, i) as above.
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An isomorphism of two admissible covers π1 : C1 → Z1 and π2 : C2 → Z2 is an
isomorphism ϕ : Z1

∼→ Z2 such that there exists4 an isomorphism ϕ̃ : C1
∼→ C2

with π2 ◦ ϕ̃ = ϕ ◦ π1.
We denote by Aut(C → Z) the automorphism group of the admissible cover
C → Z, so Aut(C → Z) ⊆ Aut(Z). All elements of Aut(C → Z) are induced
by automorphisms of C, different from i, and that commute with i.
Let (C, i) be as above; we describe its universal deformation. Let C′ → W ′

be a universal deformation of C. By the universality, there are compatible
involutions i′ of W ′ and i′ of C′, extending the action of i on the central fiber.
Let W ⊂ W ′ be the locus fixed by i′, C → W the induced family and i the
restriction of i′ to C. Then (C, i) → W is a universal deformation of (C, i) and
the corresponding family of admissible double covers is C → Q := C/i → W .
We are going to show that Rg is isomorphic over Mg to the irreducible com-

ponent Pr
+

g of Prg.
First of all we define a map Φ from the set of non trivial Prym curves of genus
g to the set of admissible double covers of stable curves of genus g.
Let ξ = (X, η, β) be a Prym curve with η 6≃ OX ; then Φ(ξ) will be an ad-
missible double cover of the stable model Z of X, constructed as follows. The
homomorphism β induces an isomorphism

η
⊗(−2)

|X̃ ≃ OX̃(q1
1 + q2

1 + · · · + q1
r + q2

r).

This determines a double cover π̃ : C̃ → X̃, ramified over q1
1 , q2

1 , . . . , q1
r , q2

r ,

which are smooth points of X̃. Now call Cξ the stable curve obtained identifying
π̃−1(q1

i ) with π̃−1(q2
i ) for all i = 1, . . . , r. Then the induced map Cξ → Z is

the admissible double cover Φ(ξ).
Now consider two Prym curves ξ1 and ξ2 supported respectively on X1 and
X2. Suppose that σ : X1

∼→ X2 induces an isomorphism between ξ1 and ξ2.
Let σ : Z1

∼→ Z2 be the induced isomorphism between the stable models. Then
it is easy to see that σ is an isomorphism between the admissible covers Φ(ξ1)
and Φ(ξ2). Moreover, any isomorphism between Φ(ξ1) and Φ(ξ2) is obtained
in this way. Hence we have an exact sequence of automorphism groups:

1 → Aut0(ξ) → Aut(ξ) → Aut(Cξ → Z) → 1. (1)

We show that Φ is surjective. Let C → Z be an admissible double cover, I ⊂ C
the set of fixed points of the involution and J ⊂ Z their images. Let C̃ → C
and ν : X̃ → Z be the normalizations of C at I and of Z at J respectively.
Then i extends to an involution on C̃, whose quotient is X̃, namely: C̃ → X̃
is a double cover, ramified over q1

1 , q2
1 , . . . , q1

r , q2
r , where r = |J | and ν(q1

i ) =

ν(q2
i ) ∈ J for i = 1, . . . , r. Let L ∈ Pic X̃ be the associated line bundle,

satisfying L⊗2 ≃ OX̃(q1
1 + q2

1 + · · ·+ q1
r + q2

r). Finally let X be the quasistable

curve obtained by attaching to X̃ r rational components E1, . . . , Er such that

4Given ϕ, there are exactly two choices for ϕ̃; if ϕ̃ is one, the other is ϕ̃ ◦ i1.
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Ei ∩ X̃ = {q1
i , q2

i }. Choose η ∈ Pic X having degree 1 on all Ei and such
that η|X̃ = L⊗(−1). Let β : η⊗2 → OX be a homomorphism which agrees with

η|X̃ ≃ OX̃(−q1
1 − q2

1 − · · · − q1
r − q2

r) →֒ OX on X̃. Then ξ = (X, η, β) is a
Prym curve with η 6≃ OX , and C → Z is Φ(ξ). For different choices of η, the
corresponding Prym curves differ by an inessential isomorphism.

Proposition 5. The map Φ just defined induces an isomorphism

Φ̂ : Pr
+

g −→ Rg

over Mg.

Proof. By what precedes, Φ induces a bijection Φ̂ : Pr
+

g → Rg. The statement

will follow if we prove that Φ̂ is a local isomorphism at every point of Pr
+

g .

Fix a point ξ = (X, η, β) ∈ Pr
+

g and consider its universal deformation (X →
B,η,β) constructed in 1.2. Keeping the notations of 1.2, the line bundle η⊗(−1)

determines a double cover P → X , ramified over E1, . . . , Er. The divisor Ei is
a P1-bundle over Vi ⊂ B, and the restriction of its normal bundle to a non
trivial fiber F is (NEi/X )|F ≃ OP1(−2). The inverse image E i of Ei in P is
again a P1-bundle over Vi ⊂ B, but now the restriction of its normal bundle to
a non trivial fiber F is (NEi/P)|F ≃ OP1(−1). Let P → P be the blow-down

of E1, . . . , Er. We get a diagram

P

²²

// P

²²
X // Z // B

where P → Z → B is a family of admissible double covers whose central fiber
is Cξ → Z. Therefore, up to shrinking B, there exists a morphism B → W
such that P → Z → B is obtained by pull-back from the universal deformation
C → Q → W of Cξ → Z. Now notice that Q → W is a family of stable curves
of genus g, with Z as central fiber: so (again up to shrinking) it must be a
pull-back of the universal deformation Z ′ → B′. In the end we get a diagram:

P

²²

// P

²²

// C

²²

(genus 2g − 1)

X //

ÂÂ>
>>

>>
>>

> Z

²²

// Q

²²

// Z ′

²²

(genus g)

B
ϕ //

Aut(ξ)

YY W
ψ //

Aut(Cξ→Z)

YY B′

Aut(Z)

XX (bases)
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We can assume that ϕ and ψ are surjective. Observe that both maps are
equivariant with respect to the actions of the automorphism groups indicated
in the diagram.
Clearly ϕ is just the restriction of Φ to the set of Prym curves parametrized
by B.
Now by (1), ϕ(b1) = ϕ(b2) if and only if there exists an inessential isomorphism
between (Xb1 , ηb1 , βb1) and (Xb2 , ηb2 , βb2). Hence ϕ induces an equivariant
isomorphism ϕ̂:

B/Aut0(ξ)
ϕ̂ //

Aut(ξ)/Aut0(ξ)

WW W //

Aut(Cξ→Z)

YY B′

Aut(Z)

XX

and finally if we mod out by all the automorphism groups, we get

B/Aut(ξ)
_Ä

²²

∼ // W/Aut(Cξ → Z)
_Ä

²²

// B′/AutZ
_Ä

²²
Pr

+

g

Φ̂ // Rg Mg.

This shows that Φ̂ is a local isomorphism in ξ. ¥

2 Embedding Prg in the compactified Picard variety

Let g ≥ 3. For every integer d, there is a universal Picard variety

Pd,g −→ M0
g

whose fiber Jd(X) over a point X of M0
g parametrizes line bundles on X of

degree d, modulo isomorphism. Denote by Pr 0
g the inverse image of M0

g under

the finite morphism Prg → Mg; then we have a commutative diagram

Pr 0
g

""DD
DD

DD
DD

Â Ä // P0,g

²²
M0

g.

Assume d ≥ 20(g − 1); this is not a real restriction, since for all t ∈ Z≥0

there is a natural isomorphism Pd,g
∼= Pd+t(2g−2),g. Then Pd,g has a natural

compactification P d,g, endowed with a natural morphism φd : P d,g → Mg, such
that φ−1

d (M0
g) = Pd,g. It was constructed in [Cap94] as a GIT quotient

πd : Hd −→ Hd //G = P d,g,
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where G = SL(d − g + 1) and

Hd := {h ∈ Hilbdx−g+1
d−g |h is G-semistable

and the corresponding curve is connected }

(the action of G is linearized by a suitable embedding of Hilbdx−g+1
d−g in a Grass-

mannian).
Fix now and in the sequel an integer t ≥ 10 and define

K2t(g−1) := {h ∈ Hilb
2t(g−1)x−g+1
2t(g−1)−g | there is a Prym curve (X, η, β) and

an embedding ht : X → P2t(g−1)−g induced by η ⊗ ω⊗t
X ,

such that h is the Hilbert point of ht(X)}.

Our result is the following.

Theorem 6. The set K2t(g−1) is contained in H2t(g−1); consider its projection

Πt := π2t(g−1)(K2t(g−1)) ⊂ P 2t(g−1),g.

There is a natural injective morphism

ft : Prg −→ P 2t(g−1),g

whose image is Πt.

In particular, the Theorem implies that Πt is a closed subvariety of P 2t(g−1),g.
The proof of Theorem 6 will be achieved in several steps and will take the rest
of this section. The argument is the one used in [Fon02] to show the existence
of an injective morphism Sg → P (2t+1)(g−1),g of the moduli space of spin curves
in the corresponding compactified Picard variety.
One can define (see [Cap94], §8.1) the contravariant functor Pd,g from the
category of schemes to the one of sets, which to every scheme S associates the
set Pd,g(S) of equivalence classes of polarized families of quasistable curves of
genus g

f : (X ,L) −→ S

such that L is a relatively very ample line bundle of degree d whose multidegree
satisfies the following Basic Inequality on each fiber.

Definition 7. Let X =
⋃n

i=1 Xi be a projective, nodal, connected curve of
arithmetic genus g, where the Xi’s are the irreducible components of X. We
say that the multidegree (d1, . . . , dn) satisfies the Basic Inequality if for every
complete subcurve Y of X of arithmetic genus gY we have

mY ≤ dY ≤ mY + kY
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where

dY =
∑

Xi⊆Y

di, kY = |Y ∩ X r Y | and mY =
d

g − 1

(
gY − 1 +

kY

2

)
− kY

2

(see [Cap94] p. 611 and p. 614).

Two families over S, (X ,L) and (X ′,L′) are equivalent if there exists an S-
isomorphism σ : X → X ′ and a line bundle M on S such that σ∗L′ ∼= L⊗f∗M .
By [Cap94], Proposition 8.1, there is a morphism of functors:

Pd,g −→ Hom( · , P d,g) (2)

and P d,g coarsely represents Pd,g if and only if

(d − g + 1, 2g − 2) = 1. (3)

Proposition 8. For every integer t ≥ 10 there is a natural morphism:

ft : Prg −→ P 2t(g−1),g.

Proof. First of all, notice that in this case (3) does not hold, so the points
of P 2t(g−1),g are not in one-to-one correspondence with equivalence classes of
very ample line bundles of degree 2t(g−1) on quasistable curves, satisfying the
Basic Inequality (see [Cap94], p. 654). However, we claim that the thesis can
be deduced from the existence of a morphism of functors:

Ft : Prg −→ P2t(g−1),g. (4)

Indeed, since Prg coarsely represents Prg, any morphism of functors Prg →
Hom( · , T ) induces a morphism of schemes Prg → T , so the claim follows from
(2). Now, a morphism of functors as (4) is the datum for any scheme S of a
set-theoretical map

Ft(S) : Prg(S) −→ P2t(g−1),g(S),

satisfying obvious compatibility conditions. Let us define Ft(S) in the following
way:

(f : X → S,η,β) 7→ (f : (X ,η ⊗ ω⊗t
f ) → S).

In order to prove that Ft(S) is well-defined, the only non-trivial matter is to
check that the multidegree of η ⊗ ω⊗t

f satisfies the Basic Inequality on each
fiber, so the thesis follows from the next Lemma. ¥

Lemma 9. Let (X, η, β) be a Prym curve. If Y is a complete subcurve of X
and dY is the degree of (η⊗ω⊗t

X )|Y , then mY ≤ dY ≤ mY +kY in the notation

of the Basic Inequality. Moreover, if dY = mY then k̃Y := |Ỹ ∩ X̃ r Ỹ | = 0.
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Proof. In the present case, the Basic Inequality simplifies as follows:

−kY

2
≤ eY ≤ kY

2
,

where eY := deg η|Y . By the definition of a Prym curve, the degree eY depends
only on the exceptional components of X intersecting Y .
For any exceptional component E of X with E ⊆ X r Y , let m := |E ∩ Y |.
The contribution of E to kY is m, while its contribution to eY is −m

2 .

Next, for any exceptional component E of X with E ⊆ Y , let l := |E∩X r Y |.
The contribution of E to kY is l, while its contribution to eY is 1 − 2−l

2 = l
2 .

Summing up, we see that the Basic Inequality holds. Finally, if k̃Y 6= 0,
then there exists a non-exceptional component of X intersecting Y . Such a
component contributes at least 1 to kY , but it does not affect eY ; hence −kY

2 <
eY and the proof is over. ¥

By applying [Cap94], Proposition 6.1, from the first part of Lemma 9 we deduce

K2t(g−1) ⊂ H2t(g−1).

Moreover, the second part of the same Lemma provides a crucial information
on Hilbert points corresponding to Prym curves.

Lemma 10. If h ∈ K2t(g−1), then the orbit of h is closed in the semistable
locus.

Proof. Let (X, η, β) be a Prym curve such that h is the Hilbert point of an
embedding ht : X → P2t(g−1)−g induced by η⊗ω⊗t

X . Just recall the first part of
[Cap94], Lemma 6.1, which says that the orbit of h is closed in the semistable

locus if and only if k̃Y = 0 for every subcurve Y of X such that dY = mY , so
the thesis is a direct consequence of Lemma 9. ¥

Proof of Theorem 6. It is easy to check that ft(Prg) = Πt. Indeed, if
(X, η, β) ∈ Prg, then any choice of a base for H0(X, η ⊗ ω⊗t

X ) gives an em-
bedding ht : X → P2t(g−1)−g and ft(X, η, β) = π2t(g−1)(h), where h ∈ K2t(g−1)

is the Hilbert point of ht(X). Conversely, if π2t(g−1)(h) ∈ Πt, then there is a

Prym curve (X, η, β) and an embedding ht : X → P2t(g−1)−g such that h is the
Hilbert point of ht(X) and ft(X, η, β) = π2t(g−1)(h).
Next we claim that ft is injective. Indeed, let (X, η, β) and (X ′, η′, β′) be two
Prym curves and assume that ft(X, η, β) = ft(X

′, η′, β′). Choose bases for
H0(X, η ⊗ ω⊗t

X ) and H0(X ′, η′ ⊗ ω⊗t
X′) and embed X and X ′ in P2t(g−1)−g. If

h and h′ are the corresponding Hilbert points, then π2t(g−1)(h) = π2t(g−1)(h
′)

and the Fundamental Theorem of GIT implies that OG(h) and OG(h′) intersect
in the semistable locus. It follows from Lemma 10 that OG(h)∩OG(h′) 6= ∅, so
OG(h) = OG(h′) and there is an isomorphism σ : (X, η, β) → (X ′, η′, β′). ¥

Observe that Theorem 6 and Lemma 10 imply that K2t(g−1) is a constructible
set in H2t(g−1).
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3 Fiberwise description

Let Z be a stable curve of genus g. We recall that the dual graph ΓZ of Z is
the graph whose vertices are the irreducible components of Z and whose edges
are the nodes of Z. The first Betti number of ΓZ is b1(ΓZ) = δ−γ+1 = g−gν ,
where δ is the number of nodes of Z, γ the number of its irreducible components
and gν the genus of its normalization.

We denote by PrZ the scheme parametrizing Prym curves (X, η, β) such that
the stable model of X is Z, modulo inessential isomorphisms, and by SZ the
analogue for spin curves. Since by Lemma 2 the homomorphism β is not
relevant in determining the inessential isomorphism class of (X, η, β), in this
section we will omit it and just write (X, η).

When Aut(Z) = {IdZ}, PrZ is the scheme-theoretical fiber over [Z] of the
morphism p : Prg → Mg. Recall that p is finite of degree 22g, and étale over
M0

g.

For any 0-dimensional scheme P we denote by L(P ) the set of integers occurring
as multiplicities of components of P .

In this section we describe the numerical properties of PrZ , namely the number
of irreducible components and their multiplicities, showing that they depend
only on the dual graph ΓZ of Z. Using this, we give some properties of L(PrZ),
and show that in some cases the set of multiplicities L(PrZ) gives informations
on Z. In particular, we show that the morphism Prg → Mg is étale over

M0

g r Dirr.

We use the techniques and results of [CC03], where the same questions about
the numerics of SZ are studied (see also [CS03], § 3). Quite surprisingly, the
schemes PZ and SZ are not isomorphic in general.

Finally we will show with an example that, differently from the case of spin
curves, the set of multiplicities L(PrZ) appearing in PrZ does not always
identify curves having two smooth components.

Let X be a quasistable curve having Z as stable model and consider the set

∆X := {z ∈ Sing Z | z is not the image of an exceptional component of X}.

Given Z, the quasistable curve X is determined by ∆X , or equivalently by

∆c
X := Sing Z r ∆X = {images in Z of the exceptional components of X}.

Remark that any subset of Sing Z can be seen as a subgraph of the dual graph
ΓZ of Z.

We recall that the valency of a vertex of a graph is the number of edges ending
in that vertex and a graph Γ is eulerian if it has all even valencies. Thus ΓZ

is eulerian if and only if for any irreducible component C of Z, |C ∩ Z r C|
is even. The set CΓ of all eulerian subgraphs of Γ is called the cycle space of
Γ. There is a natural identification of CΓ with H1(Γ, Z2), so |CΓ| = 2b1(Γ) (see
[CC03]). Reasoning as in [CC03], Section 1.3, we can show the following:
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Proposition 11. Let X be a quasistable curve having Z as stable model.
The curve X is the support of a Prym curve if and only if ∆c

X is eulerian.
If so, there are 22gν+b1(∆X) different choices for η ∈ Pic X such that (X, η) ∈
PrZ .
For each such η, the point (X, η) has multiplicity 2b1(ΓZ)−b1(∆X) in PrZ .

Hence the number of irreducible components of PrZ is

22gν ·
∑

Σ∈CΓZ

2b1(Σ
c),

and its set of multiplicities is given by

L(PrZ) = {2b1(ΓZ)−b1(∆) |∆c ∈ CΓZ
}.

Remark that since |CΓZ
| = 2b1(ΓZ), we can check immediately from the propo-

sition that the length of PrZ is

∑

Σ∈CΓZ

(22gν+b1(Σ
c) · 2b1(ΓZ)−b1(Σ

c)) = 2b1(ΓZ) · 22gν+b1(ΓZ) = 22g.

As a consequence of Proposition 11, we see that

• a point (X, η) in PrZ is non reduced if and only if X is non stable.

Example (curves having two smooth components). Let Z = C1∪C2, Ci smooth
irreducible, |C1 ∩ C2| = δ ≥ 2.

ΓZ

Let X be a quasistable curve having Z as stable model and let ∆X be the
corresponding subset of Sing Z. The subgraph ∆c

X is eulerian if and only if
|∆c

X | is even. Therefore X is support of a Prym curve if and only if it has an
even number 2r of exceptional components. If so, for each choice of η ∈ Pic X
such that (X, η) ∈ PrZ , this point will have multiplicity 2b1(ΓZ)−b1(∆X). We
have b1(ΓZ) = δ − 1 and |∆X | = δ − 2r, so

b1(∆X) =

{
δ − 2r − 1 if 2r ≤ δ − 2,

0 if δ − 1 ≤ 2r ≤ δ

and we get

L(PrZ) = {22r | 0 ≤ r ≤ 1

2
δ − 1} ∪ {2δ−1}.

Proposition 12 (combinatorial properties of L(PrZ)). The following
properties hold:
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(1) 1 ∈ L(PrZ);

(2) max L(PrZ) = 2b1(ΓZ);

(3) 2g ∈ L(PrZ) if and only if Z has only rational components;

(4) PrZ is reduced if and only if Z is of compact type;

(5) if ΓZ is an eulerian graph, then L(PrZ) = L(SZ).

Proof. (1) Choosing ∆X = ΓZ , we get X = Z; since the empty set is trivially
in CΓZ

, there always exists η ∈ Pic Z such that (Z, η) ∈ PrZ . This η is a
square root of OZ ; there are 22gν+b1(ΓZ) choices for it, and it will appear with
multiplicity 1 in PrZ . So 1 ∈ L(PrZ).
(2) From Proposition 11 we get max L(PrZ) ≤ 2b1(ΓZ). Set M =
max{b1(Σ) |Σ ∈ CΓZ

} and let Σ0 ∈ CΓZ
be such that b1(Σ0) = M . By Propo-

sition 11, we know that 2b1(ΓZ)−b1(Σ
c
0) ∈ L(PrZ). We claim that b1(Σ

c
0) = 0.

Indeed, if not, Σc
0 contains a subgraph σ with b1(σ) = 1 and having all valencies

equal to 2. Then Σ0 ∪ σ ∈ CΓZ
and b1(Σ0 ∪ σ) > M , a contradiction. Hence

we have points of multiplicity 2b1(ΓZ) in PrZ , so max L(PrZ) = 2b1(ΓZ).
Property (3) is immediate from (2), since b1(ΓZ) = g if and only gν = 0.
Also property (4) is immediate from (2), because L(PrZ) = {1} if and only if
b1(ΓZ) = 0.
(5) Assume that ΓZ is eulerian. Then ∆c

X ∈ CΓZ
if and only if ∆X ∈ CΓZ

, so
we have

L(PrZ) = L(SZ) = {2b1(ΓZ)−b1(∆X) |∆X ∈ CΓZ
}

(see [CC03] for the description of L(SZ)). ¥

Property (4) implies the following

Corollary 13. The morphism p : Prg → Mg is étale over M0

g r Dirr.

Consider now property (1) of Proposition 12. It shows, in particular, that
in general PrZ and SZ are not isomorphic and do not have the same set of
multiplicities: indeed, for spin curves, it can very well happen that 1 6∈ L(SZ)
(see example after Corollary 14).
The following shows that in some cases, L(PrZ) gives informations on Z.

Corollary 14. Let Z be a stable curve and ν : Zν → Z its normalization.
Assume that for every irreducible component C of Z, the number |ν−1(C ∩
Sing Z)| is even and at least 4.

(i) If 2b1(ΓZ)−2 6∈ L(PrZ), then Z = C1 ∪ C2, with C1 and C2 smooth and
irreducible.

C1

C2
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(ii) If 2b1(ΓZ)−3 6∈ L(PrZ), then either Z is irreducible with two nodes, or
Z = C1 ∪ C2 ∪ C3, with Ci smooth irreducible and |Ci ∩ Cj | = 2 for
1 ≤ i < j ≤ 3.

C1
C2

C3

Z

Proof. By hypothesis ΓZ is eulerian, so property (5) says that L(PrZ) = L(SZ).
Then (i) follow immediately from [CC03], Theorem 11. Let us show (ii). If
b1(ΓZ) ≥ 4, by property (2) we can apply [CC03], Theorem 13; then Z has three
smooth components meeting each other in two points. Assume b1(ΓZ) ≤ 3 and
let δ, γ be the number of nodes and of irreducible components of Z. Since all
vertices of ΓZ have valency at least 4, we have δ ≥ 2γ, so γ ≤ b1(ΓZ) − 1 ≤ 2.
Then by an easy check we see that the only possibility which satisfies all the
hypotheses is γ = 1 and δ = 2. ¥

In [CC03] it is shown (Theorem 11) that L(SZ) allows to recover curves having
two smooth components. Instead, when the number of nodes is odd, it is no
more true that these curves are characterized by L(PrZ). For instance, consider
the graphs:

Γ1 Γ2

It is easy to see that if Z1, Z2 are stable curves with ΓZi
= Γi for i = 1, 2, we

have L(PZ1
) = L(PZ2

) = {1, 4, 16}, while L(SZ1
) = {4, 8, 16} and L(SZ2

) =
{2, 8, 16}.
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Abstract. Let H(Ω0) = −∆ + V be a Schrödinger operator on a
bounded domain Ω0 ⊂ Rd (d ≥ 2) with Dirichlet boundary condition.
Suppose that Ωℓ (ℓ ∈ {1, . . . , k}) are some pairwise disjoint subsets
of Ω0 and that H(Ωℓ) are the corresponding Schrödinger operators
again with Dirichlet boundary condition. We investigate the relations
between the spectrum of H(Ω0) and the spectra of the H(Ωℓ). In par-
ticular, we derive some inequalities for the associated spectral count-
ing functions which can be interpreted as generalizations of Courant’s
nodal theorem. For the case where equality is achieved we prove con-
verse results. In particular, we use potential theoretic methods to
relate the Ωℓ to the nodal domains of some eigenfunction of H(Ω0).

2000 Mathematics Subject Classification: 35B05

1 Introduction

Consider a Schrödinger operator

H = −∆ + V (1.1)

on a bounded domain Ω0 ⊂ Rd with Dirichlet boundary condition. Further we
assume that V is real valued and satisfies V ∈ L∞(Ω0). (We could relax this
condition and extend our results to the case V ∈ Lβ(Ω0) for some β > d/2
using [11].)
The operator H is selfadjoint if viewed as the Friedrichs extension of the
quadratic form of H with form domain W 1,2

0 (Ω0) and form core C∞
0 (Ω0) and

∗Supported by Ministerium für Bildung, Wissenschaft und Kunst der Republik Österreich
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we denote it by H(Ω0). Further H(Ω0) has compact resolvent. So the spectrum
of H(Ω0), σ

(
H(Ω0)

)
, can be described by an increasing sequence of eigenvalues

λ1 < λ2 ≤ λ3 ≤ · · · ≤ λj ≤ λj+1 ≤ . . . (1.2)

tending to +∞, such that the associated eigenfunctions uj form an orthonormal
basis of L2(Ω0). We can assume that these eigenfunctions uj are real valued
and by elliptic regularity, [9] (Corollary 8.36), uj belongs to C1,α(Ω0) for every
α < 1. Moreover λ1 is simple and the corresponding eigenfunction u1 can be
chosen to satisfy, see e.g. [17],

u1(x) > 0 , for all x ∈ Ω0 . (1.3)

For a bounded domain D we let H(D) be the corresponding selfadjoint oper-
ator, with Dirichlet boundary condition on ∂D. Its lowest eigenvalue will be
denoted by λ(D).
We denote the zero set of an eigenfunction u by

N(u) = {x ∈ Ω0 | u(x) = 0}. (1.4)

The nodal domains of u, which are by definition the connected components
of Ω0 \ N(u), will be denoted by Dj , j = 1, . . . , µ(u), where µ(u) denotes the
number of nodal domains of u.
Suppose that Ωℓ (ℓ = 1, 2, . . . , k) are k open pairwise disjoint subsets of Ω0. In
this paper we shall investigate relations between the spectrum of H(Ω0) and the
spectra of the H(Ωℓ). Roughly speaking, we shall derive an inequality between
the counting function of H(Ω0) and those of the H(Ωℓ). This inequality can
be interpreted as a generalization of Courant’s classical nodal domain theorem.
For the case where equality is achieved this will lead to a partial characterization
of the Ωℓ which will turn out to be related to the nodal domains of one of the
eigenfunctions of H(Ω0).
These results will be given in sections 2 and 3. From these results some nat-
ural questions of potential theoretic nature arise which will be analyzed and
answered in section 7.
The proofs of the results stated in sections 2 and 3 are given in sections 4 and
5. In section 6 some illustrative explicit examples are given.

2 Main results

We start with a result which will turn out to be a generalization of Courant’s
nodal theorem. We consider again (1.1) on a bounded domain Ω0 and the
corresponding eigenfunctions and eigenvalues. We first introduce

n(λ,Ω0) = #{j | λj(Ω0) ≤ λ}, (2.1)

where λj(Ω0) is the j-th eigenvalue of H(Ω0).
We also define

n(λ,Ω0) = #{j | λj(Ω0) < λ}, (2.2)
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and

n(λ,Ω0) =

{
n(λ,Ω0) if λ 6∈ σ

(
H(Ω0)

)

n(λ,Ω0) + 1 if λ ∈ σ
(
H(Ω0)

)
.

(2.3)

So we always have :

n(λ,Ω0) ≤ n(λ,Ω0) ≤ n(λ,Ω0), (2.4)

with equality when λ is not an eigenvalue. Note that n(λ,Ω0)−n(λ,Ω0) is the
multiplicity of λ when λ is an eigenvalue of H(Ω0), i.e. the dimension of the
eigenspace associated to λ. We shall consider a family of k open sets Ωℓ (ℓ =
1, . . . , k) contained in Ω0 and the corresponding Dirichlet realizations H(Ωℓ).
For each H(Ωℓ) the corresponding eigenvalues counted with multiplicity are
denoted by (λℓ

j)j∈N\{0} (with λℓ
j ≤ λℓ

j+1). When counting the eigenvalues less
than some given λ , we shall for simplicity write

nℓ = nℓ(λ) = n(λ,Ωℓ), (2.5)

and analogously for the quantities with over-, respectively, underbars.

Theorem 2.1
Suppose Ω0 ⊂ Rd is a bounded domain and that λ ∈ σ

(
H(Ω0)

)
. Suppose that

the sets Ωℓ (ℓ = 1, . . . , k) are pairwise disjoint open subsets of Ω0. Then

k∑

ℓ=1

nℓ ≤ n0 + min
ℓ≥0

(
nℓ − nℓ

)
. (2.6)

A direct weaker consequence of (2.6) is the more standard

Corollary 2.2
Under the assumptions of Theorem 2.1, we have

k∑

ℓ=1

nℓ ≤ n0 . (2.7)

This corollary is actually present in the proofs of the asymptotics of the count-
ing function (see for example the Dirichlet-Neumann bracketing in Lieb-Simon
[14]).

Remark 2.3
Inequality (2.6) is also true if λ 6∈ σ

(
H(Ω0)

)
. The statement becomes

k∑

ℓ=1

nℓ ≤ n0 ,

and is proved essentially in the same way.
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Remark 2.4
The assumption that Ω0 is connected is necessary. Indeed, suppose Ω1

and Ω2 are connected and assume that Ω0 = Ω1 ∪ Ω2 with Ω1 ∩ Ω2 = ∅
and that λ = λ1(Ω1) = λ1(Ω2). Then λ1(Ω0) = λ2(Ω0) and we deduce
n(λ,Ω0) = 1. If we no longer assume the connectedness of Ω0, we in gen-
eral just have Corollary 2.2.

Finally we show that Courant’s nodal theorem is an easy corollary of
Theorem 2.1.

Corollary 2.5 : Courant’s nodal theorem
If Ω0 is connected and if u is an eigenfunction of H(Ω0) associated to some
eigenvalue λ, then

µ(u) ≤ n(λ,Ω0) .

Proof.
We now simply apply Theorem 2.1 by taking Ω1, . . . ,Ωµ(u) as the nodal domains
associated to u. We just have to use (1.3) for each Ωℓ, ℓ = 1, . . . , µ(u), which
gives nℓ = nℓ = 1. 2

Remark 2.6
Courant’s nodal theorem is one of the basic results in spectral theory of
Schrödinger-type operators. It is the natural generalization of Sturm’s oscilla-
tion theorem for second order ODE’s. For recent investigations see for instance
[1] and [4].

3 Converse results.

In this section we consider some results that are converse to Theorem 2.1.

Theorem 3.1
Suppose that the Ωℓ, 1 ≤ ℓ ≤ k, are pairwise disjoint open subsets of Ω0. If
λ ∈ σ

(
H(Ω0)

)
and

k∑

ℓ=1

nℓ ≥ n0 , (3.1)

then λ ∈ σ(H(Ωℓ)) for each Ωℓ. If Uℓ(λ) denotes the eigenspace of H(Ωℓ)
associated to the eigenvalue λ, then there is an eigenfunction u of H(Ω0) with
eigenvalue λ such that

u =

k∑

ℓ=1

ϕℓ in W 1,2
0 (Ω0) , (3.2)

where each ϕℓ belongs to Uℓ(λ) \ {0} and is identified with its extension by 0
outside Ωℓ.
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Remark 3.2
One can naturally think that formula (3.2) has immediate consequences on the
family Ωℓ, which should for example have some covering property. The question
is a bit more subtle because we do not a priori want to assume strong regularity
properties for the boundaries of the Ωℓ. We shall discuss this point in detail in
the last section.

Another consequence of equalities in Theorems 2.1 or 3.1 is given by the fol-
lowing result.

Theorem 3.3
Suppose that, for some bounded domain Ω0 in Rd, some λ ∈ σ(H(Ω0)) and
some family of pairwise disjoint open sets Ωℓ ⊂ Ω0, 0 < ℓ ≤ k, we have

k∑

ℓ=1

nℓ = n0 + min
ℓ≥0

(
nℓ − nℓ

)
. (3.3)

Then, for any subset L ⊂ {1, 2, . . . , k} such that Ω∗
L = Int

(
∪ℓ∈L Ωℓ

)
\ ∂Ω0 is

connected, we have

∑

ℓ∈L

nℓ = n(λ,Ω∗
L) + min

(
min
ℓ∈L

(
nℓ − nℓ

)
, n(λ,Ω∗

L) − n(λ,Ω∗
L)

)
. (3.4)

A simpler variant is the following :

Theorem 3.4
Suppose (3.1) holds and that Ω∗

L is defined as above. Then we have the inequal-
ity : ∑

ℓ∈L

nℓ ≥ n(λ,Ω∗
L) . (3.5)

On the sharpness of Courant’s nodal theorem
It is well known that Courant’s nodal theorem is sharp only for finitely many
k’s [15].
Let Ω0 be connected. We will say that an eigenfunction u associated to an
eigenvalue λ of H(Ω0) is Courant-sharp if µ(u) = n(λ,Ω0). Theorem 3.3
now implies :

Corollary 3.5
i) Let u be a Courant-sharp eigenfunction of H(Ω0) with µ(u) = k. Let
{Di}i=1,...,k be the family of the nodal domains associated to u, let L be a
subset of {1, . . . , k} with #L = ℓ and let Ω∗

L = Int (∪i∈LDi) \ ∂Ω0. Then

λℓ(Ω
∗
L) = λk , (3.6)

where λj(Ω
∗
L) are the eigenvalues of H(Ω∗

L).
ii) Moreover, if Ω∗

L is connected, and if ℓ < k, then u
∣∣
Ω∗

L

is Courant-sharp

and λℓ(Ω
∗
L) is simple.
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4 Basic tools

Let us first recall some basic tools (see e.g. [17]) which were already vital for
the proof of Courant’s classical result.

4.1 Variational characterization

Let us first recall the variational characterization of eigenvalues.

Proposition 4.1
Let Ω be a bounded open set in Rd and let V ∈ L∞(Ω) be real-valued. Suppose
λ ∈ σ

(
H(Ω)

)
and let U± = span 〈u1, . . . , uk±〉 where

k− = n(λ,Ω) , k+ = n(λ,Ω) , (4.1)

and (uj)j≥1 is as before an orthonormal basis of eigenfunctions of H(Ω) asso-
ciated to (λj)j≥1. Then

λ = inf
ϕ⊥U−, ϕ∈W 1,2

0 (Ω)

〈ϕ, H(Ω)ϕ〉
‖ϕ‖2

(4.2)

and

λ < λn(λ, Ω)+1 = inf
ϕ⊥U+, ϕ ∈W 1,2

0 (Ω)

〈ϕ, H(Ω)ϕ〉
‖ϕ‖2

. (4.3)

If equality is achieved in (4.2) for some ϕ 6≡ 0, then ϕ is an eigenfunction in
the eigenspace of λ.

Note that (4.2) and (4.3) are actually the same statement. We just stated
them separately for later reference. Note that we have not assumed that Ω is
connected.

4.2 Unique continuation

Next we restate a weak form of the unique continuation property:

Theorem 4.2
Let Ω be an open set in Rd and let V ∈ L∞

loc(Ω) be real-valued. Then any
distributional solution in Ω to (−∆ + V )u = λu which vanishes on an open
subset ω of Ω is identically zero in the connected component of Ω containing ω.

There are stronger results of this type under weaker assumptions on the po-
tential, see [11].
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4.3 A consequence of Harnack’s inequality

The standard Harnack’s inequality (see e.g. Theorem 8.20 in [9]), together with
the unique continuation theorem leads to the following theorem :

Theorem 4.3
If Ω is a bounded domain in Rd and u is an eigenfunction of H(Ω), then for
any x in N(u) ∩ Ω and any ball B(x, r) (r > 0), there exist y± ∈ B(x, r) ∩ Ω
such that ±u(y±) > 0.

5 Proof of the main theorems

5.1 Proof of Theorem 2.1

Assume first for contradiction that

∑

ℓ≥1

nℓ > n0 + min
ℓ≥0

(
nℓ − nℓ

)
, (5.1)

and recall that we assume that λ ∈ σ
(
H(Ω0)

)
. Pick some ℓ0 such that

nℓ0 − nℓ0 = min
ℓ≥0

(
nℓ − nℓ

)
.

Suppose first that ℓ0 ≥ 1.
We can rewrite (5.1) to obtain

∑

ℓ 6=ℓ0, ℓ≥1

nℓ + nℓ0 > n0 . (5.2)

Let ϕℓ0
i , i = 1, . . . , n(λ,Ωℓ0), denote the first nℓ0

eigenfunctions of H(Ωℓ0).

The corresponding eigenvalues are strictly smaller than λ. The functions ϕℓ0
i

and the remaining
∑

ℓ 6=ℓ0
nℓ eigenfunctions associated to the other H(Ωℓ) span

a space of dimension at least n0. We can pick a linear combination Φ 6≡ 0
of these functions which is orthogonal to the n0 eigenfunctions of H(Ω0). By
assumption

〈Φ,H(Ω0)Φ〉
‖Φ‖2

≤ λ, (5.3)

hence Φ must by the variational principle be an eigenfunction and there must
be equality in (5.3).
There are two possibilities: either some ϕℓ0

i , i < nℓ0 contributes to the linear
combination which makes up Φ or not. In the first case this means that the
left hand side of (5.3) is strictly smaller than λ, contradicting the variational
characterization of λ. In the other case we obtain a contradiction to unique
continuation, since then Φ ≡ 0 in Ωℓ0 and hence Φ vanishes identically in all
of Ω0.
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Consider now the case when ℓ0 = 0.
We have to show that the assumption

∑

ℓ≥1

nℓ > n0 , (5.4)

leads to a contradiction. To this end it suffices to apply (4.3). Indeed, we can
find a linear combination Φ of the eigenfunctions ϕℓ

j , j ≤ nℓ, corresponding to
the different H(Ωℓ) such that Φ⊥U+, Φ 6≡ 0, but Φ satisfies

〈Φ, H(Ω0) Φ〉
‖Φ‖2

≤ λ = λn0
,

and this contradicts (4.3). This proves (2.6).

5.2 Proof of Theorem 3.1

The inequality (3.1) implies that we can find a non zero u⊥U− in the span of the
eigenfunctions ϕℓ

j , j = 1, . . . nℓ, of the different H(Ωℓ). Again by the variational
characterization, (4.2) and (5.3) hold and hence u must be an eigenfunction.
2

5.3 Proof of Theorem 3.3

We assume (3.3). Without loss we might assume that we have labeled the Ωℓ

such that L = {1, . . . ,K}, with K ≤ k. Let n∗ = n(λ,Ω∗
L). We apply Theorem

2.1 to the family Ωℓ (ℓ ∈ L) and replace Ω0 by Ω∗
L and obtain :

∑

1≤ℓ≤K

nℓ ≤ n∗ + min
(
n∗ − n∗, min

1≤ℓ≤K
(nℓ − nℓ)

)
. (5.5)

We assume for contradiction that

∑

1≤ℓ≤K

nℓ < n∗ + min
(
n∗ − n∗, min

1≤ℓ≤K
(nℓ − nℓ)

)
. (5.6)

This implies ∑

1≤ℓ≤K

nℓ < n∗ , (5.7)

and ∑

1≤ℓ≤K

nℓ < n∗ + min
1≤ℓ≤K

(nℓ − nℓ) . (5.8)

Theorem 2.1, applied to the family Ω∗
L,Ωℓ (ℓ > K), implies that

n∗ +
∑

K<ℓ≤k

nℓ ≤ n0 + min
(
n0 − n0, min

K<ℓ≤k
(nℓ − nℓ)

)
, (5.9)
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and
n∗ +

∑

K<ℓ≤k

nℓ ≤ n0 . (5.10)

By adding (5.7) and (5.9), we get :

∑

1≤ℓ≤k

nℓ < n0 + min
(
n0 − n0, min

K<ℓ≤k
(nℓ − nℓ)

)
. (5.11)

By adding (5.8) and (5.10), we obtain

∑

1≤ℓ≤k

nℓ < n0 + min
1≤ℓ≤K

(nℓ − nℓ) . (5.12)

The combination of (5.11) and (5.12) is in contradiction with (3.3).

5.4 Proof of Theorem 3.4

For the case that (3.1) holds, (3.5) can be shown similarly. (3.1) reads

∑

1≤ℓ≤k

nℓ ≥ n0 .

We assume for contradiction that

∑

1≤ℓ≤K

nℓ < n∗ , (5.13)

where n∗ is defined as above. The addition of (5.10) and (5.13) leads to a
contradiction. 2

6 Illustrative examples

6.1 Examples for a rectangle

We illustrate Theorem 2.1 by the analysis of various examples in rectangles.
Pick a rectangle Ω0 = (0, 2π) × (0, π) and take Ω1 = (0, π) × (0, π) and con-
sequently Ω2 = (π, 2π) × (0, π). The eigenvalues corresponding to Ω0 for −∆
with Dirichlet boundary condition are given by

σ
(
H(Ω0)

)
=

{
λ ∈ R

∣∣∣∣ λ = m2/4 + n2, (m,n) ∈ Z2, m, n > 0

}
, (6.1)

while those for Ω1, and hence for Ω2 which can be obtained by a translation of
Ω1, are given by

σ
(
H(Ω1)

)
= σ

(
H(Ω2)

)
=

{
λ ∈ R

∣∣∣∣λ = m2+n2, (m,n) ∈ Z2, m, n > 0
}
. (6.2)
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Denote the eigenvalues associated to Ω0 by {λi} and those to Ω1 by {νi}. We
easily check that λ5 = λ6 = ν2 = ν3 = 5, λ11 = λ12 = ν5 = ν6 = 10 so that
Theorem 2.1 is sharp for these cases.
One could ask whether there are arbitrarily high eigenvalues cases for which we
have equality in (2.6). This is not the case, as can be seen from the following
standard number theoretical considerations. We have (see [18] and for more
recent contributions [16] and [2]) the following asymptotic estimate for the
number of lattice points in an ellipse. Let a, b > 0, then

A(λ) := #

{
(m,n) ∈ Z2

∣∣∣∣ am2 + bn2 ≤ λ

}
(6.3)

has the following asymptotics as λ tends to infinity:

A(λ) =
π√
ab

λ + O(λ1/3). (6.4)

We have not to consider A(λ) but rather

A+ = #

{
(m,n) ∈ Z2,m, n > 0

∣∣∣∣ am2 + bn2 ≤ λ

}
. (6.5)

Hence we get

A(λ) = 4A+(λ) + 2#

{
m ∈ N, m > 0

∣∣∣∣ m ≤
[
(λ/a)1/2

]}

+2#

{
n ∈ N, n > 0

∣∣∣∣ n ≤
[
(λ/b)1/2

]}
+ 1 .

(6.6)

If we apply this to A+ with a = 1/4, b = 1 (in this case denoted by A+
0 ) and

to A+ with a = 1, b = 1 (in this case denoted by A+
1 ), we get asymptotically

A+
0 (λ) − 2A+

1 (λ) =
1

2

√
λ + o (

√
λ) . (6.7)

Note that
ni(λ) = A+

i (λ), i = 0, 1 .

In order to control ni(λ), we observe that, for any ǫ > 0 :

ni(λ − ǫ) ≤ ni(λ) ≤ ni(λ) .

This implies
ni(λ) − ni(λ) = O(λ

1
3 ) . (6.8)

The asymptotic formula (6.4) implies

ni(λ) − ni(λ) = o(
√

λ) , (6.9)

and this shows that (2.6) is never sharp for large λ.
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6.2 About Corollary 3.5

One can ask whether there is a converse to Corollary 3.5 in the following sense.
Suppose we have an eigenfunction u with k nodal domains and eigenvalue
λ. For each pair of neighboring nodal domains of u, say, Di and Dj , let
Ωi,j = Int (Di ∪ Dj) and suppose that λ = λ2(Ωi,j). Does this imply that
λ = λk? The answer to the question is negative, as the following easy example
shows :
Consider the rectangle Q = (0, a) × (0, 1) ⊂ R2 and consider H0(Q). We can
work out the eigenvalues explicitly as

{π2(
m2

a2
+ n2)}, for m,n ∈ N \ 0, (6.10)

with corresponding eigenfunctions (x, y) 7→ sin(πmx
a )(sin πny). If

a2 ∈
(9

4
,

8

3

)
, (6.11)

then

λ3(Q) = π2(
1

a2
+ 4) < λ4(Q) = π2(

9

a2
+ 1) ,

and the zeroset of u4 is given by {(x, y) ∈ Q | x = a/3, x = 2a/3}. For u4

we have Ω1,2 = Q ∩ {0 < x < 2a/3}. If 2a/3 > 1 (which is the case under
assumption (6.11)), then λ2(Ω1,2) = λ4(Q). We have consequently an example
with k = 3.

7 Converse theorems in the case of regular open sets

7.1 Preliminaries

As a consequence of Theorem 3.1 and using (1.3), we get that each nodal
domain Dkℓ of ϕℓ is included in a nodal domain Dj0 of u. Using a result of
Gesztesy and Zhao ([8], Theorem 1), this implies also that the capacity (see
next subsection) of Dj0 \ Dkℓ (hence the Lebesgue-measure) is 0.
We now would like to show that under some extra condition the nodal domains
of u are those of the ϕℓ. This is easy when it is assumed that the boundaries
of the Ωℓ are C1,α. However, this regularity assumption is rather strong. A
natural weaker regularity condition involving the notion of capacity will be
given in this section.

7.2 Capacity

There are various equivalent definitions of polar sets and capacity (see e.g.
[5], [7], [10], [13]). If U is a bounded open subset of Rd, we denote by ‖.‖W 1,2

0 (U)

the Hilbert norm on W 1,2
0 (U) :

‖u‖W 1,2
0 (U) := (

∫

U

|∇u|2 dx)
1
2 .
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The capacity in U of A ⊂ U is defined† as

CapU (A) := inf{‖s‖2
W 1,2

0 (U)
; s ∈ W 1,2

0 (U)

and s ≥ 1 a.e. in some neighborhood of A } .

It is easily checked that if K is compact and K ⊂ U ∩ V , where V is also
open and bounded in Rd, then there is a c = c(K,U, V ) such that CapU (A) ≤
c CapV (A) for A ⊂ K. So CapU (A) = 0 for some bounded open U ⊃ A
iff for each a ∈ A there exists an r > 0 and a bounded domain V such that
V ⊃ B(a, r) and CapV (B(a, r) ∩ A) = 0. In this case we may simply write
Cap(A) = 0 without referring to U .

7.3 Converse theorem

We are now able to formulate our definition of a regular point.

Definition 7.1
Let D be an open set in Rd. We shall say that a point x ∈ ∂D is (capacity)-
regular (for D) if, for any r > 0, the capacity of B(x, r)∩∁D is strictly positive.

Theorem 7.2
Under the assumptions of Theorem 3.1, any point x ∈ ∂Ωℓ ∩ Ω0 which is
(capacity)-regular with respect to Ωℓ (for some ℓ) is in the nodal set of u.

This theorem admits the following corollary :

Corollary 7.3
Under the assumptions of Theorem 3.1 and if, for all ℓ, every point in (∂Ωℓ)∩Ω0

is (capacity)-regular for Ωℓ, then the family of the nodal domains of u coincides
with the union over ℓ of the family of the nodal domains of the ϕℓ, where u and
ϕℓ are introduced in (3.2).

Proof of corollary
It is clear that any nodal domain of ϕℓ is contained in a unique nodal domain
of u.
Conversely, let D be a nodal domain of u and let ℓ ∈ {1, . . . , k}. Then, by
combining the assumption on ∂Ωℓ, Proposition 7.4 and (3.2), we obtain the
property :

∂Ωℓ ∩ D = ∅ .

Now, D being connected, either Ωℓ ∩ D = ∅ or D ⊂ Ωℓ. Moreover the second
case should occur for at least one ℓ, say ℓ = ℓ0. Coming back to the definition
of a nodal set and (3.2), we observe that D is necessarily contained in a nodal
domain Dℓ0

j of ϕℓ0 .
Combining the two parts of the proof gives that any nodal set of u is a nodal
set of ϕℓ and vice-versa.

†For d ≥ 3 the restriction that U is bounded can be removed and one may take U = Rd.
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7.4 Proof of Theorem 7.2

The proof is a consequence of (3.2) and of the following proposition :

Proposition 7.4
Let D,Ω ⊂ Rd be open sets such that D ⊂ Ω, and let x0 ∈ ∂D ∩ Ω. Assume
that, for some given r0 > 0 such that B(x0, r0) ⊂ Ω, there exists u ∈ W 1,2

0 (D)
and v ∈ C0(B(x0, r0)) such that :

u|D∩B(x0,r0) = v|D∩B(x0,r0) a.e. in D ∩ B(x0, r0) .

Then if v(x0) 6= 0, there exists a ball B(x0, r1) (r1 > 0), such that B(x0, r1)\D
is polar, that is, of capacity 0.

Remark 7.5
Using some standard potential theoretic arguments, Proposition 7.4 can be
deduced from Théorème 5.1 in [6] which characterizes, in the case where d ≥ 3,
those u ∈ W 1,2(Ω) that belong to W 1,2

0 (Ω). The proof below should be more
elementary in character.

Remark 7.6
Given an open subset D ⊂ Rd and a ball B = B(x, r), x ∈ ∂D, the difference
set B \ D is polar if and only if B ∩ ∂D is polar. This follows from the fact
that a polar subset of B does not disconnect B [3].

Remark 7.7
If D is a nodal domain of an eigenfunction u of H(Ω), then any point of ∂D∩Ω
is capacity-regular for D. This is an immediate consequence of Theorem 4.3
(it also follows from the preceding remark). Indeed, if x is in ∂D ∩Ω, then for
any r > 0, one can find a ball B(y, r′) in ∁D ∩ B(x, r).

To prove Proposition 7.4 we require some well-known facts stated in the next
three lemmas.

Lemma 7.8
Let U be a bounded convex domain in Rd and let B(a, ρ), ρ > 0 be a ball such
that B(a, ρ) ⊂ U . There exists a positive constant c = c(a, ρ, U) such that, for
every f ∈ W 1,2(U) vanishing a.e. in B(a, ρ),

‖f‖W 1,2(U) ≤ c ‖∇f‖L2(U) .
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Proof of Lemma 7.8
We can assume without loss of generality that a = 0 and let U ′ = U \ B(0, ρ).
Fix R so large that U ⊂ B(0, R). By approximating f by smooth functions (e.g.
regularize the function x 7→ f((1−δ)x) for δ > 0 and small to get f1 ∈ C∞(U)),
we may restrict to functions f ∈ C∞(U) vanishing in B(0, ρ). Then, since

|f(x)|2 = |
∫ 1

0

x · ∇f(sx) ds|2 ≤ R2

∫ 1

ρ
|x|

|∇f(sx)|2 ds for x ∈ U ′ ,

we have
∫

U ′

|f(x)|2 dx ≤ R2

∫∫

x∈U ′, ρ
|x|≤s≤1

|∇f(sx)|2 dx ds

≤ R2

∫∫

z∈sU ′, ρ≤|z|, s≤1

|∇f(z)|2 dz
ds

s

≤ R3

ρ

∫

U ′

|∇f(x)|2 dx,

(7.1)

and the lemma follows.

Lemma 7.9
Let U be a domain in Rd. For every real-valued f ∈ W 1,2(U) the function
g = f+ is also in W 1,2(U), with ‖g‖W 1,2(U) ≤ ‖f‖W 1,2(U). Moreover the map
f 7→ g from W 1,2(U) into itself is continuous (in the norm topology).

Remark 7.10
Since inf{fn, 1} = 1 − (1 − fn)+, it follows from the lemma that inf{fn, 1} →
inf{f, 1} in W 1,2(U) whenever fn → f in W 1,2(U).

Proof of Lemma 7.9
For the first two facts we refer to [12] or [13], where it is moreover shown that
the weak partial derivatives ∂jf+ and ∂jf satisfy

∂jf+ = 1{f>0} ∂jf = 1{f≥0} ∂jf a.e. in U.

Therefore, for any δ > 0, we have :

‖∇[fn]+ −∇f+‖L2

= ‖1{fn>0}∇fn − 1{f>0}∇f‖L2

≤ ‖1{fn>0}(∇fn −∇f)‖L2 + ‖(1{f>0} − 1{fn>0})∇f‖L2

≤ ‖∇fn −∇f‖L2 + ‖(1{f>0;fn≤0} + 1{f≤0;fn>0})∇f‖L2

≤ ‖∇fn −∇f‖L2 + ‖1{0≤|f |≤δ}∇f‖L2 + 2‖1{|fn−f |≥δ}∇f‖L2 .

(7.2)

Given ε > 0, fix δ > 0 so that ‖1{0≤|f |≤δ}∇f‖L2 ≤ ε (recall that ∇f = 0 a.e.

in {f = 0}). Since ∇f ∈ L2(U) and ‖1{|f−fn|≥δ}‖L1 ≤ ‖fn−f‖2
L2

δ2 , it follows
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that lim
n→∞

‖(1{|f−fn|≥δ})∇f‖L2 = 0. Therefore lim sup
n→∞

‖∇[fn]+ −∇f+‖L2 ≤ ε,

which proves that [fn]+ → f+ in W 1,2(U), if fn → f in W 1,2(U).

Lemma 7.11
Let ω be open in Rd and let {fn} be a sequence of functions continuous in ω
such that fn ∈ W 1,2(ω) for each n ≥ 1 and lim

n→∞
‖fn‖W 1,2(ω) = 0.

Then the set F = {x ∈ ω ; lim inf
n→∞

|fn(x)| > 0 } is polar.

Proof of Lemma 7.11
It suffices to show that capω(F ∩ K) = 0 for any compact subset K of ω. Let
ϕ ∈ C∞

0 (Rd) be such that 0 ≤ ϕ ≤ 1 in Rd, ϕ = 1 in K and supp(ϕ) ⊂ ω.
Then gn = fnϕ → 0 in W 1,2

0 (ω) and gn = fn in K.

Set Fν = {x ∈ ω ; |gn(x)| ≥ 2−ν for all n ≥ ν}. By the definition of the
capacity, we have Capω(Fν) ≤ 22ν‖∇gn‖2

L2 for all n ≥ ν and cap(Fν) = 0.
Therefore capω(

⋃
ν≥1 Fν) = 0 and capω(F

⋂
K) = 0, since F

⋂
K ⊂ ⋃

ν≥1 Fν .

Proposition 7.12
Let U be a non-empty open subset of the ball B = B(a, r) in Rd. Suppose there
exist a function f continuous in U and a sequence {fn} of functions continuous
in B such that
(i) f ≥ 1 in U and f ∈ W 1,2(U),
(ii) fn = 0 in a neighborhood of B \ U and fn ∈ W 1,2(U) for each n ≥ 1,
(iii) lim

n→∞
‖f − fn‖W 1,2(U) = 0.

Then the set F := B \ U is polar.

Proof of Proposition 7.12
Replacing f by inf{f, 1} and fn by inf{fn, 1}, we see‡ from Lemma 7.9 that
we may assume that f = 1 in U . So

lim
n→∞

‖∇fn‖L2(U) = 0 and lim
n→∞

‖1 − fn‖L2(U) = 0 .

Fix a ball B(z0, 2ρ) ⊂ U , ρ > 0, and a cut-off function α ∈ C∞(Rd) such that
α = 1 in B(z0, ρ), α = 0 in Rd \ B(z0, 2ρ). Set g = 1 − α, gn = (1 − α)fn.
Then g, gn belong to W 1,2(B), ∇g = ∇gn = 0 a.e. in F and

lim
n→∞

‖∇(g − gn)‖L2(B) = lim
n→∞

‖∇(g − gn)‖L2(U) = 0.

So, by Lemma 7.8, lim
n→∞

‖g−gn‖W 1,2(B) = 0. But g−gn ≥ 1 in F and it follows

from Lemma 7.11 that F is polar.

‡The weak convergence inf{fn, 1}
w
→ inf{f, 1} suffices here. It allows the approximation of

1 = inf{f, 1} in the norm topology in W 1,2(U) by finite convex combination of the inf{fn, 1}.
So we are again left with the case when f = 1 in U .
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Proof of Proposition 7.4
Without loss of generality, we can assume that v(x0) > 0. Choose r1 > 0
so small that v ≥ c0 := 1

2v(x0) in B(x0, r1). Since u ∈ W 1,2
0 (D), there

is a sequence {un} in C∞
0 (Rd) such that supp(un) ⊂ D and un → u in

W 1,2(Rd). Applying Proposition 7.12 to the ball B(x0, r1) and the functions
f = c−1

0 u|B(x0,r1), fn = c−1
0 un|B(x0,r1), we see that B(x0, r1) \ D is polar.
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§1. Introduction

Let F be a field of characteristic not 2 and T be a multiplicative subgroup of
Ḟ = F \ {0} containing the squares. By the additive structure of T , we mean
a description of the T -cosets forming T + aT . The purpose of this article is to
relate the additive structure of such a group T , to some Galois pro-2-group H
associated with T . In the case when T is a usual ordering, the group H is a
group of order 2. In the general case, H is a pro-2-group of nilpotency class at
most 2, and of exponent at most 4. Therefore the structure of H is relatively
simple, and this is one of the attractive features of this investigation.
One of our main motivations is to extend Artin-Schreier theory to this general
situation. In classical Artin-Schreier theory as modified by Becker, one studies
euclidean closures and their relationship with Galois theory [ArSc1, ArSc2, Be].
Recall that such a closure is a maximal 2-extension of an ordered field to which
the given ordering extends. (See [Be].)
It came as a surprise to us that for a good number of isomorphism types of
groups H as above, we could provide a complete algebraic characterization of
the multiplicative subgroups of Ḟ /Ḟ 2 associated with H, entirely analogous
to the classical algebraic description of orderings of fields. We thus obtain a
fascinating direct link between Galois theory and additive properties of multi-
plicative subgroups of fields.
We obtain in particular a Galois-theoretic characterization of rigidity conditions
(Proposition 3.4 and Proposition 3.5) using “small” Galois groups, and a full
classification of rigid groups T (§7). We also know how to make closures (as
defined below) with respect to these rigid “orderings” (§8).
In §9 we refine the notion of H-orderings of fields. We show that under natural
conditions, we can control the behaviour of the additive structure of these
orderings under quadratic extensions. It is worthwhile to point out that each
finite Galois 2-extension can be obtained by successive quadratic extensions.
Therefore, it is sufficient to investigate quadratic extensions.
We have in §2 a nice illustration of what a W -group can or cannot be. Since
the W -group of the field F , together with its level, determines the Witt ring
W (F ), it is clear that every result about the W -group of F and its subgroups
will provide information on W (F ).
This fits together with one of the main ideas behind this work (see §10): ob-
taining new Local-Global Principles for quadratic forms, with respect to these
new “orderings.” This will be the subject of a subsequent article.

We now enter into more detail, fix some notation, and present a more technical
outline of the structure of the paper.

Notation 1.1. All fields in this paper are assumed to be of characteristic
not 2, with any exceptions clearly pointed out. Occasionally we denote a field
extension K/F as F −→ K. The compositum of two fields K and L contained
in a larger field is denoted as KL. Recall that the level of a field F is the
smallest natural number n > 0 such that −1 is a sum of n squares in F or
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∞ if no such n exists. Given a field F , we denote by F (
√

Ḟ ) the compositum
of all quadratic extensions of F , and by F (3) the compositum of all quadratic

extensions of F (
√

Ḟ ) which are Galois over F . (The field F (
√

Ḟ ) was denoted
by F (2) in previous papers (e.g. [MiSm2]), and this explains the notation F (3).)
The W-group of the field F is then defined as GF = Gal(F (3)/F ). This W-
group is the Galois-theoretic analogue of the Witt ring, in that if two fields have
isomorphic Witt rings, then their W-groups are also isomorphic. Conversely, if
two fields have isomorphic W-groups, then their Witt rings are also isomorphic,
provided that the fields have the same level when the quadratic form 〈1, 1〉 is
universal over one of the fields. (See [MiSp2, Theorem 3.8].)
We denote by Φ(GF ) the Frattini subgroup of GF . The Frattini subgroup is by
definition the intersection of the maximal proper subgroups H of GF . (This
means that H is a maximal subgroup of GF among the family of all closed
subgroups of GF not equal to GF . It is a basic fact in the theory of pro-2-groups
that each such subgroup of GF is a closed subgroup of GF of index two.) Notice

that Gal(F (3)/F (
√

Ḟ )) = Φ(GF ). In the case of a pro-2-group G, the Frattini
subgroup is exactly the closure of the group generated by squares. Observe that
for each closed subgroup H of GF we have Φ(H) ⊆ Φ(GF ) ∩ H. We say that a
closed subgroup H ⊆ GF satisfying Φ(H) = H∩Φ(GF ) is an essential subgroup
of GF . Two essential subgroups H1,H2 are equivalent if H1Φ(GF ) = H2Φ(GF ).
In general, for a closed subgroup H of GF , we have H = E × ∏

i(Z/2Z)i

where E is essential: Φ(H) = Φ(E) and Φ(GF ) ∩ H ∼= Φ(E) × ∏
i(Z/2Z)i.

The equivalence class of E is that of H, and equivalent essential subgroups are
always isomorphic. (See [CrSm, Theorem 2.1]. The proof is carried out in the
case when H is finite, and the routine technical details necessary for extending
the proof for an infinite H have been omitted.)

We recall that a subset S = {σi, i ∈ I} of a pro-p-group G is called a set
of generators of G if G is the smallest closed subgroup containing S, and for
each open subgroup U of G, all but finitely many elements of S are in U . It
is well-known that each pro-p-group G contains a set of generators. A set of
generators S of G is called minimal if no proper subset of S generates S. (See
[Koc, 4.1].)
We now give the field-theoretic interpretation of the notion of an essential
subgroup of GF . Let H be any closed subgroup of GF and let L be the fixed
field of H. Let N and M be the fixed fields of Φ(H) and Φ(GF )∩H respectively.
Because Φ(H) ⊆ Φ(GF ) ∩ H, we see that M ⊆ N and equality holds for
one of the inclusions if it holds for the other. Finally observe that M is the

compositum of F (
√

Ḟ ) and L, and that N is the compositum of all quadratic
extensions of L contained in F (3). Summarizing the discussion above we obtain:

Proposition 1.2. Let H be a closed subgroup of GF and L be the fixed field
of H. Then H is an essential subgroup of GF if and only if the maximal
multiquadratic extension of L contained in F (3) is equal to the compositum of

L and F (
√

Ḟ ).
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Kummer theory and Burnside’s Basis Theorem allow us to prove the following:

Proposition 1.3. For H a closed subgroup of GF , the assignment

H 7→ u(H) = PH := {a ∈ Ḟ | (
√

a)σ =
√

a, ∀σ ∈ H}

induces a 1−1 correspondence between equivalence classes of essential subgroups
of GF and multiplicative subgroups of Ḟ /Ḟ 2.

Proof. Recall from Kummer theory that Gal(F (
√

Ḟ )/F ) is the Pontrjagin

dual of the discrete group Ḟ /Ḟ 2 under the pairing (g, [f ]) = g(
√

f)/
√

f of

Gal(F (
√

Ḟ )/F ) with Ḟ /Ḟ 2, with values in Z/2Z ∼= {±1}. (See [ArTa, Chap-
ter 6].)
Assume that H1 and H2 are two essential subgroups of GF such that PH1

=

PH2
=: P . This means H1Φ(GF )

Φ(GF ) = H2Φ(GF )
Φ(GF ) because they are both the an-

nihilator of P under the pairing above. (See [Mo, Chapter 5].) Therefore
H1Φ(GF ) = H2Φ(GF ). Hence u is injective on equivalent classes of essential
subgroups.
In order to prove that u is surjective, consider any subgroup P of Ḟ containing
Ḟ 2. Let {[ai], i ∈ I} ⊂ Ḟ /P be an F2-basis of Ḟ /P and {σ̄i, i ∈ I} be elements
of GF /Φ(GF ) such that σ̄i(

√
ai)/

√
ai = −1, σ̄i(

√
aj) =

√
aj for j 6= i and

σ̄i(
√

p) =
√

p for all p ∈ P .
From [Koc, 4.4] we see that there exists a subset S = {σi|i ∈ I} of GF such that
the image of each σi in GF /Φ(GF ) is σ̄i and for each open subgroup U of GF

all but finitely many elements of S are in U . Set H to be the smallest closed
subgroup of GF containing S. Because H/Φ(H) = 〈σ̄i|i ∈ I〉 := the smallest
closed subgroup of GF /Φ(GF ) generated by {σ̄i|i ∈ I}, and P = PH we see
that H is an essential subgroup of GF such that u(H) = P . ¤

The motivation for this study of essential subgroups grew out of the observation
in [MiSp1] that for H ∼= Z/2Z, if PH 6= Ḟ /Ḟ 2 (i.e. if H ∩ Φ(GF ) = {1}), then
PH is in fact the positive cone of some ordering on F . The reader is referred to
[L2] for further details on orderings and connections to quadratic forms. Some
convenient references for basic facts on quadratic forms are [L1] and [Sc].
Since the presence or absence of Z/2Z as an essential subgroup of GF determines
the orderings or lack thereof on F , one wonders whether other subgroups of GF

also yield interesting information about F . We make the following definition.

Definition 1.4.
(1) Let C denote the category of pro-2-groups of exponent at most 4, for which
squares and commutators are central. (Observe that since each commutator
is a product of (three) squares, it is sufficient to assume that all squares are
central.) All W-groups are in category C. In particular Φ(GF ) is in the center
of GF , for any GF . See [MiSm2] for further details. Note that C is a full
subcategory of the category of pro-2-groups. This allows us to freely use all of
the properties of pro-2-groups.
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(2) Let H be a pro-2-group. An embedding ϕ:H −→ GF is an essential em-
bedding if ϕ(H) is an essential subgroup of GF . Note that if H embeds in GF ,
then H has to be in category C.

(3) An H-ordering on F is a set Pϕ(H) where ϕ is an essential embedding of H
in GF .

(4) Let (F, T ) be a field with an H-ordering T . We say that (L, S) extends
(F, T ) if L is an extension field of F in the maximal Galois 2-extension F (2) of

F , S is a subgroup of L̇ containing L̇2, T = S ∩ Ḟ , and the induced injection
Ḟ /T −→ L̇/S is an isomorphism. We also say (L, S) is a T -extension of F . (We
will see in Propositions 4.1 and 4.2 that maximal T -extensions always exist,
and that a maximal such extension (L, S) in F (2) has S = L̇2.) An extension
(L, S) of (F, T ) is said to be an H-extension if S is an H-ordering of L.

(5) An extension (L, S) of (F, T ) is called an H-closure if it is a maximal T -

extension which is also an H-extension. Note this implies S = L̇2 and GL
∼= H.

Observe that maximal H-extensions (K,S) need not satisfy S = K̇2.

We set the following notation: Cn denotes the cyclic group of order n, D
denotes the dihedral group of order 8, Q denotes the quaternion group of order
8.

If G1 and G2 are in C, we denote by G1∗G2 the free product (i.e. the coproduct)
of the two groups in category C. Then G1 and G2 are canonically embedded in
G1∗G2 and the latter can be thought of as (G1×[G1, G2])⋊G2 with the obvious
action of G2 on the inner factor. (See [MiSm2].) For example, D ∼= C2 ∗ C2.

Let a ∈ Ḟ\Ḟ 2. By a Ca
4 -extension of a field F , we mean a cyclic Galois

extension K of F of degree 4, with F (
√

a) as its unique quadratic interme-

diate extension. Let a, b ∈ Ḟ be linearly independent modulo Ḟ 2. By a
Da,b-extension of F we mean a dihedral Galois extension L of F of degree
8, containing F (

√
a,
√

b), for which Gal(L/F (
√

ab)) ∼= C4. Observe that any
C4-extension is a Ca

4 -extension for an a ∈ F , and that any D-extension is a

Da,b-extension for a suitable a, b ∈ Ḟ .

The following result is not hard to prove, and is a special case of more general
results in [Fr]. (See also [L1, Exercise VII.8].)

Proposition 1.5. There exists a Ca
4 -extension of F if and only if a ∈ Ḟ \ F 2

and the quaternion algebra
(

a,a
F

)
is split. There exists a Da,b-extension of F if

and only if a, b ∈ Ḟ are independent modulo squares and the quaternion algebra(
a,b
F

)
is split.

This proposition is one of the main tools we use to link the Galois-theoretic
properties of an essential subgroup H of GF to the algebraic properties of an
H-ordering. Since we will need to refer to such extensions often in the sequel,
we sketch the subfield lattice of a Da,b-extension L/F .
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The paper is organized as follows.

In §2, we determine centralizers of involutions in W-groups. These results
imply in particular that the only abelian groups which can appear as essential
nontrivial subgroups of a W-group are C2 and (C4)

I where I is some nonempty
set. We also determine the possible nonabelian subgroups generated by two
elements. In Theorem 2.7 we provide a strong restriction on possible finite
subgroups of a W -group. Some of these results are important in determining
the cohomology rings of W -groups.

In §3 we show how properties of an H-ordering T , such as stability under
addition or rigidity, may be described in a Galois-theoretic way. The definition
and first properties of extensions and closures are given in §4. We illustrate
with Proposition 4.4 that even in a very geometric situation, we cannot expect
that every H-ordering T admits a closure. In Proposition 4.5, that is a corollary
of [Cr2, Theorem 5.5], we also point out that this leads to a negative answer
to a strong version of the question asked in [Ma]: there are fields F having
no field extension F −→ K with Wred(K) ∼= W (K), such that the induced
map Wred(F ) −→ Wred(K) is an isomorphism. Later in §8 we are able to

provide a similar example of a field F with a subgroup T of Ḟ such that the
associated Witt ring WT (F ) is isomorphic to W (Qp), p ≡ 1(4) but again there
is no field extension F −→ K inducing the isomorphism WT (K) ∼= W (K). This

example is interesting because | Ḟ /T | is finite. (For details see Example 8.14,
Proposition 8.15, and Remark 8.16.)

In §5 and §6 we study the case of essential subgroups H generated by 1 or 2
elements, and show that they admit closures.

In §7 we give a complete Galois-theoretic, as well as an algebraic classification
of rigid orderings, and in §8 we show that they admit closures, provided that
in the case of C(I), the associated valuation is not dyadic. (See Theorem 8.15
and Example 8.14.) In Example 6.4 we see that the link between the additive
structure of an H-ordering and the Galois-theoretic properties of H is not as
tight as we might have expected. This leads us to investigate this question
more thoroughly in §9. Actually, with a few natural extra requirements on the
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Galois groups we are considering, this can be fixed. We are then able to obtain
a perfect identification between the two aspects.
As we have already said, application of this theory to local-global principles for
quadratic forms will constitute the core of a subsequent paper. In the conclusion
we illustrate by an easy example, what we intend to do in this direction.
The authors would like to acknowledge Professors A. Adem, J.-L. Colliot-
Thélène, T. Craven, B. Jacob, D. Karagueuzian, J. Koenigsmann, T.-Y. Lam,
D. Leep and H. W. Lenstra, Jr. for valuable discussions concerning the results
in this paper; and also the hospitality of the Mathematical Sciences Research
Institute at Berkeley, the Department of Mathematics at the University of Cali-
fornia at Berkeley, and the Mathematisches Forschungsinstitut at Oberwolfach,
which the authors were privileged to visit during the preparation of this paper.
We also wish to thank the anonymous referee for valuable comments and also
for suggestions for polishing the exposition.

§2. Groups not appearing as subgroups of W -groups

In this section we show that no essential subgroup of GF can have C2 as a direct
factor (except in the trivial case where the subgroup is C2), nor can Q appear
as a subgroup of GF . These two facts will then be used to show that the four
nonabelian groups C2 ∗ C2 = D,C2 ∗ C4, C4 ⋊ C4 and C4 ∗ C4, together with
the abelian group C4 ×C4, comprise all of the possible two-generator essential
subgroups of W-groups. Thus we have a good picture of the minimal realizable
and unrealizable subgroups. We further show that every finite subgroup of a
W-group is in fact an “S-group” as defined in [Jo]. (We shall call such groups
“split groups” here.) The fact that Q is not a subgroup of GF is actually a
consequence of this last result.
Since we are working in category C in the presentations of groups by generators
and relations, we write only those relations which do not follow from the fact
that our groups are in C.

Lemma 2.1. [Mi], [CrSm] The groups C2 ×C2 and C4 ×C2 cannot be realized
as essential subgroups of GF for any field F .

Proof. Assume H = 〈σ, τ | σ2 = τ2 = [σ, τ ] = 1〉 ⊆ GF or H = 〈σ, τ | σ2 =
[σ, τ ] = 1〉, and assume σ, τ, στ /∈ Φ(GF ). Then from [MiSp1] we know that
P〈σ〉 is a C2-ordering which is a usual ordering. In particular −1 /∈ P〈σ〉 and

σ(
√
−1) = −

√
−1.

Now choose an element b ∈ Ḟ\Ḟ 2 for which
√

b
σ

=
√

b and
√

b
τ

= −
√

b. Such
an element b exists since σ, τ, στ /∈ Φ(GF ). Consider the image 〈σ̄, τ̄〉 of H inside
the Galois group G of a Db,−b-extension K of F . (Because (

√
−1)σ = −

√
−1

we see that −b is not a square in F , and we can conclude that the elements
b and −b are linearly independent when they are considered as elements in
Ḟ /Ḟ 2.) The fixed field Kσ of σ̄ cannot contain

√
−b, so it must be one of the

two subfields of index 2 in K not containing
√
−b. On the other hand, the fixed

field Kτ of τ cannot contain
√

b, so considering the subfield lattice, we see that
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Kσ ∩ Kτ = F . Then the image of H in G generates G, which means σ and
τ cannot commute. This is a contradiction, so H cannot exist as an essential
subgroup of GF . ¤

From the lemma above we immediately obtain the following result, which is
used in [AKMi] to investigate those fields F for which the cohomology ring
H∗(GF ) is Cohen-Macaulay.

Corollary 2.2. Let σ be any involution in GF \Φ(GF ) and set Eσ = Φ(GF )×
〈σ〉. Then the centralizer Z(Eσ) of Eσ in GF is Eσ itself.

Proof. If τ ∈ Z(Eσ)\Eσ then [τ, σ] = 1 and 〈τ, σ〉 = C2×C2 or C4×C2, where
〈τ, σ〉 is an essential subgroup of GF . From Lemma 2.1, this is a contradiction,
and we see τ ∈ Eσ as desired. ¤

Corollary 2.3. No essential subgroup of GF can have C2 as a direct factor
(except in the trivial case where the subgroup is C2).

Proof. Since Φ(H×C2) = Φ(H), if H×C2 is a subgroup of GF with Φ(H×C2) =
(H ×C2)∩Φ(GF ), then the C2-factor is not in Φ(GF ). Take any single element
σ ∈ H\Φ(H). Then 〈σ〉 × C2

∼= C2 × C2 or C4 × C2, which cannot be an
essential subgroup. Therefore neither can H × C2. ¤

Proposition 2.4. The quaternion group Q cannot appear as a subgroup of
GF .

Proof. Suppose Q = 〈σ, τ |σ2 = τ2 = [σ, τ ]〉 ⊆ GF . If −1 ∈ F 2, then F =
F 2 + F 2 and since GF is not trivial, we have F 6= F 2. Therefore there exists
an element a ∈ Ḟ \ F 2 and for any such a we have a Ca

4 -extension L/F . Since
Q does not admit C4 as a quotient, the images σ̄, τ̄ of σ, τ in Gal(L/F ) have
order ≤ 2 and they fix the only subfield F (

√
a) of codimension 2 in L. Then

σ, τ act as the identity on the compositum F (
√

Ḟ ) of these fields and hence
are in Φ(F ). Since they do not commute, this is impossible and we must have
−1 6∈ F 2.
Now suppose −1 ∈ P〈σ〉. Since σ 6∈ Φ(F ), there exists a ∈ Ḟ such that a 6∈ P〈σ〉
and hence −a 6∈ Pσ. Then a and −a are linearly independent modulo Ḟ 2

and there exists a Da,−a-extension L/F . Again, since Q has no C4 quotient,
the image σ̄ of σ in Gal(L/F ) has order ≤ 2 and must fix a codimension 2
subfield of L. Therefore σ̄ must fix

√
a or

√−a, and this is a contradiction
with a,−a 6∈ P〈σ〉. Hence we see that −1 6∈ P〈σ〉.
Because σ and τ are linearly independent modulo Φ(GF ), there exists an ele-

ment b ∈ Ḟ \ Ḟ 2 such that
√

b
σ

=
√

b and
√

b
τ

= −
√

b. Then b and −b are

linearly independent modulo Ḟ 2, and there exists a Db,−b-extension K/F . Be-
cause D is not a homomorphic image of Q, the image of Q is a proper subgroup
of Gal(K/F ). On the other hand, because both σ and τ act nontrivially and in

a different way on F (
√

b,
√
−b)/F we see that their images σ̄ and τ̄ in Gal(K/F )

generate the entire Galois group Gal(K/F ), which is a contradiction! ¤
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Theorem 2.5. The only groups generated by two elements which can arise as
essential subgroups of GF are the five groups C2 ∗C2, C2 ∗C4, C4 ∗C4, C4×C4,
and C4 ⋊ C4.

Proof. Let H be generated by x, y. We have an exact sequence

1 → Φ(H) → H → C2 × C2 → 1,

where Φ(H) ∼= (C2)
k is generated by x2, y2, [x, y], so k ≤ 3. Then |H| = 2k+2,

so |H| ≤ 32, and |H| = 32 if and only if |Φ(H)| = 8, if and only if H ∼= C4 ∗C4.
Otherwise |H| = 8 or 16, and there are only a few groups to consider. If
|H| = 8, necessarily H ∼= C2 ∗ C2, as all other groups of order 8 and exponent
at most 4 either have C2 as a direct factor or are isomorphic to Q.
There are fourteen groups of order 16; among these, five are abelian, and by
Lemma 2.1 only C4 × C4 among these can be an essential subgroup of GF .
Among the nine nonabelian groups, two have C2 as a direct factor, and four
more have exponent 8. The remaining three are the groups C2 ∗ C4, C4 ⋊ C4,
and DC, the central product of D and C4 amalgamating the unique central
subgroup of order 2 in each group. This group, however, has Q as a subgroup
(see [LaSm]), so cannot be an essential subgroup of GF . ¤

That the group Q cannot appear as a subgroup of any W-group is a special
case of a more general description of the kinds of groups which can appear as
essential subgroups of W-groups. All finite subgroups must in fact be “split
groups”, which we define next. These are the same as “S-groups” as defined in
[Jo]. The quaternion group Q is not such a group.

Definition 2.6. Let G be a nontrivial finite group and X = {x1, x2, . . . , xn}
be an ordered minimal set of generators for G. We say that G satisfies the split
condition with respect to X if 〈x1〉 ∩ [G,G]〈x2, . . . , xn〉 = {1}. The group G is
called a split group if it has a minimal generating set with respect to which it
satisfies the split condition. We also take the trivial group to be a split group.

We refer to G above as split because if G satisfies the split condition with respect
to X then G can be written as a semidirect product G = ([G,G]〈x2, . . . , xn〉)⋊
〈x1〉.
Theorem 2.7. Let GF be a W-group, and let G be any finite subgroup of GF .
Then G is a split group.

Proof. Each finite subgroup H of GF can be written as H = G × ∏m
1 C2 for

some m ∈ N ∪ {0}, where G is an essential subgroup of GF [CrSm]. Thus it is
enough to prove the theorem for G a finite essential subgroup of GF .
Then let G be such a group and let PG be the associated G-ordering. Let
Ḟ /PG = 〈a1PG, . . . , anPG〉 so that the cosets aiPG give a minimal generating

set for Ḟ /PG. Further set {σ1, . . . , σn} to be a minimal generating set for G
such that σi(

√
aj) = (−1)δij

√
aj where δij is the Kronecker delta. (This is

possible because G is an essential subgroup of GF , so that a minimal set of
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generators for G can be extended to a minimal (topological) generating set of
GF .)
Assume first that we can choose the representatives ai in such a way that
a1t1 + a1t2 = f2 ∈ Ḟ 2 for some t1, t2 ∈ PG. (Note that this is equivalent to
saying that a1 ∈ PG + PG.) In this instance, there are two cases to consider.

First, suppose that t1, t2 are congruent mod Ḟ 2. Then there exists g ∈ Ḟ
such that a1t1 + a1t1g

2 = f2, and so a1t1f
2 = (a1t1)

2 + (a1t1g)2, and a1t1
is a sum of two squares in F which is not itself a square. Thus we have a
Ca1t1

4 -extension L of F . We claim that G satisfies the split condition with
respect to {σ1, . . . , σn}. Checking this condition is equivalent to showing
σ2

1 /∈ [G,G]〈σ2, . . . , σn〉. Suppose it is not true. Then we have an identity

σ2
1

∏
1≤i<j≤n[σi, σj ]

ǫij
∏n

k=2 σ2ǫk

k = 1 in G, where ǫij , ǫk ∈ {0, 1}. Restricting

to L we see that σ2
1 |L = 1. This cannot be the case as σ1 does not fix

√
a1t1.

Thus in this case G is a split group.
Next suppose that t1Ḟ

2 6= t2Ḟ
2. In this case we can find a Da1t1,a1t2 -extension

L/F . Assuming again that G does not satisfy the split condition with respect

to {σ1, . . . , σn}, we again have an identity σ2
1

∏
1≤i<j≤n[σi, σj ]

ǫij
∏n

k=2 σ2ǫk

k = 1

in G, where ǫij , ǫk ∈ {0, 1}. Since each of the σi, i = 2, . . . , n acts trivially on
F (

√
a1t1,

√
a1t2), we see that each σi, i > 1 is central when restricted to L.

Thus again σ2
1 |L = 1. But σ1|L generates Gal(L/F (

√
a1t1 · √a1t2)) ∼= C4.

Hence G is a split group.
Finally, assume that we cannot choose a1 ∈ PG + PG. Then necessarily PG +
PG ⊆ PG ∪ {0}. If −1 ∈ PG, then PG = Ḟ and G = {1} which is a split group.
Otherwise PG is a preordering in F , and we may write PG = ∩n

i=1Pi where each

Pi is an ordering, and each Pi = { f ∈ Ḟ | √f
σi =

√
f }. Then {σ1, . . . , σn}

is a minimal generating set for G. Furthermore, each σ2
i = 1. (See [MiSp1]

for details. The definition of a preordering in a field F can be found in [L2,
Chapter 1], together with the basic properties of preordered rings.) Thus again
we see that G is a split group. ¤

Corollary 2.8. Each nontrivial finite subgroup G of a W-group GF can be
obtained inductively from copies of C2 and C4 by taking semidirect products
at each step. Thus we have G = Gn ⊇ Gn−1 ⊇ · · · ⊇ G1 ⊇ G0 where G0 ∈
{C2, C4}, and Gi = Gi−1 ⋊ C2 or Gi = Gi−1 ⋊ C4 for each i = 1, . . . , n.

Proof. We proceed by induction on the number of generators of G. The state-
ment clearly holds for any group G generated by a single element. Let G
be any (nontrivial) finite subgroup of the W-group GF . Then we can write
G = H × ∏m

1 C2 where H is essential, and G, if not equal to H, is clearly
built up as described from H, where the action in the semidirect product is
trivial. We can choose a minimal set of generators {σ1, . . . , σn} for H such
that H satisfies the split condition with respect to these generators. Clearly
N := [H,H]〈σ2, . . . , σn〉 is a normal subgroup of H, and H ∼= N ⋊ 〈σ1〉, where

〈σ1〉 ∼= C2 or C4. Since N ∼= 〈σ2, . . . σn〉 ×
∏k

1 C2 (for some positive integer k),
we finish by induction. ¤
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Example 2.9. Consider the W-group G2 of the 2-adic numbers Q2. It has the
presentation 〈σ, τ, ρ | σ2[τ, ρ]〉 in the category C of groups of exponent at most
four with squares and commutators central. (See [MiSp2, Example 4.4].) A

basis for Q̇2/Q̇2
2 is given by {[−1], [2], [5]}, and σ may be chosen to fix

√
2 and√

5 but not
√
−1, τ to fix

√
−1 and

√
5 but not

√
2, and ρ to fix

√
−1 and

√
2

but not
√

5. Then G2 can be constructed inductively from copies of C4 and C2

using semidirect products as follows:

G0 = 〈ρ〉 ∼= C4

G1 = G0 × 〈[σ, ρ]〉 ∼= G0 × C2

G2 = G1 ⋊ 〈σ〉 ∼= G1 ⋊ C4

G3 = G2 × 〈[σ, τ ]〉 ∼= G0 × C2

G2 = G3 ⋊ 〈τ〉 ∼= G3 ⋊ C4

Thus G2
∼= {[(C4 × C2) ⋊ C4] × C2} ⋊ C4.

Corollary 2.8 is an interesting generalization of the known structure of W-
groups associated with Witt rings of finite elementary type. (See [Ma: pages
122 and 123].) In fact, all W-groups associated with Witt rings of finite ele-
mentary type can easily be seen to be built up from cyclic groups of order 2
or 4, using only semidirect products. First one checks that the groups associ-
ated with basic indecomposable groups are such groups. Then the group ring
construction for Witt rings corresponds directly to taking a semidirect prod-
uct with a cyclic group of order 4, while the direct product construction for
Witt rings corresponds to taking a free product of W-groups in the appropri-
ate category. But this in turn just involves taking a direct product with an
appropriate number of copies of C2 (representing the necessary commutators)
and then taking a semidirect product with the generators of one of the initial
W-groups. See [MiSm2] for details.
Corollary 2.8 is quite useful for the investigation of cohomology rings of W-
groups. This is important in light of the recent proof of the Milnor Conjecture
by Voevodsky [Vo]. In particular, Voevodsky’s result shows that the cohomol-
ogy rings of absolute Galois groups with F2-coefficients carry no more informa-
tion about the base field than Milnor’s K-theory mod 2. On the other hand,
the cohomology rings of W-groups carry substantial additional information.
(See [AKMi].)
Using [Jo: Cor, p. 370] and Theorem 2.7 above, we immediately obtain the
following.

Corollary 2.10. Let G be any nontrivial finite subgroup of a W-group GF .
Then the cohomology ring H∗(G, F2) contains nonnilpotent elements of degree
2, and hence of every even degree.

§3. Galois groups and additive structures (1)

In this section we give a simple Galois-theoretic characterization of two impor-
tant additive properties of H-orderings: stability under addition and rigidity.
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This generalizes the results on rigidity and on the realizability of certain Galois
groups obtained in [MiSm1].
For the rest of this paper, unless otherwise mentioned, or if clearly some non-
essential subgroups are also considered, subgroups of GF will always be essen-
tial. Nevertheless for the sake of the convenience of the reader we occasionally
recall that the considered subgroups are essential. Throughout this paper we
write T + aT = {t1 + at2 | t1, t2 ∈ T ∪ {0}, t1 + at2 6= 0}, so T and aT are

always subsets of T + aT , and T + aT ⊇ Ḟ 2. (Here T is any subgroup of Ḟ

containing all squares in Ḟ .)

Proposition 3.1. Let H be an essential subgroup of GF , and T its associated
H-ordering. Then H has C4 as a quotient if and only if T + T 6= T .

Proof. First assume there exists a ∈ T +T which is not in T . Let K be the fixed
field of H in F (3). We construct a Ca

4 -extension F1 of F0 = F (
√

T ) = K ∩F (2)

inside F (3). Then L = KF1 is a Ca
4 -extension of K in F (3), showing H has C4 as

a quotient. We may write a = t1 + t2, so a2 − at1 = at2. Let y = a−√
a
√

t1 ∈
F0(

√
a), so NF0(

√
a)/F0

(y) = [a] ∈ Ḟ0/Ḟ 2
0 . Then F1 = F0(

√
a,
√

y) is a Ca
4 -

extension of F0. Since yyσ = y2 or at2 ∈ (Ḟ0(
√

a))2 for all σ ∈ Gal(F0(
√

a)/F ),
we see F1 is Galois over F , and hence is contained in F (3).
Conversely, assume T + T = T . If −1 ∈ T , then T = Ḟ and H = {1}. If
−1 /∈ T , then T is a preordering, so T is an intersection of orderings, and
there is an essential subgroup H1 of GF isomorphic with H and K ⊂ Φ(GF )
such that H1 × K is generated by involutions. This follows from the fact
that each preordering is an intersection of C2-orderings ([L2, Theorem 1.6]), a
characterization of C2-orderings in [MiSp1] and Proposition 1.3. Thus H1 and
consequently H as well, cannot have C4 as a quotient. ¤

Remark. If H has a C4-quotient, then there exists a Ca
4 -extension of F0 where

we may take a to be in F . However, it is not necessarily the case that a ∈ T +T .

That is, the quaternion algebra
(

a,a

F (
√

T )

)
is split, so a can be represented as the

sum of two squares in F (
√

T ), but not necessarily as the sum of two elements
in T . This can be seen in Example 6.4.
The following definition generalizes the notion of the rigidity of a field, and
introduces the notion of the level of T . (See [Wa, page 1349].)

Definition 3.2. Let T be a subgroup of Ḟ /Ḟ 2. We say that T has level s if
−1 is a sum of s elements of T , and not a sum of s − 1 elements of T . We
say that this level is infinite if −1 is not such a sum for any natural number s.
We say that the field F is T-rigid, or equivalently that T is rigid, if for every
a /∈ T ∪ −T , we have T + aT ⊆ T ∪ aT .

We have the following easy-to-prove but important property of rigid H-
orderings:

Proposition 3.3. Let T be a rigid H-ordering on F . Then
(1) The level of T is 1, 2 or infinite.
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(2) If the level of T is 2, then T + T = T ∪ −T .

Proof. Let T be an H-ordering of finite level s > 1 and let us write −1 = a+as

with a = a1 + . . . + as−1 and ai ∈ T for i = 1, . . . , s. If a ∈ T ∪−T then since
a /∈ −T we see a ∈ T and s must be 2. Thus we may assume a /∈ T ∪−T . If T
is rigid, then −1 = a + as ∈ T + aT = T ∪ aT . This is a contradiction, proving
(1).
Assume the level of T is 2. Then −1 ∈ T + T and T ∪ −T ⊆ T + T . Suppose
there is a ∈ (T + T ) \ (T ∪ −T ) and let us write a = s + t, s, t ∈ T . Then of
course −a /∈ T ∪ −T and we have −t = s − a ∈ T + (−a)T = T ∪ −aT by
rigidity. But −t /∈ T because the level is 2, and −t /∈ −aT because a /∈ T . This
is again a contradiction, proving (2). ¤

Proposition 3.4. Let H be an essential subgroup of GF , and let T be an
H-ordering. Assume −1 ∈ T . The following are equivalent.

(1) F is T -rigid.
(2) D is not a quotient of H.
(3) H is abelian.

Proof. We will show (2) =⇒ (1) =⇒ (3) =⇒ (2). For the first implication,
we show the contrapositive. Thus assume that F is not T -rigid. Let K be

the fixed field of H, and let F0 = K ∩ F (
√

Ḟ ) = F ({
√

t : t ∈ T}). We will
construct a D-extension F1 of F0 inside F (3), and linearly disjoint with K.
Then L = KF1 will be a D-extension of K in F (3), showing that H has D as a
quotient. Since F is not T -rigid and −1 ∈ T , there exist a, b ∈ Ḟ\T such that
b = t1 − at2, where t1, t2 ∈ T but b /∈ T ∪ aT . Let y =

√
t1 +

√
a
√

t2 ∈ F0(
√

a),

and let F1 = F0(
√

a,
√

b,
√

y). Notice that yyσ ∈ {±y2,±b} ⊆ F0(
√

a,
√

b)2

for all σ ∈ Gal(F0(
√

a,
√

b)/F ), so F1/F is Galois, and F1 ⊆ F (3). Then the
usual argument (see [Sp] or [Ki, Theorem 5]) shows Gal(F1/F0) ∼= D. Also F1

is linearly disjoint with K, as no proper quadratic extension of F0 is in K.
Now assume F is T -rigid. To see that H is abelian, it is sufficient to show that
for all σ, τ ∈ H, the restrictions of σ, τ to any D-extension L of F commute.
(This is because F (3) is the compositum of all quadratic, C4- and D-extensions
of F . (See [MiSp2, Corollary 2.18].) Thus if σ, τ commute on all D-extensions,
they commute in GF .) Let Da,b be some dihedral quotient of GF , and let L
be the corresponding extension of F . Denote as σ̄, τ̄ the images of σ and τ in
Da,b and suppose [σ̄, τ̄ ] 6= 1. Then σ, τ must each move at least one of

√
a,
√

b,
and they cannot both act in the same way on these square roots. That implies
a, b, ab /∈ T . But (a,b

F ) splits, so b ∈ F 2 − aF 2 ⊆ T − aT = T + aT = T ∪ aT
by (1). Since b /∈ T , we have b ∈ aT , which contradicts the fact that ab /∈ T .
Thus [σ, τ ] = 1.
The final implication is trivial. ¤

It is worth observing that if 4 ≤ |Ḟ /T | and if H is abelian then −1 ∈ T .

Indeed if 4 ≤ |Ḟ /T | and −1 /∈ T , there exists [a] ∈ Ḟ /T such that [a], [−a] are

linearly independent in Ḟ /T . Then there exist elements σ, τ ∈ H such that
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314 Louis Mahé, Ján Mináč, and Tara L. Smith

their restrictions to F (
√

a,
√−a) generate Gal(F (

√
a,
√−a))/F . Subsequently

images of σ, τ generate Gal(L/F ) for any Da,−a extension L/F . Thus H is not
abelian. In the next proposition we freely use the fact that if H1 is an essential
part of the subgroup H0 of GF , then H1 admits a quotient D if and only if H0

admits a quotient D.

Proposition 3.5. Let H be an essential subgroup of GF , and let T be an H-
ordering. Assume −1 /∈ T . Let K be the fixed field of H, and let H0 be the
subgroup of H which is the Galois group of F (3)/K(

√
−1). The following are

equivalent.

(1) F is (T ∪ −T )-rigid.
(2) D is not a quotient of H0.
(3) H0 is abelian.
(4) Every D-extension of K in F (3) contains K(

√
−1).

Proof. Let S = T ∪ −T and let H1 be an essential part of H0. Then S is
an H1-ordering, and the equivalence of the first three statements follows from
the preceding proposition. If there exists a D-extension L of K not containing
K(

√
−1), then L(

√
−1) will be a D-extension of K(

√
−1), and H0 will have D

as a quotient. This shows (2) =⇒ (4). In order to show that (4) =⇒ (3),
assume there exist σ, τ ∈ H0 which do not commute. Then there exists some
Da,b-extension M of F such that Gal(M/F ) = 〈σ̄, τ̄〉, where we denote by σ̄
and τ̄ the images of σ and τ in Gal(M/F ). Then σ and τ each move at least

one of
√

a,
√

b and cannot act in the same way on each. Thus a, b, ab /∈ S. This
gives a D-extension MK of K, which does not contain

√
−1. ¤

§4. Maximal extensions, closures and examples

Given any C2-ordering P on a field F , one can find a real closure L of F with
respect to that ordering, inside a fixed algebraic closure F̄ . This means L is real
closed and P = L̇2∩F , and then Gal(F̄ /L) ∼= C2. Notice that for our purposes
nothing is lost by considering a real closure of F inside a euclidean closure F (2)
rather than inside the algebraic closure F̄ . (See [Be].) We then obtain a C2-

closure (L, L̇2) of (F, P ), and this observation actually motivated the definition
of H-closure given in Definition 1.4. The following two propositions show that
for any subgroup T of Ḟ , containing Ḟ 2, maximal T -extensions always exist
and have a nice property.

Proposition 4.1. Let T be a subgroup of Ḟ /Ḟ 2. Then (F, T ) possesses a
maximal T -extension.

Proof. Let S be the set of T -extensions (L, S) of (F, T ) inside F (2), and let
us order S by (L1, S1) ≤ (L2, S2) if L1 ⊂ L2 and S2 ∩ L1 = S1. Then S is
nonempty, since (F, T ) ∈ S. Now consider a totally ordered family (Fj , Tj) in
S. Let K = ∪Fj , S = ∪Tj . Then (K,S) is an upper bound for the family
(Fj , Tj) in S. Then by Zorn’s Lemma S contains a maximal element, which is
a maximal T -extension of (F, T ). ¤
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Proposition 4.2. Let (K,S) be a maximal T -extension of (F, T ). Then S =

K̇2.

Proof. Assume S 6= K̇2 and choose c ∈ S \ K̇2. Let L = K(
√

c). Then

K̇/S ∼= K̇L̇2/SL̇2 is an F2-vector subspace and hence a summand of L̇/SL̇2.

Pick any projection ϕ of L̇/SL̇2 onto K̇L̇2/SL̇2. Set S′ as the inverse image

of kerϕ in L̇. Then the natural inclusions Ḟ −→ K̇ and K̇ −→ L̇ induce the
isomorphisms Ḟ /T ∼= K̇/S ∼= L̇/S′, contradicting the maximality of (K,S).

Thus we conclude that S = K̇2. ¤

Corollary 4.3. An H-ordered field (F, T ) is an H-closure if and only if

T = Ḟ 2.

Proof. If (F, T ) is an H-closure, then it is also a maximal T -extension, and

T = Ḟ 2 by the preceding proposition. Conversely, suppose T = Ḟ 2. Let L ⊃ F
be any proper extension of F in F (2). Then L contains a quadratic extension

of F , so L̇2∩F ) Ḟ 2 and L cannot extend (F, T ). This shows that (F, T ) is its
own maximal T -extension, and as it is an H-ordering, it is an H-closure. ¤

Thus, if we want to show the existence of an H-closure for an H-ordered field
(F, T ), we have to show that there exists a maximal T -extension (K, K̇2) for
an H-ordered field, which is itself H-ordered, i.e. for which GK

∼= H.
The following proposition indicates that even very simple preorderings may
have a surprising behaviour in the context of a T - or H-extension. The proof
of this proposition is no less interesting than the proposition itself, as it relies
upon visual geometrical arguments involving topology of the plane.

Proposition 4.4. Let F = R(X,Y ) and let T be the set of nonzero sums of
squares in F . If H is an essential subgroup of GF such that T = PH , then the
H-ordered field (F, T ) does not admit an H-closure.

Proof. Suppose that we are in the situation described in our proposition. Then
H 6= {1} and by Proposition 3.1 the group H does not admit a C4 quotient.

Thus again by Proposition 3.1, if (K̇, K̇2) is an H-closure of (F, T ), then K̇2

is a preordering in K. Choose s ∈ T \ Ḟ 2, fix an embedding of L = F (
√

s) =

F [Z]/(Z2 − s) in K and set P = L ∩ K̇2. The intermediate extension (L,P )

between (F, T ) and (K, K̇2) is a T -extension of (F, T ) and P = L ∩ Ḟ 2 is a
preordering of L.
Call z the class of Z in L. For every element h ∈ L̇ there is a g ∈ Ḟ such
that gh ∈ P . In particular, there is f ∈ Ḟ such that zf ∈ P . Call P̂ the set
of orderings of L that contain P , and denote by N the norm of L down to
F . The embedding F −→ L induces a map π:X(L) −→ X(F ) between the
corresponding spaces of orderings, defined by α 7→ α ∩ F .

Let us show first that π induces an injection from P̂ to X(F ). Let α1, α2 be
two orderings of L containing P such that α = α1 ∩ F = α2 ∩ F . Then the
element f ∈ F introduced above has a given sign ǫ = ±1 at α, and thus has
this same sign at α1 and α2. Since zf ∈ P ⊂ α1 ∩α2, z also has the same sign
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at α1 and α2. But this cannot be, since the product of these signs is the sign
of N(z) = −s at α, which is negative.

Now, π also induces a surjection from P̂ onto X(F ), and this is a bit deeper.
Briefly, it goes as follows. Suppose α is an ordering of F such that none of the
extensions α1, α2 to L contain P . Then we can find u ∈ L such that u ∈ P
and −u ∈ α1 ∩ α2. Denote by DE(w1, . . . , wn) the set of orderings of a field
E containing the given elements w1, . . . , wn ∈ E. It is an open set for the
Harrison topology on X(E). Considering α1, α2 as points in X(L) and P̂ as a

subset of X(L), we may write α1, α2 ∈ DL(−u) and DL(−u)∩ P̂ = ∅. In other

words, DL(−u) separate {α1, α2} from P̂ . Now, one may check easily that
there exists an open nonempty set V in X(F ) such that π−1(V ) ⊂ DL(−u).
Due to the fact that F is the function field of an algebraic variety over a real
closed field, we know that every open set of X(F ), and in particular V contains

a nonempty set DF (v) for some v ∈ F . Since DL(v) ∩ P̂ = ∅, −v must be in
any ordering containing P , and thus must be in P . Hence −V ∈ T , and V , are
in any ordering of F . Since DF (v) 6= ∅, this is a contradiction which proves

the surjectivity of π on P̂ .

Since π is surjective on P̂ , we have π(DL(w)∩P̂ ) = DF (w) for w ∈ F , and since

zf ∈ P , π(DL(wz)∩ P̂ ) = DF (wf). Coming back to h = a+bz ∈ L with a, b ∈
F , it is known (and easy to see) that DL(h) = DL(N(h), a) ∪ DL(−N(h), bz).

Since π is injective on P̂ , it preserves intersection (and of course unions) and

thus π(DL(h) ∩ P̂ ) = DF (N(h), a) ∪ DF (−N(h), bf). On the other hand, for

g ∈ F such that gh ∈ P , we have π(DL(h) ∩ P̂ ) = DF (g). What we have
proved so far is that for any h = a + bz ∈ L, DF (N(h), a) ∪ DF (−N(h), bf) is
a “principal” set DF (g) in X(F ).

Let us show that this is impossible in general. Take s = 1 + X2 and h =
Y + c + bz ∈ L with c, b ∈ R, b > 0. Assume that the corresponding set
DF (N(h), Y +c)∪DF (−N(h), f) is the principal set DF (g) for a given square-
free polynomial g ∈ F . (This can always be achieved.) Note that N(h) = 0 is
the equation (Y +c)2 = b2(1+X2) of a hyperbola H in R2. Set A := {(X,Y ) ∈
R2 | N(h) > 0, Y + c > 0} (respectively B := {(X,Y ) ∈ R2 | N(h) >
0, Y + c < 0}) the open region of the plane above (respectively below) the

upper (respectively lower) branch of H. Denote by Ã, B̃ the subsets defined in
X(F ) by the same inequalities as for A,B. By assumption, we know that g > 0

on Ã∩X(F ) = DF (N(h), Y +c) and g < 0 on B̃∩X(F ) = DF (N(h),−(Y +c)).
This implies that g ≥ 0 on A and g ≤ 0 on B (see [BCR], §7.6) and that A
and B are separated by a branch (i.e. a 1-dimensional irreducible connected
component) of g = 0. Moreover, no branch of g = 0 can go inside A ∪ B, or
else g would change sign on A or B. (This is due to the fact that g is square
free, and thus every branch is a sign-changing branch.) Set C := R2 \ A ∪ B.

Then C̃ ∩ X(F ) = DF (−N(h)). Since DF (g,−N(h)) = DF (bf,−N(h)) =
DF (f,−N(h)), we know that f and g have the same sign on C, up to a 0-
dimensional set. Thus f = 0 must also have a sign-changing branch contained
in C, and since f may be chosen square free, any branch of f = 0 having a
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nonempty intersection with the interior of C must be contained in C.
Suppose this is true at the same time for h = h1 = Y +z and h = h2 = Y +4+2z.
Then

(1) no branch of f = 0 is allowed to cross a branch of the hyperbolas
Hi, i = 1, 2, and

(2) there is a branch of f = 0 splitting the plane into two connected com-
ponents, each of them containing one branch of Hi.

As the upper branch of H2 crosses the two branches of H1, this is impossible.
This provides a contradiction to the existence of an H-closure for T , finishing
the proof of Proposition 4.4. ¤

Associated to the group Ḟ /T of the preceding proposition is the “abstract Witt
ring” of T -forms (see [Ma]), which is actually the reduced Witt ring Wred(F ).
(See also [L2, Chapter 1] for the definition of Wred(F ).) From Proposition 4.4
we can show there is no extension F −→ K with Wred(K) ∼= W (K) such that
the induced homomorphism Wred(F ) −→ Wred(K) is an isomorphism. Note
that Wred(F ) might actually be isomorphic to W (K) for some field K not
related to F , as shown in Example 8.14. This is why we can view this result as
a weak version of the “unrealizability” of Wred(F ) as a “true” Witt ring. (See
[Ma], as well as [Cr2].)
Actually T. Craven kindly called our attention to [Cr2, Theorem 5.5], which
can be applied to obtain the following more general result.

Proposition 4.5 (Craven). Let F = L(X) where L is a formally real field,
which is not a pythagorean field. Then for each pythagorean field extension
K/F , the natural homomorphism Wred(F ) −→ Wred(K) = W (K) induced by
the inclusion map F −→ K is not an isomorphism.

Proof. Assume that K is a pythagorean field extension of F = L(X), where
L is a formally real field which is not pythagorean, and suppose that the field
extension F −→ K induces an isomorphism Wred(F ) −→ Wred(K).
Because L is not a pythagorean field, there exists an element l = l21+l22, l1, l2 ∈ L

such that l /∈ L̇2. Because K is a pythagorean field, there exists an element
k ∈ K̇ such that k2 = l. Hence the polynomial f(X) = X2 − l has a root in
K. Then from [Cr2, Theorem 5.5(b)], we see that f(X) has exactly one root
in every real closure of L. Of course this is not true, as each real closure of L
must contain both roots of f(X). Hence we have arrived at a contradiction,
completing the proof. ¤

Of course we may take L = R(Y ) and get the result for R(X,Y ).
In the other direction we present a case below, where (F, T ) admits a maximal

preordered T -extension (K̇, K̇2). We recall that a preordering T in F is SAP
(Strong Approximation Property) if and only if for each pair of elements a, b ∈
Ḟ there exists an element c ∈ Ḟ such that DF (a, b) ∩ T̂ = DF (c) ∩ T̂ . (Here

as above, T̂ is the set of all orderings α ∈ X(F ) such that T ⊂ α.) If T is
SAP and R is a preordering of F containing T , then R is SAP as well. (See
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[L2, Theorem 17.12 and Corollary 16.8].) Note that this definition implies that
every finite union of basic open sets in X(F ) is a “principal” set DF (c).

Proposition 4.6. Let F be a formally real field, and let T be a SAP pre-
ordering in F . Then (F, T ) admits a maximal preordered T -extension (K, K̇2),
which is again SAP.

Proof. Let F be a formally real field and let T be a SAP preordering in F . Using
Zorn’s lemma we see that there exists a T -extension (L, S) of (F, T ) which
is maximal among the preordered T -extensions. We claim that S is a SAP
preordering in L. In order to show this, pick any elements a, b ∈ L̇. Because
(L, S) is a T -extension of (F, T ) we see that there exist elements a′, b′ ∈ Ḟ

such that aa′, bb′ ∈ S. Because T is SAP there exists an element c ∈ Ḟ such
that DF (a′, b′) ∩ T̂ = DF (c) ∩ T̂ . Let α ∈ DL(c) ∩ Ŝ and β = α ∩ F , then

β ∈ T̂ and c ∈ β. Thus a′, b′ ∈ β ⊂ α and α ∈ DL(a′, b′) ∩ Ŝ. Conversely, if

α ∈ DL(a′, b′)∩Ŝ, then β ∈ DF (a′, b′)∩T̂ = DF (c)∩T̂ and α ∈ DL(c)∩Ŝ. Since

it is clear that DL(a, b)∩ Ŝ = DL(a′, b′)∩ Ŝ, we have shown that DL(a, b)∩ Ŝ =

DL(c) ∩ Ŝ and that S is SAP.

Now, we just have to prove that S = L̇2. Suppose it is not true. Then there
exists an element s ∈ S \ L̇2 and we can set E = L(

√
s) = L[Z]/(Z2 − s). Let

α be an ordering of L containing S. We know there are two orderings α1, α2

on E extending α and giving opposite signs to z. Denote by α1 the ordering
containing z.
Define P as

⋂
S⊆α α1, then P ∩ L =

⋂
S⊆α(α1 ∩ L) =

⋂
S⊆α(α) = S and

we have proved that L̇/S −→ Ė/P is one-to-one. Take h = a + bz ∈ E
with a, b ∈ L. Because S is SAP we know there exists g ∈ L such that
[DL(N(h), a) ∪ DL(−N(h), b)] ∩ Ŝ = DL(g) ∩ Ŝ.
Let us show gh ∈ P . Suppose S ⊂ α, then g ∈ α1 ⇐⇒ g ∈ α ⇐⇒ [N(f), a ∈
α] or [−N(f), b ∈ α] ⇐⇒ h ∈ α1. Thus gh ∈ ⋂

S⊆α α1 = P and L̇/S −→ Ė/P
is onto.
But then (E,P ) is a strict preordered T -extension of (L, S), contradicting the

maximality of (L, S). This proves S = L̇2 and finishes the proof of the propo-
sition. ¤

According to [ELP], we say that a field F satisfies the property H4 if each
totally indefinite quadratic form of dimension four represents zero in F . When
a formally real field F satisfies H4, the nonzero sums of squares in F form a
SAP preordering. By [ELP, Theorem F], every field F such that F (

√
−1) is

C1 (i. e. “quasi-algebraically closed”) satisfies H4.
Therefore the preceding proposition will apply in particular to any formally
real field of transcendence degree 1 over a real closed field. But in this case one
can even prove the following addition to Proposition 4.6.

Proposition 4.7. Let F be a formally real field which satisfies H4, and let T
be the set of nonzero sums of squares in F . Let T = PH for some essential
subgroup H of GF . Then (F, T ) admits an H-closure (L, L̇2).
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Because we shall not use this result in this paper, and because our proof is
quite long, we shall omit its details.

§5. Cyclic subgroups of W -groups

In this section we consider the subgroups H of GF which are the easiest to
understand in terms of their associated H-orderings, namely the two cyclic
groups C2 and C4. As mentioned earlier, C2 in many ways is the motivating
example for this entire theory, and we cite here the results previously given in
[MiSp1] for this group, as a means of illustrating the results we are attempting
to generalize in this paper. As any single element of GF necessarily generates
a cyclic subgroup of order 2 or 4, those which generate subgroups of order 4
are precisely those not associated with usual orderings on the field F . These
are the so-called half-orders of F , as investigated in [K1]; this concept was first
introduced by Sperner [S] in 1949, in a geometrical context.

Definition 5.1. A nonsimple involution of GF is an element σ ∈ GF such that
σ2 = 1 and σ /∈ Φ(GF ). In other words, a nonsimple involution is an element
of GF which generates an essential subgroup of order 2.

Theorem 5.2. [MiSp1] The field F is formally real if and only if GF contains
a nonsimple involution. There is a one-one correspondence between orderings
on F and nontrivial cosets of Φ(GF ) which have an involution as a coset rep-
resentative.

We have the well-known characterization of those subgroups of Ḟ that are
orderings, which we include here for the sake of completeness.

Proposition 5.3. A subgroup S of Ḟ containing Ḟ 2 is a C2-ordering of F if
and only if the following conditions hold.

(1) |Ḟ /S| = 2 and
(2) 1 + s ∈ S ∀s ∈ S.

We can now characterize those subgroups S of Ḟ which are C4-orderings. They
are precisely those subgroups of index 2 which fail to be orderings. We also see
that C4-ordered fields always admit a closure.

Proposition 5.4. A subgroup S of Ḟ containing Ḟ 2 is a C4-ordering of F if
and only if the following conditions hold.

(1) |Ḟ /S| = 2 and
(2) ∃s ∈ S such that 1 + s /∈ S.

Proof. We know S is a C4-ordering of F if and only if there exists σ ∈ GF such
that S = {a ∈ Ḟ |√a

σ
=

√
a} where σ2 6= 1. Now any subgroup of index 2 in Ḟ

is of the form {a ∈ Ḟ |√a
σ

=
√

a} for some σ ∈ GF , so we need only guarantee
that S is not an ordering, which condition (2) does. ¤
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Remark 5.5.

(1) Note that it is easy to see that condition (2) above can be replaced by

(2’) S+S = Ḟ . (Recall that here we use our definition of the sum S+S
as described in the beginning of §3. If instead we set the sum S ⊕ S as
{s1 +s2|s1, s2 ∈ S} then we can replace (2) by the condition Ḟ ⊂ S⊕S
provided that F contains more than five elements. (See [K1, Remark
after Def. 1.1].)

(2) There are actually two kinds of C4-orderings, distinguished by whether
or not they contain −1. If S is a C4-ordering such that −1 ∈ S, we say
that S has level 1. The prototype is given by Ḟ2

p when p ≡ 1 mod 4. If
−1 6∈ S, then necessarily −1 ∈ S+S, and we say that S has level 2. The
model is Ḟ2

p when p ≡ −1 mod 4. It is clear that every C4-extension
preserves the level.

Proposition 5.6. Let (K, K̇2) be a maximal T -extension of a C4-ordered field
(F, T ). Then

(1) K is characterized by the condition of being maximal in F (2) among

fields L ⊇ F such that
√

a /∈ L ∀a ∈ Ḟ\T .
(2) GK

∼= C4.
(3) Gal(K(2)/K) ∼= Z2, the group of 2-adic integers.

In particular, every maximal T -extension of a C4-ordered field (F, T ) is a C4-
closure, and thus C4-closures always exist.

Proof. Let (K, K̇2) be a maximal T -extension of the C4-ordered field (F, T ).

Since K̇2 ∩ F = T , we see that for any a ∈ Ḟ\T , we have
√

a /∈ K, while
for any a ∈ T , we have

√
a ∈ K. Now if L ) K in F (2), then L ⊇ K(

√
a)

for some a ∈ K̇\K̇2. Since the cosets of K̇2 in K̇ correspond naturally to the

cosets of T in Ḟ , we see that L contains
√

a′ for some a′ ∈ Ḟ \ T , and thus
K is maximal among such extensions of F in F (2). Conversely, suppose K is
maximal in F (2) among fields L ⊇ F such that

√
a /∈ L ∀a ∈ F\T . Then we

see that K̇2 ∩ F = T . We need to see that |K̇/K̇2| = 2. Suppose it is not

true. Fix a ∈ Ḟ\T , so that a /∈ K̇2, and suppose there exists some b ∈ K̇ such

that a, b are linearly independent in K̇/K̇2. Then certainly b /∈ aT , and setting

L = K(
√

b) contradicts the maximality of K. Thus we have that (K, K̇2) is a
maximal T -extension for (F, T ), and this proves (1).

Now observe that GK is generated by one generator, since |K̇/K̇2| = 2, so
GK

∼= C2 or C4. It cannot be C2, or else T would be an ordering on F . Thus
GK

∼= C4. Finally, Gal(K(2)/K) is cyclic and cannot be finite, since it is not
C2 (see [Be]). Thus Gal(K(2)/K) ∼= Z2. ¤

§6. Subgroups of W -groups generated by two elements

As we saw in Theorem 2.5, a group generated by two elements appearing as
a subgroup of GF may only be one in the list C2 ∗ C4, C4 ∗ C4, C2 ∗ C2, C4 ×
C4, C4 ⋊ C4. The last two are particular cases of the groups studied in § 7 and
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§ 8, and we will focus in this section on the first three. The third one is better
known as the dihedral group D.
We will give an algebraic characterization for the orderings associated with
these groups and show that it is always possible to make closures. Portions
of the proofs rely on the characterizations of C4 × C4- and C4 ⋊ C4-orderings
obtained in § 7; but since the results in § 7 do not rely on those in § 6, we freely
use these results where needed.

Lemma 6.1. Let T be a subgroup of Ḟ such that Ḟ 2 ⊆ T and |Ḟ /T | = 4. If
−1 /∈ T , then F is (T ∪ −T )-rigid.

Proof. Let Ḟ /T = {1,−1, a,−a}. Then (T ∪ −T ) + a(T ∪ −T ) ⊆ (T ∪ −T ) ∪
a(T ∪ −T ) = Ḟ . ¤

Proposition 6.2. A subgroup T of Ḟ is a C2 ∗ C4-ordering if and only if
Ḟ 2 ⊆ T , |Ḟ /T | = 4, and the following two conditions hold.

(1) T + T 6= T , and
(2) −1 6∈ ∑

T , where
∑

T denotes the set of all finite sums of elements of
T .

Proof. The conditions Ḟ 2 ⊆ T and |Ḟ /T | = 4 are necessary and sufficient
for T to be a G-ordering for some essential subgroup G ⊆ GF generated by
two elements σ, τ , independent mod Φ(GF ). We next show the necessity of
conditions (1) and (2). Let G ∼= C2∗C4 be a subgroup of GF , where T = PG. We
assume G is generated by two noncommuting (hence independent mod Φ(GF ))
elements σ, τ such that σ2 = 1, τ4 = 1. If T +T = T , then by Proposition 6.14,
T would be a D-ordering (this is independent of previous results). Since it is
not, we see that (1) holds. Also −T *

∑
T , since

∑
T ⊆ Pσ, which is an

ordering because σ is an involution. Thus Pσ cannot contain −T and condition
(2) holds.
We now show the sufficiency of the conditions. Since T is a G-ordering for
some essential subgroup with two generators, it must be isomorphic to one
of the five groups listed in Theorem 2.5. Since −1 /∈ T by (2), it cannot be
C4 × C4 by Proposition 7.2 in the next section. Also (1) shows that G cannot
be isomorphic to D ∼= C2∗C2 by Proposition 6.14, and (2) shows that G cannot
be isomorphic to C4 ⋊ C4 by Proposition 7.6. Finally, from (1) and (2) we can

see that
∑

T is an ordering on F , since it is clearly a proper subgroup of Ḟ ,

which properly contains T , so must be of index 2 in Ḟ ; it does not contain −1,
and it is closed under addition. Then

∑
T = T ∪ aT for some a /∈ T , and G

is generated by elements σ, τ where the intersection of the fixed field of σ with
F (2) is K(

√
a), and the intersection of the fixed field of τ with F (2) is K(

√
−1).

Then Pσ =
∑

T is an ordering, so σ is an involution. This shows G cannot be
isomorphic to C4 ∗C4. Thus the only remaining possibility is G ∼= C2 ∗C4. ¤

Proposition 6.3. A subgroup T of Ḟ is a C4 ∗ C4-ordering if and only if
Ḟ 2 ⊆ T , |Ḟ /T | = 4, and one of the following two conditions hold.

(1) −1 ∈ T and F is not T -rigid, or
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(2) −1 /∈ T , −1 ∈ ∑
T , but T + T 6= T ∪ −T .

Proof. If −1 ∈ T , the only possible subgroups H of GF with two generators
for which T can be an H-ordering are C4 × C4 and C4 ∗ C4. The other three
are eliminated by Propositions 6.14, 6.2, and 7.6. Also, if −1 ∈ T , then F is
T -rigid if and only if T is a C4 × C4-ordering by Proposition 7.2. This leaves
C4 ∗ C4 as the only possibility.
If −1 6∈ T , there are three possibilities to consider: −1 6∈ ∑

T , T +T = T ∪−T ,
or −1 ∈ ∑

T but T +T 6= T ∪−T . The first case occurs if and only if T is either
a D-ordering (by Proposition 6.14) or a C2 ∗C4-ordering (by Proposition 6.2).
The second case occurs if and only if T is a C4 ⋊ C4-ordering by Proposition
7.6 and Lemma 6.1. Thus, the third case must occur if and only if T is a
C4 ∗ C4-ordering as claimed. ¤

The following example constructs a C4 ∗ C4-ordering of Q2. It is illustrative,
in that it shows how even in a relatively “small” setting, the additive structure
of T can behave quite differently from the additive structure of Ḟ (

√
T )2. In

particular, it shows that 〈1, 1〉 may represent elements in F (
√

T ) which are not
in T + T . In this example, T + T is not multiplicatively closed, but of course
the form 〈1, 1〉, being a Pfister form, is multiplicative in F (

√
T ).

Example 6.4. In F = Q2 consider the subgroup T = Ḟ 2 ∪ 5Ḟ 2 of Ḟ . Using
the notation for G2 as in Example 2.9, we see that the corresponding subgroup
of G2 is H = 〈σ, τ〉 ∼= C4 ∗ C4. This is a W-group associated with the Witt
ring Z/4Z×M Z/4Z, where the product “×M” is taken in the category of Witt

rings (see [Ma] and [MiSm2]). The fixed field of H is K = Q2(
√

5). The form
〈1, 1〉 represents −1 over K, and this can be shown as follows. It is well known
and easy to show that for any quadratic field extension F −→ K = F (

√
a),

one has (K2 +K2)∩ Ḟ = (F 2 +F 2)(F 2 + aF 2). If F = Q2 and a = 5, we have
30 = 5 × 6 ∈ (K2 + aK2) and 2 ∈ (K2 + K2). Then 15 ∈ K2 + K2, and since
15 is congruent to −1 mod 16: it is a negative square in Q2. This shows that
−1 ∈ K2 + K2.
However, when one considers which elements of Ḟ /Ḟ 2 are in T + T , one finds
only the six classes represented by 1, 2, 5, 10,−2,−10. In particular, −1 /∈ T+T ,
and T + T is not multiplicatively closed (so forms mod T -equivalence do not
behave as quadratic forms over a field behave). Nonetheless, it is easy to see
that −1 ∈ T + T + T , so that T + T 6= T ∪−T , but −1 ∈ ∑

T , consistent with
the proposition above.

In §9 we introduce natural conditions for a subgroup H of GF in order to keep
track of the additive properties of Ḟ /T under 2-extensions. We shall see in §9
that the group H ⊂ GF above does not possess one of the key properties we
require.

Theorem 6.5. A (C2 ∗ C4)-ordered field (F, T ) admits a closure.

Proof. Let S be the set of extensions (L, S) of (F, T ) inside F (2) satisfying the
additional condition that −1 /∈ ∑

S. As in the proof of Proposition 4.1, we
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see that S has a maximal element (K,T0) with K̇/T0
∼= Ḟ /T, T = T0 ∩ F , and

−1 /∈ ∑
T0. Then (K,T0) is a (C2 ∗C4)-ordered field. To see this we need only

show that conditions (1) and (2) of Proposition 6.2 hold, and condition (2) is
given by construction of (K,T0). Condition (1) holds since if T0 + T0 = T0,
then T + T ⊆ (T0 + T0) ∩ F = T0 ∩ F = T , contradicting the fact that T is a
C2 ∗ C4-ordering on F .

To conclude, we must show T0 = K̇2. Notice
∑

T0 is an ordering on K, so

K is formally real. We may write K̇/T0 = {±T0,±aT0}, where a ∈ T + T .

If T0 6= K̇2, we can choose c ∈ T − K̇2, and consider L = K(
√

c). Since

−c /∈ ∑
T0,

∑
T0 extends to an ordering S0 on L. Then S0 ∪ −S0 = L̇ and

a ∈ S0. Let S be a subgroup of S0 containing T0 and maximal with respect to
excluding a. Then L̇/S = {±S,±aS} ∼= K̇/T0

∼= Ḟ /T . Also S ∩ K ⊇ T0 by
construction, and if there exists b ∈ S ∩K, b /∈ T0, then b ∈ aT0 ∪−T0 ∪−aT0,
which implies either a ∈ S or −1 ∈ S, which leads to a contradiction in either
case. Thus S∩K = T0, and (L, S) is an extension contradicting the maximality

of (K,T0). We conclude T0 = K̇2. ¤

Theorem 6.6. A (C4 ∗ C4)-ordered field (F, T ) admits a (C4 ∗ C4)-closure

(K, K̇2).

Proof. Let (K, K̇2) be a maximal T -extension for (F, T ). First assume −1 ∈ T .
We must show K is not a rigid field. Let {1, a, b, ab} be a set of representatives

for Ḟ /T that lifts to a set of representatives for K̇/K̇2. Since F is not T -rigid,

we may, without loss of generality, assume b ∈ T+aT . Then T+aT ⊆ K̇2+aK̇2,
but b /∈ K̇2 ∪ aK̇2, so K is not rigid, and K̇2 is a (C4 ∗ C4)-ordering on K.

Now assume −1 6∈ T = F ∩ K̇2. Then −1 6∈ K̇2, and −1 ∈ ∑
T ⊆ ∑

K̇2.

Letting {1,−1, a,−a} be a set of representatives for Ḟ /T , this again lifts to

a set of representatives for K̇/K̇2. Since T + T 6= T ∪ −T , but clearly also

T + T 6= T , we may assume a ∈ T + T , so a ∈ K̇2 + K̇2 as well. This shows
K̇2 is a (C4 ∗ C4)-ordering on K. ¤

Remark 6.7. We have defined in Definition 3.2 the level of an H-ordering. It
is then easy to see that the level of a (C4 ∗ C4)-ordering T is at most 4. The
level of the closure K (which is the “usual” level) is less than or equal to the
level of T . The level of a (C4 ∗C4)-closure is either 1 or 2, as any field of finite
level with at most four square classes has level at most 2. The level of T is 1
if and only if the level of K is 1, but in the other cases the level may actually
decrease: Example 6.4 shows that T has level 3 and that its closure has level
2.

Now we turn our attention to D-orderings. We showed in § 2 that C2 × C2

cannot be an essential subgroup of GF , so if H is an essential subgroup of GF

generated by two elements of order 2, necessarily H ∼= D. Recall that according
to [Br], a 2-element fan in F is a set of two distinct orderings P1, P2 on F , and
it can be identified with the preordering T = P1 ∩ P2.
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Lemma 6.8. The dihedral group D is a subgroup of GF if and only if there is
a 2-element fan in F . In this case, T ⊆ Ḟ is a D-ordering if and only if T is
a 2-element fan in F .

Proof. Let H = 〈σ, τ |σ2 = τ2 = [σ, τ ]2 = 1〉 ∼= D be a subgroup of GF . Then
Pσ and Pτ are positive cones of two distinct orderings on F , and PH = Pσ∩Pτ .
Conversely, if P1, P2 are positive cones corresponding to distinct orderings on
F , then there exist nontrivial involutions σ, τ ∈ GF , in distinct cosets of Φ(GF ),
such that P1 = Pσ and P2 = Pτ . Then H = 〈σ, τ〉 is an essential subgroup of
GF , and H ∼= D. ¤

In [BEK], a field F with two orderings P1, P2 is defined to be maximal with
respect to P1, P2 if for any algebraic extension K of F , at least one of the two
orderings cannot be extended to K. Since we prefer to work inside F (2), we
modify this as follows.

Definition 6.9. A field F with two orderings P1, P2 is maximal with respect
to P1, P2 if for any 2-extension K of F , at least one of the orderings does not
extend to K.

Proposition 6.10. (F, P1, P2) is maximal if and only if (F, TF ) is a D-ordered
field, where TF = P1 ∩P2, and there exists no proper D-ordered extension field
(L, TL) ⊆ F (2) with TL ∩ F = TF .

Proof. Suppose that the field (F, P1, P2) is maximal. Let σ1, σ2 be involutions

in GF such that Pi = {a ∈ Ḟ |√a
σi =

√
a}, i = 1, 2. Then the subgroup

〈σ1, σ2〉 ⊆ GF is isomorphic to D, as we have seen, and (F, TF ) is a D-ordered
field as claimed.
Now suppose that L is a D-ordered field containing F inside F (2), such that
TL ∩ F = TF . Then GL contains a subgroup isomorphic to D, which we
can take to be generated by two involutions τ1, τ2 such that TL = Q1 ∩ Q2,
where Qi = {a ∈ L̇|√a

τi =
√

a}, i = 1, 2 are distinct orderings of L. Now
Qi∩F ⊇ TL∩F = TF , so Qi∩F is an ordering of F which contains TF , i = 1, 2.
Thus {Q1 ∩ F,Q2 ∩ F} = {P1, P2}. Then by maximality of (F, P1, P2), we see
L = F .
Conversely, suppose that F is a D-ordered field contained in no proper D-
ordered extension field as described. Then F has at least two distinct orderings
P1 and P2 corresponding to the two involutions generating the subgroup D of
GF , and since there is no proper D-ordered extension field, we see that it is not
possible for both orderings to extend to any extension of F . Thus (F, P1, P2)
is maximal, as claimed. ¤

By Zorn’s Lemma we immediately see the following.

Proposition 6.11. [BEK, Prop.3] Given a field F with two orderings P1, P2,

there always exists an algebraic extension F̃ of F which is maximal with respect
to P̃1, P̃2, where P̃1, P̃2 are extensions of P1, P2 to F̃ .
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Theorem 6.12. A field (F, P1, P2) is maximal if and only if

(1) there exist exactly two orderings on F and
(2) F is pythagorean, i.e. any sum of squares is a square in F .

Proof. [BEK] Suppose three different orderings P1, P2, P3 are possible in F .

Let x ∈ Ḟ be such that x is positive with respect to the first two orderings,
and negative with respect to P3. Then

√
x /∈ F , so F (

√
x) is a proper algebraic

extension of F , and since x is positive with respect to P1 and P2, they extend
to F (

√
x), and (F, P1, P2) cannot be maximal. Similarly, if α, β are elements

of F such that
√

α2 + β2 /∈ F , then P1, P2 can be extended to the proper

extension F (
√

α2 + β2) of F , again contradicting maximality. Thus conditions
(1) and (2) are necessary.
Conversely, one can show that any field F satisfying conditions (1) and (2) has

Ḟ /Ḟ 2 = {1,−1, a,−a} for some a ∈ Ḟ . Now let F be such a field and let P1, P2

be the two unique orderings in F , so that a is positive with respect to P1 and
negative with respect to P2. Suppose (F, P1, P2) were not maximal, and let

K = F (
√

b) be a proper quadratic extension of F such that both P1 and P2

extend to K. Since K is an ordered proper extension of F , b 6= 1,−1 ∈ Ḟ /Ḟ 2,
so b = a or −a. Then either

√
a ∈ K or

√−a ∈ K, so that not both P1 and P2

extend to K. This is a contradiction. ¤

Corollary 6.13. The D-ordered field (F, T ) is a maximal D-ordered field if
and only if GF

∼= D. Thus any D-ordered field admits a D-closure.

Proof. By the preceding theorem, if F is maximal, it has exactly two orderings,
so GF has exactly two involutions which are independent mod Φ(GF ). Also F
is pythagorean, so by [MiSp1] GF is generated by involutions. Thus GF is
generated by two elements of order 2, and since GF is necessarily an essential
subgroup of itself, we see that GF

∼= D.
Conversely, if GF

∼= D, then F is a D-ordered field, and since orderings on F
correspond to independent involutions in GF , we see that F has precisely two
distinct orderings. Also, since GF is generated by these involutions, we see that
F is pythagorean. Thus, by the preceding theorem, F is a maximal D-ordered
field. Then we see that for any D-ordered field (L,PH), a maximal D-ordered

extension (F, Ḟ 2) containing (L,PH) will be a closure for (L,PH). ¤

Proposition 6.14. A subgroup S of Ḟ containing Ḟ 2 is a D-ordering of F if
and only if |Ḟ /S| = 4 and 1 + s ∈ S whenever s ∈ S.

Proof. All that is necessary for S to be a D-ordering of F is that it be a 2-
element fan in F . In other words, S must be a preordering of index 4 in F .
A subgroup S of Ḟ is such a preordering if and only if the conditions in the
statement of the proposition are met. ¤

§7. Classification of rigid orderings

This section will provide a full Galois-theoretic and algebraic characterization
of all possible rigid orderings. We start with the following definition.
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Definition 7.1. Let I be a possibly empty index set. We call G a C(I)-
group if G is isomorphic to (C4)

I × C4, an S(I)-group if G is isomorphic to
(C4)

I ⋊ C4, and a D(I)-group if G is isomorphic to (C4)
I ⋊ C2, the semidirect

product being defined with the nontrivial action of C4 or C2 on each inner factor
in the last two cases, when I is nonempty. A G-ordering on F is called a C(I)-
(respectively S(I)-, D(I)-) ordering if G is a C(I)- (respectively S(I)-, D(I)-)
group. When I = ∅ the C(I)- and S(I)-orderings are the C4-orderings, and the
D(I)-orderings are the C2-orderings, that is the usual orderings. Observe that
C(∅)- and S(∅)-orderings both correspond to the same group C4. The difference
between them is that a C(∅)-ordering has level 1, while an S(∅)-ordering has
level 2. (See Remark 5.5 for comparison.) When |I| = 1, we obtain the groups
generated by two elements which are respectively (C4)×C4, (C4) ⋊ C4 and D.

In this section we will characterize C(I)-orderings, S(I)-orderings and D(I)-

orderings in terms of their algebraic properties as subgroups of Ḟ . We will see
in particular that they are all rigid, and that they constitute the whole class
of rigid orderings. The group

∐
i∈I Gi will denote the direct sum of the groups

Gi, i ∈ I and in I ∪ {x} the letter x is added to denote the new index.

Proposition 7.2. A subgroup T of Ḟ containing Ḟ 2 is a C(I)-ordering if and
only if the following three conditions hold.

(1) −1 ∈ T ,
(2) F is T -rigid, and

(3) Ḟ /T ∼=
∐

i∈I∪{x}(C2)i.

In other words, the C(I)-orderings are exactly the rigid orderings of level 1.

Proof. If I = ∅, the result follows from Proposition 5.4 and Remark 5.5, so
we shall assume I 6= ∅. We begin by showing that the three conditions above
are necessary. Let G ∼= C(I) and let T be a G-ordering. Suppose −1 /∈ T .

Let {σi, i ∈ I;σx} generate G. Then T = ∩i∈I∪{x}Pσi
and |Ḟ /T | ≥ 4. Thus

there are at least four classes mod T , which we can represent as 1,−1, a,−a
for some a ∈ Ḟ , and there exists a Da,−a-extension L of F . Hence there exist
elements σ, τ ∈ G such that a ∈ Pσ\Pτ and −a ∈ Pτ\Pσ. It then follows that
the restriction of στ to L has order 4, so that σ|L, τ |L generate Gal(L/F ) ∼= D,
and hence cannot commute. Yet σ, τ ∈ G, which is an abelian group. This is
a contradiction, so −1 ∈ T , and (1) holds.
Since −1 ∈ T , we have T ∪ −T = T . Suppose we have a nonrigid element
c ∈ Ḟ\T , so that we have t1, t2 ∈ T with t1 + ct2 /∈ T ∪ cT . Then b =

1+ct2/t1 /∈ T ∪cT . Let a = −ct2/t1 /∈ T . Then a+b = 1, so (a,b
F ) splits. Since

b /∈ T ∪ cT = T ∪aT , a and b are independent mod T and thus mod Ḟ 2. Hence
we have a Da,b-extension L of F , and by the same argument as above, we find
σ, τ ∈ G which do not commute, leading to a contradiction. Thus F is T -rigid
and (2) holds. Finally, by Kummer theory we know that Ḟ /T is isomorphic to
the dual (G/Φ(G))∗ ∼=

∐
i∈I∪{x}(C2)i, giving (3).

We now show that the three conditions are sufficient for T to be a C(I)-
ordering. By (3) we see that T = ∩i∈I∪{x}Pi where Pi is the kernel of the
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projection Ḟ → Ḟ /T ∼=
∐

i∈I∪{x}(C2)i → (C2)i. Further, for each Pi we have

a σi ∈ GF such that Pi = Pσi
. Let G be the closed subgroup of GF generated

by {σi|i ∈ I ∪ {x}}. Then G ⊆ {σ|Pσ ⊇ T} because every element of G must
fix every

√
a left fixed by the σi. So we also have T = ∩σ∈GPσ, and T is a

G-ordering. It remains to show that G is a C(I)-group.
Since −1 ∈ T ⊆ Pσi

, none of the Pσi
can be usual orderings on F , so each

σi must have exponent 4 in G. Since −1 ∈ T and F is T -rigid, we see by
Proposition 3.4 that G is abelian. Then G is a compact abelian group of
exponent 4, and (G/Φ(G))∗ ∼=

∐
i∈I∪{x}(C2)i is a discrete group of exponent

2. Then ((G/Φ(G))∗)∗ ∼= G/Φ(G) ∼=
∏

i∈I∪{x}(C2)i, and G ∼=
∏

i∈I∪{x}(C4)i,

so G is a C(I)-group as claimed. ¤

In order to characterize the subgroups of Ḟ which are S(I)-orderings, we will
first prove three lemmas. Let G be an S(I)-group. It will be helpful to fix the
following notation: write G = G1 ⋊ G2 where G1

∼=
∏

i∈I(C4)i and G2
∼= C4.

Let τ be a generator of G2 and Pτ = {a ∈ Ḟ |√a
τ

=
√

a}.
Lemma 7.3. Let T be a G-ordering. Then T has index 2 in PG1

.

Proof. If PG1
⊆ Pτ , we would have T = PG1

∩ Pτ = PG1
= PG. But by

Kummer theory and the Burnside Basis Theorem, that would imply G = G1.
Thus PG1

* Pτ , T ( PG1
, and |PG1

/T | ≥ 2. On the other hand, since
T = PG1

∩ Pτ , we have |PG1
/T | ≤ 2, and so |PG1

/T | = 2. ¤

Lemma 7.4. For any group homomorphism θ : G → C4 = 〈σ〉, we have
θ(G1) ⊆ 〈σ2〉.
Proof. If a ∈ G1, writing multiplicatively, we have

θ(a−1) = θ(τaτ−1) = θ(τ)θ(a)θ(τ)−1 = θ(a),

so θ(a)2 = 1. ¤

Lemma 7.5. We have T + T ⊆ PG1
.

Proof. Let a ∈ T + T, a /∈ T , and consider the following three cases.
Case 1: a = x2 + y2. Then there exists a Ca

4 -extension L of F , and we have a
map θ : G → Gal(L/F ) ∼= C4, and by Lemma 7.4 θ(G1) has order at most 2.
Thus θ(G1) fixes

√
a and a ∈ PG1

.

Case 2: a = x2 +t, t ∈ T\Ḟ 2. We have a2 = ax2 +at, and a, at are independent

modulo Ḟ 2. Thus there exists a Da,at-extension L of F , and Gal(L/F (
√

t)) ∼=
C4. Since t ∈ T , we have

√
t
σ

=
√

t for σ ∈ G, which means we have a
homomorphism θ : G → Gal(L/F (

√
t)) ∼= C4. Again applying Lemma 7.4,

θ(G1) has order at most 2, so G1 must fix
√

a and a ∈ PG1
.

Case 3: a = s + t, s, t ∈ T\Ḟ 2. We can write as−1 = 1 + ts−1, and then we
are in one of the previous two cases. Hence as−1 ∈ PG1

, and it follows that
a ∈ PG1

. ¤
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Proposition 7.6. A subgroup T of Ḟ containing Ḟ 2 is an S(I)-ordering if
and only if the following four conditions hold.

(1) −1 /∈ T ,
(2) F is (T ∪ −T )-rigid,
(3) T + T = T ∪ −T , and

(4) Ḟ /T ∼=
∐

i∈I∪{x}(C2)i.

Proof. When I = ∅ the result follows from Proposition 5.4 and Remark 5.5.
Thus we may assume that I 6= ∅. We begin by showing the conditions above are
necessary. Condition (4) follows from Kummer theory. Condition (1) follows

from Lemma 7.5 above, for if −1 ∈ T , we would have Ḟ ⊆ Ḟ 2 − Ḟ 2 ⊆ T − T =
T + T ⊆ PG1

, but as |I| ≥ 1, we cannot have PG1
being all of Ḟ .

To show the necessity of condition (3), first observe that −1 ∈ PG1
, −1 /∈ T ,

and |PG1
/T | = 2, so PG1

= T ∪ −T , and thus T + T ⊆ T ∪ −T . To show
equality, we need to show that some element of −T is in T + T . In this case,
that amounts to showing that T is not additively closed. Suppose that T
were additively closed. Then T would be a preordering, so contained in some
ordering Pσ for some σ ∈ GF . Further, σ is an involution not contained in
Φ(GF ), and σ ∈ G = G1 ⋊G2. In particular, σ is not a square in G, and σ 6= τ .
Thus σ = σ1τ for some σ1 ∈ G1 and

σ2 = σ1τσ1τ = σ1τσ1τ
−1τ2 = σ1σ

−1
1 τ2 = τ2 6= 1.

Thus σ is not an involution, which is a contradiction, and so −1 ∈ T + T .
Finally, since F is PG1

-rigid and T ∪ −T = PG1
, we see that (2) holds.

Now we must show that conditions (1) - (4) are sufficient for T to be an S(I)-
ordering. Letting S = T ∪ −T , we see that S satisfies the condition for being
a G1-ordering, with G1

∼=
∏

i∈I(C4)i, as given in Proposition 7.2. Let Q be

a subgroup of index 2 in Ḟ such that T = S ∩ Q, and let τ ∈ GF such that
Q = Pτ . Let G be the subgroup of GF generated by G1 and τ . We need to see
that G = G1 ⋊G2 where G2 is the subgroup of GF generated by τ . Specifically,
we need to show that G1 ∩ G2 = {1} and that [σ, τ ]σ2 = 1 ∀σ ∈ G1.
Since G1 fixes

√
−1 and τ does not, we cannot have τ or τ−1 in G1. Suppose

τ2 ∈ G1. Then it has order 2 in G1 and hence must be a square. Let σ ∈ G1

such that σ2 = τ2. Since Pσ 6= Pτ , there exists a ∈ Pτ\Pσ, and neither a nor

−a can be a square, since neither is in Pσ. Since also −1 /∈ Ḟ 2, we have a
Da,−a-extension L of F , and σ|L has order 4 in Gal(L/F ). However, since τ
fixes

√
a, τ |L ∈ Gal(L/F (

√
a)) ∼= C2 × C2, and so σ2 6= τ2, contradicting the

assumption. Thus G1 ∩ G2 = {1}.
To prove [σ, τ ]σ2 = 1 ∀σ ∈ G1, it is sufficient to show that this condition holds
for the restriction of σ, τ to each C4- and D-extension of F . Suppose L is a Ca

4 -
extension of F . Then a is a sum of two squares, so a ∈ T +T = T ∪−T = PG1

and [σ, τ ]σ2|L = σ2|L. Since σ ∈ G1, σ ∈ Gal(L/F (
√

a)) and σ2|L = 1.
Now suppose L is a Da,b-extension of F . We may assume σ /∈ Z(Gal(L/F )) (the
centralizer), since otherwise clearly [σ, τ ]σ2|L = 1. Without loss of generality,
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we may assume
√

a
σ

= −√
a. Then a /∈ T ∪ −T , and since 1 = ax2 + by2, we

have b ∈ T −aT , and by rigidity, b ∈ T ∪−aT ∪−T ∪aT . However, if b were in
−T or aT , then we would obtain a ∈ T + T = T ∪ −T , a contradiction. Thus
b ∈ T ∪ −aT .
If b ∈ T , then σ and τ both fix

√
b and both have order 2. If τ does not fix√

a, then σ, τ act the same on
√

a and
√

b and hence commute. If τ fixes
√

a
then τ ∈ Z(Gal(L/F )) so in either case [σ, τ ]σ2 = σ2 = 1.
If b ∈ −aT , then σ fixes neither

√
a nor

√−a, so has order 4. Since τ acts

differently on
√

a and
√

b, it must fix one of them and be of order 2, and the
same holds for στ . Then [σ, τ ]σ2 = στσ−1τ−1σ2 = τ−1σ−2τ−1σ2 = 1 since
σ2 ∈ Z(Gal(L/F )). ¤

We have another convenient formulation of Proposition 7.6 as follows:

Corollary 7.7. A subgroup T of Ḟ containing Ḟ 2 is an S(I)-ordering if and
only if the following three conditions hold.
(a) T has level 2,
(b) F is T -rigid, and

(c) Ḟ /T ∼=
∐

i∈I∪{x}(C2)i.

In other words the S(I)-orderings are exactly the rigid orderings of level 2.

Proof. If I = ∅, the result follows from Definition 7.1, so we shall assume that
I 6= ∅. Assume that T satisfies (1), (2) and (3) of Proposition 7.6. We show

it is rigid. Let a ∈ Ḟ \ (T ∪ −T ). Then T + aT ⊂ (T ∪ −T ) + a(T ∪ −T ) =
T ∪−T ∪aT ∪−aT . Take s+at ∈ T +aT and suppose it is not in T ∪aT . Then
it is in −T ∪−aT . If s+at = −u ∈ −T then −a = t(u+ s) ∈ T +T = T ∪−T ,
a contradiction. If s+at = −au ∈ −aT then −a = s/(u+t) ∈ T +T = T ∪−T ,
a contradiction. Thus T is rigid.
By Proposition 3.3, a rigid ordering of finite level greater than 1 is exactly a
rigid ordering of level 2. This proves (a) and (b).
Conversely, if T satisfies (a) and (b), then it satisfies (1) and (3) by Proposi-

tion 3.3. Let us show we also have (2). Let a ∈ Ḟ \±(T ∪−T ) = T ∪−T . Then
(T ∪−T )+a(T ∪−T ) = ±(T +aT )∪±(T −aT ) ⊆ ±(T ∪aT )∪±(T ∪−aT ) =
(T ∪−T )∪a(T ∪−T ). Since we always have S∪aS ⊆ S +aS for any subgroup
S, we see that F is T ∪ −T -rigid. ¤

Example 7.8. It is well-known that if K −→ L is a field extension and if
T is a usual ordering of L, then S = K ∩ T is a usual ordering of K. This
need not hold for C(∅)-orderings nor for S(∅)-orderings. Consider for example

L = K(
√

K̇) and assume that L is equipped with some C∅-ordering T . Since

L̇2∩K = K̇ and L̇2 ⊆ T , we also have T∩K = K̇: the C∅-ordering T “vanishes”
under the restriction. This happens in particular if K is the finite field Fq with

an odd number q of elements. With L = Fq2 , L̇2 is a C∅-ordering. Observe
that this cannot happen when T is an S(∅)-ordering in an extension L of K:
since −1 is not in T , it cannot be in S = T ∩ K, and S cannot be the trivial
index 1 subgroup. But S(∅)-orderings are subject to another pathology of their
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own: it may happen that the restriction of an S(∅)-ordering is a C2-ordering.
(Observe that this cannot happen with C(∅)-orderings.) Take for example

K = Q, L = K(
√

10), and denote by N the norm map from L down to K. Let

α be the ordering of L containing
√

10. Let v be the discrete rank 1 valuation
on Q associated to the prime 3. Define T := {h ∈ L̇ | (−1)v(N(h))h ∈ α}. Then

−1 6∈ T and T is a subgroup containing K̇2, of index 2 in K̇ (if x 6∈ T,−x ∈ T ).

It is not a usual ordering, since −4 −
√

10 is negative at the two orderings of
L but belongs to T , as its norm 6 has an odd 3-valuation. Thus it must be an
S(∅)-ordering. Since N(f) = f2 has an even valuation when f ∈ K, we see
that S := T ∩ K is the usual ordering of Q.

The proof of the next proposition is nearly identical with the proof of Propo-
sition 7.6. Therefore in the proof below, we merely indicate the key points of
the proof. For the definition of a fan preordering, see [L2, Section 5].

Proposition 7.9. A subgroup T of Ḟ containing Ḟ 2 is a D(I)-ordering if and
only if the following three conditions hold.

(1) −1 6∈ T ,
(2) T + T = T ,
(3) F is T -rigid, and

(4) Ḟ /T ∼=
∐

i∈I∪{x}(C2)i.

In particular a subgroup T is a D(I)-ordering for some index set I, if and only
if it is a fan, and this happens if and only if T is a rigid ordering of infinite
level.

Proof. Assume that T is a PD(I)-ordering. Then D(I) = G1 ⋊ C2 where G1 =∏
i(C4)i and C2 = 〈τ〉. Further, all elements in τG1 are involutions not in

Φ(D(I)). Therefore we see that T is the intersection of the orderings P〈γ〉, γ ∈
τG1. Hence T is a preordering and conditions (1) and (2) follow. Condition
(4) follows from Kummer theory. By Proposition 7.2, −1 ∈ PG1

, hence PG1
=

T ∪−T and F is PG1
-rigid. Since T is a preordering, this implies condition (3).

Conversely, if H is an essential subgroup of GF such that T = PH and T
satisfies conditions (1), (2), (3), and (4), one can write H as a topological
group generated by G1 and τ where PG1

= T ∪−T and P〈τ〉 is a C2-ordering of
F . Using Proposition 7.2 we see that G1 =

∏
i(C4)i and using the restrictions

of the elements σ2[σ, τ ], σ ∈ G1, on Ca
4 and Da,b extensions, we check that

σ2[σ, τ ] = 1 for all σ ∈ G1. This forces H ∼= G1 ⋊ 〈τ〉 with action τ−1στ = σ−1

for each σ ∈ G1. Hence H ∼= D(I) as required.
It is known that conditions (1), (2), and (3) characterize fans [L2, Theorem 5.5],
and by Proposition 3.3 we see that they are rigid orderings of infinite level. ¤

To conclude the section we may summarize the results with the following

Theorem 7.10. Rigid orderings are exactly C(I)−, S(I)− or D(I)-orderings
for some (possibly empty) index set I.

Proof. This is a straightforward application of Proposition 3.3, Proposition 7.2,
Corollary 7.7 and Proposition 7.9. ¤
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§8. Construction of closures for rigid orderings

In this section we employ valuation-theoretic techniques to construct closures
for
C(I)-, S(I)- and D(I)-orderings. From the preceding section, we know
that both C(I)- and S(I)-orderings are T -rigid. Then for such an ordering
we will be able to use results of Arason, Elman, Jacob [AEJ], Efrat [Ef] and
Ware [Wa] to associate a valuation to T . For D(I)-orderings, it is the “Fan
Trivialization Theorem” of Bröcker [Br, Theorem 2.7] that will be used. Since
it is well known (see [Ri]) that for each algebraic extension K/F we can
extend any valuation v on F to a valuation w on K, we can then use this to
extend S(I)- or D(I)-orderings, and in most cases also C(I)-orderings, from
F to F (

√
t), t ∈ T . This will allow us to prove the existence of S(I)- and

D(I)-closures, and in most cases also C(I)-closures.

For the reader’s convenience we define here some of the valuation-theoretic
notation we will be using below. For more detailed information, we refer the
reader to [End] and [Ri] as well as [AEJ], [Wa] and [Br].

Let v : F → Γ ∪ {∞} be a valuation on the field F , where Γ is some linearly
ordered abelian group. Then we set Av to be the valuation subring of F , Mv

to be the unique maximal ideal of Av (consisting of those elements f ∈ F such
that v(f) > 0), and Uv to be the group of invertible elements of Av. We say T
is compatible with v (or Av) if 1+Mv ⊆ T . We denote the residue field Av/Mv

by Fv, and we set πv : Av → Fv to denote the canonical epimorphism from Av

onto Fv.

The strategy of the proof is as follows: It is easy to reduce the problem of
constructing H-closures to the problem of extending a given H-ordering T of a
field F to an H-ordering T ′ of any quadratic extension L = F (

√
t), t ∈ T , such

that T ′ ∩ F = T . (Here H ∼= C(I), S(I), or D(I).) In order to extend T in
this manner, we first find a suitable T -compatible valuation v on F and then
extend v to a valuation w on L. We then extend the induced ordering T̄ of the
residue field Fv to T̂ on the residue field Lw of L with respect to the valuation
w. Finally we lift the ordering T̂ from the residue field Lw to an ordering T̃ on
L, and then show that T̃ is the desired extension of T from F to L.

Suppose first that we are given some S(I)-ordering T of F . In this case, T is
“not exceptional” in the sense of [AEJ, Definition 2.15]. Thus we can apply
[AEJ, Theorem 2.16] to obtain the following.

Proposition 8.1. Let T be any S(I)-ordering of F . Then there exists a T -
compatible nondyadic valuation v of F such that UvT = T ∪ −T . The set
T̄ := πv(T ∩ Uv) is an S(∅)-ordering of Fv.

Proof. By [AEJ, Theorem 2.16], we have a T -compatible valuation v such that
UvT = T ∪−T . The last statement of the proposition follows from this. Indeed
we have

Uv

Uv ∩ T
∼= UvT

T
∼= T ∪ −T

T
.
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Since −1 /∈ T we see that Fv = T̄ ∪ −T̄ and −1 /∈ T̄ . Therefore T̄ has index 2
in Ḟv.
Since T is an S(I)-ordering on F , we see that there exist elements t1, t2, t3 ∈ T
such that t1 + t2 + t3 = 0. Dividing through by that element ti whose value
v(ti) is minimal among the three elements considered (say t1), we may assume
we have

−1 = t2 + t3, v(t2), v(t3) ≥ 0

Passing to the residue field we obtain t̄1 + t̄2 = −1̄ in Fv. Since −1 /∈ T̄ we see
that t̄i 6= 0, i = 2, 3. Thus −1 ∈ T̄ + T̄ \ T̄ , and T̄ is a S(∅)-ordering of Fv, as
claimed.
Observe also that −1 /∈ T̄ implies −1 6= 1 and charFv 6= 2. Thus v is
nondyadic. ¤

Next suppose we have a C(I)-ordering T of F . Then we may apply [Ef, Propo-
sitions 2.1 and 2.3 and Theorem 4.1], to yield the following result.

Proposition 8.2. Let T be any C(I)-ordering of F . Then there exists a T -
compatible valuation ring Av of F such that [UvT : T ] ≤ 2 and dimF2

Γ/2Γ ≥
|I|, where Γ is the associated value group. The set T̄ := πv(T ∩ Uv) is either

Ḟv itself or a C(∅)-ordering of Fv.

Proof. Observe again that the last statement claiming that T̄ := πv(T ∩Uv) is

either Ḟv itself or a C(∅)-ordering, and also the statement dimF2
Γ/2Γ ≥ |I|,

are consequences of the first part of the proposition. We have UvT
T

∼= Uv

Uv∩T , so

[Uv : Uv ∩ T ] ≤ 2; hence Uv = UvT or [Uv : Uv ∩ T ] = 2. In the latter case,
we see that T̄ = πv(T ∩ Uv) is a C(∅)-ordering as −1̄ ∈ T̄ . Also observe that

we have |I| + 1 = dimF2

Ḟ
T = dimF2

Ḟ
UvT + dimF2

UvT
T . From the hypothesis

[UvT : T ] ≤ 2 we see that dimF2

UvT
T ≤ 1. Hence dimF2

Ḟ
UvT ≥ |I|. Therefore

dimF2
Γv ≥ dimF2

Ḟ
UvT ≥ |I| as claimed. ¤

Proposition 8.3. (Fan Trivialization Theorem [Br, Theorem 2.7]) Let T be
any D(I)-ordering of F . Then there exists a T -compatible valuation ring Av of
F such that the set T̄ := πv(T ∩Uv) is either an ordering of Fv or a D-ordering
of Fv. (When T̄ is an ordering, T is called a valuation fan.) Moreover, the
valuation v may be chosen such that v(T ) contains no convex subgroups of v(F ).

Now suppose that we have an S(I)-ordering (respectively C(I)-, D(I)-ordering)
T together with a T -compatible valuation v on F . Assume t ∈ T , and let
K = F (

√
t). Our goal is to find an S(I)-ordering (respectively C(I)-, D(I)-

ordering) T ′ of K such that T ′∩F = T and Ḟ /T ∼= K̇/T ′ is the isomorphism of
multiplicative groups induced by the inclusion F →֒ K. Note that if T ′ ∩ F =
T , then the map Ḟ /T → K̇/T ′ is injective, so we need only worry about
surjectivity. Then recall the well-known Krull’s Theorem ([Ri, Theorem 5]):

Theorem 8.4. (Krull) Let F be a field and F̃ any overfield of F . Any valua-

tion v in F can be extended to a valuation ṽ in F̃ .
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Thus there exists a valuation w on K which extends v. We now make the
following convenient reduction.

Lemma 8.5. Assume that T1 ⊆ T2 are respectively S(I1)- and S(I2)-orderings

of F , and let t ∈ T1 \ Ḟ 2. Let K = F (
√

t). Suppose T ′
1 is an extension of T1 to

an S(I1)-ordering of K. Then T ′
2 := T ′

1T2 is an S(I2)-ordering of K extending
T2.

Proof. We first show that T ′
2 ∩ F = T2. By definition, T2 ⊆ T ′

2 ∩ F , and if
f ∈ T ′

2 ∩ F then there exists t′1 ∈ T ′
1, t2 ∈ T2 such that f = t′1t2. This implies

t′1 ∈ F ∩ T ′
1 = T1 ⊆ T2, and f ∈ T2. Thus T ′

2 ∩ F = T2.

Let ϕ2 : Ḟ /T2 → K̇/T ′
2 denote the natural homomorphism induced by the

inclusion map F →֒ K. Because T ′
2 ∩ F = T2 we see that ϕ2 is injective.

Consider the following diagram:

Ḟ /T1
ϕ1−−−−→ K̇/T ′

1y
y

Ḟ /T2
ϕ2−−−−→ K̇/T ′

2

Since ϕ1 : Ḟ /T1 → K̇/T ′
1 is bijective and T ′

1 ⊆ T ′
2, we see that ϕ2 is also

surjective.
Finally we shall show that T ′

2 is an S(I2)-ordering by checking that conditions
(a),(b),(c) of Corollary 7.7 hold. Since T ′

2 ∩ F = T2, we see that −1 /∈ T ′
2. As

−1 ∈ T ′
1 + T ′

1 ⊆ T ′
2 + T ′

2, we see that T ′
2 satisfies condition (a).

Suppose s = u+av ∈ K with u, v ∈ T ′
2 and a 6∈ (T ′

2∪−T ′
2). By definition of T ′

2,
u, v can be written u = u′

1u2, v = v′
1v2 with u′

1, v
′
1 ∈ (T ′

1 ∪ −T ′
1), u2, v2 ∈ T2.

Then su−1
2 = u′

1 + (av2u
−1
2 )v′

1. Because av2u
−1
2 6∈ (T ′

1 ∪ −T ′
1), the T ′

1-rigidity
of K implies su−1

2 ∈ T ′
1 ∪ (av2u

−1
2 )T ′

1, and thus s ∈ T ′
2 ∪ aT ′

2, giving condition
(b).

Finally, to check condition (c), observe that K̇/T ′
2
∼= Ḟ /T2

∼=
∐

i∈I2∪{x}(C2)i.

Thus T ′
2 is an S(I2)-ordering which extends T2. ¤

Lemma 8.6. Assume that T1 ⊆ T2 are respectively C(I1)- and C(I2)-orderings

of F , and let t ∈ T1 \ Ḟ 2. Let K = F (
√

t). Suppose T ′
1 is an extension of T1 to

a C(I1)-ordering of K. Then T ′
2 := T ′

1T2 is a C(I2)-ordering of K extending
T2.

Proof. The proof is identical to that of Lemma 8.5, except that one must now
check that −1 ∈ T ′

2. Since T ′
2 ∩ F = T2, we see −1 ∈ T ′

2. ¤

Lemma 8.7. Assume that T1 ⊆ T2 are respectively D(I1)- and D(I2)-orderings

of F , and let t ∈ T1 \ Ḟ 2. Let K = F (
√

t). Suppose T ′
1 is an extension of T1 to

a D(I1)-ordering of K. Then T ′
2 := T ′

1T2 is a D(I2)-ordering of K extending
T2.

Proof. Again the proof takes the same arguments as in the proof of Lemma 8.5
to show that T ′

2 extends T2, that −1 6∈ T ′
2 and that K is T ′

2-rigid. Let us prove
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T ′
2 +T ′

2 = T ′
2. Consider u, v ∈ T ′

2 and write them as above, u = u′
1u2, v = v′

1v2,
with u′

1, v
′
1 ∈ T ′

1 and u2, v2 ∈ T2. Then u + v = u2(u
′
1 + (v2u

−1
2 )v′

1). We
know that −1 6∈ T ′

2, and this implies that v2u
−1
2 6∈ −T ′

1. If v2u
−1
2 ∈ T ′

1,
then (u + v)u−1

2 ∈ T ′
1 + T ′

1 = T ′
1 and u + v ∈ T ′

2. The remaining possibility is
v2u

−1
2 6∈ T ′

1∪−T ′
1, and by T ′

1-rigidity of K, we have (u+v)u−1
2 ∈ T ′

1∪(v2u
−1
2 )T ′

1

and u + v ∈ T ′
2. Hence condition (2) holds. ¤

We consider the following situation. Assume that v : F → Γv ∪ {∞} is a
valuation on the field F , with valuation ring Av and maximal ideal Mv. Let
Fv = Av/Mv be the residue field, and denote by πv the canonical homomor-
phism of Av onto its quotient ring Fv.

Lemma 8.8. Assume that v is a valuation on the field F and that T0 is an
S(I0)-ordering of Ḟv for some (possibly empty) set I0. Set T1 = π−1

v (T0).

Then the group T = T1Ḟ
2 is an S(I)-ordering of F with |I| = dimF2

( Ḟ
T∪−T ).

Proof. We need to check that the conditions in Corollary 7.7 hold for T . First,
suppose that −1 ∈ T . Then −1 = t0f

2 for some t0 ∈ T1, f ∈ Ḟ . Hence
f2 = (−t0)

−1 ∈ −T1 ⊆ Uv, and so f ∈ Uv as well. Passing to the residue field

Fv and knowing Ḟv
2 ⊆ T0 we see −1 = t̄0f̄

2 ∈ T0, which is a contradiction.
Thus we must have −1 /∈ T . Since −1 ∈ T0 +T0, we have −1+m ∈ T1 +T1 for
some m in the maximal ideal of the valuation, and −1 + m ∈ −T1 ⊂ T . This
shows that the level of T is 2.
To see that F is T -rigid, let a ∈ Ḟ \ (T ∪ −T ), t1, t2 ∈ T , and consider b :=
t1 + t2a. We consider various possibilities for v(t1) relative to v(t2a). First
suppose that v(t1) = v(t2a). Then b = t1(1 + t−1

1 t2a), with u := t−1
1 t2a ∈ Uv.

Since a /∈ T ∪−T , we see that πv(u) = ū /∈ T0∪−T0. (Otherwise u ∈ π−1
v (T0) =

T1 ⊆ T or u ∈ −π−1
v (T0) = −T1 ⊆ −T and hence a ∈ T ∪−T , a contradiction.)

Since we are assuming Fv is T0-rigid, we see that 1 + ū ∈ T0 ∪ ūT0. Hence
1 + u ∈ π−1

v (T0 ∪ ūT0) = T1 ∪uT1. Thus, rewriting u = t−1
1 t2a and multiplying

through by t1, we see

b = t1 + t2a ∈ T1 ∪ aT1 ⊆ T ∪ aT

as required. Now assume that v(t1) 6= v(t2a). If v(t1) < v(t2a), then again let
b = t1(1 + u), where u = t−1

1 t2a. Now, however, v(u) > 0, so 1 + u ∈ 1 + Mv ⊆
T1 = π−1

v (T0), and thus b ∈ T . If v(t1) > v(t2a), set b = at2(1+ t1t
−1
2 a−1). We

see v(t1t
−1
2 a−1) > 0, and therefore b ∈ aT . In each case b = t1 + at2 ∈ T ∪ aT

as desired.
It remains to see that Ḟ /T ∼=

∐
i∈I∪{x}(C2)i. This condition follows from the

fact that Ḟ /T is an F2-vector space and that dimF2
Ḟ /T is 1 + |I|. ¤

We have the analogue to Lemma 8.8 for the case of C(I)-orderings.

Lemma 8.9. Assume that v is a valuation on the field F such that [Γv : 2Γv] ≥
2. Let T0 be Ḟv or a C(I0)-ordering of Fv for some (possibly empty) set I0.
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Set T1 = π−1
v (T0). Then the group T = T1Ḟ

2 is a C(I)-ordering of F with

|I| = dimF2
( Ḟ

T ) − 1.

Proof. We must check that the conditions of Proposition 7.2 hold for T . Clearly
if −1 ∈ T0, then −1 ∈ T1 ⊆ T . To see that F is T -rigid, one applies the same
argument as in Lemma 8.8. As in the case for S(I)-orderings, Ḟ /T is clearly
an F2-vector space. Since [Γv: 2Γv] ≥ 2, its dimension is strictly positive and

thus may be written dimF2
(Ḟ /T ) = 1 + |I|. ¤

Again, we also have the analogue to Lemma 8.8 for the case of D(I)-orderings.

Lemma 8.10. ([Br]) Assume that v is a valuation on the field F . Let T0 be

a fan of Ḟv. Set T1 = π−1
v (T0). Then the group T = T1Ḟ

2 is a fan (i.e. a
D(I)-ordering) of F .

We now formulate the key results in this section.

Theorem 8.11. Let T be any S(I)-ordering of F and let L = F (
√

t), t ∈
T . Then there exists an S(I)-ordering T ′ on L such that (L, T ′) is an S(I)-
extension of (F, T ).

Proof. From Proposition 8.1, we see that there exists a nondyadic T -compatible
valuation ring Av in F such that UvT = T ∪−T and that T̄ := πv(Uv ∩T ) is an
S(∅)-ordering of Fv. As π−1

v (T̄ ) = (Uv ∩T )(1+Mv) and because (1+Mv) ⊆ T ,

one has T1 := π−1
v (T̄ )Ḟ 2 ⊆ T . By Lemma 8.8, we see that T1 is an S(J)-

ordering in F for a suitable set J .
Let w be any valuation of L which extends v. Let Lw denote its residue field,
and Γv,Γw denote the valuation groups of v and w. We may assume Γv ⊆ Γw,
and we set e = [Γw : Γv], the ramification degree of w with respect to v, and
f = [Lw : Fv], the residue class degree of w with respect to v. It is well known
that ef ≤ [L : F ] = 2 and in particular we have f = [Lw : Fv] ≤ 2. More

precisely, one has Lw = Fv(
√

πv(u0)) with u0 = 1 if f = 1, and u0/t ∈ Ḟ 2 if
f = 2. By Proposition 5.6 and Remark 5.5, C4-orderings are known to admit
C4-closures of the same level, and as πv(u0) ∈ T̄ , the S(∅)-ordering T̄ admits an

S(∅)-extension T̃ to Fv(
√

πv(u0)) = Lw. Calling T2 = π−1
w (T̃ )L2, Lemma 8.8

implies that T2 is an S(K)-ordering of L for a suitable set K.
Let us first show that T1 = T2 ∩ F . By definition of T1, an element s ∈ T1 has
the same square class as an element u ∈ Uv such that πv(u) ∈ T̄ ⊆ T̃ . This

implies that πw(u) ∈ T̃ , and thus u and s are in T2. This shows T1 ⊆ T2 ∩ F .
For the reverse inclusion, we state the following claim:

Claim. With notation as above, one has L̇ = UwḞ ∪
√

tUwḞ .

Proof. We know that e ≤ 2. If e = 1, then L̇ = ḞUw and we are done. If e = 2,
then f = 1 and we may show that w(

√
t) 6∈ Γv. Otherwise

√
t = xu with x ∈ F

and u ∈ Uw, and denoting by σ the nontrivial element of the Galois group

Gal(L/F ), we know that σ(
√

t)√
t

= −1 and thus πw(σ(
√

t)√
t

) = πw(σ(u)
u ) = −1.

Since f = 1, Lw = Fv, and so πw(σ(u)
u ) must also be 1. Since the valuation
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v is not dyadic, this would be a contradiction. Thus we see that since Γw
∼=

L̇/Uw,Γv
∼= Ḟ /Uv, and [Γw : Γv] = 2, the factor group L̇/UwḞ is {1,

√
t}, and

we can write L̇ = UwḞ ∪
√

tUwḞ . ¤

We now finish the proof of the theorem. If α ∈ T2 ∩ F , we may write α = uλ2

with u ∈ π−1
w (T̃ ), λ ∈ L̇, and writing λ =

√
t
η
u1g with u1 ∈ Uw, g ∈ Ḟ , η = 0

or 1, this yields α = uu2
1t

ηg2. Since tηg2 ∈ T1, we may assume α = uu2
1. Then

πv(α) = πw(α) ∈ T̃ ∩ Fv = T̄ and α ∈ T1. This proves T1 = T2 ∩ F .

We define a new subgroup T ′
2 of L̇ as follows.

(1) If
√

t ∈ (T2 ∪ −T2), set T ′
2 = T2.

(2) If
√

t 6∈ (T2 ∪ −T2) and [Γw : Γv] = 1, again set T ′
2 = T2.

(3) If
√

t 6∈ (T2 ∪ −T2) and [Γw : Γv] = 2, set T ′
2 = T2 ∪

√
tT2.

Then again T1 = T ′
2 ∩ F , the only thing to prove being that in the third case,√

tT2 ∩ F ⊆ T1. But if α ∈
√

tT2 ∩ F we have α =
√

tug2 with u ∈ Uw, g ∈ Ḟ
and this implies w(

√
t) ∈ Γv, contradicting [Γw : Γv] = 2. This shows that√

tT2 ∩ F = ∅ in the third case.
Since T2 is an S(K)-ordering, it is easy to check that conditions (1)-(3) of
Proposition 7.6 hold for T ′

2 and to see that T ′
2 is also an S(K ′)-ordering for a

suitable set K ′.
We want to show that the injection Ḟ /T1 −→ L̇/T ′

2 is also surjective, which

reduces to showing that L̇ = T ′
2Ḟ . We already know L̇ = UwḞ ∪

√
tUwḞ , and

by Lemma 8.1, Uw ⊆ T2 ∪ −T2. This gives us UwḞ ⊆ T2Ḟ ⊆ T ′
2Ḟ . In cases

(1) and (3), one has
√

t ∈ T ′
2 ∪ −T ′

2, and so L̇ ⊆ T ′
2Ḟ . In case (2), there exists

x0 ∈ Ḟ such that
√

tx0 ∈ Uw ⊆ T2Ḟ . So
√

t ∈ T2Ḟ , finishing the proof that
Ḟ /T1 −→ L̇/T ′

2 is an isomorphism.
We have proved so far that (L, T ′

2) is an S(J)-extension of (F, T1), and that T1

is contained in the S(I)-ordering T . We may then apply Lemma 8.5 to show
that (L, T1T

′
2) is an S(I)-extension of (F, T ), and the theorem is proved. ¤

Corollary 8.12. An S(I)-ordered field (F, T ) admits an S(I)-closure.

Proof. Let S be the set of extensions (L, S) of (F, T ) inside F (2) such that S
is an S(I)-ordering on L. Then by a Zorn’s Lemma argument S has a maximal

element (K,T0) with K̇/T0
∼= Ḟ /T, T = T0 ∩ F , and T0 is an S(I)-ordering

on K. We are done by Corollary 4.3 if we can show T0 = K̇2. If not, choose
t ∈ T0\K̇2. Then by Theorem 8.11 we can extend T0 to an S(I)-ordering on
K(

√
t), contradicting the maximality of (K,T0). ¤

Corollary 8.12 can be reformulated in the language of Galois theory as in
the following corollary, which tells us that a certain family of subgroups of
GF := Gal(F (2)/F ) occurs whenever GF contains certain subquotients of GF .
Observe that in Corollary 8.13 we do not specify the action of the outer factor
Z2 on the normal subgroup (Z2)

I as this action depends upon a subtler analysis
of the roots of unity belonging to the fields under consideration.

Corollary 8.13. Let F be a field of characteristic 6= 2. Suppose that we

have a tower of field extensions F ⊂ N1 ⊂ N2 ⊂ N
(3)
1 ⊂ F (2), such that
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Gal(N
(3)
1 /N2) ∼= (C4)

I⋊C4 for I some nonempty set. Then GF = Gal(F (2)/F )
contains the closed subgroup (Z2)

I ⋊ Z2.

Proof. Let F ⊂ N1 ⊂ N2 ⊂ N
(3)
1 ⊂ F (2) be a tower of field extensions, where

N
(3)
1 /N2 is a Galois extension and Gal(

N
(3)
1

N2
) ∼= (C4)

I ⋊C4 for I some nonempty

set. Set T = {t ∈ Ṅ1 | (
√

t)σ =
√

t for each σ ∈ Gal(N
(3)
1 /N2)}. From

Definition 7.1 we see that T is an S(I)-ordering of N1. From Corollary 8.12

it follows that there exists a field extension N of N1 such that Ṅ2 is an S(I)-

ordering of N and Ṅ2 ∩N1 = T . Then Proposition 8.1 implies the existence of
an Ṅ2-compatible valuation ring Av of N such that UvṄ2 = Ṅ2 ∪ −Ṅ2.
It is well known that an Ṅ2-compatible valuation v on N is 2-henselian. More-
over N is a rigid field (and is S(I)-closed). In Proposition 8.1 we observed that
v is a nondyadic valuation (i.e., char Fv 6= 2) and in this case it follows from
basic valuation theory (see e.g. [End, §20]) that we have a split short exact
sequence

1 −→ Iv −→ GN (2) −→ GNv
(2) −→ 1,

where Iv is the inertia subgroup of GN (2) := Gal(N(2)/N) = Gal(F (2)/N)
and Nv is the residue field of v. Moreover it is well known that Iv is an abelian
group. (See e.g. [EnKo].)

Because Ṅ2 is an S(I)-ordering of N we see that s(N) = 2. In particular N
is not a formally real field, and so GN (2) is a torsion-free group. (See [Be].)
Therefore using Pontrjagin’s duality and the well-known structure of abelian
divisible groups, we see that Iv

∼= (Z2)
J for some set J . (See e.g. [RZ, §4.3,

Theorem 4.3.3].)

Because Ṅ2 is compatible with v and

Uv

Uv ∩ Ṅ2
∼= Ṅ2 ∪ −Ṅ2

Ṅ2
,

we see that | Ṅv/Ṅ2
v |= 2. Hence GNv

(2) ∼= Z2. Since Ṅ2 is an S(I)-ordering
of N , it follows that the cardinality of I is the same as the cardinality of J .
Hence Iv

∼= (Z2)
I . Since the Galois group GN (2) = Iv ⋊Z2 is a closed subgroup

of GF , the proof is completed. ¤

In the case of C(I)-orderings, we cannot always find a closure. The problem
arises from the fact that the valuation whose existence is guaranteed by Propo-
sition 8.2 may be dyadic, and thus the appropriate modification of Theorem
8.11 will not go through. For S(I)- and D(I)-orderings we do not have this
problem, as the valuation in question will be nondyadic. Example 8.14 below
constructs a C(1)-ordered field which we show in Proposition 8.15 does not
admit a C(1)-closure.

Example 8.14. Recall that a field K of characteristic 2 is called perfect if
K2 = K. S. MacLane has shown that for any field K of characteristic 2, there
exists a field F of characteristic 0 with a valuation v : F → Z∪ {∞} such that
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Fv
∼= K ([Mac, Theorem 2]. For some more general theorems on valued fields

with prescribed residue fields, see [Ri, Chapter I]). Then let F be such a field
where Fv = K is a field of characteristic 2 which is not perfect. Let T0 be a
multiplicative subgroup of K̇ of index 2 in K̇ such that K̇2 ( T0 ( K̇. Let
T = Ḟ 2π−1

v (T0), a subgroup of Ḟ . Here πv is the residue map Uv −→ K̇. Then

| Ḟ /T |= 4, and one can choose as representatives of the factor group Ḟ /T the
elements 1, u, ρ, ρu where v(ρ) = 1, u ∈ Uv, and πv(u) /∈ T0.
We claim that F is T -rigid. Since any element in ρT or in ρuT lies outside
of UvT , we see that all elements of ρT ∪ ρuT are T -rigid. (See [AEJ, Propo-

sition 1.5.]) Consider an element α = t1 + t2u ∈ T + uT , with t1, t2 ∈ Ḟ .
Then α = t2(t1t

−1
2 + u), so it is enough to show t1t

−1
2 + u ∈ T ∪ uT . Thus

we may restrict our attention to elements which can be written as tf2 + u,
where t ∈ π−1

v (T0), f ∈ Ḟ . If v(f) = 0, then tf2 + u ∈ Uv ⊆ T ∪ uT . If
v(f) > 0, then tf2 + u = u(1 + tf2u−1) ∈ uT . Finally, if v(f) < 0, then
tf2 + u = tf2(1 + uf−2t−1) ∈ T . Thus F is T -rigid.
Since −1 ∈ T0, we have −1 ∈ T , and T is a C(1)-ordering of F . Observe that

T 6= Ḟ 2 and (F, T ) is not C(1)-closed.

Proposition 8.15. The C(1)-ordered field (F, T ) does not admit a C(1)-
closure.

Proof. Recall that a valuation ν on a field L is said to be T -coarse if ν(T ) con-
tains no nontrivial convex subgroups of the valuation group Γν of ν. Suppose
that F ( N ( F (2), Ṅ2 ∩ F = T , and Ṅ2 is a C(1)-ordering of N . Then
applying [AEJ, Corollary 2.1.7] or [Wa, Theorem 2.16], we see that there exists

a Ṅ2-compatible valuation w on N such that [UwṄ2 : Ṅ2] ≤ 2. This means

that | Uw/Uw ∩ Ṅ2 |≤ 2. We may further choose w to be the unique finest N2-
coarse N2-compatible valuation on N (see [AEJ, Theorem 3.8]). Consider z :=
the restriction of the valuation w to F . First observe that z is a T -compatible
valuation on F . Indeed, from Mw ∩ F = Mz we get (1 + Mw) ∩ F = 1 + Mz.
Thus we have

1 + Mz = (1 + Mw) ∩ F ⊆ Ṅ2 ∩ F = T.

Let ∆ be the maximal convex subgroup of Γz contained in z(T ). Then set y
to be the composite valuation

y : Ḟ
z−→ Γz

ρ−→ Γz/∆,

where the last map ρ : Γz → Γz/∆ is the natural projection. Then, following
the notation of [AEJ, Definition 2.2], the valuation ring Ay = OF (UzT, T ), and
y(T ) contains no nontrivial convex subgroups of the value group Γy = Γz/∆
([AEJ, Lemma 3.1 and Proposition 3.2]), so y is T -coarse. Observe that y is also
T -compatible. However, since Γv = Z and v(T ) = 2Z 6= Z, the valuation v is
also T -coarse. Hence, by [AEJ, Corollary 3.7], we see that the valuations v and
y are comparable. Since Av is a maximal proper subring of F (because Γv = Z),
we see that Av ⊇ Ay ⊇ Az. However, since Mz ⊇ My ⊇ Mv and 2 ∈ Mv, we
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see that both valuations y and z are dyadic. Since Fz ⊆ Fw, it follows that w
is also dyadic. But from [AEJ, Theorem 3.8 and Lemma 4.4], it follows that

w cannot be a dyadic valuation. Indeed, [DN 〈1,−n2〉Ṅ2 : Ṅ2] = 4 > 2 for

all n ∈ Ṅ . Thus we have a contradiction, and there can be no C(1)-closure of
(F, T ). ¤

Remark 8.16. Example 8.14 is analogous to Proposition 4.5. What makes
this example striking when compared to Proposition 4.5 is that here we have
| Ḟ /T |= 4 < ∞, but in Proposition 4.5 | Ḟ /T |= ∞. Although this example
is a relatively simple consequence of the work in [AEJ], it seems to be the first
example where the Witt ring of a field with finitely many square classes is
realizable as a “Witt ring of T -forms over some field F”, but it is not realizable
as an actual Witt ring of any field extension K of F . We make this last comment
more precise.
First observe that, analogous to the definition of reduced Witt rings of fields,
one may define WT (F ) for any subgroup T of Ḟ which contains all nonzero
squares in F . One possible definition is as follows: (See also [La2, Corol-
lary 1.27] and [Sc, Chapter 2, § 9].)

Let Z[Ḟ /T ] be the group ring of Ḟ /T with coefficients in Z. Let J be the ideal

of Z[Ḟ /T ] generated by

(1) [T ] + [−T ],

(2) [aT ] + [bT ] − [(a + b)T ] − [ab(a + b)T ], (a, b, a + b ∈ Ḟ ),

(3) [aT ][bT ] − [abT ], (a, b ∈ Ḟ ).

Then we set WT (F ) = Z[Ḟ /T ]ÁJ .
A systematic study of WT (F ) for H-orderings T of F is very desirable, but
it is not pursued in this particular paper. Here we just point out that if T is
any C(1)-ordering of F then WT (F ) ∼= W (Qp), where p is any prime such that
p ≡ 1 (mod 4), and Qp is the field of p-adic numbers.

Since T is a C(1)-ordering in Ḟ and Q̇2
p is a C(1)-ordering in Qp (see Propo-

sition 7.2 and [L1, Chapter 6]), we see that there exists a group homomor-

phism ϕ: Ḟ /T −→ Q̇p/Q̇2
p such that ϕ takes any relation in the form (1),

(2) or (3) above again to a relation of the same type. Using the same argu-
ment for ϕ−1 rather than ϕ, we see that ϕ indeed induces an isomorphism
ϕ̃:WT (F ) ∼= W (Qp).

Similar to Proposition 4.12, we have the following proposition.

Proposition 8.17. Let (F, T ) be the field F with C(1)-ordering T constructed
in Example 8.14 above. Then there is no field extension K/F with C(1)-

ordering K̇2 which is a T -extension of (F, T ). (Equivalently, WT (F ) cannot be
realized as W (K) for any field extension K of F .)

Proof. Suppose to the contrary that there exists a field extension K/F such

that K̇2 is a C(1)-ordering of K and (K̇, K̇2) is a T -extension of (F, T ). As-
sume that both K and a quadratic closure F (2) of F are contained in some
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common overfield so that we can consider the field L = K ∩F (2). The natural

isomorphism ψ: Ḟ /T −→ K̇/K̇2 factors through θ: Ḟ /T −→ L̇/(K̇2 ∩ L). Be-
cause ψ is injective, so is θ. Observe that θ is also surjective. Indeed since ψ is
surjective, we see that for each l ∈ L̇ there exists an element f ∈ Ḟ such that
lf−1 ∈ K̇2 ∩ L. Thus we see that (L, K̇2 ∩ L) is a T -extension of (F, T ).

We claim that (L̇, K̇2∩L) is a C(1)-closure of (F, Ṫ ). Observe that K̇2∩L = L̇2.

Indeed if k2 ∈ L, k ∈ K̇ then k ∈ K̇ ∩F (2) = L̇. Since L̇2 ⊂ K̇2 ∩L is obvious,

we see that K̇2 ∩ L = L̇2. In order to conclude the proof, it is enough to show
that L̇2 is a C(1)-ordering in L̇. Because

√
−1 ∈ K̇ we see that

√
−1 ∈ L̇

as well, and −1 ∈ L̇2. From the isomorphism θ: Ḟ /T −→ L̇/L̇2 we see that

L̇/L̇2 = C2⊕C2. By Proposition 7.2 it remains only to show that L is L̇2-rigid.

Consider an element a ∈ L̇ÂL̇2. For any l ∈ L̇ we have l2 + a ∈ K̇2 ∪ aK̇2

because K̇ is K̇2-rigid and L̇2 = K̇2 ∩L. Hence l2 + a ∈ (K̇2 ∩L)∪ (aK̇2 ∩L).

Finally since K̇2 ∩ L = L̇2 and aK̇2 ∩ L = aL̇2 we see that L̇ is L̇2-rigid. ¤

Theorem 8.18. A C(I)-ordered field (F, T ) possessing a nondyadic T -
compatible valuation ring Av as in Proposition 8.2 admits a C(I)-closure.

Proof. The proof is essentially the same as the proof of Theorem 8.11 and
Corollary 8.12, and we will follow the same plan and the same notation. Ap-
plying Proposition 8.2, we find a valuation v on F such that T̄ := πv(Uv ∩T ) is

either Ḟv or a C-ordering. By assumption here this valuation is nondyadic. By
Lemma 8.9, T1 is a C(J)-ordering contained in T . Taking any valuation w on

L = F (
√

t) extending v, we extend T̄ to T̃ in Lw. We obtain, by Lemma 8.9,
a C(K)-ordering T2 in L. We enlarge it to a C(K ′)-ordering T ′

2, according to
the three cases (1), (2), (3), replacing T2 ∪−T2 by T2. The only serious change

is in proving that L̇ = T ′
2Ḟ . For this it is enough to show that Uw ⊆ T2Ḟ ,

which can be done as follows. If the index [UvT : T ] = [Ḟv : T̄ ] is 1, then

[L̇w : T̃ ] = [UwT2 : T2] = 1 and Uw ⊆ T2. If this index is 2, there exists a ∈ Uv

such that Uw ⊆ T2 ∪ aT2 ⊆ T2Ḟ . This shows that (L, T ′
2) is a C(J)-extension

of (F, T1), and we apply Lemma 8.5 to show that (L, T1T
′
2) is a C(I)-extension

of (F, T ). We finish by applying the same argument as in Corollary 8.12. ¤

The following observation about valuations when F contains a real-closed field
was pointed out to us by J.-L. Colliot-Thélène. It contains a convenient condi-
tion for a valuation v to be nondyadic, and thus it is related to Theorem 8.18.

Example 8.19. Let v be a valuation with value group Γ, and denote by Uv the
units of the valuation ring. Suppose there exists an integer n > 1 such that any
n-divisible subgroup of Γ is trivial. Assume that F contains a real-closed field
R. Then R is contained in Uv, and in particular the valuation is nondyadic.

Proof. Assume F contains a real-closed field R. If a ∈ R is positive, for the
given integer n there exists b ∈ R such that a = bn, and thus v(a) = nv(b).
Thus v(a), being divisible by any power of n, must be 0, and the nonzero
elements of R must be units. This implies that the residue field Fv contains an
isomorphic copy of R, and the valuation v cannot be dyadic. ¤
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Theorem 8.20. A D(I)-ordered field (F, T ) admits a D(I)-closure.

Proof. We have already proved that D-orderings admit closures, and thus we
may assume that |I| > 1. It has also already been shown in [Sch] that val-
uation fans admit closures. Here is a more general situation and a different
proof, that consists again in transpositions of the proofs of Theorem 8.11 and
Corollary 8.12. As in Theorem 8.11, if t ∈ T and L = F (

√
t), applying Propo-

sition 8.3, we find a valuation v on F such that T̄ := πv(Uv ∩ T ) is either an
ordering or a D-ordering. By Lemma 8.10, T1 is a D(J)-ordering contained

in T . Taking any valuation w on L = F (
√

t) extending v, we extend T̄ to T̃
in Lw. By Lemma 8.10 we obtain a D(K)-ordering T2 in L. We enlarge it
to a D(K ′)-ordering T ′

2, according to the three cases (1), (2), (3), replacing
T2 ∪−T2 by T2. As in the case for C(I)-ordered fields, the only serious change

is in proving that L̇ = T ′
2Ḟ , and the proof is identical to that for C(I)-ordered

fields. ¤

§9. Galois groups and additive structures (2)

Throughout this paper, we have considered a number of subgroups H of GF

which behave pretty well, in that we have a certain control over the additive
structure of the associated orderings, and we are able to make closures. Ac-
tually some of these groups H have an additional property which helped us
in a subtle but important way. Let us introduce the following definition and
notation.

Definition and Notation 9.1.
(1) We say that an essential subgroup H of GF is lifted if we can write GF =
G ⋊ H for some normal subgroup G of GF . This means that H is not only a
subgroup of GF , but also a quotient GF −→ H such that H −→ GF −→ H is
the identity map. The H-ordering PH is called a lifted ordering. (The name
lifted was chosen because such an H corresponds, as a quotient of GF , to a
Galois extension of F inside F (3), of group H, which can be lifted as a Galois
subextension of F (3) of same group H.)
(2) If we want to realize some subgroup H of GF as a GK for some field K, we
certainly need to use an H which satisfies known properties of W -groups. In
particular, if H 6= {1}, C2, then by Corollary 2.18 of [MiSp2], we see that H
can be embedded in a suitable product

∏
I D × ∏

J C4, where each factor is a
quotient of H. According to the use in universal algebra, see e.g. [Gr, p. 123],
we refer to H as the subdirect product of

∏
I D × ∏

J C4. (Also we say that H
as above satisfies the subdirect product condition.)
(3) We say that an essential subgroup H of GF is a fair subgroup if it is lifted
and if it is either {1} or C2 or a subdirect product of some

∏
I D×∏

J C4. The
H-ordering PH will be called a fair ordering if H is a fair subgroup of GF .

Remark 9.2. We observed in Example 6.4 that the subgroup H = 〈σ, τ〉 ∼=
C4 ∗ C4 in GQ2

has associated H-ordering T = Ḟ 2 ∪ 5Ḟ 2, F = Q2, such that
T + T is not multiplicatively closed. We now use the description of GF = G2
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342 Louis Mahé, Ján Mináč, and Tara L. Smith

as in Example 2.9, to show that H is not a lifted subgroup of GF . Suppose
instead that H is a lifted subgroup of GF . Then there exists a subgroup G
of GF such that GF = G ⋊ H. Then G must contain some element of the
form α = ρhφ where ρ is an element of GF such that ρ, σ, τ generate GF and
σ2[ρ, τ ] = 1, h ∈ H and φ is some element in Φ(GF ). Because G is a normal
subgroup of GF we see that α ∈ G implies α−1(τ−1ατ) = [α, τ ] ∈ G as well.
Hence [α, τ ] = [ρhφ, τ ] = [ρ, τ ][h, τ ] ∈ G. On the other hand [ρ, τ ][h, τ ] =
σ2[h, τ ] ∈ H. Because GF = G ⋊ H we see G ∩ H = {1} and thus σ2[h, τ ] = 1.
This equality is impossible as H is a free group in category C. Therefore H is
not lifted.

Observe that it is sometimes fairly easy to establish the “fairness” of a given
subgroup. For example if H = 〈σ〉 is an essential subgroup of GF of order 2,
then for f /∈ PH the restriction H −→ Gal(F (

√
f)/F ) induces an isomorphism.

Since the subdirect product condition is empty, H is fair. We can also readily
check the following:

Proposition 9.3. Let ϕ:D(I) −→ GF be an essential embedding. Then
ϕ(D(I)) is a lifted subgroup of GF . As the subdirect product condition is also
trivially satisfied, it is a fair subgroup of GF .

Proof. Consider a D(I)-ordering T of F for some | I |≥ 1. Pick a basis for Ḟ /T
of the form {[−1]}∪{[ai], i ∈ I}. (As usual [f ] means the class represented by f

in the factor group Ḟ /T .) Set K/F = F (
√
−1, 4

√
ai: i ∈ I). Then Gal(K/F ) ∼=

(
∏

I C4) ⋊ C2, where we can choose generators τ̄i, i ∈ I for factors in the inner

product and σ̄ for the outer factor such that σ̄(
√
−1) = −

√
−1, σ̄ ( 4

√
ai) =

4
√

ai, τ̄i (
√
−1) =

√
−1 and τ̄i ( 4

√
ai) =

√
−1 4

√
ai, τ̄i ( 4

√
aj) = 4

√
aj for j 6= i.

Moreover the action of σ̄ on
∏

I C4 is described as σ̄−1 τ̄i σ̄ = τ̄3
i for each

i ∈ I. (Or equivalently σ̄−1 τ̄ σ̄ = τ̄−1 for each τ̄ ∈ ∏
I C4.)

Pick any elements σ, τi, i ∈ I ∈ H: = ϕ(D(I)) such that their homomorphic
image from H to Gal(K/F ) are elements σ̄, τ̄i, i ∈ I. This is possible as H
surjects on Gal(K/F ). Then the essential subgroup H of GF is generated by
the minimal set of generators {σ, τi, i ∈ I}. Moreover the natural restriction
map r:H −→ Gal(K/F ) is an isomorphism, as r takes the generators of H
to the generators of Gal(K/F ) and both sets of generators satisfy the same
relations. ¤

Now we consider C4-orderings and determine when they are fair orderings.
Observe that a C4-ordering is automatically fair provided it is lifted, so it is
enough to decide when a C4-ordering T is lifted.

Proposition 9.4. Let T be a C4-ordering of F . Then T is lifted if and only
if there exists an element f ∈ (F 2 + F 2) \ (T ∪ {0}).
Proof. Suppose that T is a C4-ordering of F, T = PH for H ∼= C4, and H is
essentially embedded in GF . Suppose also that f ∈ (F 2 +F 2)\ (T ∪{0}). Then

since f /∈ T and T ⊃ Ḟ 2, we see that f /∈ F 2 and a Cf
4 -extension K of F

exists. Because f ∈ Ḟ \ T , an element h ∈ H exists such that h(
√

f) = −√
f .
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Then the image of h in Gal(K/F ) under the natural homomorphism H −→
Gal(K/F ) is a generator of Gal(K/F ). Therefore the homomorphism is in fact
an isomorphism, and H is lifted as asserted. Assume now that H ∼= C4 is a
lifted subgroup of GF . Then a surjective homomorphism ϕ:GF −→ C4 exists,
which induces an isomorphism ψ:H −→ C4. Let K be the fixed field of the
kernel of ϕ. Then K/F is a Galois extension on Gal(K/F ) ∼= C4. Let F (

√
f) be

a unique quadratic extension of F contained in K. Also let T = PH . Then H
acts nontrivially on

√
f and f ∈ (F 2+F 2)\{0}. Hence f ∈ (F 2+F 2)\(T ∪{0})

as claimed. ¤

Example 9.5. The following simple example shows that we cannot drop the
condition ∃ f ∈ (F 2 + F 2) \ (T ∪ {0}) from the proposition above, and that
unfair C4-orderings exist in nature. Consider again F = Q2 and set T =
(F 2 + F 2) \ {0}. Then T is a subgroup of Ḟ of index 2. Because Q2 is not
a formally real field, Q2 does not admit any usual ordering, and T is a C4-
ordering of F . However T contains all sums of two squares, and therefore T is
not lifted.

On the bright side, we wish to point out that for each C4-ordering there exists
a quadratic extension of the base field, and an extension of the original C4-
ordering on this quadratic extension where this extended ordering become a fair
ordering. In other words an unfair ordering may become fair in some algebraic
extension. More precisely we have the following proposition, in which we use
Definition 1.4(4) of an H-extension

Proposition 9.6. Let T be a C4-ordering in F . If T is not fair, there exists
t ∈ T and a C4-extension (F (

√
t), V ) of (F, T ) such that V is a fair ordering

in F (
√

t).

Proof. Suppose that T is a C4-ordering in F . Then by Proposition 5.4 there
must exist an element t ∈ T such that 1 + t /∈ T . If T is not a fair ordering, we
know from the characterization of fair orderings in Proposition 9.4 that t /∈ Ḟ 2.
Hence K = F (

√
t) is a quadratic extension of F and [K:F ] = 2. From the

proof of Proposition 4.2, we know that there exists some subgroup V in K such
that | K̇/V |= 2 and V ∩ Ḟ = T . Then V is a C4-ordering of K, and V is fair
as 1 + (

√
t)2 /∈ V . ¤

In this section we merely give a few examples of fair orderings and are not
pursuing a systematic check of which orderings considered in this paper are
fair and which will become fair after extension to a suitable 2-extension of the
base field. The development of a theory of fair orderings of fields is planned
for a subsequent paper.

We complete our family of examples of orderings by considering H = F(I),
where I is some nonempty index set and F(I) is the free pro-2-group in the
category C, on a minimal set {σi | i ∈ I} of generators I. (We assume as usual
that each open subgroup V of F(I) contains all but finitely many σi, i ∈ I. See
[Koc, Chapter 4].)
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Proposition 9.7. Let K/F be a Galois extension such that Gal(K/F ) ∼=
F(I)=〈σi|i ∈ I〉 where {σi, i ∈ I} is a family of minimal generators of the free
pro-2-group F(I) in our category C. Then there exists a fair F(I)-ordering in
F .

Proof. We first embed the group F(I) essentially in GF . Since F (3) is
the maximal Galois subextension of a quadratic closure Fq of F such that

Gal(F (3)/F ) belongs to the category C, and since F(I) also belongs to C, we
see that K ⊂ F (3). Therefore there exists a surjective natural homomorphism
π:GF −→ Gal(K/F ).

It is well known that there exists a continuous map s: Gal(K/F ) −→ GF such
that π ◦ s is the identity map on Gal(K/F ) (See [Koc, 1.3]). (Here we use
only the fact that both groups Gal(K/F ) and GF are profinite groups.) Set
s(σi) = ωi for each i ∈ I. Then for each open subgroup V of GF the set s−1(V )
is an open subset of Gal(K/F ), and because open subgroups of Gal(K/F ) form
a basis for the topology of Gal(K/F ) we see that all but finitely many σi, i ∈ I,
are in σ−1(V ). Hence all but finitely many ωi are in V .

Because F(I) is a free object of C on the set of generators (σi), i ∈ I we see
that there exists a continuous homomorphism p: Gal(K/F ) −→ GF such that
p(σi) = ωi for each i ∈ I. Set H = p(Gal(K/F )). Then we have π ◦ p = 1
and GF

∼= ker π ⋊ H. Moreover, π restricted to H induces an isomorphism
ϕ:H −→ Gal(K/F ). Observe that ϕ(ωi) = σi for each i ∈ I. Because σi

mod φ(Gal(K/F )) are topologically independent, we see that ωi must be topo-
logically independent mod φ(GF ). This means that {ωi, i ∈ I} generates the
essential subgroup H of GF .

One can check that F(I) is a subdirect product of its dihedral and C4 quotients
directly from the structure of F(I), but it is also possible simply to observe
that F(I) is the W -group of a suitable field A and all W -groups have this
property. That each F(I) is the W -group of a suitable field A follows from the
fact that for each index set I 6= φ we can find a field A such that the Galois
group of its quadratic closure is a free pro-2-group (see e.g., [GM, page 98]),
and therefore its W -group is F(I). ¤

The following corollary applies, for example, in the case of F = Qp(t).

Corollary 9.8. Let F be the quotient field of a complete local integral domain
properly contained in F . Let F(I) be any free object of category C on generators
I, where I is a nonempty finite set. Then F admits a fair F(I)-ordering.

Proof. From Proposition 9.7 we see that it is sufficient to show that each group
F(I), I finite and nonempty, occurs as a Galois group over F . Harbater’s well-
known result [Har, p. 186] says that each finite group is realizable over F . (For
a very nice and rather elementary proof of this result see [HaVöl, Theorem
4.4].) ¤

Let us fix the following notation.
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Notation 9.9. Let i:F1 −→ F2 be a quadratic extension and let i⋆:GF2
−→

GF1
be the associated restriction map. (See e.g. [MiSm3] for the existence of

this map.) Let H2 be a subgroup of GF2
and let H1 = i⋆(H2). Assume H1

is essential in GF1
. Observe that this property is not automatically satisfied

since the image of an essential group under the restriction map i⋆ need not be
essential. (See Remark 7.8 for an example exhibiting such a case.) When this
is the case, we say that the extension (F1,H1) −→ (F2,H2) is essential. Put
T1 = PH1

, T2 = PH2
. Then it follows that T1 = T2 ∩ F1.

If we are working with fair groups H as above, then we can show that for an
essential quadratic extension (F1,H1) −→ (F2,H2), the additive structure of
the associated orderings is preserved if and only if i⋆ induces an isomorphism
between H2 and H1.

Theorem 9.10. Assume the hypotheses in Notation 9.9 hold and that H1,H2

are fair subgroups of GF1
,GF2

respectively. Then the restriction i⋆ induces an

isomorphism between H2 and H1 if and only if Ḟ1/T1
∼= Ḟ2/T2 and for each

a ∈ F1, T1 + aT1 = (T2 + aT2) ∩ F1.

Since the proof is a bit long and since the two directions are not using the same
assumptions on H1,H2, we split the theorem in two parts, Proposition 9.11 and
Proposition 9.12

Proposition 9.11. Assume that H1 is lifted. Following Notation 9.9, if the
restriction i⋆ induces an isomorphism between H2 and H1, then Ḟ1/T1

∼= Ḟ2/T2

and for each a ∈ F1, T1 + aT1 = (T2 + aT2) ∩ F1.

Proof. We know that Ḟi/Ti is the Pontrjagin dual of Hi/Φ(Hi) for i = 1, 2.

Thus the natural isomorphism H2 −→ H1 yields an isomorphism Ḟ1/T1
∼=

Ḟ2/T2. In order to show that for each a ∈ F1 we have T1+aT1 = (T2+aT2)∩F1,

it is enough to show that for every b, c ∈ Ḟ1 \T1, if there exists s2, t2 ∈ T2 such
that bs2 + ct2 = 1, then there exists s1, t1 ∈ T1 such that bs1 + ct1 = 1. Indeed,
assume that the latter condition involving b, c ∈ Ḟ1 \ T1 is valid. Consider

any a ∈ Ḟ1 and any relation u2 + av2 = d, where u2, v2 ∈ T2 ∪ {0} and

d ∈ Ḟ1. We want to show that there exist elements u1, v1 ∈ T1 ∪ {0} such that

u1 + av1 = d. If u2 = 0 then v2 ∈ Ḟ1 ∩ T2 = T1, and we are done. If v2 = 0
then u2 = d ∈ Ḟ1 ∩ T2 = T1, and again we are done. Then assume u2, v2 ∈ T2.
If −a ∈ T1, let us write d = s2 − t2 for some elements s, t ∈ Ḟ1. We then
have d = s2 + a(−at2/a2) ∈ T1 + aT1. Hence we may assume that −a /∈ T1.
Finally we also assume that d /∈ T1. From the equation u2 + av2 = d we obtain
u2 = d−av2, and since u2, v2 ∈ T2 we can rewrite this equation as 1 = ds2−at2
where d,−a ∈ Ḟ1 \ T1. Using our hypothesis we see that there exist elements
s1, t1 ∈ T1 such that 1 = ds1 − at1. Hence d ∈ T1 + aT1 as required.
Now take b, c ∈ Ḟ1 \ T1 and assume that bs2 + ct2 = 1 for some s2, t2 ∈ T2.

Then the quaternion algebra
(

bs2,ct2
F2

)
splits. We consider the following cases.

(1) Suppose bs2, ct2 are linearly independent in Ḟ2/T2. Then they are also

independent modulo Ḟ 2
2 , and by Proposition 1.5 we have a dihedral extension
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L2/F2 such that F2(
√

bs2,
√

ct2) ⊂ L2 and Gal(L2/F2(
√

bcs2t2)) ∼= C4. In
particular we have an exact sequence

1 −→ C2 −→ Gal(L2/F2) ∼= D −→ Gal(F2(
√

bs2,
√

ct2)/F2) ∼= C2 × C2 −→ 1.

Let θ denote the restriction map from H2 to Gal(F2(
√

bs2,
√

ct2)/F2). We show
it is surjective. Denote by u1, u2 the two generators of Gal(F2(

√
bs2,

√
ct2)/F2)

defined by u1(
√

bs2)/
√

bs2 = −1, u1(
√

ct2)/
√

ct2 = 1, u2(
√

bs2)/
√

bs2 =
1, u2(

√
ct2)/

√
ct2 = −1. We may look at u1, u2 as linear functions on the

F2-vector subspace of Ḟ2/Ḟ 2
2 spanned by bs2, ct2, which are assumed to be in-

dependent, and since bT2 ∩ cT2 = ∅, we may extend them to linear functions
v1, v2 defined on the subspace generated by bT2, cT2, by putting vi(x) = ui(b)
if x ∈ bT2 and vi(x) = ui(c) if x ∈ cT2. Then vi may be viewed as a function

on the F2-vector subspace generated by the cosets bT2, cT2 in Ḟ2/T2. Again,
these functions vi’s may be extended to wi defined on the whole vector space
Ḟ2/T2. By duality, one has (Ḟ2/T2)

⋆ ∼= H2/Φ(H2), and the wi’s yield to el-
ements in H2/Φ(H2) which may be lifted as elements h1, h2 ∈ H2. Since

the duality is precisely given by the pairing H2/Φ(H2) × Ḟ2/T2 −→ {±1} de-
fined by (h, f) 7→ h(

√
f)/

√
f , it is immediate that hi goes to ui under the

restriction map θ:H2 −→ Gal(F2(
√

bs2,
√

ct2)/F2). This shows the surjectiv-
ity of θ. Since θ factors through ψ:H2 −→ Gal(L2/F2) ∼= D and since the
kernel of Gal(L2/F2) −→ Gal(F2(

√
bs2,

√
ct2)/F2) is the Frattini subgroup of

Gal(L2/F2), we see that ψ is also surjective. This means that D may be viewed

as a quotient of H2 and that we have inclusion maps F
(3)
2

H2 −→ L′
2 −→ F

(3)
2

such that Gal(L′
2/F

(3)
2

H2

) ∼= D. Since i⋆(H2) = H1, applying i⋆ to this diagram

gives us another diagram F
(3)
1

H1 −→ L′
1 −→ F

(3)
1 with Gal(L′

1/F
(3)
1

H1

) ∼= D.
Since H1 is lifted, we know that there exists an H1-extension K/F1 inside

F
(3)
1 containing a D-extension L1/F1. This extension is a Du,v-extension for

suitable u, v ∈ F1 by Proposition 1.5. We claim that we have u = bs1, v = ct1
for suitable s1, t1 ∈ T1. Consider the surjective homomorphism

θ:H2 −→ Gal(F2(
√

bs2,
√

ct2)/F2)

defined above. Then θ factors through the surjective homomorphism ψ:H2 −→
Gal(L2/F2) ∼= D. Using the isomorphism β:H2 −→ H1 induced by i⋆

and our construction of L1/F1, we see that the homomorphism ψ:H2 −→
Gal(L2/F2) is compatible, via identification of H2 with H1 using i⋆, with

the restriction homomorphism ψ̃:H1 −→ Gal(L1/F1). Passing to the
quotients Gal(F2(

√
bs2,

√
ct2)/F2) and Gal(F1(

√
u,

√
v)/F1) of Gal(L2/F2)

and Gal(L1/F1) respectively, we see that we can identify the homomor-
phism θ:H2 −→ Gal(F2(

√
bs2,

√
ct2)/F2) with the restriction homomorphism

θ̃:H1 −→ Gal(F1(
√

u,
√

v)/F1) via the isomorphism i⋆:H2 −→ H1. Finally

from the natural isomorphism Ḟ1/T1
∼= Ḟ2/T2 we may assume that u = bs1

and v = ct1 for suitable elements s1, t1 ∈ T1. By Proposition 1.5, this implies
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that the quaternion algebra
(

bs1,ct1
F1

)
splits, and that there exist s̃1, t̃1 ∈ T1

such that bs̃1 + ct̃1 = 1.
Suppose now that bs2, ct2 are linearly dependent in Ḟ2/T2. Then b and c are
equal modulo T2 and we may assume b = c. There are still two more cases to
consider.
(2) Suppose we have cs2 + ct2 = 1 with s2 = t2 mod Ḟ 2

2 . By Proposition 1.5,
there exists a Ccs2

4 -extension L2/F2 with F2(
√

cs2) ⊂ L2. Using arguments
similar to those in (1), we show that the restriction ψ:H2 −→ Gal(L2/F2) is

onto, and we find s1 ∈ T1 such that
(

cs1,cs1

F1

)
splits. This implies that there

exist s̃1, t̃1 ∈ T1 such that cs̃1 + ct̃1 = 1.

(3) Suppose we have cs2 + ct2 = 1 with s2 6= t2 mod Ḟ 2
2 . As in (1)

we find L2 with Gal(L2/F2) ∼= D and we have a tower of fields F2 −→
F2(

√
s2t2) −→ F2(

√
cs2,

√
ct2) −→ L2. Since H2 fixes F2(

√
s2t2), the re-

striction map ψ:H2 −→ Gal(L2/F2) induces a surjective homomorphism
ψ′:H2 −→ Gal(L2/F2(

√
s2t2)) ∼= C4. We finish with arguments as in (2)

and replacing F2 by F2(
√

s2t2), we find s̃1, t̃1 ∈ T1 such that cs̃1 + ct̃1 = 1. ¤

We now prove the result in the other direction.

Proposition 9.12. Let H1,H2 be as in Notation 9.9 and assume they are fair
subgroups. If the inclusion i:F1 −→ F2 induces an isomorphism Ḟ1/T1 −→
Ḟ2/T2 and if (T2 + aT2) ∩ Ḟ = T1 + aT1 for any a ∈ F1, then i⋆ induces an
isomorphism between H2 and H1.

Proof. If H2 = {1} then H1 = {1} as well. If H2 = C2 then i⋆(H2) 6= {1}
because T2 is a usual ordering in Ḟ2, and it cannot contain Ḟ1. However if H1

were {1} then T1 = Ḟ1. Therefore i⋆ induces an isomorphism between H2 and
H1.
For the rest of our proof we assume that H2 6= {1}, C2. Call β:H2 −→ H1 the
restriction of i⋆ to H2. Because i⋆ is a group homomorphism from GF2

into
GF1

, we have i⋆(Φ(GF2
)) ⊂ Φ(GF1

). Also we have β(Φ(H2)) ⊂ Φ(H1). Then the

map β induces β̂:H2/Φ(H2) −→ H1/Φ(H1), which is an isomorphism because

its dual map Ḟ1/T1 −→ Ḟ2/T2 is an isomorphism. By definition β is onto. We

want to show that β is injective. From the fact that β̂ is an isomorphism, we
see that ker β ⊆ Φ(H2). Take a fixed set of minimal (topological) generators
(σi)i∈I for H2. Then γ ∈ Φ(H2) has a unique description, up to a permutation,
as γ =

∏
i∈I σ2

i × ∏
(u,v)∈K [σu, σv] for some possibly infinite sets I,K.

To complete the proof we use the following lemma.

Lemma 9.13. Assume that H1,H2, T1, T2 are as in Proposition 9.12, and let
δ be σ2

i or [σu, σv]. Suppose that we have a surjective map ϕ:H2 −→ G where

G = D or C4. Then there exists a group G̃ which is again either D or C4

and a homomorphism ψ:H1 −→ G̃ such that ψ(β(δ)) 6= 1 ∈ G̃ if and only if

ϕ(δ) 6= 1 ∈ G. Moreover G̃ and the homomorphism ψ depend only on G and
on the fields F1 and F2, but not on δ.
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Proof. (1) Assume first that G = C4. Since H2 is lifted, there exist an H2-
extension K2/F2 and a Cu

4 -extension L2 of F2 with F2 −→ F2(
√

u) −→ L2 −→
K2. Since Ḟ1/T1

∼= Ḟ2/T2, there exist a ∈ Ḟ1, s2 ∈ T2 such that u = as2.
Let δ = σ2, which is the only case to be considered when G = C4. Then
ϕ(σ2) 6= 1 ∈ Gal(L2/F2) if and only if ϕ(σ) has order 4. Thus ϕ(σ2) 6= 1 if and
only if ϕ(σ) generates Gal(L2/F2). This happens precisely when ϕ(σ)(

√
as2) =

−√
as2. Since H2, and thus ϕ(σ), fixes

√
s2, this is equivalent to ϕ(σ)(

√
a) =

−√
a. On the other hand, we know by Proposition 1.5 that the quaternion

algebra
(

as2,as2

F2

)
splits, and this implies the existence of s′2, t

′
2 ∈ T2 such that

as′2 + at′2 = 1. From the assumption on the additive structure, this implies the
existence of s1, t1 ∈ T1 such that as1 +at1 = 1. Two cases are to be considered.

(1.1) If s1 = t1 mod Ḟ 2
1 , then there is a Cas1

4 -extension L1 of F1 with
F1 −→ F1(

√
as1) −→ L1. Denoting by ψ:H1 −→ Gal(L1/F1) the restriction,

because H1 fixes
√

T1 we have ψ(β(σ))(
√

as1)/
√

as1 = ψ(β(σ))(
√

a)/
√

a =

ϕ(σ)(
√

a)/
√

a = −1, showing ψ(β(δ)) 6= 1 ∈ C4 = G̃.

(1.2) If s1 6= t1 mod Ḟ 2
1 , there is a Das1,at1 -extension L1 of F1 with F1 −→

F1(
√

s1t1) −→ L1. Here L1/F1(
√

s1t1) is a C4-extension. Since β(σ) ∈ H1

fixes F1(
√

s1t1), ψ(β(σ)) is in the Galois group of the latter extension, which is
again a C4-extension. We then use the same argument as in (1.1) to conclude

that ψ(β(δ)) 6= 1 ∈ G̃ = C4.

(2) Assume G = D. Again there is an H2-extension K2 ofF2 and a Das2,bs2-
extension L2 of F2 with F2 −→ F2(

√
abs2t2) −→ L2 −→ K2. Since ϕ is

surjective, there is an element τ ∈ H2 such that τ(
√

abs2t2)/
√

abs2t2 = −1, or
else ϕ(H2) would fix F2(

√
abs2t2) and would be contained in a proper subgroup

of Gal(L2/F2) ∼= D. This implies ab /∈ T2. Since there exist s′2, t
′
2 ∈ T2

such that as′2 + bt′2 = 1, we also have, by the assumption on the additive
structures, as1 + bt1 = 1 for some s1, t1 ∈ T1. Since ab /∈ T1, we see that
as1, bt1 are independent modulo Ḟ 2

1 , and there is a Das1,bt1 -extension L1 of F1

with F1 −→ F1(
√

abs1t1) −→ L1. Denote by ψ:H1 −→ Gal(L1/F1) ∼= D the
restriction map.

(2.1) Suppose δ = σ2 and ϕ(δ) 6= 1. Then ϕ(σ) has order 4 and must fix the
quadratic extension F2(

√
abs2t2). Then it belongs to Gal(L2/F2(

√
abs2t2)) ∼=

C4. With the same arguments as in (1), we show that ψ(β(δ)) 6= 1.

(2.2) Suppose δ = [σu, σv] and ϕ(δ) 6= 1. Then none of ϕ(σu), ϕ(σv) is in Φ(D)
(i.e. they do not fix the biquadratic extension F2(

√
as2,

√
bt2)), and they act

differently on this biquadratic extension. Since ϕ(σu) (respectively ϕ(σv)) acts

the same way on elements in
√

Ḟ as ψ(β(σu)) (respectively ψ(β(σv)), we see
that ψ(β(δ)) 6= 1 ∈ G.

To conclude the proof, we point out that in all cases above, we first associated
G̃ with the given homomorphism ϕ:H2 −→ G and only then checked that
ϕ(δ) 6= 1 ∈ G is equivalent to ψ(β(δ)) 6= 1 ∈ G̃. ¤

We can now finish the proof of Proposition 9.12. Suppose γ 6= 1 ∈ Φ(H2).
Since H2 satisfies the subdirect product condition, there exists a surjective
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map ϕ:H2 −→ G with G ∼= D or C4 and with ϕ(γ) 6= 1 ∈ G. Recall that the
minimal set of generators (σi)i∈I may be chosen in such a way that for any open
set U of H2 there are at most finitely many σi’s outside U . (See for example
[Koc, Chapter 4].) Since kerϕ is open, we may thus assume, when working
with a given ϕ, that γ = γ0 × γ1, with γ0 =

∏
i∈I0

σ2
i × ∏

(u,v)∈K0
[σu, σv],

γ1 =
∏

i∈I1
σ2

i × ∏
(u,v)∈K1

[σu, σv], with the following properties. The sets

I0,K0 are finite. Any individual factor σ2
i , [σu, σv] of γ0 is not in kerϕ, while

any individual factor of γ1 is in kerϕ. We may assume that γ = γ0, and in
particular we have only a finite number n of terms δi’s with δi = σ2

i or [σu, σv].
The Frattini group Φ(G) ∼= C2 may be written {1, ǫ}, and each ϕ(δi) must
be ǫ, since it is not 1 by assumption. Since ϕ(γ) = ǫn 6= 1, n must be odd.

By Lemma 9.13, we know that there exists a group G̃ which is again D or
C4 and a homomorphism ψ:H1 −→ G̃, such that ϕ(δi) = ǫ 6= 1 is equivalent
to ψ(β(δi)) = ǫ 6= 1. Because n is odd, this shows that ψ(β(γ)) 6= 1, and
therefore β(γ) 6= 1. This shows the injectivity of β and finishes the proof of
Proposition 9.12. ¤

§10. Concluding Remarks

In this article we have considered all C(I)- and S(I)-orderings. These groups
correspond to W-groups for p-adic fields, for odd primes p. In particular, the
W-group Gp of Qp is C4 × C4 for p ≡ 1(4) and is C4 ⋊ C4 for p ≡ 3(4). It is
then natural to look for a characterization of G2-orderings, i.e. those orderings
corresponding to subgroups isomorphic to the W-group of Q2. This is currently
under investigation [MiSm4].
For the field Q, there is a unique C2-ordering, which is the unique ordering on
Q. In addition there is a one-to-one correspondence between C4×C4-orderings
on Q and primes p ≡ 1(4), and a one-to-one correspondence between C4 ⋊ C4-
orderings on Q and primes p ≡ 3(4). In each case the correspondence is given

by Tp = Q̇2
p ∩ Q. It is not hard to see that each such intersection gives rise to

an H-ordering of the appropriate type. To see that every such ordering may
be obtained in this way, one shows that each such ordering corresponds to a
certain valuation on Q, and the valuations on Q are well-known to be classified
by the primes. (See e.g. [End, Theorem 1.16].)
This observation then lends itself to an alternative perspective on the Hasse-
Minkowski Theorem, which states that a quadratic form defined over Q is
isotropic over Q if and only if it is isotropic over each Qp, including Q∞, the
real numbers. Using Hilbert’s reciprocity law, one can prove that a ternary
quadratic form is isotropic over Q if and only if it is isotropic over all but one
of these fields. Thus we see that a ternary quadratic form over Q is isotropic
if and only if it is isotropic with respect to all C2-, (C4 ×C4)-, and (C4 ⋊ C4)-
orderings on Q.
We point out that the case of a ternary quadratic form over Q, together with
the clever use of Dirichlet’s theorem on the existence of an infinite number
of primes in an arithmetic progression, where first term and increment are
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relatively prime, are the main ingredients of a proof of the full Hasse-Minkowski
theorem over Q. For a very nice exposition of the Hasse-Minkowski theorem
over Q, see [BS]. See also [L1, Chapter 6, Exercise 22].
It is easy however, to find a quaternary quadratic form ϕ over Q such that ϕ is
isotropic over all Qp, p is an odd prime, and Q∞ = R but ϕ is anisotropic over
Q2. For example ϕ = X2

1 + X2
2 − 7X2

3 − 31X2
4 and ψ = X2

1 + X2
2 + X2

3 − 7X2
4

are such forms.
In a subsequent paper we will present several applications of this theory to
different kinds of local-global principles for quadratic forms. In order to get a
sense of what can be done in this direction, we show below an example of a
simple situation in which our theory applies.
Consider a field F . Recall that a C(∅)-ordering T on F is an index 2 mul-

tiplicative subgroup of Ḟ /Ḟ 2 containing −1. Additively speaking, it is a hy-

perplane containing −1 in the F2-vector space Ḟ /Ḟ 2. If f ∈ Ḟ \ (Ḟ 2 ∪ −Ḟ 2)

and if V is any subspace of Ḟ /Ḟ 2 such that Ḟ /Ḟ 2 = Span{f,−1} ⊕ V , then
T := Span{−1}+V is a C(∅)-ordering not containing f . Then the next lemma
follows immediately.

Lemma 10.1. Let C0(F ) denote the set of C(∅)-orderings of F . Then C0(F ) =

∅ if and only if Ḟ = Ḟ 2 ∪ −Ḟ 2, and in general,

⋂

T∈C0(F )

T = Ḟ 2 ∪ −Ḟ 2.

To every C(∅)-ordering T we associate a fixed closure FT of F in the quadratic
closure of F . Denote by 〈〈a1, . . . , an〉〉 the Pfister form 〈1,−a1〉⊗. . .⊗〈1,−an〉.
(For the basic theory of Pfister forms see e.g. [L1, Chapter 10] or [Sc, Chapter
4]. Observe that both Lam and Scharlau denote by 〈〈a1, . . . , an〉〉 the Pfister
form 〈1, a1〉 ⊗ . . . ⊗ 〈1, an〉.) Then we have the following.

Proposition 10.2. Assume C0(F ) 6= ∅ and let ϕ : W (F ) −→∏
T∈C0(F ) W (FT ) denote the map induced by the inclusions F −→ FT .

Then Ker ϕ = I2F +2W (F ) where IF denotes the fundamental ideal of W (F ).

Proof. For T ∈ C0(F ) we have Ḟ /T = {1̄, f̄} for a certain f ∈ Ḟ , and it is easy
to see that W (FT ) ∼= C2[ǫ]/ǫ2 and that the isomorphism, which we call π, is

defined by π(〈1̄〉) = 1, π(〈f̄〉) = 1 + ǫ. If a, b ∈ Ḟ then the possibilities for ā, b̄
are (1) ā = 1 or b̄ = 1, or (2) ā = b̄ = f̄ . In any case the image in W (FT ) of the
2-fold Pfister form 〈〈a, b〉〉 is in 2W (FT ) = 0, and we have shown the inclusion
I2F + 2W (F ) ⊆ Ker ϕ.
Take q ∈ Ker ϕ. Then q ∈ IF , because any odd-dimensional form is nonzero
in W (FT ). But it is known ([Pf, p. 122, Kor. to Satz 13]) that any element
q of IF may be written q = 〈〈u〉〉 + q1, with q1 ∈ I2F . Since q ∈ Ker ϕ, and
I2F ⊂ Ker ϕ, we deduce 〈〈u〉〉 ∈ Ker ϕ. The latter is equivalent to u ∈ T for

every T , meaning u ∈ Ḟ 2∪−Ḟ 2, or in other words 〈〈u〉〉 = 0 or 2 in W (F ). ¤
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Recall that a field F is said to have virtual cohomological dimension n, de-
noted vcd(F ) = n, if Hd(Gal(F (2))/F (

√
−1)), µ2) = 0 for d > n, and

Hn(Gal(F (2))/F (
√
−1)), µ2) 6= 0. (If we also considered the case of Fp, p an

odd prime, as coefficients of the cohomology groups of absolute Galois groups, it
would be more appropriate to say that F as above has a virtual 2-cohomological
dimension equal to n.) If vcd(F ) ≤ 1, then I2F is torsion-free. To see this, ob-
serve first that vcd(F ) ≤ 1 implies each binary quadratic form over F (

√
−1) is

universal. Then use [L1, Chapter 11, Theorem 1.8 and Exercise 20] to conclude
that I2F is torsion free. An example of a formally real field F with vcd(F ) = 1
is F = R(X). We have the following local-global principle:

Theorem 10.3. Let F be a field with vcd(F ) ≤ 1. Let D0(F ) (resp. C0(F ),
S0(F )) denote the set of usual orderings X(F ) (resp. C(∅)-orderings, S(∅)-
orderings) of F . Then

Λ:W (F ) −→
∏

T∈D0(F )∪C0(F )∪S0(F )

W (FT )

is injective. If F is formally real, we may drop S0(F ). (If not, we may drop
D0(F ).)

Proof. It is clear that a form q ∈ Ker Λ is in IF , and thus can be written
q = 〈〈a〉〉+ q2 with q2 ∈ I2F . By Pfister’s Local-Global Principle [L1, Chapter
8, §4], q is torsion and it is therefore the case for 〈〈a〉〉 and q2. (It is trivial
when D0(F ) = ∅, and if not, we use the fact that the signature q̂ of q is 0 and
that q̂2 ≡ 0(mod4).)
Since I2F is torsion-free, one has q2 = 0, and q = 〈〈a〉〉. Since q vanishes on

C0(F ), by Proposition 10.2 we have a ∈ Ḟ 2∪−Ḟ 2. (If C0(F ) = ∅, this condition
is trivially satisfied.) If the level s(F ) is 1, our proof is completed. Otherwise
D0(F ) ∪ S0(F ) 6= ∅, which shows that q 6= 〈〈−1〉〉. Thus q = 〈〈1〉〉 = 0. ¤

Remark 10.4. In this case we even have a strong Hasse principle, that is
a local-global principle for detecting whether a quadratic form is anisotropic
rather than just hyperbolic. Indeed, the fact that each ternary form over
F (

√
−1) is isotropic and [ELP, Theorem F] give us the strong Hasse principle

for forms of rank greater than or equal to 3. Then the use of C0(F ), S0(F ) and
D0(F ) provides the result for rank 2 forms.

Finally let us point out that our results are closely related to some ideas in
birational anabelian Grothendieck geometry. In particular there is a close
connection between ideas explored in this paper and the work of Bogomolov,
Tschinkel and Pop ([Bo], [BoT], [Po1], and [Po2]; see also Koenigsmann’s the-
sis [K1] and paper [K2]). Roughly speaking, they establish that for certain
fields K the isomorphy type of K, modulo purely inseparable extensions of K,
is functorially encoded in the maximal pro-p-quotient of the absolute Galois
group G̃ := Gal(K̄/K), char K 6= p. In fact Bogomolov in [Bo] and also Pop in
lectures at MSRI in the fall of 1999, considered smaller Galois groups than the
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Galois group defined above, namely the maximal pro-p-quotient of the group
G̃/[[G̃, G̃], G̃]. In this paper we consider p = 2, because of the connections
with quadratic forms. It is expected however that a substantial part of our
results can be extended to any prime p provided that the base field F contains
a primitive pth root of unity. We allow F to be any field with charF 6= 2,
and we are concerned with even smaller Galois groups than were considered by
Bogomolov and Pop. Of course in this more general setting we cannot obtain
as precise results as Bogomolov and Pop, but we do get some interesting infor-
mation about the additive properties of multiplicative subgroups of fields. It
would be very interesting to investigate further relationships between our work
and the quoted work of Bogomolov, Pop and Tschinkel.

References

[AKMi] A. Adem, D. Karagueuzian and J. Mináč, On the cohomology of
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Abstract. Let K/k be a finite Galois extension of global function
fields of characteristic p. Let CK denote the smooth projective curve
that has function field K and set G := Gal(K/k). We conjecture a
formula for the leading term in the Taylor expansion at zero of the
G-equivariant truncated Artin L-functions of K/k in terms of the
Weil-étale cohomology of Gm on the corresponding open subschemes
of CK . We then prove the ℓ-primary component of this conjecture for
all primes ℓ for which either ℓ 6= p or the relative algebraic K-group
K0(Zℓ[G], Qℓ) is torsion-free. In the remainder of the manuscript
we show that this result has the following consequences for K/k: if
p ∤ |G|, then refined versions of all of Chinburg’s ‘Ω-Conjectures’ in
Galois module theory are valid; if the torsion subgroup of K× is a
cohomologically-trivial G-module, then Gross’s conjectural ‘refined
class number formula’ is valid; if K/k satisfies a certain natural class-
field theoretical condition, then Tate’s recent refinement of Gross’s
conjecture is valid.

2000 Mathematics Subject Classification: Primary 11G40; Secondary
11R65 19A31 19B28

1. Introduction

Let K/k be a finite Galois extension of global function fields of characteristic p.
Let CK be the unique geometrically irreducible smooth projective curve which
has function field equal to K and set G := Gal(K/k). For each finite non-empty
set S of places of k that contains all places which ramify in K/k, we write OK,S

for the subring of K consisting of those elements that are integral at all places
of K which do not lie above an element of S and we set UK,S := Spec(OK,S).
With R denoting either Z or Zℓ for some prime ℓ and E an extension field
of the field of fractions of R, we write K0(R[G], E) for the relative algebraic
K-group defined by Swan in [46].
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In §2 we formulate a conjectural equality C(K/k) between an element of
K0(Z[G], R) constructed from the leading term in the Taylor expansion at
s = 0 of the G-equivariant Artin L-function of UK,S and the refined Euler
characteristic of a pair comprising the Weil-étale cohomology of Gm on UK,S

(considered as an object of an appropriate derived category) and a natural log-
arithmic regulator mapping. This conjecture is motivated both by the general
approach described by Lichtenbaum in [40, §8] and also by analogy to a spe-
cial case of the equivariant refinement of the Tamagawa Number Conjecture of
Bloch and Kato (which was formulated by Flach and the present author in [13]).
The equality C(K/k) can be naturally reinterpreted as a conjectural equality
in K0(Z[G], Q) involving the leading term at t = 1 of the G-equivariant Zeta-
function of UK,S and in §3 we shall prove the validity, resp. the validity modulo
torsion, of the projection of the latter conjectural equality to K0(Zℓ[G], Qℓ) for
all primes ℓ 6= p, resp. for ℓ = p (this is Theorem 3.1). If ℓ 6= p, then our proof
combines Grothendieck’s formula for the Zeta-function in terms of the action
of frobenius on ℓ-adic cohomology together with a non-commutative generali-
sation of a purely algebraic observation of Kato in [35] (this result may itself be
of some independent interest) and an explicit computation of certain Bockstein
homomorphisms in ℓ-adic cohomology. In the case that ℓ = p we are able to
deduce our result from Bae’s verification of the ‘Strong-Stark Conjecture’ [3]
which in turn relies upon results of Milne [43] concerning relations between
Zeta-functions and p-adic cohomology.
In the remainder of the manuscript we show that C(K/k) provides a universal
approach to the study of several well known conjectures. A key ingredient in all
of our results in this direction is a previous observation of Flach and the present
author which allows an interpretation in terms of Weil-étale cohomology of the
canonical extension classes defined using class field theory by Tate in [49].
In §4 we consider connections between C(K/k) and the central conjectures of
classical Galois module theory. To be specific, we prove that C(K/k) implies
the validity for K/k of a strong refinement of the ‘Ω(3)-Conjecture’ formulated
by Chinburg in [18, §4.2]. Taken in conjunction with Theorem 3.1 this result
allows us to deduce that if K0(Zp[G], Qp) is torsion-free, resp. p ∤ |G|, then the
Ω(3)-Conjecture, resp. the Ω(1)-, Ω(2)- and Ω(3)-Conjectures, formulated by
Chinburg in loc. cit., are valid for K/k. This is a strong refinement of previous
results in this area.
We assume henceforth that G is abelian. In this case Gross has conjectured a
‘refined class number formula’ which expresses an explicit congruence relation
between the values at s = 0 of the Dirichlet L-functions associated to K/k [31].
This conjecture has attracted much attention and indeed Tate has recently for-
mulated a strong refinement in the case that G is cyclic [51]. However, whilst
the conjecture of Gross has already been verified in several interesting cases
[31, 1, 47, 37, 39], much of this evidence is obtained either by careful analysis
of special cases or by induction on |G| and, as yet, no coherent overview of or
systematic approach to these conjectures of Gross and Tate has emerged. In
contrast, in §5 we shall use the general approach of algebraic height pairings
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developed by Nekovář in [44] to interpret the integral regulator mapping of
Gross as a Bockstein homomorphism in Weil-étale cohomology, and we shall
also apply this interpretation to prove that if the torsion subgroup µK of K×

is a cohomologically-trivial G-module (a condition that is automatically satis-
fied if, for example, |µK | is coprime to |G|), then C(K/k) implies the validity
of Gross’s conjecture for K/k. Under a certain natural class-field theoretical
assumption on K/k we shall also show (in §6) that C(K/k) implies the validity
of Tate’s refinement of Gross’s conjecture. When combined with Theorem 3.1
(and earlier results of Tan concerning p-extensions) these observations allow us
to deduce the validity of Gross’s conjecture for all extensions K/k for which µK

is a cohomologically-trivial G-module and also to prove the validity of Tate’s
refinement of Gross’s conjecture for a large family of extensions.
A further development of the approach used here should allow the removal
of any hypothesis on µK (indeed, in special cases this is already achieved in
the present manuscript). However, even at this stage, our results constitute a
strong improvement of previous results in this area and also provide a philo-
sophical underpinning to the conjectures of Gross and Tate that was not hith-
erto apparent. Indeed, the approach presented here leads to the formulation of
natural analogues of these conjectures concerning the values of (higher order)
derivatives of L-functions that vanish at s = 0. These developments have in
turn led to a proof of Tate’s conjecture under the hypothesis only that |µK | is
coprime to |G| and have also provided new insight into Gross’s ‘refined p-adic
abelian Stark conjecture’ as well as several other conjectures due, for example,
to Rubin, to Darmon, to Popescu and to Tan. For more details of this aspect
of the theory the reader is referred to [10, 34].

Acknowledgements. The author is very grateful to J. Tate and B. H. Gross
for their encouragement concerning this project and for their hospitality during
his visits to the Universities of Texas at Austin and Harvard respectively. In
addition, he is most grateful to M. Kurihara for his hospitality during the
author’s visit to the Tokyo Metropolitan University, where a portion of this
project was completed. The author is also grateful to J. Nekovář for a number
of very helpful discussions.

2. The leading term conjecture

2.1. Relative Algebraic K-Theory. In this subsection we quickly recall
certain useful constructions in algebraic K-theory.
If Λ is any ring, then all modules are to be understood as left modules. We
write ζ(Λ) for the centre of Λ, K1(Λ) for the Whitehead group of Λ and
K0(Λ) for the Grothendieck group of the category of finitely generated pro-
jective Λ-modules. We also write D(Λ) for the derived category of complexes
of Λ-modules with only finitely many non-zero cohomology groups, and we
let Dfpd(Λ), resp. Dperf(Λ),denote the full triangulated subcategory of D(Λ)
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consisting of those complexes that are quasi-isomorphic to a bounded com-
plex of projective Λ-modules, resp. to a bounded complex of finitely generated
projective Λ-modules.
We let R denote either Z or Zℓ for some prime ℓ, E and F denote extension fields
of the field of fractions of R and we fix a finite group G. For finitely generated
E[G]-modules V and W we write IsE[G](V,W ) for the set of E[G]-module
isomorphisms from V to W . The relative algebraic K-group K0(R[G], E) is
an abelian group with generators (X,φ, Y ), where X,Y are finitely generated
projective R[G]-modules and φ is an element of IsE[G](X⊗RE, Y ⊗RE). For the
defining relations we refer to [46, p. 215]. We systematically use the following
facts: there is a long exact sequence of relative K-theory (cf. [46, Th. 15.5])

K1(R[G]) → K1(E[G])
∂1

R[G],E−−−−−→ K0(R[G], E)
∂0

R[G],E−−−−−→ K0(R[G]) → K0(E[G]);

if E ⊆ F , then there is a natural injective ‘inclusion’ homomorphism
K0(R[G], E) ⊆ K0(R[G], F ); for each rational prime ℓ the assignment
(X,φ, Y ) 7→ (X ⊗Z Zℓ, φ ⊗Q Qℓ, Y ⊗Z Zℓ) induces a homomorphism

ρℓ : K0(Z[G], Q) → K0(Zℓ[G], Qℓ)

and the product of these homomorphisms over all primes ℓ induces an isomor-
phism (cf. the discussion following [26, (49.12)])

(1)
∏

ℓ

ρℓ : K0(Z[G], Q) ∼=
⊕

ℓ

K0(Zℓ[G], Qℓ).

Let A be a finite dimensional central simple F -algebra, F ′ an extension of F
which splits A and e an indecomposable idempotent of A ⊗F F ′. If V is any
finitely generated A-module and φ ∈ EndA(V ), then the ‘reduced determinant’
of φ is defined by setting detredA(φ) := detF ′(φ ⊗F idF ′ |e(V ⊗F F ′)). This is
an element of F which is independent of the choices of F ′ and e. This construc-
tion extends to finite-dimensional semi-simple F -algebras in the obvious way.
In particular, the group K1(E[G]) is generated by symbols of the form [φ] with
φ ∈ AutE[G](V ) and the assignment [φ] 7→ detredE[G](φ) induces a well-defined

injective ‘reduced norm’ homomorphism nrE[G] : K1(E[G]) → ζ(E[G])× [26,
§45A]. For each ℓ the map nrQℓ[G] is bijective and so there exists a unique

homomorphism δℓ : ζ(Qℓ[G])× → K0(Zℓ[G], Qℓ) with ∂1
Zℓ[G],Qℓ

= δℓ ◦ nrQℓ[G].

(When we need to be more precise we write δG,ℓ rather than δℓ.) The map
nrR[G] is not in general surjective, but nevertheless there exists a canonical

‘extended boundary’ homomorphism δ : ζ(R[G])× → K0(Z[G], R) which sat-
isfies ∂1

Z[G],R = δ ◦ nrR[G] and is such that ζ(Q[G])× is the full pre-image of

K0(Z[G], Q) under δ (cf. [13, Lem. 9]).
The map nrE[G] induces an equivalence relation ‘∼’ on each set IsE[G](V,W )

in the following way: φ ∼ φ′ if nrE[G]([φ
′ ◦ φ−1]) = 1. In the sequel we shall

often not distinguish between an element of IsE[G](V,W ) and its associated
equivalence class in IsE[G](V,W )/ ∼.

For each Z-graded module C· we write Call, C− and C+ for the direct
sum of Ci as i ranges over all, all odd and all even integers respectively.
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An ‘E-trivialisation’ of an object C· of Dperf(R[G]) is an element τ of
IsE[G](H

+(C·)⊗R E,H−(C·)⊗R E)/ ∼. In [9] it is shown that a variant of the
classical construction of Whitehead torsion allows one to associate to each such
pair (C·, τ) a canonical ‘refined Euler characteristic’ element χR[G],E(C·, τ)

which belongs to K0(R[G], E) and has image under ∂0
R[G],E equal to the Eu-

ler characteristic of C· in K0(R[G]). Further details of this construction are
recalled in the Appendix.
In the sequel we shall use the following notation and conventions. We ab-
breviate ‘cohomologically-trivial’ to ‘c-t’, ‘χZ[G],R’ to ‘χ’, ‘χZ[G],Q’ to ‘χQ’ and
‘χZℓ[G],Qℓ

’ to ‘χℓ’ (or to ‘χG,ℓ’ when we need to be more precise); if X is any
scheme of finite type over the finite field Fp of cardinality p and F is any étale
(pro-) sheaf, resp. Weil-étale sheaf, on X, then we abbreviate RΓ(Xét,F),
resp. RΓ(XWeil−ét,F) to RΓ(X,F), resp. RΓW(X,F), and we also use similar
abbreviations on cohomology; for any commutative ring Λ we write x 7→ x#

for the Λ-linear involution of ζ(Λ[G]) that is induced by setting g# := g−1 for
each g ∈ G; for any group H and any H-module M we write MH , resp. MH ,
for the maximal submodule, resp. quotient, of M upon which H acts trivially;
for any abelian group A we let Ators denote its torsion subgroup; unless ex-
plicitly indicated otherwise, all tensor products and exterior powers are to be
considered as taken in the category of abelian groups.

2.2. Formulation of the conjecture. We assume henceforth that S is a
finite non-empty set of places of k containing all places which ramify in K/k.
We let IrrC(G) denote the set of irreducible finite dimensional complex charac-
ters of G. For each χ ∈ IrrC(G) we write LS(χ, s) for the associated S-truncated
Artin L-function and L∗

S(χ, 0) for the leading term in the Taylor expansion of
LS(χ, s) at s = 0. Recalling that ζ(C[G]) identifies with

∏
IrrC(G) C, we define

a ζ(C[G])-valued meromorphic function of a complex variable s by setting

θK/k,S(s) := (LS(χ, s))χ∈IrrC(G).

The leading term θ∗K/k,S(0) in the Taylor expansion of θK/k,S(s) at s = 0 is

equal to (L∗
S(χ, 0))χ∈Irr(G) and hence belongs to ζ(R[G])×. In this subsection

we follow the philosophy introduced by Lichtenbaum in [40] to formulate a
conjectural description of δ(θ∗K/k,S(0)#) in terms of Weil-étale cohomology.

For any intermediate field F of K/k we write YF,S for the free abelian group
on the set of places S(F ) of F which lie above those in S and XF,S for the
kernel of the homomorphism YF,S → Z that sends each element of S(F ) to 1.
We write OF,S for the ring of S(F )-integers in F and O×

F,S for its unit group.

We also set UF,S := Spec(OF,S) and AF,S := Pic(OF,S).

Lemma 1.

i) Let j : UK,S → CK denote the natural open immersion. Then there
exists a canonical isomorphism in D(Z[G]) of the form

RΓW(UK,S , Gm) ∼= R HomZ(RΓW(CK , j!Z), Z[−2]).
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ii) There exists a natural distinguished triangle in D(Z[G]) of the form

XK,S ⊗ Q[−2] → RΓ(UK,S , Gm) → RΓW(UK,S , Gm) → XK,S ⊗ Q[−1]

where the map induced on cohomology (in degree 2) by the first mor-
phism is the composite of the projection XK,S ⊗Q → XK,S ⊗Q/Z and
the canonical identification XK,S ⊗ Q/Z ∼= H2(UK,S , Gm).

iii) RΓW(UK,S , Gm) is an object of Dperf(Z[G]) that is acyclic outside de-
grees 0 and 1. One has a canonical identification H0

W(UK,S , Gm) =
O×

K,S and a natural exact sequence of G-modules

0 → AK,S → H1
W(UK,S , Gm) → XK,S → 0.

iv) If J is any normal subgroup of G, then there exists a natural isomor-
phism in Dperf(Z[G/J ]) of the form

RΓW(UKJ ,S , Gm) ∼= R HomZ[J](Z, RΓW(UK,S , Gm)).

With respect to the descriptions of cohomology given in iii) (for both K
and KJ) the displayed isomorphism induces the natural identification
O×

KJ ,S
= (O×

K,S)J and also identifies XKJ ,S with a submodule of XK,S

by means of the map that sends each place v of S(KJ ) to
∑

j∈J j(w)
where w is any place of K lying above v.

Proof. Claim i) is proved by the argument of [40, proof of Th. 6.5].
The existence of the distinguished triangle in claim ii) can be proved by com-
paring the spectral sequences of [40, Prop. 2.3(f)] or by using the approach of
Geisser in [30, Th. 6.1].
The descriptions of the groups Hi

W(UK,S , Gm) given in claim iii) are proved
by Lichtenbaum in [40, Th. 7.1c)]. They follow from the long exact se-
quence of cohomology associated to the triangle in claim ii), the canoni-
cal identifications H0(UK,S , Gm) ∼= O×

K,S ,H1(UK,S , Gm) ∼= Pic(OK,S) and

H2(UK,S , Gm) ∼= XK,S ⊗ Q/Z and the fact that Hi(UK,S , Gm) = 0 if i > 2.
Since each cohomology group of RΓW(UK,S , Gm) is finitely generated, a stan-
dard argument of homological algebra shows that this complex belongs to
Dperf(Z[G]) if and only if it belongs to Dfpd(Z[G]) (cf. [11, proof of Prop.
1.20, Steps 3 and 4]). On the other hand, any G-module that is c-t has fi-
nite projective dimension as a Z[G]-module and so it suffices to show that
RΓW(UK,S , Gm) is isomorphic to a bounded complex of G-modules which are
each c-t. Now the G-module XK,S ⊗ Q is c-t and so the distinguished triangle
of claim ii) implies that we need only prove that RΓ(UK,S , Gm) is isomorphic to
a bounded complex of G-modules which are each c-t. But this is true because
the natural morphism π : UK,S → Uk,S is étale and Gm = π∗Gm on (UK,S)ét
(cf. [11, proof of Prop. 1.20, Steps 1 and 2]).
Claim iv) follows from the triangle of claim ii) and the description of coho-
mology given in iii) (for both K and KJ ) together with an explicit com-
putation of the maps induced on cohomology by the natural isomorphism
RΓ(UKJ ,S , Gm) ∼= R HomZ[J](Z, RΓ(UK,S , Gm)) in D(Z[G/J ]) (for more de-
tails as to the latter see, for example, the proof of [12, Lem. 12]). ¤
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For each place w of K we let | · |w denote the absolute value of w normalised
as in [50, Chap. 0, 0.2]. We write RK,S for the R[G]-equivariant isomorphism
O×

K,S ⊗ R −→ XK,S ⊗ R which at each u ∈ O×
K,S satisfies

(2) RK,S(u) = −
∑

w∈S(K)

log | u |w ·w.

We also denote by RK,S the R-trivialisation of RΓW(UK,S , Gm) that is induced
by RK,S and the descriptions of Lemma 1iii).
We can now state the central conjecture of this paper.

Conjecture C(K/k): In K0(Z[G], R) one has an equality

δ(θ∗K/k,S(0)#) = χ(RΓW(UK,S , Gm),RK,S).

Remark 1. Lemma 1i) shows that C(K/k) can be naturally rephrased in terms
of RΓW(CK , j!Z). We have chosen to work in terms of Gm rather than j!Z for
the purposes of explicit computations that we make in subsequent sections (see
also Remark 3 in this regard).

Remark 2. If G is abelian, then the equality of C(K/k) is equivalent to a
formula for the Z[G]-submodule of R[G] which is generated by θ∗K/k,S(0)# in

terms of the Z[G]-equivariant graded determinant of RΓW(UK,S , Gm) (see Re-
mark A1 in the Appendix). By using this observation in conjunction with
Remark 1 it can be shown that C(k/k) is equivalent to a special case of the
conjecture formulated by Lichtenbaum in [40, Conj. 8.1e)].

Remark 3. Let j : UK,S → CK denote the natural open immersion. Then the
Poincaré Duality Theorem of [42, Chap. II, Th. 3.1] gives rise to a commutative
diagram in D(Z[G]) of the form

XK,S ⊗ Q[−2] −→ RΓ(UK,S , Gm) −→ RΓW(UK,S , Gm)
∥∥∥

y

XK,S ⊗ Q[−2] −→ HomZ(RΓ(CK , j!Z), Q/Z[−3])
y

(Ô×
K,S/O×

K,S)[0]

where the top row is as in Lemma 1ii), Ô×
K,S denotes the profinite completion of

O×
K,S and the second column is a distinguished triangle. This diagram implies

that RΓW(UK,S , Gm) is a precise analogue of the complex ΨS that occurs in
[12, Rem. following Prop. 3.1] and [7, Prop. 2.1.1]. For this reason, C(K/k)
is an analogue of the conjectural vanishing of the element TΩ(K/k, 0) defined
in [7, Th. 2.1.2], where K/k is a Galois extension of number fields of group G,
and also coincides in the abelian case with the function field case of [8, Conj.
2.1]. We recall that the vanishing of the element TΩ(K/k, 0) is equivalent to
the validity of the ‘Lifted Root Number Conjecture’ of Gruenberg, Ritter and
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Weiss [33] (see [7, Th. 2.3.3] for a proof of this fact) and also to the validity of
the ‘Equivariant Tamagawa Number Conjecture’ of [13, Conj. 4(iv)] as applied
to the pair (h0(Spec K), Z[G]) where h0(SpecK) is considered as a motive
that is defined over k and has coefficients Q[G] (see [7, Th. 2.4.1] or [14, §3]
for different proofs of this fact). We further recall that [13, Conj. 4(iv)] is
itself a natural equivariant version of the seminal conjecture of Bloch and Kato
from [6], and that if G is abelian, then it refines the ‘Generalized Iwasawa Main
Conjecture’ formulated by Kato in [35, §3.2] (cf. [14, §2] in this regard). Finally
we recall that strong evidence in favour of [13, Conj. 4(iv)] has recently been
obtained in [15, 16].

By a change of variable we now remove all of the transcendental terms which
occur in C(K/k) and then decompose the conjecture according to (1).
To do this we set t := p−s and then define a ζ(C[G])-valued function of the
complex variable t by means of the equality ZK/k,S(t) := θK/k,S(s). For each
place w ∈ S(K) we write valw and k(w) for its valuation and residue field
and let deg(w) denote the degree of the field extension k(w)/Fp. We write
DK,S : O×

K,S → XK,S for the homomorphism which at each u ∈ O×
K,S satisfies

DK,S(u) =
∑

w∈S(K)

valw(u) deg(w) · w.

Lemma 2. Let e : Spec(ζ(R[G])) → Z denote the algebraic order of ZK/k,S(t)

at t = 1 (which we regard as an element of Zπ0(Spec(ζ(R[G]))) in the natural
way). Then the element

Z∗
K/k,S(1) := lim

t→1
(1 − t)−eZK/k,S(t)

belongs to ζ(Q[G])× and C(K/k) is valid if and only if in K0(Z[G], Q) one has

(3) δ(Z∗
K/k,S(1)#) = χQ(RΓW(UK,S , Gm),DK,S ⊗ Q).

Proof. The algebraic order of θK/k,S(s)# at s = 0 is equal to e. In addition,
by an explicit computation one verifies that

θ∗K/k,S(0)# = lim
s→0

s−eθK/k,S(s)#

= (log(p))e · Z∗
K/k,S(1)#.

When combined with the known validity of Stark’s Conjecture for K/k [50,
p. 111], this equality proves that Z∗

K/k,S(1) belongs to ζ(Q[G])×. Also, since

χQ(RΓW(UK,S , Gm),DK,S ⊗ Q) is equal to χ(RΓW(UK,S , Gm),DK,S ⊗ R) in
K0(Z[G], R), the above equality shows that C(K/k) is equivalent to (3) pro-
vided that in K0(Z[G], R) one has

χ(RΓW(UK,S , Gm),RK,S) = χ(RΓW(UK,S , Gm),DK,S ⊗ R) + δ((log(p))e).

The validity of this equality follows directly from [7, Prop. 1.2.1(ii)] in con-
junction with the equality RK,S(u) = log(p) · DK,S(u) for each u ∈ O×

K,S and
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the fact that the reduced rank (as defined in [13, §2.6]) of the R[G]-module
XK,S ⊗ R is equal to e [50, Chap. I, Prop. 3.4]. ¤

From Lemma 2 and the bijectivity of the map (1) it is clear that C(K/k) is
valid if and only if, for each prime ℓ, the following conjecture is valid.

Conjecture Cℓ(K/k): The image of (3) under ρℓ is valid.

Remark 4. There are several useful functorial properties of C(K/k) that can
be proved directly or by combining Remark 3 with the relevant arguments from
either [7] or [13, §4.4-5]. For example, in this way it can be shown that the
validity of C(K/k) is independent of the choice of S (cf. [7, Th. 2.1.2]). In
addition, if ℓ is any prime and H is any subgroup of G, then it can be shown that
the validity of the image of the equality of Cℓ(K/k) under the natural restriction
map K0(Zℓ[G], Qℓ) → K0(Zℓ[H], Qℓ) is equivalent to the validity of Cℓ(K/KH)
(cf. [7, Prop. 2.1.4(i)]). In a similar way, if J is any normal subgroup of
G, then Lemma 1iv) implies that the validity of the image of the equality of
Cℓ(K/k) under the natural coinflation map K0(Zℓ[G], Qℓ) → K0(Zℓ[G/J ], Qℓ)
is equivalent to the validity of Cℓ(K

J/k) (cf. [7, Prop. 2.1.4(ii)]).

3. Evidence

In this section we shall provide the following evidence in support of C(K/k).

Theorem 3.1. Let K/k be a finite Galois extension of global function fields of
characteristic p and set G := Gal(K/k).

i) If ℓ 6= p, then Cℓ(K/k) is valid.
ii) Cp(K/k) is valid modulo the torsion subgroup of K0(Zp[G], Qp).

Corollary 1. C(K/k) is valid modulo the torsion subgroup of K0(Zp[G], Qp).

Proof. Clear. ¤

Remark 5. The group K0(Zp[G], Qp) is torsion-free if p ∤ |G| (cf. [13, proof of
Lem. 11c)]) and also if p = 2 and G is either of order 2 or is dihedral of order
congruent to 2 modulo 4 [5, Lem. 8.2].

3.1. The descent formalism. In this subsection we prepare for the proof
of Theorem 3.1i) by proving a purely algebraic result. This provides a natu-
ral generalisation of several results that have already been used elsewhere (cf.
Remark 6) and so the material of this subsection may well itself be of some
independent interest.
We fix an arbitrary rational prime ℓ and for each Zℓ-module M we set MQℓ

:=
M⊗Zℓ

Qℓ. We say that an endomorphism ψ of a finitely generated Zℓ[G]-module
M is ‘semi-simple at 0’ if the natural composite homomorphism

(4) ker(ψ)
⊆−→ M ։ cok(ψ)
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has both finite kernel and finite cokernel. We note that this condition is satisfied
if and only if there exists a Qℓ[G][ψ]-equivariant direct complement to the
submodule ker(ψ)Qℓ

of MQℓ
.

Let t be an indeterminate. Then for any element f of ζ(Qℓ[G])[[t]] we write
ef : Spec(ζ(Qℓ[G])) → Z for the algebraic order of f(t) at t = 1. We identify

ef with an element of Zπ0(Spec(ζ(Qℓ[G]))) in the natural way and then set

f∗(1) := lim
t→1

(1 − t)−ef f(t) ∈ ζ(Qℓ[G])×.

In particular, if θ is any endomorphism of a finitely generated Zℓ[G]-module
M for which 1 − θ is semi-simple at 0 and

f(t) = detredQℓ[G](1 − θ · t : MQℓ
),

then we set

detred∗
Qℓ[G](1 − θ : MQℓ

) :=f∗(1)

= detredQℓ[G](1 − θ : D)

where D is any choice of a Qℓ[G][θ]-equivariant direct complement to the sub-
module ker(1 − θ)Qℓ

of MQℓ
.

We now suppose given a bounded complex of finitely generated projective
Zℓ[G]-modules P · and a Zℓ[G]-equivariant endomorphism θ of P · which is such
that the induced endomorphism Hi(1−θ) of Hi(P ·) is semi-simple at 0 in each
degree i.
We let C(θ)· denote the −1-shift of the mapping cone of the endomorphism of
P · induced by 1− θ. Then from the long exact sequence of cohomology that is
associated to the distinguished triangle

P · 1−θ−−→ P · → C(θ)·[1] → P ·[1]

one obtains in each degree i a short exact sequence

0 → cok(Hi−1(1 − θ)) → Hi(C(θ)·) → ker(Hi(1 − θ)) → 0.

Upon combining these sequences with the isomorphisms

ker(Hi(1 − θ))Qℓ

∼−→ cok(Hi(1 − θ))Qℓ

induced by (4) (with ψ = Hi(1−θ) and M = Hi(P ·)) one obtains a well-defined
Qℓ-trivialisation τθ of C(θ)·.

Proposition 3.1. Let P · be a bounded complex of finitely generated projective
Zℓ[G]-modules and θ a Zℓ[G]-equivariant endomorphism of P · for which Hi(1−
θ) is semi-simple at 0 in each degree i. Then in K0(Zℓ[G], Qℓ) one has

χℓ(C(θ)·, τθ) =
∑

i∈Z

(−1)iδℓ(detred∗
Qℓ[G](1 − θ : Hi(P ·)Qℓ

)).

Proof. We shall argue by induction on the quantity

|P ·| := max{i : P i 6= 0} − min{j : P j 6= 0}.
We first assume that |P ·| = 0 so that P · has only one non-zero term. To be spe-
cific, we assume that P · = Pn[−n] (so that Hn(P ·) = Pn). In this case C(θ)·
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is equal to the complex Pn 1−θn

−−−→ Pn, where the first term is placed in degree
n. In addition, upon choosing a Qℓ[G][θn]-equivariant direct complement D to
ker(1 − θn)Qℓ

in Pn
Qℓ

, and using (4) to identify Hn(C(θ)·)Qℓ
= ker(1 − θn)Qℓ

with Hn+1(C(θ)·)Qℓ
= cok(1 − θn)Qℓ

, the trivialisation τθ is induced by the
identity map on cohomology. Hence, from Lemma A1, one has

χℓ(C(θ)·, τθ) =(−1)n∂1
Zℓ[G],Qℓ

([idker(1−θn)Qℓ
⊕ (1 − θn) |D])

=(−1)n∂1
Zℓ[G],Qℓ

([1 − θn |D])

=(−1)nδℓ(detredQℓ[G](1 − θn : D))

=(−1)nδℓ(detred∗
Qℓ[G](1 − θ : Hn(Pn[−n])Qℓ

)),

as required.
We now assume that |P ·| = n and, to fix notation, that min{j : P j 6= 0} = 0.
We also assume that the claimed formula is true for any pair of the form (Q·, φ)
where Q· is a bounded complex of finitely generated projective Zℓ[G]-modules
for which |Q·| ≤ n − 1 and φ is a Zℓ[G]-equivariant endomorphism of Q· for
which Hi(1 − φ) is semi-simple at 0 in each degree i. For any complex C·

and any integer i we write Bi(C·), Zi(C·) and di(C·) for the boundaries, cycles
and differential in degree i. If necessary, we use the argument of [25, Lem.
7.10] to change θ by a homotopy in order to ensure that, in each degree i,
the restriction of 1 − θi to Bi(P ·) induces an automorphism of Bi(P ·)Qℓ

. We
shall make frequent use of this assumption (without explicit comment) in the
remainder of this argument.
We henceforth let Q· denote the naive truncation in degree n − 1 of P · (so
Qi = P i if i ≤ n − 1 and Qn = 0). Then one has a tautological short exact
sequence of complexes 0 → Pn[−n] → P · → Q· → 0. From the associated long
exact cohomology sequence we deduce that Hi(Q·) = Hi(P ·) if i < n − 1 and
that there are commutative diagrams of short exact sequences of the form

0 −−−−→ Hn−1(P ·) −−−−→ Hn−1(Q·) −−−−→ Bn −−−−→ 0

Hn−1(1−θ)

y Hn−1(1−φ)

y 1−θn

y

0 −−−−→ Hn−1(P ·) −−−−→ Hn−1(Q·) −−−−→ Bn −−−−→ 0

0 −−−−→ Bn −−−−→ Hn(Pn[−n]) −−−−→ Hn(P ·) −−−−→ 0

1−θn

y Hn(1−θn[−n])

y Hn(1−θ)

y

0 −−−−→ Bn −−−−→ Hn(Pn[−n]) −−−−→ Hn(P ·) −−−−→ 0.

We write φ, resp. θn[−n], for the endomorphism of Q·, resp. Pn[−n], which
is induced by θ. Then the above diagrams imply that ker(Hi(1 − φ))Qℓ

=
ker(Hi(1−θ))Qℓ

and cok(Hi(1−φ))Qℓ
= cok(Hi(1−θ))Qℓ

for all i < n and also
that ker(Hn(1− θn[−n]))Qℓ

= ker(Hn(1− θ))Qℓ
and cok(Hn(1− θn[−n]))Qℓ

=
cok(Hn(1−θ))Qℓ

. This implies that 1−φ and 1−θn[−n] induce endomorphisms
of Hi(Q·) and Hi(Pn[−n]) respectively which are each semi-simple at 0 in all
degrees i.
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We set C := Cone(1 − θn[−n])[−1], D := C(θ)· = Cone(1 − θ)[−1] and E :=
Cone(1 − φ)[−1] so that there is a natural short exact sequence of complexes

(5) 0 → C
α−→ D

β−→ E → 0.

Now, since |Q·| < n, our inductive hypothesis implies that

χℓ(E, τφ) =

n−1∑

i=0

(−1)iδℓ(detred∗
Qℓ[G](1 − φ : Hi(Q·)Qℓ

))

=(−1)n−1δℓ(detred∗
Qℓ[G](1 − φ : Hn−1(Q·)Qℓ

))

+
n−2∑

i=0

(−1)iδℓ(detred∗
Qℓ[G](1 − θ : Hi(P ·)Qℓ

)).

In addition, since |Pn[−n]| = 0, our earlier argument proves that

χℓ(C, τθn[−n]) = (−1)nδℓ(detred∗
Qℓ[G](1 − θn[−n] : Hn(Pn[−n])Qℓ

).

From the commutative diagrams displayed above, one also has

detred∗
Qℓ[G](1 − φ : Hn−1(Q·)Qℓ

) =

detred∗
Qℓ[G](1 − θn : Bn

Qℓ
) · detred∗

Qℓ[G](1 − θ : Hn−1(P ·)Qℓ
)

and

detred∗
Qℓ[G](1 − θn[−n] : Hn(Pn[−n])Qℓ

) =

detred∗
Qℓ[G](1 − θn : Bn

Qℓ
) · detred∗

Qℓ[G](1 − θ : Hn(P ·)Qℓ
).

Upon combining the last four displayed formulas we obtain an equality

χℓ(C, τθn[−n]) + χℓ(E, τφ) =
∑

i∈Z

(−1)iδℓ(detred∗
Qℓ[G](1 − θ : Hi(P ·)Qℓ

)),

and so the claimed result will follow if we can show that

(6) χℓ(D, τθ) = χℓ(C, τθn[−n]) + χℓ(E, τφ).

Before discussing the proof of this equality we introduce some convenient no-
tation: for any Zℓ-module A we set A := A ⊗Zℓ

Qℓ, and we use similar abbre-
viations for both complexes and morphisms of Zℓ-modules. For any complex
A we also set H+

A := H+(A) and H−
A := H−(A).

The key to proving (6) is the observation (which is itself straightforward to
verify directly) that one can choose elements κ1, κ2 and κ3 of τθn[−n], τθ and
τφ respectively which together lie in a commutative diagram of short exact
sequences of the form

(7)

0 −−−−→ H+

C

H+(α)−−−−→ H+

D

H+(β)−−−−→ H+

E
−−−−→ 0

κ1

y κ2

y κ3

y

0 −−−−→ H−
C

H−(α)−−−−→ H−
D

H−(β)−−−−→ H−
E

−−−−→ 0.
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Indeed, the equality (6) follows directly upon combining such a diagram with
the exact sequence (5) and the result of [9, Th. 2.8]. However, for the conve-
nience of the reader, we also now indicate a more direct argument.
After taking account of the construction of χℓ(·, ·) given in the Appendix (the
notation of which we now assume) and the definitions of τθn[−n](C), τθ(D) and
τφ(E) it is enough to prove the existence of a commutative diagram

0 −−−−→ C
+ α+

−−−−→ D
+ β

+

−−−−→ E
+ −−−−→ 0

y
y

y

0 −−−−→ BC ⊕ H+

C

(α′,H+(α))−−−−−−−→ BD ⊕ H+

D

(β′,H+(β))−−−−−−−→ BE ⊕ H+

E
−−−−→ 0

y(id,κ1)

y(id,κ2)

y(id,κ3)

0 −−−−→ BC ⊕ H−
C

(α′,H−(α))−−−−−−−→ BD ⊕ H−
D

(β′,H−(β))−−−−−−−→ BE ⊕ H−
E

−−−−→ 0
y

y
y

0 −−−−→ C
− α−

−−−−→ D
− β

−

−−−−→ E
− −−−−→ 0,

where BC denotes Ball(C), and similarly for BD and BE , α′ : BC → BD and
β′ : BD → BE are the natural homomorphisms that are induced by α and
β respectively, κ1, κ2 and κ3 are as in (7) and all unlabelled vertical maps
are the isomorphisms induced by a choice of sections to each of the natural

homomorphisms C
i → Bi+1(C), Zi(C) → Hi(C),D

i → Bi+1(D), Zi(D) →
Hi(D), E

i → Bi+1(E) and Zi(E) → Hi(E). Indeed, if such a diagram ex-
ists, then the composite vertical isomorphisms belong to τθn[−n](C), τθ(D)
and τφ(E) respectively, and so the commutativity of the diagram formed
by the first and fourth rows combines with the exactness of the sequences

0 → C+ α+

−−→ D+ β+

−−→ E+ → 0 and 0 → C− α−

−−→ D− β−

−−→ E− → 0 and the
defining relations of K0(Zℓ[G], Qℓ) [46, p. 415] to imply the required equality
(6). Thus, upon noting that the rows of this diagram are all exact (the second
and third as a consequence of the exactness of the rows of (7)), it is enough
to prove that sections of the above form can be chosen in such a way that
the top and bottom two squares of the diagram commute, and this in turn
can be proved by a straightforward and explicit exercise using the following
facts. After choosing Qℓ[G]-equivariant direct sum decompositions Pn−1 =

im(1 − θn−1) ⊕ Sn−1 and Pn = ker(1 − θn) ⊕ Sn, one obtains a direct sum

decomposition D
n

= Pn−1 ⊕Pn = Bn(D)⊕Sn−1,∗ ⊕ (0, ker(1 − θn))⊕ (0, Sn)
where Sn−1,∗ denotes the set of elements (π, π′) where π runs over Sn−1 and π′

denotes the unique element of Bn(P ·) which is such that (π, π′) ∈ Zn(D);

one has Zn(D) = Bn(D) ⊕ Sn−1,∗ ⊕ (0, ker(1 − θn)); the natural projec-
tion maps induce isomorphisms Bn(D) ∼= Bn(E), Zn−1(D) ∼= Zn−1(E) and
Bn−1(D) ∼= Bn−1(E). ¤
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Remark 6. There are two special cases in which the formula of Proposition 3.1
has already been proved: if C(θ)·Qℓ

is acyclic, then Hi(1 − θ) is automatically
semi-simple at 0 in each degree i and the given formula has been proved by
Greither and the present author in [16, proof of Prop. 4.1]; if G is abelian, then
Proposition 3.1 can be reinterpreted in terms of graded determinants and in
this case the given formula has been proved to within a sign ambiguity by Kato
in [35, Lem. 3.5.8]. (This sign ambiguity arises because Kato uses ungraded
determinants - for more details in this regard see [loc cit., Rem. 3.2.3(3) and
3.2.6(3),(5)] and [13, Rem. 9].)

3.2. Zeta functions of varieties. In this subsection we fix a prime ℓ that
is distinct from p. We also fix an algebraic closure Fc

p of Fp, we set Γ :=
Gal(Fc

p/Fp) and we write σ for the (arithmetic) Frobenius element in Γ. For
any scheme X over Fp we write Xc for the associated scheme Fc

p ×Fp
X over

Fc
p.

We let J be a finite group, X and Y separated schemes of finite type over Fp

and π : X → Y an étale morphism that is Galois of group J . For each ℓ-adic
sheaf G on Yét we follow the approach of Deligne [27, Rem. 2.12] to define a
J-equivariant Zeta function by setting

ZJ(Y, π∗π
∗G ⊗Zℓ

Qℓ, t) :=
∏

y

detredQℓ[J](1 − f−1
y · tdeg(y) | (π∗π

∗G ⊗Zℓ
Qℓ)y)−1 ∈ ζ(Qℓ[J ])[[t]],

where y runs over the set of closed points of Y , fy denotes the arithmetic
Frobenius of y, deg(y) the degree of y and subscript y denotes taking stalk at
a geometric point over y.
We now combine the algebraic approach of the previous subsection with a well
known result of Grothendieck from [32] to describe, for each integer r, the image
of the leading term Z∗

J(Y, π∗π∗Zℓ(r) ⊗Zℓ
Qℓ, 1)# under the homomorphism

δJ,ℓ : ζ(Qℓ[J ])× → K0(Zℓ[J ], Qℓ).
To this end we observe that π∗ is exact and hence that, for each sheaf G as
above, there is a natural isomorphism RΓ(Y, π∗π∗G) ∼= RΓ(X,π∗G) in D(Zℓ[J ]).
This implies that if G is any étale (pro-)sheaf of finitely generated Zℓ-modules
on Y and we set F := π∗G, then the complexes RΓ(X,F) and RΓ(Xc,F) both
belong to Dperf(Zℓ[J ]) (cf. [29, Th. 5.1]). We may therefore fix a bounded com-
plex of finitely generated projective Zℓ[J ]-modules C· for which there exists an

isomorphism α : C· ∼−→ RΓ(Xc,F) in Dperf(Zℓ[J ]) and a Zℓ[J ]-endomorphism
θ of C· that induces the action of σ on RΓ(Xc,F) (the existence of such a
θ follows from [41, Chap. VI, Lem. 8.17] - but note that the map ψ in loc.
cit. need not, in general, be a quasi-isomorphism). In this way we obtain a
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commutative diagram in Dperf(Zℓ[J ]) of the form

(8)

C· 1−θ−−−−→ C·

α

y α

y

RΓ(X,F) −−−−→ RΓ(Xc,F)
1−σ−−−−→ RΓ(Xc,F) −−−−→ RΓ(X,F)[1],

where the lower row denotes the natural distinguished triangle. Taken in con-
junction with the Octahedral axiom, this diagram implies the existence of an
isomorphism α′ : C(θ)·

∼−→ RΓ(X,F) in Dperf(Zℓ[J ]). Further, the hypothesis
that the composite (4) with ψ = Hi(1−θ) and M = Hi(C·) has both finite ker-
nel and finite cokernel is equivalent to the hypothesis that σ acts ‘semi-simply’
on the space Hi(Xc,F)⊗Zℓ

Qℓ and is therefore expected to be true under some
very general conditions [35, Rem. 3.5.4]. In this context, and in terms of the
notation of Lemma A2, we write τX,F,σ for the Qℓ-trivialisation of RΓ(X,F)
which is equal to (τθ)α′ where τθ is the Qℓ-trivialisation of C(θ)· that is defined
just prior to Proposition 3.1 (with P · = C·).

Remark 7. The trivialisation τX,F,σ defined above has an alternative descrip-
tion. To explain this we let C(F)· denote the complex

H0(X,F)
κ−→ H1(X,F)

κ−→ H2(X,F)
κ−→ · · ·

where H0(X,F) occurs in degree 0 and κ denotes cup-product with the element
of H1(X, Zℓ) obtained by pulling back the element φp of H1(Spec(Fp), Zℓ) =
Homcont(Γ, Zℓ) which sends σ to 1. Then the complex C(F)· ⊗Zℓ

Qℓ is acyclic
if and only if σ acts semi-simply on each space Hi(Xc,F) ⊗Zℓ

Qℓ [35, Lem.

3.5.3]. Further, in each degree i the homomorphism Hi(X,F)
κ→ Hi+1(X,F)

is equal to the ‘Bockstein homomorphism’

βi
X,F,σ : Hi(X,F) → Hi+1(X,F)

that is obtained as the composite

Hi(X,F) → Hi(Xc,F)Γ → Hi(Xc,F)Γ → Hi+1(X,F)

where the first and third maps are induced by the long exact sequence of co-
homology associated to the lower row of (8) and the second map is as in (4).
Indeed, this equality is a consequence of the description of κ on the level of
complexes that is given by Rapaport and Zink in [45, 1.2] (cf. [43, Prop. 6.5]
and [35, §3.5.2] in this regard). These equalities imply in turn that τX,F,σ co-
incides with the Qℓ-trivialisation of RΓ(X,F) that is induced by the acyclicity
of C(F)· ⊗Zℓ

Qℓ together with the assignment τ 7→ τ(C(F)· ⊗Zℓ
Qℓ) which is

described just prior to Lemma A1.

We now state the main result of this subsection.

Theorem 3.2. Let π : X → Y be a finite étale morphism of separated schemes
of dimension d over Fp. If π is Galois of group J and r is any integer for
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which σ acts semi-simply on Hi(Xc, Zℓ(r))) ⊗Zℓ
Qℓ in all degrees i, then in

K0(Zℓ[J ], Qℓ) one has

δJ,ℓ(Z
∗
J(Y, π∗π

∗Zℓ(r) ⊗Zℓ
Qℓ, 1)#) = −χJ,ℓ(RΓ(X, Zℓ(d − r)), τX,Zℓ(d−r),σ).

Proof. We set r′ := d−r and make a choice of morphisms θ and α as in diagram
(8) with F = Zℓ(r

′). Upon applying Lemma A2 to the induced isomorphism

α′ : C(θ)·
∼−→ RΓ(X, Zℓ(r

′)) and then Proposition 3.1 with P · = C· and G = J ,
we find that

χJ,ℓ(RΓ(X, Zℓ(r
′)), τX,Zℓ(r′),σ)

= χJ,ℓ(C(θ)·, τθ)

=
∑

i∈Z

(−1)iδJ,ℓ(detred∗
Qℓ[J](1 − θ : Hi(C·)Qℓ

))

=
∑

i∈Z

(−1)iδJ,ℓ(detred∗
Qℓ[J](1 − σ : Hi(Xc, Qℓ(r

′)))).

For each integer i we set V i := Hi
c(Y

c, π∗π∗Zℓ(r) ⊗Zℓ
Qℓ) ∼= Hi

c(X
c, Qℓ(r)),

where subscript ‘c’ denotes cohomology with compact support. Then, by
Poincaré Duality (cf. [41, Chap. VI, Cor. 11.2]), in each degree i one has
an isomorphism of Qℓ[J ]-modules Hi(Xc, Qℓ(r

′)) ∼= HomQℓ
(V 2d−i, Qℓ). This

isomorphism respects the action of Frobenius in the sense that the action of σ
on Hi(Xc, Qℓ(r

′)) corresponds to the inverse of the action of σ that is induced
on HomQℓ

(V 2d−i, Qℓ) by its natural action on V 2d−i (since the linear duality
functor is contravariant). Hence one has

detredQℓ[J](1 − σ · t : Hi(Xc, Qℓ(r
′)))

=detredQℓ[J](1 − σ−1 · t : HomQℓ
(V 2d−i, Qℓ))

=detredQℓ[J](1 − σ−1 · t : V 2d−i)#,

where the involution x 7→ x# acts coefficient-wise on elements of ζ(Qℓ[J ])[[t]]
and the second equality is valid because J acts contragrediently on
HomQℓ

(V 2d−i, Qℓ) (cf. [7, (2.0.5)]). From the above formula one there-
fore has

χJ,ℓ(RΓ(X, Zℓ(r
′)), τX,Zℓ(r′),σ)

= δJ,ℓ(
∏

i∈Z

(detred∗
Qℓ[J](1 − σ−1 : V i))#,(−1)i

)

= − δJ,ℓ((
∏

i∈Z

detred∗
Qℓ[J](1 − σ−1 : V i)(−1)i+1

)#).

To complete the proof it is thus sufficient to observe that, by Grothendieck
[32], one has an equality of functions of the complex variable t

∏

i∈Z

detredQℓ[J](1 − σ−1 · t : V i)(−1)i+1

= ZJ(Y, π∗π
∗Zℓ(r) ⊗Zℓ

Qℓ, t).
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Indeed, the exposition of [41, Chap. VI, proof of Th. 13.3] proves just such an
equality with Qℓ[J ] replaced by an arbitrary finite degree field extension Ω of
Qℓ and π∗π∗Zℓ(r) ⊗Zℓ

Qℓ by any constructible sheaf of vector spaces over Ω,
and the last displayed equality can be verified by reduction to such cases since
both sides are defined via Galois descent (cf. [27, Rem. 2.12]). ¤

3.3. The case ℓ 6= p. In this subsection we deduce Theorem 3.1i) from a
special case of Theorem 3.2.
To this end we first reinterpret Cℓ(K/k) in the style of Theorem 3.2. We note
that the isomorphism ιℓ constructed in the following result is as predicted by
[30, Conj. 7.2] (with X = UK,S and n = 1).

Lemma 3. There exists a natural isomorphism in Dperf(Zℓ[G]) of the form

ιℓ : RΓW(UK,S , Gm) ⊗ Zℓ
∼−→ RΓ(UK,S , Zℓ(1))[1] .

Set DK,S,ℓ := H1(ιℓ)◦(DK,S⊗Zℓ)◦H0(ιℓ)
−1. Then the inverse of DK,S,ℓ⊗Zℓ

Qℓ

induces a Qℓ-trivialisation of RΓ(UK,S , Zℓ(1)) and Cℓ(K/k) is valid if and only
if in K0(Zℓ[G], Qℓ) one has

(9) δℓ(Z
∗
K/k,S(1)#) = −χℓ(RΓ(UK,S , Zℓ(1)), (−DK,S,ℓ ⊗Zℓ

Qℓ)
−1).

Proof. Following Lemma 1iii) we fix a bounded complex of finitely gen-
erated projective Z[G]-modules P · that is isomorphic in Dperf(Z[G]) to
RΓW(UK,S , Gm). Since RΓ(UK,S , Zℓ(1)) is an object of Dperf(Zℓ[G]) we may
also fix a bounded complex of finitely generated projective Zℓ[G]-modules Q·

that is isomorphic in Dperf(Zℓ[G]) to RΓ(UK,S , Zℓ(1)).
For each natural number n we consider the following diagram

XK,S ⊗ Q[−2] −−−−→ RΓ(UK,S , Gm) −−−−→ P · −−−−→ XK,S ⊗ Q[−1]

ℓn

y ℓn

y ℓn

y

XK,S ⊗ Q[−2] −−−−→ RΓ(UK,S , Gm) −−−−→ P · −−−−→ XK,S ⊗ Q[−1]
y

y
y

0 Q·/ℓn[1] P ·/ℓn.

The first two rows of this diagram are the distinguished triangles that are in-
duced by Lemma 1ii) and the isomorphism P · ∼= RΓW(UK,S , Gm). In addition,
all columns of the diagram are distinguished triangles: the first is obviously
so, the second is the triangle which is induced by the exact sequence of étale

sheaves 1 → µℓn → Gm
ℓn

−→ Gm → 1, the exact sequence of étale pro-sheaves

0 → Zℓ(1)
ℓn

−→ Zℓ(1) → µℓn → 1, the isomorphism Q· ∼= RΓ(UK,S , Zℓ(1)) and

the exact sequence of modules 0 → Qi ℓn

−→ Qi → Qi/ℓn → 0 in each degree i,
and the third column is the distinguished triangle which is induced by the exact

sequence of modules 0 → P i ℓn

−→ P i → P i/ℓn → 0 in each degree i. Since the
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diagram commutes in D(Z[G]) and all rows and columns are distinguished tri-
angles, one can deduce the existence of an isomorphism αn : Q·/ℓn[1] ∼= P ·/ℓn

in Dperf(Z/ℓn[G]). Further, as n varies, the isomorphisms αn may be chosen to
be compatible with the natural transition morphisms (cf. [12, the proof of Prop.
3.3]). The inverse limit of such a compatible system of isomorphisms {αn}n

then gives an isomorphism in Dperf(Zℓ[G]) of the form RΓ(UK,S , Zℓ(1))[1] ∼=
Q·[1] ∼= lim←−n

Q·/ℓn[1] ∼= lim←−n
P ·/ℓn ∼= P · ⊗ Zℓ

∼= RΓW(UK,S , Gm) ⊗ Zℓ, as

required.
Taken in conjunction with Lemma A2 the quasi-isomorphism ιℓ implies that

ρℓ(χQ(RΓW(UK,S , Gm),DK,S ⊗ Q))

=χℓ(RΓW(UK,S , Gm) ⊗ Zℓ,DK,S ⊗ Qℓ)

=χℓ(RΓ(UK,S , Zℓ(1))[1],DK,S,ℓ ⊗Zℓ
Qℓ)

= − χℓ(RΓ(UK,S , Zℓ(1)), (−DK,S,ℓ ⊗Zℓ
Qℓ)

−1),

where the last equality follows from [9, Th. 2.1(3)]. To prove the final asser-
tion of the lemma we need therefore only observe that ρℓ(δ(Z

∗
K/k,S(1)#)) =

δℓ(Z
∗
K/k,S(1)#). Indeed, this equality follows from the fact that on ζ(Q[G])×

one has ρℓ ◦ δ = δℓ ◦ iℓ where iℓ denotes the natural inclusion ζ(Q[G])× →
ζ(Qℓ[G])×. ¤

To prove Cℓ(K/k) we need only show that (9) coincides with the formula of
Theorem 3.2 in the case X = UK,S , Y = Uk,S (so that d = 1), π : UK,S → Uk,S

is the natural morphism of spectra, J = G and r = 0.
We first compare the left hand sides of the respective formulas. If y is any
closed point of Uk,S , then, after fixing a y point x of UK,S and writing Gx

for the decomposition subgroup of x in G, the stalk of π∗π∗Zℓ(0) ⊗Zℓ
Qℓ at

y identifies as a (left) G × Gx-module with Qℓ[G] where elements of the form
(g, id) ∈ G × Gx act via left multiplication by g and elements of the form
(id, gx) ∈ G×Gx act via right multiplication by g−1

x (in this regard compare the
discussion of [7, beginning of §2]). By using this identification one computes
that ZG(Uk,S , π∗π∗Zℓ(0) ⊗Zℓ

Qℓ, t) has the same Euler factor at y as does
ZK/k,S(t). Since this is true for all closed points y it follows that there is an
equality of functions of the complex variable t

ZK/k,S(t) = ZG(Uk,S , π∗π
∗Zℓ(0) ⊗Zℓ

Qℓ, t).

This implies that the left hand side of (9) is equal to the left hand side of the
relevant special case of the formula in Theorem 3.2. Hence our proof of (9)
will be complete if we can verify the relevant semi-simplicity hypothesis (in
order to apply Theorem 3.2) and then prove that the trivialisation τUK,S ,Zℓ(1),σ

is induced by the isomorphism (−DK,S,ℓ ⊗Zℓ
Qℓ)

−1. Our proof is therefore
completed by combining the description of τUK,S ,Zℓ(1),σ in Remark 7 together
with the following result.

Lemma 4. i) σ acts semi-simply on Hi(U c
K,S , Zℓ(1)) ⊗Zℓ

Qℓ in all degrees i.

ii) β1
UK,S ,Zℓ(1),σ

= −DK,S,ℓ.
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Proof. Lemma 3 combines with Lemma 1iii) to imply that RΓ(UK,S , Zℓ(1))
is acyclic outside degrees 1 and 2. Remark 7 therefore implies claim i) is
equivalent to asserting that the map β1

UK,S ,Zℓ(1),σ
⊗Zℓ

Qℓ is bijective and this

is an immediate consequence of the explicit description given in claim ii).
We now fix an arbitrary place v in S and write cv : YK,S⊗Zℓ →

⊕
w|v Zℓ for the

homomorphism induced by projecting each element of YK,S to its respective
coefficient at each place w of K above v. Then claim ii) will follow if we show
that the composite homomorphism

(10) O×
K,S ⊗ Zℓ

H0(ιℓ)−−−−→ H1(UK,S , Zℓ(1))
β1

UK,S,Zℓ(1),σ−−−−−−−−→ H2(UK,S , Zℓ(1))

H1(ιℓ)
−1

−−−−−−→ XK,S ⊗ Zℓ
⊂−→ YK,S ⊗ Zℓ

cv−→
⊕

w|v
Zℓ

is equal to (−deg(w) · valw(−))w|v. To prove this we set S′ := S \ {v}, let
Z denote the complement of UK,S in UK,S′ and write j : UK,S → UK,S′ ,
resp. i : Z → UK,S′ , for the natural open, resp. closed, immersion. Then
there exists a natural morphism of étale sheaves j∗Gm → i∗i∗Z on UK,S′

that is induced by taking valuations. In turn this gives rise to a morphism
RΓ(UK,S , Gm) → RΓ(Z, Z) in D(Z[G]) and hence, for each non-negative inte-
ger n, to a morphism RΓ(UK,S , µℓn) → RΓ(Z, Z/ℓn)[−1] in D(Z/ℓn[G]). These
morphisms are compatible with the natural transition maps as n varies and
therefore induce, upon passage to the inverse limit, a morphism in D(Zℓ[G]) of
the form λ : RΓ(UK,S , Zℓ(1)) → RΓ(Z, Zℓ)[−1].
Now H0(Z, Zℓ) =

⊕
w|v Zℓ and each w-component of H1(λ) ◦ H0(ιℓ) is in-

duced by the respective valuation map valw. In addition, if we identify
H1(Z, Zℓ) =

⊕
w|v Homcont(Gal(Fc

p/k(w)), Zℓ) with
⊕

w|v Zℓ by evaluating

each homomorphism at the topological generator σdeg(w) of Gal(Fc
p/k(w)), then

H2(λ) ◦H1(ιℓ) is induced by projection of an element of XK,S to its respective
coefficients at each place w above v.
Upon replacing UK,S and Z by U c

K,S and Zc one obtains in a similar man-

ner a morphism λc : RΓ(U c
K,S , Zℓ(1)) → RΓ(Zc, Zℓ)[−1] in Dperf(Zℓ[G]) that

induces a morphism of distinguished triangles of the form

RΓ(UK,S , Zℓ(1)) −−−−→ RΓ(U c
K,S , Zℓ(1))

1−σ−−−−→ RΓ(U c
K,S , Zℓ(1))

λ

y λc

y λc

y

RΓ(Z, Zℓ)[−1] −−−−→ RΓ(Zc, Zℓ)[−1]
1−σ−−−−→ RΓ(Zc, Zℓ)[−1].

After passing to cohomology this diagram induces a commutative diagram

H1(UK,S , Zℓ(1))
β1

UK,S,Zℓ(1),σ−−−−−−−−→ H2(UK,S , Zℓ(1))

H1(λ)

y H2(λ)

y

H0(Z, Zℓ)
−β0

Z,Zℓ,σ−−−−−−→ H1(Z, Zℓ),
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where the minus sign in the lower row occurs because of the −1-shift in the
lower row of the previous diagram. Now the pull-back to H1(Z, Zℓ) of φp

is the element (φw)w|v where φw(σdeg(w)) = deg(w) for each w dividing v.

After identifying both H0(Z, Zℓ) and H1(Z, Zℓ) with
⊕

w|v Zℓ in the manner

prescribed above, the description of Remark 7 (with X = Z and F = Zℓ)
therefore implies that β0

Z,Zℓ,σ is given by component-wise multiplication with

the element (deg(w))w|v. Upon combining the commutativity of this diagram

with the explicit descriptions of H1(λ) and H2(λ) given above, it follows that
the composite homomorphism (10) is indeed equal to (−deg(w) · valw(−))w|v,
as required. ¤

3.4. The case ℓ = p. In this subsection we prove Theorem 3.1ii).

For each subgroup H of G we let ρG,∗
H denote the natural restriction of scalars

homomorphism K0(Zp[G], Qp) → K0(Zp[H], Qp). For each abelian group H
and each subgroup J of H we also let qH

H/J,∗ denote the natural coinflation

homomorphism K0(Zp[H], Qp) → K0(Zp[H/J ], Qp). Then one has

K0(Zp[G], Qp)tors =
⋂

ker(qH
H/J,∗ ◦ ρG,∗

H )

where the intersection runs over all cyclic subgroups H of G and over all sub-
groups J of H which are such that p ∤ |H/J | [9, Th. 4.1].
Taken in conjunction with the functorial properties of Cp(K/k) under change
of group (Remark 4), the above displayed equality implies that Cp(K/k) is
valid modulo K0(Zp[G], Qp)tors if and only if Cp(F/E) is valid for each cyclic
extension F/E with k ⊆ E ⊆ F ⊆ K and p ∤ [F : E]. But, for each such
extension F/E, the argument of [7, Lem. 2.2.7] shows that Cp(F/E) is implied
by the Strong-Stark Conjecture for F/E, as formulated by Chinburg (cf. [3,
§3.1]). The required result therefore follows directly from Bae’s proof of the
Strong-Stark Conjecture in this case [3, Th. 3.5.4].
This completes our proof of Theorem 3.1.

4. The conjectures of Chinburg

4.1. Canonical 2-extensions. In the sequel we shall say that two complexes
of G-modules C· and D· are ‘equivalent’ if Hi(C) = Hi(D) in each degree i
and there exists an isomorphism in D(Z[G]) from C· to D· which induces the
identity map in all degrees of cohomology.
If now C· is any complex of G-modules which is acyclic outside degrees 0 and 1,
then C· is naturally isomorphic in D(Z[G]) to its double truncation τ≥0τ≤1C

·.
In addition, the tautological exact sequence

0 → H0(C·) → (τ≥0τ≤1C
·)0 → (τ≥0τ≤1C

·)1 → H1(C·) → 0

determines a unique Yoneda extension class e(C·) ∈ Ext2G(H1(C·),H0(C·)).

Lemma 5. Let C· and D· be any complexes of G-modules which are acyclic
outside degrees 0 and 1 and are also such that Hi(C·) = Hi(D·) for i = 0, 1.
Then C· and D· are equivalent if and only if one has e(C·) = e(D·).
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Proof. An easy consequence of the definition of equivalence of Yoneda exten-
sions. ¤

This result implies that RΓW(UK,S , Gm) corresponds to a unique element

cW,S(K/k) of Ext2G(H1
W(UK,S , Gm),H0

W(UK,S , Gm)). In this subsection we
relate cW,S(K/k) to the canonical extension class which is defined in terms of
class field theory by Tate in [49].
To make such a connection we assume that the G-module AK,S is c-t. In
this case the displayed short exact sequence in Lemma 1iii) splits (since
Ext1G(XK,S , AK,S) = 0) and also Ext2G(AK,S ,O×

K,S) = 0 and so there exists
a natural isomorphism

ιS : Ext2G(XK,S ,O×
K,S)

∼−→ Ext2G(H1
W(UK,S , Gm),H0

W(UK,S , Gm)).

We choose a finite set of places W of k which do not belong to S, are each
totally split in K/k and are such that AK,S is generated by the classes of
places in W (K). We set S′ := S ∪W (so that AK,S′ is trivial) and we observe
that there are natural exact sequences of G-modules of the form

0 → XK,S
⊆−→ XK,S′ → YK,W → 0

0 → O×
K,S

⊆−→ O×
K,S′ → YK,W → AK,S → 0.

Since YK,W is a free Z[G]-module these sequences combine to induce an iso-
morphism of extension groups

ιS′,S : Ext2G(XK,S′ ,O×
K,S′)

∼−→ Ext2G(XK,S ,O×
K,S).

In the sequel we shall identify Yoneda-Ext-groups with derived functor Ext-
groups by means of a projective resolution of the first variable (this convention
differs from that used in [12] - see in particular [loc. cit., Lem. 3]). We
also write cS′(K/k) for the canonical element of Ext2G(XK,S′ ,O×

K,S′) which is

defined in [49].

Proposition 4.1. If the G-module AK,S is c-t, then one has cW,S(K/k) =
ιS ◦ ιS′,S(−cS′(K/k)).

Proof. For each w ∈ S′(K) we set Vw := Spec(Kw). We also let j′ denote the
natural open immersion UK,S′ → CK and we consider the following diagram
in D(Z[G])

XK,S′ ⊗ Q[−2] −−−−→ RΓ(UK,S′ , Gm) −−−−→ RΓW(UK,S′ , Gm)
y

y

YK,S′ ⊗ Q[−2]
α−−−−→ ⊕w∈S′(K)RΓ(Vw, Gm)

y
y

Q[−2] RΓ(CK , j′!Gm)[1].

The top row of this diagram is the distinguished triangle from Lemma 1ii) (with
S replaced by S′), the first column is the distinguished triangle induced by the
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tautological exact sequence 0 → XK,S′
⊂−→ YK,S′ → Z → 0 and the second

column is the distinguished triangle from [42, Chap. II, Prop. 2.3]. Further,
under the isomorphism

HomD(Z[G])(YK,S′ ⊗ Q[−2],⊕w∈S′(K)RΓ(Vw, Gm)) ∼=
HomG(YK,S′ ⊗ Q,⊕w∈S′(K)H

2(Vw, Gm))

that is induced by [12, Lem. 7(b)], the morphism α corresponds to the com-
posite of the projection YK,S′ ⊗Q → YK,S′ ⊗Q/Z and the natural identification
YK,S′ ⊗ Q/Z ∼= ⊕w∈S′(K)H

2(Vw, Gm).
It is straightforward to show that the square in the above diagram commutes
(for example, by using [12, Lem. 7(b)] to reduce to cohomological consid-
erations). By comparing this diagram to the diagrams (85) and (88) from
loc. cit., and then using the Octahedral axiom, one may therefore conclude
that RΓW(UK,S′ , Gm) is equivalent to the complex ΨS′ which is defined in
[12, Prop. 3.1]. From the proof of [12, Prop. 3.5] we may thus deduce that
cW,S′(K/k) = −cS′(K/k). (We remark that whilst the results of [12] are
phrased solely in terms of number fields, all of the constructions and argu-
ments of loc. cit. extend directly to the case of global function fields. In
addition, we obtain −cS′(K/k) rather than cS′(K/k) in the present context
because we have changed conventions regarding Yoneda-Ext-groups.)
To conclude that cW,S(K/k) = ιS ◦ ιS′,S(−cS′(K/k)) it suffices to prove that
there exists a morphism RΓW(UK,S , Gm) → RΓW(UK,S′ , Gm) in D(Z[G])

which induces upon cohomology the natural maps O×
K,S

⊆−→ O×
K,S′ and

H1
W(UK,S , Gm) ։ XK,S

⊆−→ XK,S′ . But, following [40, the proof of Th. 7.1],
the existence of such a morphism can be seen to be a consequence of the mor-
phism of étale sheaves Gm → j∗Gm on UK,S where j : UK,S′ → UK,S denotes
the natural open immersion. ¤

4.2. Galois module theory. In this subsection we relate C(K/k) to the
conjectures formulated by Chinburg in [18, §4.2]. We recall that the conjectures
of loc. cit. are natural function field analogues of the central conjectures of
Galois module theory which had earlier been formulated by Chinburg in [19, 21].
We write Ω(K/k, 1),Ω(K/k, 2) and Ω(K/k, 3) for the Galois structure invari-
ants defined by Chinburg in [18, the end of §4.1] and WK/k for the so-called
‘Cassou-Noguès-Fröhlich Root Number Class’ (cf. [loc. cit., Rem. 4.18]).

Conjecture Ch(K/k) (Chinburg, [18, §4.2, Conj. 3]): In K0(Z[G]) one has

i) Ω(K/k, 1) = 0,
ii) Ω(K/k, 2) = WK/k,
iii) Ω(K/k, 3) = WK/k.

We now state the main results of this section.

Theorem 4.1. The image under ∂0
Z[G],R of the equality of C(K/k) is equivalent

to the equality of Ch(K/k)iii).
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Proof. Following Remark 4, we may consider C(K/k) with respect to a set S
which is large enough to ensure that AK,S is trivial, and in this case Proposition
4.1 (with S = S′) implies that cW,S = ιS(−cS(K/k)).
Let now C· and D· be any objects of Dperf(Z[G]) which are acyclic outside de-
grees 0 and 1 and are such that Hi(C·) = Hi(D·) for i = 0, 1. It is easily shown
that if e(C·) = −e(D·), then C· and D· have the same Euler characteristic in
K0(Z[G]). This observation combines with the equality cW,S = ιS(−cS(K/k))
and the very definition of Ω(K/k, 3) to imply that the latter element can be
computed as the Euler characteristic of RΓW(UK,S , Gm) in K0(Z[G]). It there-
fore follows that Ω(K/k, 3) = ∂0

Z[G],R(χ(RΓW(UK,S , Gm),RK,S)).

On the other hand, the same argument as used to prove [7, Lem. 2.3.7] shows
that ∂0

Z[G],R(δ(θ∗K/k,S(0)#)) = WK/k. The claimed result is now clear. ¤

Corollary 2. i) Ch(K/k)iii) is valid modulo ∂0
Z[G],R(K0(Zp[G], Qp)tors).

ii) If p ∤ |G|, then Ch(K/k) is valid.

Proof. Claim i) follows directly from Theorem 4.1 and Corollary 1.
We now assume that p ∤ |G|. In this case K0(Zp[G], Qp) is torsion-free [13, proof
of Lem. 11c)] and hence claim i) implies Ω(K/k, 3) = WK/k. In addition, K/k
is tamely ramified and so Ch(K/k)ii) has been proved by Chinburg. Indeed,
the equality Ω(K/k, 2) = WK/k follows directly upon combining [18, §4.2, Th.
4] with [23, Cor. 4.10]. Finally, we observe that the validity of Ch(K/k)i) now
follows immediately from the fact that Ω(K/k, 1) = Ω(K/k, 2)−Ω(K/k, 3) [18,
§4.1, Th. 2 and the remarks which follow it]. ¤

Remark 8. The image of K0(Zp[G], Qp)tors under ∂0
Z[G],R is equal to the group

Dp(Z[G]) that arises in [24, Th. 6.13]. We recall that the arguments of Chin-
burg in loc. cit., and of Bae in [3] (the results of which provided the key
ingredient in our proof of Theorem 3.1ii) in §3.4), rely crucially upon results
of Milne and Illusie concerning p-adic cohomology. In particular, in both cases
the occurrence of the term Dp(Z[G]) reflects difficulties involved in formulating
and proving suitable equivariant refinements of the results of [43].

5. The conjecture of Gross

In this section we assume unless explicitly stated otherwise that G is abelian.
We set G∗ := Hom(G, C×) and for each χ ∈ G∗ we let eχ denote the associated
idempotent |G|−1

∑
g∈G χ(g)g−1 of C[G]. In terms of this notation one has

θK/k,S(s) =
∑

χ∈G∗ eχLS(χ, s).

We let IG denote the kernel of the homomorphism ǫ : Z[G] → Z which sends
each element of G to 1.

5.1. Statement of the conjecture. We set n := |S| − 1 and let |n|, resp.
|n|∗, denote the set of integers j which satisfy 1 ≤ j ≤ n, resp. 0 ≤ j ≤ n.
We henceforth label (and thereby order) the places in S as {vi : i ∈ |n|∗}. For
each j ∈ |n|∗ we fix a place wi of K which restricts to vi on k. For any place
v of k which is unramified in K/k we write σv for its frobenius automorphism
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in G and Nv for the cardinality of the associated residue field. We also fix
a finite non-empty set T of places of k which is disjoint from S and then set
∆T :=

∏
v∈T (1 − σv · Nv) ∈ Q[G]× and

θK/k,S,T (s) = ∆T · θK/k,S(s).

This C[G]-valued function is holomorphic at s = 0 and, by using results of
Weil, Gross has shown that θK/k,S,T (0) belongs to Z[G] [31, Prop. 3.7].
For any intermediate field F of K/k and any place w of K we let w′ denote the
restriction of w to F and then write fK/F,w for the homomorphism F× → G

which is obtained as the composite of the natural inclusion F× → F×
w′ , the reci-

procity map F×
w′ → Gal(Kw/Fw′) and the natural injection Gal(Kw/Fw′) → G.

We also write O×
F,S,T for the subgroup of O×

F,S consisting of those S(F )-units

which are congruent to 1 modulo all places in T (F ). It is known that each such
group O×

F,S,T is torsion-free. In particular, after choosing an ordered Z-basis

{uj : j ∈ |n|} of O×
k,S,T , we may define an element of Z[G] by setting

RegG,S,T := det((fK/k,wi
(uj) − 1)1≤i,j≤n).

At the same time we also define a rational integer mk,S,T by means of the
following equality in ∧nXk,S ⊗ R

(11) (lim
s→0

s−nθk/k,S,T (s)) · ∧j∈|n|(vj − v0) = mk,S,T · λk,S(∧j∈|n|uj),

where λk,S denotes the isomorphism

∧nO×
k,S,T ⊗ R → ∧nXk,S ⊗ R

induced by the n-th exterior power of the map −Rk,S as defined in (2) (cf. [31,
(1.7)]).

Conjecture Gr(K/k) (Gross, [31, Conj. 4.1]): One has

θK/k,S,T (0) ≡ mk,S,T · RegG,S,T (mod In+1
G ).

Remark 9. The term mk,S,T · RegG,S,T belongs to In
G and is, when considered

modulo In+1
G , independent of the chosen ordering of S and of the precise choice

of the places {wi : i ∈ |n|∗} and of the ordered basis {uj : j ∈ |n|}.
5.2. Statement of the main results. At the present time, the best results
concerning Gr(K/k) are due to Tan and to Lee. Specifically, it is known that
Gr(K/k) is valid if either |G| is a power of p [47] or if |G| is coprime to both
|µK | and the order of the group of divisors of degree 0 of the curve Ck [39].
However, these results are proved either by reduction to special cases or by
induction on |G| and so do not provide an insight into why Gr(K/k) should be
true in general. In contrast, in this section we shall show that Gross’s integral
regulator mapping O×

k,S → Xk,S ⊗ G [31, (2.1)] arises as a natural Bockstein
homomorphism in Weil-étale cohomology and we shall use this observation to
prove the following result.
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Theorem 5.1. If the G-module µK is c-t, then C(K/k) implies Gr(K/k).

Corollary 3. If the G-module µK is c-t, then Gr(K/k) is valid.

Proof of Corollary 3. It is easily seen to be enough to prove Gr(K/k) in the case
that |G| is a prime power. The aforementioned result of Tan therefore allows
us to assume that p ∤ |G| (so that K0(Zp[G], Qp) is torsion-free). But since the
G-module µK is assumed to be c-t, in this case the validity of Gr(K/k) follows
directly from Theorem 5.1 and Corollary 1. ¤

Remark 10. The G-module µK is c-t if and only if for each prime divisor ℓ

of |G| one has either ℓ ∤ |µK | or ℓ ∤ [K : k(µ
(ℓ)
K )] where µ

(ℓ)
K is the maximal

subgroup of µK of ℓ-power order. It seems likely that a further development
of the method we use to prove Theorem 5.1 will allow the removal of any such
hypothesis on µK . Indeed, in certain special cases this is already achieved in
the present manuscript (cf. Corollary 5).

The proof of Theorem 5.1 will be the subject of the next three subsections.

5.3. The computation of χ(RΓW(UK,S , Gm),RK,S). In this subsection we
assume that the G-module µK is c-t, but we do not assume that G is abelian.
We set TrG :=

∑
g∈G g ∈ Z[G]. For any abelian group A we write A in place

of A/Ators and for any extension field E of Q we set AE := A ⊗ E. For any
homomorphism of abelian groups φ : A → A′ we also let φE denote the induced
homomorphism φ ⊗ idE : AE → A′

E .
In the following result we let Cone(α) denote the ‘mapping cone’ of a particular
morphism α in Dperf(Z[G]) - our application of this construction can be made
rigorous by the same observation as used in [15, Rem. 5.2].

Lemma 6. There exists an endomorphism φ of a finitely generated free Z[G]-
module F which satisfies both of the following conditions.

Let F · denote the complex F
φ−→ F , where the first term is placed in degree 0.

i) There exists a distinguished triangle in Dperf(Z[G]) of the form

F · β−→ Cone(α) → Q[0] → F ·[1]

where α is the morphism µK [0] → RΓW(UK,S , Gm) in Dperf(Z[G]) that
is induced by the inclusion µK ⊂ O×

K,S and Q is a finite G-module of

order coprime to |G|.
ii) The endomorphism φG of FG is semi-simple at 0. Indeed, there exists

an integer d with d ≥ n and an ordered Z[G]-basis {bi : 1 ≤ i ≤ d} of
F which satisfies both of the following conditions.

a) The Z[G]-module F1 which is generated by {bi : i ∈ |n|} satisfies
FG

1 = ker(φG) and, for each i ∈ |n|, the element TrG(bi) is a
pre-image of vi − v0 under the composite map

FG
1 ⊆ FG ։ cok(φG) → H1(R HomZ[G](Z, RΓW(UK,S , Gm)))

∼= H1(RΓW(Uk,S , Gm)) ։ Xk,S ,
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where the third, fourth and fifth maps are induced by H1(β), the
isomorphism of Lemma 1iv) (with J = G) and the short exact
sequence of Lemma 1iii) (with K = k) respectively.

b) The Z[G]-module F2 which is generated by {bi : n < i ≤ d} is such
that φG(FG

2 ) ⊆ FG
2 .

Proof. We set C· := Cone(α). Then, since µK is c-t, Lemma 1iii) implies that
C· is an object of Dperf(Z[G]) which is acyclic outside degrees 0 and 1 and

that H0(C·) = O×
K,S and H1(C·) = H1

W(UK,S , Gm). It is therefore clear that

C· is equivalent to a complex F̂ · of the form P
ψ−→ F where F , resp. P , is

a finitely generated free Z[G]-module, resp. a finitely generated Z[G]-module
which is both c-t and Z-free, and P is placed in degree 0. Now any such
Z[G]-module P is projective [2, Th. 8]. In addition, since the Q[G]-modules
H0(C·)Q and H1(C·)Q are isomorphic, Wedderburn’s Theorem implies that
the Q[G]-modules PQ and FQ are also isomorphic. From Swan’s Theorem [26,
Th. (32.1)] we may therefore deduce that, for each prime q, the Zq[G]-modules
P ⊗ Zq and F ⊗ Zq are isomorphic. We may thus apply Roiter’s Lemma
[26, (31.6)] to deduce the existence of a Z[G]-submodule P ′ of P for which the
quotient P/P ′ is finite and of order coprime to |G| and one has an isomorphism

of Z[G]-modules ι : F
∼−→ P ′. We set λ := ψ ◦ ι ∈ EndZ[G](F ).

The Z-module im(λG) is free and so the exact sequence 0 → ker(λG)
⊆−→

FG λG

−−→ im(λG) → 0 splits. Hence we may choose a submodule D of FG

which λG maps isomorphically to im(λG). We next let T denote the pre-image
under the tautological surjection FG → cok(λG) of the subgroup cok(λG)tors.

Then the exact sequence 0 → T → FG → cok(λG) → 0 is also split and so we

may choose a submodule D′ of FG which is mapped isomorphically to cok(λG)
under the natural surjection. Now D′ and ker(λG) have the same Z-rank since
D′

Q
∼= cok(λG)Q

∼= cok(λ)G
Q

∼= ker(λ)G
Q

∼= ker(λG)Q. The direct sum decom-

positions ker(λG) ⊕ D = FG = T ⊕ D′ therefore imply that there exists an
automorphism ψ′ of FG such that both ψ′(T ) = D and ψ′(D′) = ker(λG). It
is then easily checked that ψ′ ◦ λG(D) ⊆ D and that ker(ψ′ ◦ λG) = ker(λG)

is mapped bijectively to cok(ψ′ ◦ λG) under the composite of the tautological

surjections FG → cok(ψ′ ◦ λG) and cok(ψ′ ◦ λG) → cok(ψ′ ◦ λG).

Since F is a free Z[G]-module we may choose an element ψ̃ of AutZ[G](F ) such

that ψ̃G = ψ′. We now set φ := ψ̃ ◦ λ ∈ EndZ[G](F ) and we let β denote the

morphism in Dperf(Z[G]) which corresponds to the morphism from the complex

F · (as described in the statement of the Lemma) to F̂ · that is induced by ι in

degree 0 and is equal to ψ̃−1 in degree 1. It is then easily checked that this gives
rise to a distinguished triangle of the form stated in i) in which Q := P/P ′.
Now φG = ψ′ ◦ λG and so the above remarks imply both that φG(D) ⊆ D and

that the natural map ker(φG) → cok(φG) is bijective. We next observe that the
decomposition FG = ker(φG) ⊕ D can be lifted to a direct sum decomposition
F = F1 ⊕ F2 in which both F1 and F2 are free Z[G]-modules (of ranks n and
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d−n respectively), FG
1 = ker(φG) and FG

2 = D. We let κ denote the composite
homomorphism described in claim ii)a). Our earlier observations imply that κ
is bijective, and so {κ−1(vi − v0) : i ∈ |n|} is a Z-basis of FG

1 = TrG(F1). It is
then easily shown that there exists a Z[G]-basis {bi : i ∈ |n|} of F1 such that
TrG(bi) = κ−1(vi − v0) for each i ∈ |n|. To complete the proof of claim ii) we
simply let {bi : n < i ≤ d} denote any choice of (ordered) Z[G]-basis of F2. ¤

If M is any finite G-module which is c-t, then M [0] is an object of Dperf(Z[G])
and we set χ(M) := χ(M [0], id0) ∈ K0(Z[G], Q) where id0 denotes the identity

map on the zero space. We also set Rβ
K,S := H1(β)−1

R ◦ RK,S ◦ H0(β)R.
Then upon applying Lemma A2 firstly to the distinguished triangle

µK [0]
α−→ RΓW(UK,S , Gm) → Cone(α) → µK [1]

and then to the distinguished triangle in Lemma 6i) we obtain equalities

χ(RΓW(UK,S , Gm),RK,S) = χ(Cone(α),RK,S) + χ(µK)

= χ(F ·,Rβ
K,S) + χ(Q) + χ(µK)

= δ(detredR[G](〈Rβ
K,S , φ〉ι1,ι2)) + χ(Q) + χ(µK),(12)

where ι1 and ι2 are any choices of R[G]-equivariant sections to the tautological
surjections FR → im(φ)R and FR → cok(φ)R and the last equality follows from
Lemma A1.

5.4. The connection to Gr(K/k). In this subsection we assume that G is
abelian and identify K0(Z[G], R) with the multiplicative group of invertible
Z[G]-lattices in R[G] (see Remark A1). In particular, we note that if M is any
finite G-module which is c-t, then its (initial) Fitting ideal FittZ[G](M) is an
invertible ideal of Z[G] and under the stated identification one has χ(M) =
FittZ[G](M)−1 in R[G].

Now θ∗K/k,S,T (0)# = ∆#
T · θ∗K/k,S(0)# and ∆#

T ∈ AnnZ[G](µK) = FittZ[G](µK).

Hence, in this case, (12) implies that the validity of C(K/k) is equivalent to
the existence of an element xT of Q[G]× which satisfies both

(13) θ∗K/k,S,T (0)# = xT · detR[G](〈Rβ
K,S , φ〉ι1,ι2) ∈ R[G]×

and

(14) Z[G] · xT = ∆#
T · FittZ[G](µK)−1 FittZ[G](Q)−1 ⊆ FittZ[G](Q)−1.

We let G∗
(0) denote the set of characters χ ∈ G∗ at which LS(χ, 0) 6= 0, and

we set e0 :=
∑

χ∈G∗
(0)

eχ. Then the criterion of [50, Chap. I, Prop. 3.4] implies

that e0 ∈ Q[G], that e0 · ker(φ)Q = 0 and hence e0detR[G](〈Rβ
K,S , φ〉ι1,ι2) =

e0detZ[G](φ), and also that for any χ ∈ G∗ \ G∗
(0) one has eχ · ker(φ)C 6= 0

and so e0detZ[G](φ) = detZ[G](φ). Since θK/k,S,T (0)# = e0θ
∗
K/k,S,T (0)# we

therefore deduce from (13) that

θK/k,S,T (0)# = xT detZ[G](φ).
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Now |Q| is coprime to |G| and In
G/In+1

G is annihilated by a power of |G|, and so

(14) implies that xT acts naturally on In
G/In+1

G . In addition, Lemma 6ii) implies
that the matrix of φ with respect to the ordered Z[G]-basis {bi : 1 ≤ i ≤ d} of
F is a block matrix of the form

(15)

(
A B
C D

)

where A := (Aij)1≤i,j≤n ∈ Mn(IG), D ∈ Md−n(Z[G]) and all entries of both B
and C belong to IG. Since det(A) ∈ In

G one has

det(A)# ≡ (−1)ndet(A) (mod In+1
G )

and so the above matrix representation combines with the previous displayed
equality to imply that

(16) θK/k,S,T (0) ≡ (−1)nǫ(xT )ǫ(det(D)) · det(A) (mod In+1
G ).

To compute the term (−1)nǫ(xT )ǫ(det(D)) we first multiply (13) by TrG and
obtain an equality

lim
s→0

s−nθk/k,S,T (s) = ǫ(xT )detR(〈Rβ
K,S , φ〉ι1,ι2)

G.

For convenience we fix the sections ι1 and ι2 so that ιG1 is equal to the inverse of
the automorphism of FG

2,R induced by φG and ιG2 is the inverse of the composite

map FG
1,R ⊆ FG

R ։ cok(φG)R. Then (〈Rβ
K,S , φ〉ι1,ι2)

G = ψ1 ⊕ ψ2 where ψ2 is

equal to the restriction of φ to FG
2,R and ψ1 is the automorphism of FG

1,R that
is obtained as the composite

FG
1,R = ker(φG)R

H0(β)G
R−−−−−→ (O×

K,S)G
R

RK,S−−−→ XG
K,S,R

σ−→ Xk,S,R → FG
1,R

where σ is the bijection induced by the injection Xk,S → XK,S described
in Lemma 1iv) (with J = G), and the final arrow denotes the inverse of the
isomorphism induced by the displayed map in Lemma 6ii)a). Now, with respect
to the ordered Z-basis {TrG(bi) : n < i ≤ d} of FG

2 , each component of the
matrix of ψ2 is the image under ǫ of the corresponding component of D and so

lim
s→0

s−nθk/k,S,T (s) = ǫ(xT ) · detR(ψ1) · ǫ(det(D)).

On the other hand, the commutative diagram

(O×
K,S)G

R

RK,S−−−−→ XG
K,S,R

⊆
x

yσ

(O×
k,S)R

Rk,S−−−−→ Xk,S,R

(cf. [50, Chap. I, §6.5]) combines with the above description of ψ1 to imply
that detR(ψ1) is equal to the determinant of the map ∧n(H0(β)(FG

1 ))R →
(∧nXk,S)R induced by ∧n

RRk,S = (−1)nλk,S , as computed with respect to the
R-bases ∧i∈|n|H0(β)(TrG(bi)) and ∧i∈|n|(vi − v0). Hence, if we fix an ordered

Z-basis {di : i ∈ |n|} of O×
k,S , regard O×

k,S,T as a subgroup of O×
k,S in the natural
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way, and define elements a := (aij)1≤i,j≤n and b := (bij)1≤i,j≤n of Mn(Z) by
the equalities ui =

∑
j∈|n| aijdj and TrG(H0(β)(bi)) =

∑
j∈|n| bijdj for each

i ∈ |n|, then the last displayed formula implies that

(lim
s→0

s−nθk/k,S,T (s)) · ∧j∈|n|(vj − v0)

= ǫ(xT )ǫ(det(D))detR(ψ1) · ∧j∈|n|(vj − v0)

= (−1)nǫ(xT )ǫ(det(D)) · λk,S(∧j∈|n|H
0(β)(TrG(bj)))

= (−1)nǫ(xT )ǫ(det(D))det(b)det(a)−1 · λk,S(∧j∈|n|uj).

Comparing this equality with (11) implies that

(−1)nǫ(xT )ǫ(det(D))det(b)det(a)−1 = mk,S,T

and hence that

(−1)nǫ(xT )ǫ(det(D)) = mk,S,T det(a)det(b)−1.

In turn, upon substituting this equality into (16) we obtain a congruence

(17) θK/k,S,T (0) ≡ mk,S,T det(a)det(b)−1 · det(A) (mod In+1
G ).

5.5. Bockstein homomorphisms. In this subsection we complete our proof
of Theorem 5.1 by showing that the factor det(a)det(b)−1 ·det(A) which occurs
in (17) is equal to RegG,S,T . The key to our proof of this equality will be the

observation that the ‘regulator map’ O×
k,S → Xk,S ⊗G introduced by Gross in

[31, (2.1)] arises as a natural Bockstein homomorphism in Weil-étale cohomol-
ogy (this is Lemma 8). The material in this subsection is strongly influenced
by the general philosophy of algebraic height pairings that is developed by
Nekovář in [44, §11].
At the outset we let Γ be any finite abelian group and C· any object of
Dfpd(Z[Γ]). Then, upon tensoring C· with the tautological exact sequence
0 → IΓ → Z[Γ] → Z → 0 we obtain a distinguished triangle in D(Z) of the
form

C· → C·
Γ → C ⊗L

Z[Γ] IΓ[1] → C·[1],

where C·
Γ := C·⊗L

Z[Γ]Z. In addition, if C· is acyclic outside degrees 0 and 1, then

there are natural identifications H0(C·
Γ) ∼= H0(C·)Γ (induced by the action of

TrΓ), H1(C·
Γ) ∼= H1(C·)Γ and H1(C· ⊗L

Z[Γ] IΓ) ∼= H1(C·) ⊗Z[Γ] IΓ. In this case

the canonical identification IΓ/I2
Γ
∼= Γ therefore combines with the cohomology

sequence of the above triangle to induce a ‘Bockstein homomorphism’

βC·,Γ : H0(C·)Γ → H1(C· ⊗L
Z[Γ] IΓ) ∼= H1(C·) ⊗Z[Γ] IΓ

→ H1(C·)Γ ⊗Z[Γ] (IΓ/I2
Γ) ∼= H1(C·

Γ) ⊗ Γ

and also an associated pairing

ρC·,Γ : H0(C·)Γ × HomZ(H1(C·
Γ), Z) → IΓ/I2

Γ.

In the remainder of this subsection we shall use these constructions in the
cases that Γ = G and C· is equal to both F · (as described in Lemma 6) and
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RΓW(UK,S , Gm), and also in the case that Γ is equal to a given decomposition
subgroup of G and C· is a local analogue of RΓW(UK,S , Gm). In the course
of so doing we shall always use the Z-basis {vi − v0 : i ∈ |n|} to identify Xk,S

with HomZ(Xk,S , Z).
Before stating our first result we observe that the action of TrG (in each degree)
induces an isomorphism in D(Z) between F ·

G = F · ⊗Z[G] Z and the complex

FG φG

−−→ FG in which the first term is placed in degree 0. We shall use this
isomorphism to identify H1(F ·

G) with Xk,S by means of the map FG → Xk,S

described in Lemma 6ii)a).

Lemma 7. With respect to the ordered Z-bases {TrG(bi) : i ∈ |n|} and {vi−v0 :

i ∈ |n|} of H0(F ·)G and HomZ(H1(F ·
G), Z) respectively, the matrix of ρF ·,G is

equal to A (mod Mn(I2
G)).

Proof. The homomorphism βF ·,G can be computed as the composite of the
connecting homomorphism in the following commutative diagram

H0(F ·)G

y

0 −−−−→ F ⊗Z[G] IG
⊆−−−−→ F

·TrG−−−−→ FG −−−−→ 0
yφ⊗Z[G]id

yφ

yφG

0 −−−−→ F ⊗Z[G] IG
⊆−−−−→ F

·TrG−−−−→ FG −−−−→ 0
y

H1(F ·) ⊗Z[G] IG

with the natural surjection H1(F ·) ⊗Z[G] IG → H1(F ·
G) ⊗ IG/I2

G. Upon com-
puting the above connecting homomorphism by using the matrix represen-
tation of φ given in (15), and observing Lemma 6ii) implies that the tauto-

logical surjection FG → cok(φG) ∼= H1(F ·
G) factors through the projection

FG → FG
1 , one finds that the required composite sends each element TrG(bi)

to
∑

j∈|n|(vj − v0) ⊗ Aij (mod I2
G). This implies the stated result. ¤

The construction of the pairing ρC·,G is natural in C· in the following sense: if

µ : C· → D· is any morphism in Dfpd(Z[G]) which induces a bijection H1(µG)

from H1(C·
G) to H1(D·

G), then there is a commutative diagram

H0(C·)G × HomZ(H1(C·
G), Z)

ρC·,G−−−−→ IG/I2
G

(H0(µ)G,HomZ(H1(µG),Z)−1)

y
∥∥∥

H0(D·)G × HomZ(H1(D·
G), Z)

ρD·,G−−−−→ IG/I2
G.

When taken in conjunction with the computation of Lemma 7 and the fact
that multiplication by det(b) is invertible on In

G/In+1
G (since |QG| is coprime to
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|G|), this observation implies that the term det(a)det(b)−1 ·det(A) (mod In+1
G )

in (17) is equal to the discriminant of the restriction of ρRΓW(UK,S ,Gm),G to

O×
k,S,T × Xk,S as computed with respect to the ordered Z-bases {ui : i ∈ |n|}

and {vi − v0 : i ∈ |n|}.
To prove Theorem 5.1 we therefore need only show that the homomorphism
βRΓW(UK,S ,Gm),G coincides with the regulator mapping O×

k,S → Xk,S ⊗ G de-

fined by Gross in [31, (2.1)]. In turn, this is achieved by the following result
(which, we observe, does not assume that the G-module µK is c-t).

Lemma 8. Set C· := RΓW(UK,S , Gm). Then for each u ∈ O×
k,S,T one has

βC·,G(u) =
∑

i∈|n|(vi − v0) ⊗ fK/k,wi
(u).

Proof. We fix an index i ∈ |n| and set v := vi, w := wi and D := Gal(Kw/kv).
We let βC·,G,v denote the composite of βC·,G with the inclusion Xk,S ⊗ G ⊂
Yk,S ⊗ G and the homomorphism Yk,S ⊗ G → G which is induced by mapping
each element of Yk,S to its coefficient at v. Then we need to show that βC·,G,v =
fK/k,w.
We set Vw := Spec(Kw). Then the result of [12, Lem. 7(b)] combines with
the fact that H1(Vw, Gm) = 0 to imply that there exists a unique morphism
αw from Q[−2] to RΓ(Vw, Gm) in D(Z[D]) for which H2(αw) is equal to the
composite of the natural projection Q → Q/Z and the canonical identification
Q/Z ∼= H2(Vw, Gm). We set C·

w := Cone(αw) (cf. the remark just prior to
Lemma 6). Then, by an argument similar to that used in the proof of Lemma
1iii), one shows that C·

w is an object of Dfpd(Z[D]) which is acyclic outside
degrees 0 and 1 and is such that H0(C·

w) and H1(C·
w) identify canonically with

K×
w and Z respectively. Further, in the notation of §4.1, the result of [12, Prop.

3.5(a)] implies that the associated Yoneda extension class e(C·
w) is equal to

the element −ew of Ext2D(Z,K×
w ) ∼= H2(D,K×

w ) where invkv
(ew) = 1

|D| (recall

that, following the approach of §4.1, we are here using a different convention
regarding Yoneda-Ext-groups than that used in [12], and hence e(C·

w) is equal
to −ew rather than ew.)
The natural localisation morphism RΓ(UK,S , Gm) → Z[G] ⊗Z[D] RΓ(Vw, Gm)
in D(Z[G]) induces a morphism C· → Z[G] ⊗Z[D] C·

w and by consideration of
this morphism one finds that βC·,G,v is equal to the composite of the embedding
O×

k,S → k×
v , the homomorphism βC·

w,D and the natural injection D ⊆ G. It
is therefore enough for us to prove that βC·

w,D is equal to the reciprocity map
recw : k×

v → D of the extension Kw/kv.
To this end we first recall that recw is defined to be the map induced by the
inverse of the isomorphism D ∼= Ĥ0(D,K×

w ) which results from the canonical

identifications D ∼= ID/I2
D = Ĥ−1(D, ID), the isomorphism Ĥ−1(D, ID) ∼=

Ĥ−2(D, Z) which is induced by the connecting homomorphism associated to
the tautological exact sequence 0 → ID → Z[D] → Z → 0 and the isomorphism

Ĥ−2(D, Z) ∼= Ĥ0(D,K×
w ) which is given by cup-product with ew.

To proceed we choose an extension of D-modules

0 → K×
w

ι−→ A
ψ−→ Z[D]

ǫ−→ Z → 0
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of Yoneda extension class −ew. Then C·
w is equivalent to the complex A·

which is given by A
ψ−→ Z[D], where the modules are placed in degrees 0 and 1

and the cohomology is identified with K×
w and Z by means of the given maps.

Taken in conjunction with the description of recw in the preceding paragraph
and the compatibility of cup-products with connecting homomorphisms in Tate
cohomology (cf. [2, Th. 3 and Th. 4(iii),(iv)]), this observation implies that
recw is induced by the canonical isomorphism D ∼= ID/I2

D = (ID)D together
with the inverse of the connecting homomorphism in the following commutative
diagram

(ID)D∥∥∥

(K×
w )D

ιD−−−−→ AD
ψD−−−−→ (ID)D −−−−→ 0

yTrw

yTrw

yTrw

0 −−−−→ (K×
w )D ιD

−−−−→ AD ψD

−−−−→ (ID)D = 0
y

Ĥ0(D,K×
w )

where Trw :=
∑

d∈D d ∈ Z[D]. On the other hand, the fact that C·
w is equiv-

alent to A· combines with the definition of βC·
w,D to imply that the latter

homomorphism can be computed as the composite of the natural identification
D ∼= (ID)D and the connecting homomorphism in the following commutative
diagram

k×
vyιD

A ⊗Z[D] ID −−−−→ A
Trw−−−−→ AD −−−−→ 0

yψ⊗Z[G]id

yψ

yψD

0 −−−−→ ID
⊂−−−−→ Z[D]

Trw−−−−→ Z · Trw −−−−→ 0
y

(ID)D.

We remark that the upper row of this diagram is exact since the D-module A
is c-t. Our proof now concludes by means of an explicit diagram chase showing
that the connecting homomorphism in the second of these diagrams induces
the inverse of the connecting homomorphism in the first diagram. ¤
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6. The conjecture of Tate

In this section we provide evidence for Tate’s refinement of Gr(K/k). To do so
we continue to use the notation of §5.1. In addition, we fix a prime number ℓ
and assume henceforth that G has order ℓm with m ≥ 1. For each index j in
|n|∗ we let Gj denote the decomposition subgroup of wj in G and we define an
integer mj by the equality |Gj | = ℓm−mj .

6.1. Statement of the conjecture. In this subsection we assume S to be
ordered so that m0 ≤ m1 ≤ · · · ≤ mn.

Conjecture Ta(K/k, S, T ) (Tate, [51]): If G is cyclic of order ℓm, m0 = 0
and mn = m − 1, then one has

θK/k,S,T (0) ≡ mk,S,T · RegG,S,T (mod I
(
∑ n−1

i=0 ℓmi )+1
G ).

For a further discussion of this conjecture see, for example, [38, §4].

6.2. Statement of the main results. We recall from §4.1 that if the G-
module AK,S := Pic(OK,S) is c-t, then one can define a canonical element

cS(K/k) := ιS′,S(cS′(K/k)) of Ext2G(XK,S ,O×
K,S), where S′ is any set as de-

scribed in §4.1 (and cS(K/k) is indeed independent of the choice of S′).
For each index j in |n| we write Ij for the kernel of the natural projection map
Z[G] → Z[G/Gj ]. We consider the following hypothesis on K/k.

Hypothesis (S,T): There exist finite non-empty sets S and T of places of k
which satisfy each of the following conditions:

i) S contains all places which ramify in K/k,
ii) the G-module AK,S is c-t,
iii) G0 = G, n > 0 and Gj is cyclic for each j ∈ |n|,
iv) T is disjoint from S and cS(K/k) lies in the image of the map

Ext2G(XK,S ,O×
K,S,T ) → Ext2G(XK,S ,O×

K,S)

induced by the inclusion O×
K,S,T ⊂ O×

K,S .

Remark 11. If K/k is cyclic, then there always exists a set of places S which
satisfies conditions i), ii) and iii) above. In general however, for a given field
K there are restrictions on the abstract structure of the decomposition group
G0 and therefore (under condition iii)) also on G. Nevertheless, the validity
of Hypothesis (S,T) does not itself imply, for example, that G is abelian. If
ℓ ∤ |µk|, then (since |G| is a power of ℓ) one has ℓ ∤ |µK | and so [50, Chap. IV,
Lem. 1.1] implies that there exists a set T which is disjoint from S and satisfies
ℓ ∤ [O×

K,S : O×
K,S,T ] and hence also condition iv). In fact, condition iv) can be

shown to be satisfied under reasonably general conditions even if ℓ | |µk| (cf.
[17, Lem. 2]).

The following result will be proved in §6.4.
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Theorem 6.1. If S and T are as in Hypothesis (S,T) and G is abelian, then
C(K/k) implies that

θK/k,S,T (0) ≡ mk,S,T · RegG,S,T (mod IG ·
∏

j∈|n|
Ij).

Corollary 4. Assume the notation and hypotheses of Ta(K/k, S, T ). If the
G-module Pic(OK,S) is c-t and cS(K/k) lies in the image of the map

Ext2G(XK,S ,O×
K,S,T ) → Ext2G(XK,S ,O×

K,S)

induced by the inclusion O×
K,S,T ⊂ O×

K,S, then C(K/k) implies that

θK/k,S,T (0) ≡ mk,S,T · RegG,S,T (mod IG ·
∏

j∈|n|
Ij).

In particular, in this case Ta(K/k, S, T ) is valid.

Proof. Since, by assumption, m0 = 0 the sets S and T satisfy all parts of
Hypothesis (S,T). The first assertion thus follows directly from Theorem 6.1.
To prove the second assertion we recall that if ℓ = p, then Ta(K/k, S, T ) has
been proved by Tan [48]. We may therefore assume that ℓ 6= p so that C(K/k)
is valid by Corollary 1. It thus suffices to deduce the validity of Ta(K/k, S, T )
from the stated congruence for θK/k,S,T (0) and this is true because

∏
j∈|n| Ij ⊆

I
∑ n−1

i=0 ℓmi

G . Indeed, since mn = m − 1, the required inclusion follows directly
from the criterion of [8, Lem. 5.11]. ¤

The next result improves upon Corollary 3 and also the main result of Lee in
[37].

Corollary 5. If G has prime exponent, then Gr(K/k) is valid.

Proof. In this case, the functorial properties of θK/k,S,T (0) and RegG,S,T under

change of K/k combine with results on the structure of IG/In+1
G to show that

it is enough to prove Gr(L/k) for each sub-extension L/k of K/k which is of
prime degree. The theorem of Tan [47] also allows us to assume that [L : k]
is a prime number different from p, and in this case the required congruence
can be proved by combining the result of Corollary 4 (with K = L) together
with arguments of Gross from [31, §6]. The precise details of this argument are
presented in joint work of the author with Lee [17]. ¤

6.3. χ(RΓW(UK,S , Gm),RK,S) revisited. In this subsection we prepare for
the proof of Theorem 6.1 by using Hypothesis (S,T) to refine the computation
of χ(RΓW(UK,S , Gm),RK,S) given in §5.3. We do not assume here that G is
abelian or that the G-module µK is c-t.
At the outset we fix sets S and T as in Hypothesis (S,T). Since S is fixed we
abbreviate O×

K,S,T ,XK,S and O×
K,S to O×

K,T ,XK and O×
K respectively. We also

set AK := Pic(OK,S) and write AK,T for the quotient of the group of fractional
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ideals of OK,S that are prime to T by the subgroup of principal ideals with a
generator congruent to 1 modulo all places in T (K).
For each j ∈ |n| we fix a generator gj of Gj and a set of representatives S(j)
of the orbits of Gj on the set of places of K lying above {vi : i ∈ |n|}. We
assume that S(j) contains wi for each i ∈ |n|. For each place w in S(j) we
define δjw to be 1 if w = wj and to be 0 otherwise. For each j ∈ |n| we also
set Trj :=

∑
g∈Gj

g ∈ Z[G] and Kj := KGj .

If d is any strictly positive integer, then in the sequel we shall use the canonical
basis of R[G]d to identify the groups GLd(R[G]) and AutR[G](R[G]d).

Proposition 6.1. Let S and T be as in Hypothesis (S,T). Assume also that
Gj is not trivial for any j ∈ |n|. Then, for each j ∈ |n| there exists an element
ǫj of O×

Kj ,T which satisfies all of the following conditions.

i) For each w ∈ S(j) one has fK/Kj ,w(ǫj) = g
δjw

j .

ii) For each pair of integers i, j in |n| let yji denote the (unique) element
of R[G] · Tri which satisfies

1

|Gj |
RK,S(ǫj) =

∑

i∈|n|
yji(wi − w0).

Then the matrix MT := (δij(gi−1)+yij)1≤i,j≤n belongs to GLn(R[G]).
iii) The G-module E that is generated by the set {ǫj : j ∈ |n|} has finite

index in O×
K,T . The G-modules O×

K,S/E and AK,T are both c-t and in

K0(Z[G], R) one has

χ(RΓW(UK,S , Gm),RK,S) = χ(O×
K,T /E) − χ(AK,T )

+ δ(detredR[G](MT )) − δ(detredR[G](∆
#
T )).

To prove this result we let Ψ̂· denote any complex of G-modules of the

form Ψ̂0 d−→ Ψ̂1 where Ψ̂0 occurs in degree 0 and e(Ψ̂·) = cW,S(K/k) in
the notation of §4.1. We write Ψ1 for the pullback of the natural sur-
jection Ψ̂1 → H1

W(UK,S , Gm) and a choice of section γ to the surjection
H1

W(UK,S , Gm) → XK provided by Lemma 1iii) (such a section always ex-
ists under Hypothesis (S,T)ii)). In this way we obtain a complex Ψ· of the

form Ψ̂0 d̂−→ Ψ1 which satisfies e(Ψ·) = ι−1
S (cW,S(K/k)) ∈ Ext2G(XK ,O×

K) and
lies in a distinguished triangle in Dperf(Z[G]) of the form

Ψ· α−→ RΓW(UK,S , Gm) → AK [−1] → Ψ·[1],

where H0(α) is the identity map and H1(α) = γ. Upon applying Lemma A2
to this triangle we obtain an equality

(18) χ(RΓW(UK,S , Gm),RK,S) = χ(Ψ·,RK,S) − χ(AK).

To compute χ(Ψ·,RK,S) we shall first be more explicit about the computation

of the group Ext2G(XK ,O×
K). For each j ∈ |n| one has an exact sequence

0 → Z[G] · Trj
⊂−→ Z[G]

dj−→ Z[G]
θj−→ Z[G](wj − w0) → 0
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where dj(x) = (gj − 1)x and θj(x) = x(wj − w0) for each x ∈ Z[G]. By tak-
ing the direct sum of these sequences over j in |n| we obtain a resolution of

XK =
⊕

j∈|n| Z[G](wj − w0) of the form 0 → ΣK
⊂−→ F

d−→ F
θ−→ XK → 0

in which ΣK :=
⊕

j∈|n| Z[G] · Trj , F =
⊕

j∈|n| Z[G], d =
⊕

j∈|n| dj and

θ =
⊕

j∈|n| θj . When computing Ext2G(XK ,O×
K) with respect to this reso-

lution, we may choose an injective G-homomorphism φ : ΣK → O×
K which

represents ι−1
S (cW,S(K/k)) [4, Lem. 2.4]. In addition, from Proposition 4.1,

one has ι−1
S (cW,S(K/k)) = −cS(K/k) and so Hypothesis (S,T)iv) allows us to

assume that φ factors through a homomorphism φT : ΣK → O×
K,T . In this

case one has φT =
⊕

i∈|n| φj with φj ∈ HomZ[G](Z[G] · Trj ,O×
K,T ) and so we

set ǫj := φj(Trj) ∈ (O×
K,T )Gj = O×

Kj ,T . Then, since φ represents −cS(K/k),

the descriptions of [22, Prop. 3.2.1, Prop. 4.5.2] imply that condition i) is
satisfied. (Note that the result of [22, Prop. 4.5.2] should state that ψw(tv(c))
is equal to g−1 rather than g. Indeed, the compatibility of cup-product with
connecting homomorphisms in Tate cohomology implies that (in the notation
of the proof given in loc. cit.) cup-product with β is equal to the negative of
the composite of the connecting homomorphisms H−2(Gv, Z) → H−1(Gv, IΓa)
and H−1(Gv, IΓa) → H0(Gv, Zc) described there. See also the proof of [20,
Cor. 2.1] in this regard.)

We next let F̂ denote the push-out of φ and the inclusion map ΣK
⊆−→ F , and

we write F · and F̂ · for the complexes F
d−→ F and F̂

d̂−→ F where (in both

cases) the modules are placed in degrees 0 and 1 and d̂ denotes the morphism
induced by d. Then Lemma 5 combines with our choice of φ to imply that
the complexes F̂ · and Ψ· are equivalent and hence there exists a distinguished
triangle in D(Z[G]) of the form

F · β−→ Ψ· → cok(φ)[0] → F ·[1]

in which H0(β) = φ and H1(β) is the identity map. Note that since both F ·

and Ψ· belong to Dperf(Z[G]) this triangle implies that cok(φ)[0] (and hence
also the triangle itself) belongs to Dperf(Z[G]). In particular, it follows that
the G-module cok(φ) is both finite (since φ is injective) and c-t. In addition,
we may apply Lemma A2 to the triangle to deduce that

(19) χ(Ψ·,RK,S) = χ(F ·,RK,S ◦ φ) + χ(cok(φ)).

To compute χ(F ·,RK,S ◦ φ) we observe that the differential of F · is semi-
simple at 0, when considered as an endomorphism of F . Indeed, the submodule
D :=

⊕
j∈|n| Q[G]·(gj−1) is a Q[G][d]-equivariant direct complement to ΣK⊗Q

in F ⊗Q. We may therefore apply Lemma A1 with P = F,R = Z, E = R, φ =
d, λ = RK,S ◦ φ and with ι1, ι2 equal to the sections which are induced by D.
In this context, the definition of the elements yij in the statement of claim
ii) implies that the restriction of the automorphism 〈λ, φ〉ι1,ι2 which occurs in
Lemma A1 to the direct summand ΣK ⊗R, resp. D⊗Q R, of F ⊗R is the map
which sends each Trj to

∑
i∈|n| yji Tri, resp. is the map which is induced by
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multiplication by (gj −1) on each summand R[G] ·(gj −1). It follows that, with
respect to a suitable ordered R[G]-basis of F⊗R, the matrix of 〈λ, φ〉ι1,ι2 is equal
to MT and hence that MT is invertible, as required by claim ii). In addition,
in this case Lemma A1 implies that χ(F ·,RK,S ◦ φ) = δ(detredR[G](MT )). Our
proof of Proposition 6.1 is thus completed by combining this equality with (18),
(19) and the following two results.

Lemma 9. If the G-module cok(φT ) = O×
K,T /E is c-t, then so also are cok(φ) =

O×
K/E , AK and AK,T , and in K0(Z[G], R) one has

χ(cok(φ)) − χ(AK) = χ(cok(φT )) − χ(AK,T ) − δ(detredR[G](∆
#
T )).

Proof. We use the natural exact sequence of finite G-modules

(20) 0 → cok(φT )
⊆−→ cok(φ) →

⊕

v∈T

F×
(v) → AK,T → AK → 0

where F(v) denotes the direct sum of the residue fields Fw of each place w of
K which lies above v [31, (1.5)]. Let Gw denote the decomposition group of
w in G. Then, if η is any generator of the cyclic group F×

w , there exists a Gw-
equivariant surjection Z[Gw] → F×

w which sends 1 to η. In this way one obtains

an exact sequence 0 → Z[G]
1−σ−1

v Nv→ Z[G] → F×
(v) → 0 of G-modules. These

sequences combine to imply that the G-module
⊕

v∈T F×
(v) is c-t and moreover

that χ(
⊕

v∈T F×
(v)) =

∑
v∈T χ(F×

(v)) = −∑
v∈T δ(detredR[G](1 − σ−1

v Nv)) =

−δ(detredR[G](∆
#
T )).

At this stage we know that all of the modules which occur in (20) are c-t,
except possibly for AK,T . The exactness of this sequence therefore implies that
AK,T is also c-t. Finally, the claimed equality follows upon decomposing (20)
into short exact sequences and then using Lemma A2 (repeatedly). ¤

Lemma 10. The G-module cok(φT ) is c-t. Indeed, one has ℓ ∤ | cok(φT )|.
Proof. It suffices to prove that ℓ ∤ | cok(φT )G|. Now E ∼= ΣK so H1(G, E) ∼=
H1(G,ΣK) = 0. This implies cok(φT )G = (O×

K,T /E)G ∼= O×
k,T /EG and also

that EG is generated by {Nj(ǫj) : j ∈ |n|} where, for each j ∈ |n|, we write Nj

for the field theoretic norm map K×
j → k×.

We fix an ordered Z-basis {ui : i ∈ |n|} of Uk,T and define an element b :=

(bij) of Mn(Z) by the equalities Ni(ǫi) =
∏n

j=1 u
bij

j for each i, j in |n|. Then

|O×
k,T /EG| = ±det(b) and so we must show that ℓ ∤ det(b). To prove this we

choose for each i, j in |n|, an integer aij such that fK/k,wi
(uj) = g

aji

i , we set
a := (aij) ∈ Mn(Z) and we show that b · a ≡ In (mod ℓ · Mn(Z)).
For each intermediate field F of K/k we write JF for the idele group of F and
fF : JF → Gal(K/F ) for the global reciprocity map. For each j ∈ |n| we write
fF,j : F× → Gal(K/F ) for the composite of fF and the natural inclusion of
F× into

∏
s F×

s ⊂ JF where the product is taken over the set of places s of F
which lie above vj . We note that if F = k, then fF,j = fK/k,wj

.

Documenta Mathematica 9 (2004) 357–399



394 David Burns

For each pair of elements i, j of |n| we set S(ij) := {w ∈ S(i) : w | vj}.
Then property i) in the statement of the Proposition implies fKi,j(ǫi) =∏

w∈S(ij) fK/Ki,w(ǫi) =
∏

w∈S(ij) gδiw
i = g

δij

i . After taking account of the

functorial behaviour of Artin maps, this implies g
δij

i = fK/k,wj
(Ni(ǫi)) =

∏
s∈|n| fK/k,wj

(us)
bis =

∏
s∈|n| g

bisasj

j = g
∑

s∈|n| bisasj

j and hence, since by as-

sumption no element gj is trivial, that
∑

s∈|n| bisasj ≡ δij (mod ℓ). It follows

that b · a ≡ In (mod ℓ · Mn(Z)), as required. ¤

6.4. The proof of Theorem 6.1. In this subsection we use Proposition 6.1
to prove Theorem 6.1. We assume throughout that G is abelian. Our argument
is similar to that used in §5.4 and so we continue to use the notation G∗

(0) and

e0 introduced in that subsection.
At the outset we observe that if Gj is trivial for any j ∈ |n|, then θK/k,S,T (0)
and RegG,S,T are both equal to 0 and so the congruence of Theorem 6.1 is valid
trivially. In the sequel we shall therefore assume that Gj is not trivial for any
j ∈ |n|, as is required by Proposition 6.1.
Now, since G is abelian, Proposition 6.1iii) shows that C(K/k) implies the
existence of an element xT of Q[G]× which satisfies both

(21) θ∗K/k,S,T (0)# = xT · det(MT ) ∈ R[G]×

and

(22) Z[G] · xT = FittZ[G](O×
K,T /E)−1 FittZ[G](AK,T ) ⊆ FittZ[G](O×

K,T /E)−1.

For all i, j in |n| one has e0 · Trj = 0 so that e0yij = 0 and hence (MT e0)ij =
δij(gi−1)e0. Also, for each χ ∈ G∗\G∗

(0) there exists j ∈ |n| such that χ(gj) = 1

and so
∏

i∈|n|(gi − 1)(1 − e0) = 0. It follows that

e0det(MT ) = det(MT e0)

=
∏

i∈|n|
(gi − 1)e0

=
∏

i∈|n|
(gi − 1).

This combines with (21) to imply that θK/k,S,T (0)# = xT · e0det(MT ) =
xT

∏
i∈|n|(gi − 1). In addition, (22) combines with Lemma 10 to imply that

xT ∈ Zℓ[G] and hence one has

θK/k,S,T (0)# ≡ ǫ(xT )
∏

i∈|n|
(gi − 1) (mod IG ·

∏

i∈|n|
Ii).

Since RegG,S,T ∈ ∏
i∈|n| Ii one also has

(RegG,S,T )# ≡ (−1)nRegG,S,T (mod IG ·
∏

i∈|n|
Ii).
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To deduce the congruence of Theorem 6.1 from the previous displayed congru-
ence we therefore need only show that

ǫ(xT )
∏

i∈|n|
(gi − 1) ≡ (−1)nmk,S,T · RegG,S,T (mod IG ·

∏

i∈|n|
Ii)

where mk,S,T is as defined in (11). In addition, with the matrix b as defined in
the proof of Lemma 10, one has

∏

i∈|n|
(gi − 1) ≡ det((fK/k,wj

(Ni(ǫi)) − 1)1≤i,j≤n)

≡ det(b) · det((fK/k,wj
(ui) − 1)1≤i,j≤n)

≡ det(b) · RegG,S,T (mod IG ·
∏

j∈|n|
Ij),

and so it suffices to show that ǫ(xT ) · det(b) = (−1)nmk,S,T . But, just as in
the deduction of (17) from (13), this can be proved by first multiplying (21) by
TrG and then comparing the resulting equality to (11).
This completes our proof of Theorem 6.1.

Appendix

We recall some relevant properties of the refined Euler characteristic construc-
tion discussed in §2.1 (the notation of which we continue to use). For further
details we refer the reader to [9] (or to [7, §1] for a fuller review than that given
here).
We let R denote either Z or Zℓ for some prime ℓ and E an extension of the field
of fractions of R. For any R[G]-module M , resp. homomorphism of R-modules
φ, we set ME := M ⊗R E, resp. φE := φ ⊗R idE .
Let P · be a bounded complex of finitely generated projective R[G]-modules.
For each integer i we let Bi, resp. Zi, denote the submodules of coboundaries,
resp. cocycles, of P ·

E in degree i. After choosing E[G]-equivariant splittings of
the tautological exact sequences 0 → Zi → P i

E → Bi+1 → 0 and 0 → Bi →
Zi → Hi(P ·

E) → 0 one obtains non-canonical isomorphisms

P+
E

∼= Ball ⊕ H+(P ·)E

P−
E

∼= Ball ⊕ H−(P ·)E .

By using the identity map on Ball one can therefore extend each element φ
of IsE[G](H

+(P ·)E ,H−(P ·)E) to give an element φ(P ·
E) of IsE[G](P

+
E , P−

E ).
This construction clearly depends upon the above choice of splittings but nev-
ertheless induces a well-defined map from IsE[G](H

+(P ·)E ,H−(P ·)E)/ ∼ to

IsE[G](P
+
E , P−

E )/ ∼ which is independent of all such choices. We denote this
map by τ 7→ τ(P ·

E) and we obtain a well-defined element of K0(R[G], E) by
setting χR[G],E(P ·, τ) := (P+, φ, P−) for any (and therefore every) φ ∈ τ(P ·

E).
In the following result we record this construction in a special case.

Lemma A1. Let P be a finitely generated projective R[G]-module, φ an R[G]-
endomorphism of P and λ : ker(φ)E → cok(φ)E an E[G]-isomorphism. Choose
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E[G]-equivariant sections ι1 and ι2 to the tautological surjections PE → im(φ)E

and PE → cok(φ)E, and let 〈λ, φ〉ι1,ι2 denote the automorphism of PE which is
equal to ι2 ◦ λ on ker(φ)E and to φE on ι1(im(φ)E). If P · denotes the complex

P
φ−→ P , where the first term is placed in degree 0, then in K0(R[G], E) one

has χR[G],E(P ·, λ) = ∂1
R[G],E([〈λ, φ〉ι1,ι2 ]).

For each i ∈ {1, 2, 3} let P ·
i be a bounded complex of finitely generated pro-

jective R[G]-modules. We assume that there exists a distinguished triangle in
Dperf(R[G]) of the form

P ·
1

α−→ P ·
2 → P ·

3 → P ·
1[1]

and that P ·
3,E is acyclic (so that Hi(α)E is bijective in each degree i). For

any E-trivialisation τ of P ·
1 we let τα denote the unique E-trivialisation of P ·

2

that contains H−(α)E ◦ φ ◦H+(α)−1
E for any (and therefore every) φ ∈ τ . The

following result is a special case of [9, Th. 2.8].

Lemma A2. If P ·
3,E is acyclic, then for any E-trivialisation τ of P ·

1 one has

χR[G],E(P ·
2, τα) = χR[G],E(P ·

1, τ) + χR[G],E(P ·
3, id0),

where id0 denotes the identity map on the zero space.

Note that if P ·
3 is acyclic, then χR[G],E(P ·

3, id0) = 0 and so Lemma A2 implies
χR[G],E(·, ·) is well-defined on pairs of the form (X, τ) where X is an object of

Dperf(R[G]) and τ an element of IsE[G](H
+(X)E ,H−(X)E)/ ∼.

Remark A1. The element χR[G],E(X, τ) of K0(R[G], E) constructed above
can be naturally reinterpreted as an isomorphism class of objects in a fibre
product category involving a suitable category of virtual objects as introduced
by Deligne in [28]. (Indeed, this more conceptual approach has important tech-
nical advantages and is used systematically in [13]). As a result, if G is abelian,
then χR[G],E(X, τ) can also be described by using the graded determinant func-
tor of Grothendieck, Knudsen and Mumford (that is described in [36]). In fact,
if G is abelian, then K0(R[G], E) identifies naturally with the multiplicative
group of invertible R[G]-lattices in E[G] (cf. [4, Lem. 2.6]), the reduced norm
map nrE[G] : K1(E[G]) → E[G]× is bijective and, with respect to the stated

identification, for each x ∈ E[G]× one has

∂1
R[G],E(nr−1

E[G](x)) = R[G] · x ⊂ E[G].

This shows in particular that, if K/k is abelian, then the equality of C(K/k)
is equivalent to a formula for the sublattice Z[G] · θ∗K/k,S(0)# of R[G].
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Abstract. The classification of compact and simply connected PL
4-manifolds states that the homeomorphism classes coincide with the
homotopy classes, and that these are classified by the intersection
form. We show here that “most” of these classes with an indefinite
intersection form can be represented by a tight polyhedral embedding
into some Euclidean space. It remains open which of the PL structures
can be realized in such a way.
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Keywords and Phrases: intersection form, tight polyhedra, polyhedral
handles, tight surgery

Introduction and Result

An embedding M → EN of a compact manifold into Euclidean space is called
tight, if for any open half space E+ ⊂ EN the induced homomorphism

H∗(M ∩ E+) −→ H∗(M)

is injective where H∗ denotes an appropriate homology theory with coefficients
in a certain field. In the smooth case (and, with certain modifications, also in
the polyhedral case) this is equivalent to the condition that almost all height
functions on M are perfect functions, i.e., have the minimum number of critical
points which coincides with the sum of the Betti numbers. For a survey on
tightness see [14] or [3].

1The main result of this paper was first presented at the TFB conference on this occasion
at Providence, RI, Nov. 1, 2003.
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For compact 2-manifolds without boundary this is equivalent to the Two-piece
property (TPP) which states that the intersection of M with any (open or
closed) halfspace is connected. Smooth tight surfaces were investigated by
N.H.Kuiper [13] and others, the study of tight polyhedral surfaces was initi-
ated by T.F.Banchoff [1]. One of the results is that any given closed surface
admits a tight polyhedral embedding into some Euclidean space. For obtaining
this, it is sufficient to start with the three cases of the sphere, the real pro-
jective plane and the Klein bottle [2] and then to attach handles tightly. For
tight polyhedral immersions into 3-space the situation is the following: Any
given closed surface (except for the real projective plane and the Klein bot-
tle) admits a tight polyhedral immersion into 3-space. The crucial and most
difficult case χ = −1 had been open for many years and was solved only re-
cently by D.Cervone [5]. Smooth tight immersions into 3-space exist for all
surfaces except for the real projective plane, the Klein bottle and the surface
with χ = −1. The latter is again the most crucial case and was solved by
F.Haab [7]. There is a smooth tight embedding RP 2 → E4 as a suitable linear
projection of the Veronese surface. The cases of the Klein bottle and χ = −1
seem still to be open. One approach might be to attach a handle tightly to
the Veronese surface in 4-space (or a slightly distorted version of it) but that
has so far turned out to be unmanageable. In 5-space the only smooth tight
surface is the classical Veronese surface itself by a theorem of N.H.Kuiper.

In the case of compact 3-manifolds not too much seems to be known at all.
Smooth tight examples include the Veronese embedding RP 3 → E9, connected
sums of handles S1×S2 and cartesian products of a circle with tight surfaces as
well as tubes around embedded tight surfaces in 4-space. The more restrictive
class of taut 3-manifolds was classified in [17]. In particular it includes an
embedding of the twisted product S1 ×h S2 as a “complexified 2-sphere” and
the quaternion space as Cartan’s isoparametric hypersurface in S4. There
are a number of constructions for tight polyhedral embeddings of 3-manifolds,
compare [9]. However, we are far from being able to cover major parts of
the class of all 3-manifolds. It seems that we do not know a tight embedding
of any Lens space (except for RP 3) and it seems also that we do not even
know a tight polyhedral embedding of RP 3. For any given tight polyhedral
3-manifold it is easy to attach handles tightly but that procedure does not help
too much if the other building blocks are missing. Unfortunately there is no
simple combinatorial condition which implies the tightness. Instead one has to
check all the homology classes in all the open halfspaces, just by applying the
definition above. This is better in the case of simply connected 4-manifolds.

For compact and simply connected 4-manifolds without boundary the tightness
is equivalent to the requirement that M ∩ E+ is always connected and simply
connected. The only smooth tight immersions of simply connected 4-manifolds
which are known are spheres as convex hypersurfaces in 5-space, the Veronese-
type embedding of CP 2 into 8-space [13] and certain embeddings of arbitrary
connected sums of copies of S2 × S2 in 5-space [8]. G.Thorbergsson [18] found
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topological obstructions to the existence of smooth tight immersions in terms of
the intersection form and Stiefel-Whitney classes. This leads to restrictions for
the existence of smooth tight immersions of connected sums of copies of CP 2

and −CP 2. In particular, it turned out that the K3 surface does not admit any
smooth tight immersion. The obstruction is that it does not admit a splitting
as a connected sum of two smooth manifolds even though the intersection form
splits as a connected sum.

This is much different in the polyhedral case because the same type of topolo-
gical obstruction is not there. The polyhedral tight embedding CP 2 → E8

[10] leads to tight embeddings CP 2#k(−CP 2) → E8 for any number k, see [9,
Sect.6C], and a tight embedding of the K3 surface into 15-space was recently
found in [4]. We use them as building blocks and show in our Theorem 7
below how these – together with attaching 2-handles of type S2 × S2 – lead to
polyhedral tight embeddings of any given topological type of a simply connected
PL 4-manifold, subject to a certain extra assumption on the intersection form.
Our proof relies on the following results from the classification of 4-manifolds.
For an outline of them see [16, Sect.5].

Definition The intersection form Q of a compact 4-manifold M is the
symmetric bilinear form Q:H2(M ; Z) × H2(M ; Z) → Z which is dual to the
cup product defined on the cohomology H2(M ; Z). It satisfies the equation
Q(M1#M2) ∼= Q(M1) ⊕ Q(M2). If we represent the intersection form in a
basis over the integers then the corresponding matrix is invertible and hence
unimodular, i.e., it has determinant ±1. The rank of Q is the rank of H2(M ; Z)
as a Z-module, also known as the second Betti number, the signature is the
number of negative eigenvalues minus the number of positive eigenvalues. A
quadratic form is called odd if some diagonal entry in the representing integer
matrix is odd, otherwise it is called even. It is known from algebra [15] that
an indefinite quadratic form over the integers is uniquely classified by its rank,
its signature and by its type (even or odd).

Theorem 1 (S.S.Cairns 1940)
The equivalence classes of smooth 4-manifolds and PL 4-manifolds are in (1−
1)-correspondence. More precisely, every smooth 4-manifold induces precisely
one PL manifold (up to PL-homeomorphism) and, vice versa, every PL 4-
manifold admits exactly one smoothing (up to diffeomorphism).

Theorem 2 (V.A.Rohlin 1952)
The signature of any simply connected smooth or PL 4-manifold with an even
intersection form is an integer multiple of 16.

Theorem 3 (S.Donaldson 1983)
If the intersection form of a simply connected PL 4-manifold is definite then it
is diagonalizable over the integers and, in particular, odd.
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Theorem 4 (J.Milnor 1958)
The homotopy classes of simply connected 4-manifolds are uniquely classified
by their intersection forms.

The topological classification turned out to be much harder, and it took almost
25 more years until this problem was solved by M.Freedman. The smooth (or
PL) classification appears still to be open.

Theorem 5 (M.Freedman 1982)
The homeomorphism classes of simply connected PL 4-manifolds are uniquely
classified by their intersection forms. More precisely: Two such PL manifolds
M,M̃ are homeomorphic (not necessarily PL homeomorphic) if and only if

their intersection forms Q, Q̃ are equivalent over the integers.

There is an algebraic classification of indefinite unimodular quadratic forms as
follows:

Theorem 6 (see [16, Sect.5])

1. Any indefinite, odd and unimodular quadratic form over the integers is
equivalent to l(+1) ⊕ k(−1).

2. Any indefinite, even and unimodular quadratic form over the integers is
equivalent to n(∓E8) ⊕ m

(
0 1
1 0

)
.

The rank is k + l or 8n + 2m, respectively, the signature is k − l or ±8n,
respectively. Conversely, rank and signature of the quadratic form determine
these numbers k, l,m, n uniquely. Here E8 denotes the following unimodular
and positive definite matrix:

E8 =




2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 −1
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
0 0 0 0 −1 0 0 2




Corollary
Let K3 denote the K3 surface with its intersection form (−E8)⊕(−E8)⊕3

(
0 1
1 0

)
.

Then the manifolds

l(CP 2)#k(−CP 2) with k, l ≥ 0

and
n(±K3)#m(S2 × S2) with m,n ≥ 0
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cover all homotopy classes (and, in fact, homeomorphism classes) of simply
connected PL 4-manifolds with intersection forms

l(+1) ⊕ k(−1) or 2ν(∓E8) ⊕ µ

(
0 1

1 0

)
,

where k, l ≥ 0 and µ ≥ 3ν ≥ 0, respectively.

Remark For the intersection form of the K3 surface compare [15]. Theorem
3 together with the 11

8 -conjecture [6] implies that no other quadratic form can
occur as the intersection form of any simply connected PL 4-manifold. In more
detail this conjecture states that for an even intersection form Q the rank of Q
is always at least 11

8 times the absolute value of the signature of Q. It is easily

seen that for the form Q = 2ν(∓E8) ⊕ µ
(
0 1
1 0

)
we have

rank(Q)

|sign(Q)| =
16ν + 2µ

16ν
≥ 11

8
if and only if µ ≥ 3ν.

Our main result is the following Theorem 7 which provides a construction of
polyhedral tight embeddings for a large class of simply connected 4-manifolds.
This follows the pattern in the case of 2-manifolds which was mentioned at
the very beginning above: Start with certain building blocks and then attach
handles tightly.

Theorem 7 Let M be a simply connected PL 4-manifold with an indefinite
intersection form Q. Assume further that rank(Q) ≥ 11

8 |sign(Q)| + 44 in case
that Q is even with |sign(Q)| ≥ 32. Then there exists a tight polyhedral embed-

ding M̃ → EN for some N such that M and M̃ are homeomorphic.

Since this result relies on the classification in terms of the intersection form, we
cannot obtain by this method that M and M̃ are PL homeomorphic. However,
by a theorem of C.T.C.Wall 1964 there is always a number k ≥ 0 such that the
manifolds M#k(S2 × S2) and M̃#k(S2 × S2) in Theorem 7 are PL homeo-
morphic. So in some sense in “most” of the cases we can not only prescribe
the topological type but also the PL type. Compare Remark 2 at the end of
the paper. However, there are an infinite number of undecided cases left. In
particular we do not have any example of a tight polyhedral realization of a
manifold homeomorphic to K3#K3# · · ·#K3. Such examples could remove
the number 44 from the extra assumption in Theorem 7 which then would just
transform into the hypothesis of the 11

8 -conjecture. For the case of a positive
definite intersection form it would be sufficient – by Theorem 3 – to find a
tight polyhedral embedding of k(CP 2) for arbitrary k ≥ 2. However, such an
example (for any k ≥ 2) is still missing.
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The building blocks and connected sums of them

First of all, there are tight triangulations of CP 2 and of the K3 surface. This
means, there is a triangulation of CP 2 (with 9 vertices, see [10], [11]) and one
of the K3 surface (with 16 vertices, see [4]) such that any simplexwise linear
embedding into any Euclidean space is tight. In particular, we can regard
CP 2

9 as a tightly embedded subcomplex of the 8-simplex △8 and (K3)16 as a
tightly embedded subcomplex of the 15-simplex △15. In each case the mani-
fold contains the complete 2-dimensional skeleton of the ambient 8-simplex or
15-simplex, respectively. This implies that the intersection with any open half-
space is connected and simply connected. Compare [9] for general properties
of tight triangulations and [12] for a list of known examples.

By truncating each of these subcomplexes at a vertex and by glueing in another
copy of the same kind, one gets tight embeddings

CP 2#(−CP 2) → E8 and K3#(−K3) → E15,

each with signature zero. This construction is quite similar to the original
version [2] of Banchoff’s tight Klein bottle in 5-space as a geometric connected
sum RP 2#RP 2. The process of truncating and glueing in additional copies of
the same combinatorial type can be repeated arbitrarily often, as shown in [9,
Sect.6C]. This implies that we can realize any quadratic form of type

(+1) ⊕ k(−1), k ≥ 1

or

2(−E8) ⊕ 2n(E8) ⊕ 3(n + 1)

(
0 1

1 0

)
∼= 2(n − 1)E8 ⊕ (3n + 19)

(
0 1

1 0

)
, n ≥ 1

by a tightly and polyhedrally embedded simply connected 4-manifold. In the
latter case we have the equations rank = 16(n − 1) + 6n + 38 = 22(n + 1) and
|sign| = 16(n − 1), so in particular rank ≥ 11

8 |sign| + 44.

In order to cover the other cases in Theorem 7, we have to attach handles, thus
realizing the sum of a previously given quadratic form Q and copies of

(
0 1
1 0

)
.

Attaching handles tightly

There is an obvious procedure to attach a handle to a tight polyhedral surface
in 3-space: Pick two faces opposite to one another (not necessarily in parallel
planes), cut out a certain triangle in each of them, and glue in a polyhedral
cylinder (as the boundary of a triangular prism), see Figure 1. It is, however,
much less obvious how one can attach a 2-handle or a 3-handle tightly to a
given polyhedron. One needs to fill in something within the convex hull of its
boundary without hitting the rest of the manifold.
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Figure 1: Attaching a 1-handle tightly

In general the procedure of attaching a k-handle of type Sk × Sn−k to an
n-manifold is equivalent to cutting out a submanifold of type Sk−1 × Bn−k+1

inside a topological ball (e.g., a coordinate chart) and replacing it by Bk×Sn−k.
This is the classical surgery which we have to carry out in a polyhedral setting.
The case k = 1 corresponds to attaching an ordinary 1-handle, like a bridge
between two parts of the manifold. The case k = 2, n = 4 is crucial in the
proof of our Theorem 7. For our purpose we have to realize this surgery within
the class of tight polyhedral submanifolds. Therefore, we have to describe this
process of tight surgery geometrically in the ambient space. It will always be
carried out in some Euclidean (n + 1)-space if the manifold is n-dimensional

Definition A simple polyhedral sphere Σk−1 is a triangulation of the sphere
Sk−1 with k + 1 vertices. This is nothing but the boundary complex of a k-
dimensional simplex. A short link of a certain (n−k)-simplex in a triangulated
n-manifold is a link which is combinatorially equivalent to a simple polyhedral
sphere Σk−1. Notice that the link of a codimension–1 face is always short, the
link of a codimension–2 face is short if and only if it has exactly 3 vertices and
3 edges. In the sequel let ∆k denote a certain k-dimensional simplex in the
simplicial complex which is considered, and let △k denote an abstract k-simplex
which is not necessarily in the complex.

Lemma Assume that Mn ⊂ EN is a simplicial submanifold containing a sim-
plex ∆n−k with a short link Σk−1 such that the n + 2 vertices of the star of
∆n−k are in general position. Then there is a polyhedral “solid torus” of type
Sk−1 × Bn−k+1 within the open star of ∆n−k which is a tight submanifold-
with-boundary in the affine subspace En+1 of EN which is spanned by the n+2
vertices of the star of ∆n−k. Moreover, it can be arranged that the convex hull
of the short link does not hit M except for its boundary. Therefore, we can
choose the tight solid torus in such a way that its convex hull does not hit M
either except for the solid torus itself.

Proof. The procedure of attaching a handle will be carried out inside the open
star of ∆n−k without using any of the original vertices. Since the tightness is
affinely invariant, we can assume that the n + 2 vertices of the star of ∆n−k

form a regular simplex in (n + 1)-space. In the classical case k = 1 we take the
two barycenters of the two n-faces meeting at ∆n−1. These form a 0-sphere.
Then the procedure of attaching a handle tightly is suggested by Figure 1.
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If k = 2 we take the three barycenters of the three (n − 1)-faces meeting at
∆n−2. Any two of them can be joined by a straight line segment inside of one
of the three n-faces of M . The union of these three line segments is a simple
polyhedral 1-sphere ∂△2 in M (but not as a subcomplex) such that its convex
hull does not hit M except along exactly those three line segments. Then we
construct a tight thickening of this polyhedral 1-sphere in the n-manifold as the
union of three prisms of type △1 ×△n−1 such that they fit mutually together
in (n + 1)-space as an embedded solid handle ∂ △2 ×△n−1.

In the general case for arbitrary k we proceed similarly: Take the k+1 barycen-
ters of all the (n−k+1)-faces meeting at ∆n−k. These span a regular k-simplex
△k in an (n + 1)-dimensional Euclidean space. Its boundary is a simple poly-
hedral (k − 1)-sphere inside the star of ∆n−k in M (but not as a subcomplex).
Then take a similar n-dimensional thickening of that simple sphere inside M
and inside the same (n + 1)-space. Then again replace the interior of a “solid
torus” of type ∂ △k ×△n−k+1 by the exterior of type △k × ∂△n−k+1.

In order to describe this procedure in more detail we use the unique projective
transformation Φ: star(∆n−k)\∆n−k → En+1 which sends to infinity the hyper-
plane which contains ∆n−k and the k-plane parallel to the opposite k-simplex
in the star of ∆n−k. Then the rest of the open star becomes an orthogonal
cartesian product of the link of ∆n−k with an open part of some Euclidean
En−k+1. Furthermore Φ maps the union of the k + 1 open n-faces meeting at
∆n−k to an open part of the orthogonal cartesian product ∂ △k ×En−k+1 in
Ek × En−k+1 = En+1. Hence the polyhedral thickening of ∂△k can be defined
as the cartesian product ∂△k×△n−k+1 where △n−k+1 denotes a small simplex
in (n−k +1)-space. This is tightly embedded since it is a product of two tight
subsets. The boundary is the product ∂ △k ×∂△n−k+1 which is also a tight
polyhedral embedding of Sk−1 × Sn−k.

By applying Φ−1 we obtain the tight solid torus in the actual open star of
∆n−k. Note that projective transformations preserve tightness. For the surgery
we cut out the interior of ∂ △k ×△n−k+1 and replace it by the interior of
△k × ∂△n−k+1. A picture for n = 3 is shown in Figure 2. Note, however, that
this is a 3-dimensional projection of a 3-dimensional solid torus in 4-space. It
is not a solid torus in 3-space. ¤

Corollary Given a tight triangulation of a PL n-manifold M where some
(n − k)-simplex (k ≤ n/2) has a short link, we can tightly attach arbitrarily
many handles of type Sk ×Sn−k. Hence for any m we obtain a manifold of PL
type M#m(Sk × Sn−k) tightly embedded into Euclidean space.

Proof: We carry out the construction of the lemma above. It is quite clear
that we can repeat it arbitrarily often within one star since these solid tori
can be chosen arbitrarily thin and disjoint. It is not essential to use the exact
barycenters in the construction. The tightness of the solid torus implies that
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Figure 2: Attaching a 2-handle tightly; the case k = 2, n = 3

M minus the interior will still be tight. The same holds after the surgery. In
the case of n = 4 and k = 2 which is most important for Theorem 7. We can
easily see that the intersection with any halfspace is still connected and simply
connected after the surgery if it was before. The tightness in the other cases
follows similarly by considering the homology cycles created by the surgery. In
any case the original Sk−1 for starting the surgery is nullhomotopic in M , so
that the topology after one step is that of M#(Sk × Sn−k). ¤

Proof of Theorem 7:

In case 1 we consider a simply connected 4-manifold M with an odd intersection
form which is equivalent to l(+1) ⊕ k(−1). By assumption it is indefinite, so
we can assume that the signature is nonnegative and thus k ≥ l ≥ 1. This
quadratic form is also equivalent to

(+1) ⊕ (k − l + 1)(−1) ⊕ (l − 1)

(
0 1

1 0

)
.

We can realize this by starting with the tight CP 2
9 in 8-space, by truncating

vertices and by glueing in k − l + 1 combinatorially equivalent copies of −CP 2
9

with an open vertex star removed (see [9, Sect.6C]), and finally by attaching
l−1 handles of type S2×S2. Here it is crucial that CP 2

9 does contain triangles
with a short link, e.g., the triangle ∆2 = 〈1, 2, 3〉 in the labeling of [10]. Hence
our lemma above is applicable.

In case 2 we consider an even intersection form with signature 0, 16 or 16m ≥
32. If the signature is zero we just take the standard ladder construction of
tight connected sums of S2 × S2, as described in [3, Ex.2.6.4]. The case of
the 4-sphere itself is realized by the boundary of any convex polyhedron. If
the signature is 16 we start with the tight K3 surface in 15-space and attach
handles of type S2×S2 tightly. Here it is crucial that this triangulation contains
a triangle with a short link. In the labeling of Figure 1 in [4] this is the triangle
∆2 =

〈(
0
0

)
,
(
1
0

)
,
(
x
0

)〉
.
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If the signature is 16m ≥ 32 we first build a tight (−K3)#(K3)#m(K3) by the
truncation process from [9, Sect.6C] and then attach handles of type S2 × S2

tightly. Here the extra assumption

rank(Q) ≥ 11

8
sign(Q) + 44

comes in since the signature of (−K3)#(K3)#m(K3) is 16m whereas the rank
is 22(m + 2), so it is our assumption which implies that we have a nonnegative
number of handles to attach. In any case the resulting tightly embedded 4-
manifold has the same intersection form as M and is, therefore, homeomorphic
to M by Theorem 5. ¤

Remarks:

1. The cases of 4-manifolds which are not covered by Theorem 7 are k(CP 2)
where k ≥ 2 and m(K3)#n

(
0 1
1 0

)
where m ≥ 2 and n < 22. Examples of

that kind would imply that – modulo the validity of the 11
8 -conjecture – every

homotopy (or homeomorphism) class of simply connected PL 4-manifolds would
be realizable by a tight embedding into some Euclidean space .

2. It seems that no example is known of any pair M,M̃ of PL manifolds which
are homeomorphic to one another but not PL homeomorphic and where each
admits a tight PL embedding. One might expect that the “standard structure”
is preferred for tight polyhedral embeddings if there is any. This is true at least
for the sphere and for any homology sphere: The image of any tight polyhedral
embedding of a homology k-sphere is the boundary of a convex polyhedron in
(k + 1)-space, for a simple proof see [9, Cor.3.6].

3. The same construction of attaching handles can be applied to other classes of
manifolds. In the case of simply connected 5-manifolds we have tight connected
sums of S2 × S3 on the one hand and also a tight 13-vertex triangulation
of SU(3)/SO(3) on the other, see [12, p.170]. Since the tetrahedron ∆3 =
〈0, 1, 4, 6〉 in the latter one has a short 1-dimensional link, it is possible to
attach 2-handles of type S2 × S3 tightly.

4. The construction above of attaching handles does not raise the essential
codimension of the embedding. In fact, reaching or estimating the maximum
codimension is a different interesting problem. Here a conjecture states that
for any simply connected 4-manifold M a tight polyhedral embedding into EN

(not in any hyperplane) can exist only if the Heawood type inequality

(
N − 3

3

)
≤ 10β2(M)

is satisfied where β2 denotes the second Betti number (similarly for (k − 1)-
connected 2k-manifolds), see [9, Sect.4]. Equality is attained for the tight
triangulations of CP 2 and the K3 surface, perhaps also in other cases. By stan-
dard arguments this conjecture would follow if the following generalized van
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Kampen–Flores theorem is true: Assume that a simply connected 4-manifold M
admits a polyhedral embedding of the complete 2-skeleton of the N -dimensional
simplex. Then the inequality

(
N−3

3

)
≤ 10β2(M) holds. The classical van

Kampen–Flores theorem is nothing but the case of the 4-sphere.
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1 Introduction

Soient K un corps de valuation discrète complet de caractéristique 0, de corps
résiduel k parfait de caractéristique p > 0, et K une clôture algébrique de
K. On note GK le groupe de Galois de K/K et IK le sous-groupe d’inertie.
Fontaine a défini une hiérarchie sur les représentations p-adiques de GK(i.e.
les Qp-espaces vectoriels de dimension finie munis d’une action continue de
GK) : représentations de de Rham ⊃ rep. semi-stables ⊃ rep. cristallines.
Le théorème de monodromie p-adique affirme que toute représentation de
de Rham est potentiellement semi-stable, i.e. sa restriction à un sous-groupe
ouvert de GK est semi-stable. Le but de cet article est l’étude d’invariants
numériques qui mesurent le défaut de semi-stabilité de représentations poten-
tiellement semi-stables. Une telle représentation est entièrement décrite par
son module de Weil-Deligne Dpst(V ). Celui-ci est muni d’une action de GK

dont la restriction à l’inertie se factorise par un quotient fini. Fontaine [10]
définit les conducteurs de Swan et d’Artin de V , notés respectivement sw(V )
et ar(V ), comme étant les conducteurs de Swan et d’Artin de Dpst(V ). Dans
un travail récent [3], Berger associe à toute représentation de de Rham V une
équation différentielle p-adique NdR(V ) munie d’une structure de Frobenius.
À une équation différentielle p-adique M munie d’une structure de Frobenius,
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Christol et Mebkhout [7] associent un invariant entier irr(M), l’irrégularité de
M .
Pour tout n ∈ N, soient µn le groupe des racines pn-ièmes de l’unité dans K
et Kn = K(µn). Pour une représentation p-adique V de GK , on note Vn sa
restriction au sous-groupe Gal(K/Kn). Le résultat principal de cet article est
le suivant.

Théorème 1.1. Pour toute représentation de de Rham V de GK , on a

irr(NdR(V )) = lim
n→+∞

sw(Vn).

Le théorème 1.1 est l’analogue en caractéristique zéro d’un théorème de Tsuzuki
en caractéristique p > 0. Soit E un corps de valuation discrète complet, de
caractéristique p et de corps résiduel parfait. Dans [22], Tsuzuki montre que
la catégorie des représentations p-adiques de GE = Gal(Esep/E) dont l’inertie
agit par un quotient fini (monodromie finie), est équivalente à la catégorie des
ϕ-∇-modules étales sur un corps valué E†(E) de caractéristique 0, d’anneau
d’entiers hensélien et de corps résiduel E (voir §4.3 pour la définition). Puis
dans [23], il démontre l’égalité entre le conducteur de Swan de la restriction à
l’inertie d’une telle représentation et l’irrégularité du ∇-module correspondent.
Dans la démonstration de 1.1, on se ramène, par la théorie du corps des normes,
au cas d’un corps de valuation discrète complet d’égale caractéristique p > 0.
Cependant, on ne peut pas appliquer directement le résultat de Tsuzuki, car
dans notre cas, l’action de l’inertie ne se factorise pas par un quotient fini.
La stratégie de la démonstration consiste à décrire la représentation de Weil-
Deligne en termes de l’équation différentielle de Berger, puis de reprendre une
partie de la preuve de Tsuzuki (l’induction de Brauer). Comme corollaires du
théorème 1.1, on en déduit un résultat analogue pour le conducteur d’Artin
(cf. 5.7) et l’égalité entre un polygone de Newton de pentes p-adiques et une
limite de polygones de Newton de pentes de Swan (cf. 5.9).
Quand cet article a été déjà achevé, l’auteur a reçu une prépublication
de P.Colmez [6] dont le résultat principal est une formule pour sw(V ) en
termes d’une filtration sur DdR(V ). Les deux travaux sont indépendants et
les méthodes utilisées semblent différentes.
Cet article est une partie de la thèse de doctorat en mathématique que je
prépare à l’université de Paris 13, sous la direction d’Ahmed Abbes. Je tiens
ici à le remercier pour son soutien constant tout le long de ce travail et ses
lectures attentives des versions préliminaires de ce texte. Je remercie également
le referee qui, par ses remarques, a amélioré ce manuscrit.

Notations

Soient k un corps parfait de caractéristique p > 0, W = W(k) (resp. Wn =
Wn(k)) l’anneau des vecteurs de Witt infinis (resp. de longueur n ≥ 1) et
Ka = FrW le corps des fractions de W . On note | · | la valeur absolue de Ka

normalisée par |p| = p−1 et σ l’endomorphisme de Frobenius agissant sur k,
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Wn, W et Ka. On fixe une extension finie K/Ka totalement ramifiée et une
clôture algébrique K de K. On note OK la clôture intégrale de OK dans K, k
son corps résiduel, OC le complété p-adique de OK et C = FrOC. Pour toute
extension finie L de Ka, contenue dans K, on note OL son anneau d’entiers, kL

son corps résiduel et La = FrW(kL). Pour tout n ∈ N, soient µn le groupe des
racines pn-ièmes de l’unité dans K et Ln = L(µn). On note L∞ la réunion des
Ln, pour n ∈ N, HL = Gal(K/L∞) et ΓL = Gal(L∞/L). Soit χ : GK → Z∗

p le
caractère cyclotomique. Une représentation galoisienne p-adique (ou une Qp-
représentation galoisienne) est un Qp-espace vectoriel de dimension finie, muni
d’une action linéaire et continue de GK . On note RepQp

(GK) la catégorie des
Qp-représentations de GK .

2 Conducteurs

On note Bcris et Bst = Bcris[X] les anneaux des périodes de Fontaine associés à
K (cf. [12]). Soient N : Bst → Bst la Bcris-dérivation qui envoie X sur −1 et ϕ
le Frobenius agissant sur Bcris et Bst. Cettes applications vérifient Nϕ = pϕN .
Ces anneaux sont munis d’une action continue de GKa

commutante avec ϕ et
N . Soit L/Ka une extension finie contenue dans K. On note GL = Gal(K/L).
On rappelle que BGL

st = BGL

cris = La (cf. [13, 5.1.2] et [12, 4.2.5]).

Pour tout V ∈ RepQp
(GK), Fontaine définit Dcris(V ) = (Bcris ⊗Qp

V )
GK et

Dst(V ) = (Bst ⊗Qp
V )

GK . Ce sont des Ka-espaces vectoriels de dimensions
inférieures où égales à la dimension de V sur Qp. Le Frobenius de Bcris induit
un endomorphisme σ-semi-linéaire ϕ : Dcris(V ) → Dcris(V ), appelé Frobenius.
L’espace Dst(V ) est muni d’un Frobenius ϕ et d’un endomorphisme Ka-linéaire
N , vérifiant Nϕ = pϕN . On rappelle que V est dite cristalline (resp. semi-
stable) si dimKa

Dcris(V ) = dimQp
V (resp. dimKa

Dst(V ) = dimQp
V ). Elle est

dite potentiellement cristalline (resp. potentiellement semi-stable) s’il existe
une extension finie K ′/K telle que la restriction de V à GK′ est cristalline
(resp. semi-stable). On note P le corps K ⊗Ka

FrW(k). C’est le complété p-
adique de l’extension maximale non-ramifiée Knr de K dans K. Le groupe
d’inertie absolu de K est canoniquement isomorphe à GP , le groupe de Ga-
lois absolu de P . Dans la suite, pour tout V ∈ RepQp

(GK), on considère la
restriction de V à IK comme une représentation p-adique de GP . Par [12,
5.1.5], une représentation V est cristalline (resp. potentiellement cristalline,
resp. semi-stable, resp. potentiellement semi-stable) si et seulement si sa res-
triction à IK est cristalline (resp. potentiellement cristalline, resp. semi-stable,
resp. potentiellement semi-stable).
Soit V une représentation p-adique potentiellement semi-stable de dimension

n. Fontaine définit Dpst(V ) = lim−→G′≤GK
(Bst ⊗Qp

V )
G′

, où la limite est prise

sur les sous-groupes ouverts G′ de GK (cf. [13, 5.6.4]). C’est un Knr
a -espace

vectoriel de dimension n, muni d’une action semi-linéaire de GK . Si L/K est
une extension galoisienne finie telle que V est semi-stable comme représentation
de GL, alors (Bst ⊗Qp

V )
GL est un La-espace vectoriel de dimension n et l’action
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de GK se factorise par Gal(L/K). On a un isomorphisme de représentations

Dpst(V ) ∼= Knr
a ⊗La

(Bst ⊗Qp
V )

GL . Par conséquent la restriction Dpst(V )|IK

est une représentation linéaire de IK qui se factorise à travers le sous-groupe
d’inertie de Gal(L/K).

Définition 2.1. [10, 7.4.7] Soit V une représentation p-adique potentiellement
semi-stable. Les conducteurs de Swan et d’Artin de Dpst(V )|IK

sont aussi ap-
pelés conducteur de Swan et d’Artin de V et notés respectivement sw(V ) et
ar(V ).

Si GK agit par un quotient fini Gal(L/K) sur V , alors Dpst(V ) = Knr
a ⊗Qp

V et sw(V ) et ar(V ) cöıncident avec sw(Gal(L/K), V ) et ar(Gal(L/K), V )
respectivement.
Pour une représentation V potentiellement semi-stable, on considère aussi la
variante

arcris(V ) = ar(V ) + dimKa
Dst(V ) − dimKa

Dcris(V ).

3 Théorie de Hodge p-adique et (ϕ,Γ)-modules

3.1 Les anneaux

On pose OE = lim←−n∈N
(WnJT K[ 1

T ]), qui est aussi la complétion p-adique de

W JT K[ 1
T ]. C’est un anneau de valuation discrète, complet, de caractéristique 0,

absolument non ramifié, de corps résiduel k((T )). Son corps de fractions OE [1/p]
est canoniquement isomorphe à

E =

{
+∞∑

n=−∞
anTn

∣∣∣∣ an ∈ Ka, (an)n∈Z bornée et lim
n→−∞

|an| = 0

}
.

On pose

E† =

{
+∞∑

n=−∞
anTn ∈ E

∣∣∣∣∃ 0 < ρ < 1 vérifiant lim
n→−∞

|an|ρn = 0

}
,

l’anneau des séries dans E qui convergent sur une couronne
{x ∈ C | ρ ≤ |x|C < 1} pour un réel 0 < ρ < 1. Pour tout s ∈ E†, on
note v1(s) = infn∈Z vKa

(an) la valuation de Gauss. On rappelle que cette
valuation sur E† est discrète et que l’anneau de valuation OE† est hensélien,
de corps résiduel k((T ))(cf.[16, §2]).
On note aussi σ l’endomorphisme x 7→ xp de OK/pOK . Soit R (cf. [11, §A3.1.1])
la limite projective du système

· · · σ−→ OK/pOK
σ−→ OK/pOK

σ−→ OK/pOK
σ−→ OK/pOK .

C’est une k-algèbre intègre, parfaite de caractéristique p. On dispose de
la description suivante : R ∼= {(x(n))n∈N|x(n) ∈ OC, (x(n+1))

p
= x(n)},
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où, à droite, la multiplication est donnée composante par composante et la

somme par la formule (x + y)
(n)

= limm→+∞ (x(n+m) + y(n+m))
pm

. L’anneau
R est complet pour la valuation (non-discète) définie, pour tout x ∈ R, par
vR(x) = vC(x(0)), où vC est la valuation de C normalisée par vC(p) = 1.
Le corps FrR est algébriquement clos (cf. [11, A3.1.6]). On rappelle que
W(R) ∼= lim←−n∈N

Wn(OK/pOK), où les applications de transition sont la com-

position des morphismes de troncation et du Frobenius σ de OK/pOK . C’est
une W(k)-algèbre. Le groupe GKa

agit par fonctorialité sur W(R) et W(FrR).
On appelle ϕ le Frobenius de W(R) (resp. W(FrR)). On fixe une fois pour
toutes un élément ε ∈ R tel que ε(0) = 1 et ε(1) 6= 1. Pour tout x dans R, on
note [x] son relèvement de Teichmüller dans W(R).

On vérifie facilement que ((ε(n), 0, . . . , 0) − 1)
pn

= 0 dans Wn(OK/pOK).
On en déduit, pour tout n ∈ N, un morphisme continu W [T ]/T pn →
Wn(OK/pOK), qui envoie T sur (ε(n), 0, . . . , 0) − 1 et w ∈ W sur σ−n(w).
D’où un morphisme continu de W -algèbres W JT K → W(R), qui envoie T
dans [ε] − 1. Comme [ε] − 1 est inversible dans W(FrR), on obtient un ho-
momorphisme continu de W -algèbres W JT K[ 1

T ] → W(FrR), qui se factorise
par complétion p-adique en

W JT K[ 1
T ] //
µ r

$$HHHHHHHHH
W(FrR)

OE

i

;;vvvvvvvvv

L’homomorphisme i est injectif car i(p) 6= 0. En inversant p, on obtient i : E →
FrW(FrR).

Lemme 3.1. [11, A3.2.2] Les anneaux i(E) et i(E†) ne dépendent pas du choix
de ε . Ils sont stables par les actions de GKa

et du Frobenius ϕ sur W(FrR).
Les actions induites de GKa

et de ϕ sur E et E† sont données par

∀g ∈ GKa
, g(T ) = (T + 1)χ(g) − 1, ϕ(T ) = (T + 1)p − 1.

L’action de GKa
se factorise par ΓKa

.

On rappelle brièvement la construction du corps des normes (cf. [25, §2.2]).
L’extension maximale modérément ramifiée de K dans K∞ est finie. Soit
n1 le plus petit entier tel que K∞/Kn1

soit totalement sauvagement ra-
mifiée. On choisit une uniformisante u de Kn1

. Pour tout n ≥ n1, le Frobe-
nius de OKn+1

/uOKn+1
se factorise à travers OKn

/uOKn
⊂ OKn+1

/uOKn+1
.

Soit λn : OKn+1
/uOKn+1

→ OKn
/uOKn

le morphisme ainsi défini. On pose
OEK

= lim←−n∈N
OKn

/uOKn
, où les applications de transitions sont les λn. C’est

un anneau de valuation discrète, complet, de corps résiduel canoniquement iso-
morphe au corps résiduel de K∞, qui est une extension finie k′ de k. Il ne
dépend pas du choix de u. Soit EK = FrOEK

. Par fonctorialité de la construc-
tion, on associe à K une clôture séparable Esep

K de EK et Gal(Esep
K /EK) est
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canoniquement isomorphe à HK . Pour tout n ≥ n1, on a un diagramme com-
mutatif

OKn+1
/uOKn+1

Â Ä //

λn

²²

OK/uOK

σ

²²
OKn

/uOKn

Â Ä // OK/uOK

Comme R ∼= lim←−n≥n1
OK/uOK , on en déduit des applications injectives

OEK
→֒ R et EK →֒ FrR.

Soient Enr l’extension maximale non-ramifiée de E dans Fr W(FrR) et Osh
E son

anneau d’entiers. Par fonctorialité de la hensélisation, GKa
et ϕ agissent sur Enr.

L’inclusion i : OE →֒ W(FrR) induit, par réduction modulo p, un isomorphisme
canonique entre les corps résiduels de OE et EKa

. Par conséquent, Gal(Enr/E)
est canoniquement isomorphe à HKa

. Soit L une extension finie de Ka. On

pose EL = (Enr)
HL . C’est une extension finie non ramifiée de E. Elle est munie

d’actions naturelles de ΓL et de ϕ . Pour L/Ka finie galoisienne, EL est muni
d’une action naturelle de Gal(L∞/Ka). On note OEL

l’anneau de valuation de
EL. On note k′

L le corps résiduel de EL et L′ = FrW(k′
L). Si L est absolument

non-ramifié, alors k′
L = kL et L′ = La = L (cf. [20, Ch.IV, Prop.17]). Dans ce

cas le corps EL a la description simple suivante.

Lemme 3.2. Soit L/Ka une extension finie non-ramifiée. Il existe un isomor-
phisme canonique EL

∼= E ⊗Ka
L, compatible avec l’action de ΓL et du Frobe-

nius. Pour L/Ka finie galoisienne, cet isomorphisme est compatible à l’action
de Gal(L∞/Ka).

Démonstration. L’anneau E⊗Ka
L est un corps car Ka est algébriquement fermé

dans E et p est inversible. Comme L = La ⊆ Fr W(FrR), l’inclusion i s’étend,
par linéarité, en iL : E ⊗Ka

L →֒ FrW(FrR). L’image de cette application est
contenue dans EL. On a |iL(E ⊗Ka

L) : E| = |kL : k| = |EL : EKa
| = |EL : E|,

donc iL(E ⊗Ka
L) = EL.

Proposition 3.3. [11, A2.2.1] Soient π une uniformisante de EL et π un
relèvement dans OEL

. Il existe un unique isomorphisme continu de L′-algèbres,
ψπ : EL′ → EL qui envoie T sur π.

Démonstration. L’anneau OEL
est de valuation discrète, complet, absolument

non-ramifié. C’est donc un anneau de Cohen (cf. [9, IV0 19.8.5] ). Par [9,
IV0 19.8.6(ii)] il existe un isomorphisme ψ : OEL′ → OEL

relevant l’isomor-
phisme k′

L((T )) → EL qui envoie T sur π. On note ω = π − ψ(T ) ∈ pOEL
. Soit

Documenta Mathematica 9 (2004) 413–433
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s =
∑

n∈Z anTn ∈ OEL′ . On écrit

m∑

n=0

anπn =

m∑

n=0

an(ψ(T ) + ω)
n

=

m∑

n=0

an

n∑

i=0

(
n

i

)
ψ(T )

i
ωn−i =

=

m∑

j=0

(
m−j∑

i=0

aj+i

(
j + i

i

)
ψ(T )

i

)
ωj =

m∑

j=0

ψ

(
m−j∑

i=0

aj+i

(
j + i

i

)
T i

)
ωj ,

où j = n − i. Pour tout j ∈ N, on pose sj =
∑+∞

i=0 aj+i

(
j+i

i

)
T i ∈ OEL′ .

On définit ψπ(s) =
∑

n<0 anπn +
∑

j≥0 ψ(sj)ω
j , qui converge p-adiquement

car ω ∈ pOEL
et limn→−∞ an = 0. L’application ψπ est un isomorphisme

OEL′ → OEL
, qui envoie T sur π. On la prolonge en un isomorphisme EL′ → EL.

L’unicité est évidente.

Soient Osh
E† l’hensélisé strict de OE† dans W(FrR) et E†nr

son corps des frac-

tions. Par fonctorialité de la hensélisation, GKa
et ϕ agissent sur E†nr

. Comme
plus haut, l’inclusion canonique Osh

E† →֒ W(FrR) induit un isomorphisme

Gal(E†nr
/E†) ∼= HKa

. Soit L une extension finie de Ka. On pose E†
L = (E†nr

)
HL

.
C’est une extension finie non ramifiée de E†, de corps résiduel EL. Pour L/Ka

finie galoisienne non-ramifiée, on démontre comme dans le lemme 3.2, qu’il y
a un isomorphisme canonique, E† ⊗Ka

L ∼= E†
L, compatible avec l’action de

Gal(L∞/Ka) et du Frobenius.

Proposition 3.4. [16, Prop. 3.4] Soit π une uniformisante de EL. Il existe
un relèvement π de π dans OE†

L
tel que sous l’isomorphisme ψπ : EL′ → EL, on

ait ψπ(E†
L′) = E†

L.

On note

R =

{
+∞∑

n=−∞
anTn

∣∣∣∣ an ∈ Ka, ∃ρc ∈ ]0, 1[ t.q. ∀ρ ∈ ]ρc, 1[ , lim
n→±∞

|an|ρn = 0

}
.

On munit cet anneau d’une action du Frobenius et de ΓKa
en posant :

ϕ(T ) = (1 + T )
p − 1 et ∀γ ∈ ΓKa

, γ(T ) = (1 + T )
χ(γ) − 1.

On pose t = log(T + 1) ∈ R, qu’on note aussi abusivement log[ε], bien qu’il
n’appartienne pas à W(FrR). On a une inclusion E† ⊂ R compatible avec les
actions du Frobenius et de ΓKa

.

Pour toute extension finie L/Ka, on pose RL = R⊗E† E†
L. On vérifie que cet an-

neau est intègre. C’est une extension étale finie de R. On le munit du Frobenius
produit tensoriel des Frobenius sur R et sur E†

L. Si L/Ka est galoisienne finie,
alors le groupe Gal(L∞/Ka) agit sur RL en agissant sur R à travers le quotient

ΓKa
et sur E†

L via son action naturelle. On a RGal(L∞/(Ka)∞)
L = R. On vérifie
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facilement que log (1+T )p−1
T p ∈ R et pour tout γ ∈ ΓKa

, log (1+T )χ(γ)−1
T ∈ R.

On prolonge les actions de ϕ et Gal(L∞/Ka) à l’anneau des polynômes RL[X]
par

ϕL(X) = pX + log
(1 + T )p − 1

T p

∀γ ∈ Gal(L∞/Ka), γ(X) = X + log
(1 + T )

χ(γ) − 1

T
.

On notera formellement X = log T . On désigne par R[1/t] (resp. R[log T ][1/t])
le localisé de R (resp. R[log T ]) en t. Dans la suite, on considérera souvent
sur RL[1/t] et RL[log T ][1/t] l’action du sous groupe ΓL de Gal(L∞/Ka). On
vérifie que (cf. [3, Prop. 3.3] )

(RL[log T ][1/t])
ΓL = La.

Soit L/Ka une extension finie galoisienne, on a RL′ ∼= R⊗Ka
L′. Si on prend

un relevement π ∈ E†
L d’une uniformisante de EL, satisfaisant la proposition

3.4, alors ψπ se prolonge en un isomorphisme ψπ : RL′ → RL.

3.2 Le théorème de comparaison de Berger

Un (ϕ,Γ)-module sur OEK
(resp. EK) est un OEK

-module de type fini (resp.
un EK-espace vectoriel de dimension finie) muni d’une action semi-linéaire et
continue de ΓK et d’un endomorphisme ϕ semi-linéaire par rapport au Frobe-
nius de OEK

(resp. EK) commutant entre eux. On dit qu’un (ϕ,Γ)-module M
sur OEK

est étale si l’image ϕ(M) engendre M sur OEK
.

Pour tout (ϕ,Γ)-module M sur EK on peut choisir un réseau stable par ϕ et
ΓK , qui est donc un (ϕ,Γ)-module sur OEK

. On dit qu’un (ϕ,Γ)-module M
sur EK est étale s’il existe un réseau M de M stable par ΓK et ϕ qui est étale.
On note ΦΓét

EK
la catégorie dont les objets sont les (ϕ,Γ)-modules étales et les

morphismes sont les applications linéaires commutant avec ϕ et ΓK . Dans [11],
Fontaine construit une équivalence de catégories entre RepQp

(GK) et ΦΓét
EK

. On

rappelle sa construction brièvement. On note Ênr le completé p-adique de Enr.
Pour toute Qp-représentation V de GK , on considère le EK-espace vectoriel

D(V ) = (Ênr ⊗Qp
V )

HK

muni des actions semi-linéaires de ΓK et de ϕ . C’est

un objet de ΦΓét
EK

. Le foncteur D définit une équivalence de catégories entre

RepQp
(GK) et ΦΓét

EK
.

Théorème 3.5 (Cherbonnier-Colmez). [5, III 5.2] Soit V ∈ RepQp
(GK).

La famille des sous-E†
K-modules de type fini de D(V ) stables par ϕ et ΓK admet

un plus grand élément D†(V ) et on a

D(V ) = EK ⊗E†
K

D†(V ).
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Irrégularité et Conducteur de Swan p-adiques 421

Pour toute représentation p-adique V de GK , Berger définit D†
rig(V ) = RK⊗E†

K

D†(V ) et D†
log(V ) = RK [log T ] ⊗E†

K
D†(V ) avec les actions évidentes de ϕ et

ΓK (cf.[3, §3.2]). Soit L/K une extension galoisienne finie. Le module D(V|GL
),

est muni naturellement d’une action de Gal(L∞/K). Par le théorème 3.5, on

obtient une action de Gal(L∞/K) sur D†(V|GL
) et donc sur D†

rig(V|GL
) et

D†
log(V|GL

).

Théorème 3.6 (Berger). [3, 3.6] Soit V est une représentation p-adique de
GK . On a des isomorphismes canoniques :

Dcris(V ) ∼= (D†
rig(V )[1/t])

ΓK
et Dst(V ) ∼= (D†

log(V )[1/t])
ΓK

.

Soit L/K une extension galoisienne finie. Alors les isomorphismes ci-dessus

Dcris(V|GL
) ∼= (D†

rig(V|GL
)[1/t])

ΓL
et Dst(V|GL

) ∼= (D†
log(V|GL

)[1/t])
ΓL

sont
équivariants pour les actions naturelles de Gal(L/K).

Remarque 3.7. Dans [3, 3.6], l’assertion sur l’équivariance par rapport à
Gal(L/K) n’apparait pas. C’est une conséquence immédiate de la
démonstration. On l’a mise en évidence pour l’importance qu’elle jouera
dans la suite.

4 Équations différentielles p-adiques

Soit Ω̂1
R/Ka

le module des différentielles continues de R sur Ka. C’est un R-

module libre de rang 1 de base dT
T+1 = d[ε]

[ε] . Soient L/Ka une extension finie et

L′ l’extension finie non-ramifiée de Ka qui lui est associée dans la section §3.1
(au dessus de Lemme 3.2). Comme R →֒ RL est étale finie et L′/Ka est finie, on
a un isomorphisme canonique Ω̂1

RL/L′
∼= RL ⊗R Ω̂1

R/Ka
. On étend la dérivation

d : R → Ω̂1
R/Ka

en d : R[log T ] → Ω̂1
R/Ka

, en posant d(log T ) = 1
T dT . Le corps

des constantes de RL[1/t] et de RL[log T ] est L′.
On appelle équation différentielle p-adique (ou module à connexion) sur RK un
RK-module de présentation finie muni d’une connexion. On démontre qu’un
tel module est forcement libre (cf. [2, Prop. 2.3]). Une équation différentielle
p-adique est dite unipotente (resp. quasi-unipotente) si elle est extension itérée
d’équations différentielles triviales (resp. s’il existe une extension finie L/K telle
que M ⊗RK

RL soit unipotente). On dit qu’une équation différentielle p-adique
M est munie d’une structure de Frobenius s’il existe un endomorphisme ϕM :
M → M , ϕ-semi-linéaire, horizontal, tel que ϕM (M) engendre M sur RK .

4.1 Équation différentielle p-adique associée à une
représentation de de Rham

Soit V une représentation galoisienne p-adique de GK . On rappelle que Berger

démontre que pour tout x ∈ D†
rig(V )[1/t], la limite limγ→IdΓK

γ(x)−x
χ(γ)−1 existe
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(cf. [3, §5.1]). On note cette limite ν(x). L’application x 7→ t−1ν(x) ⊗ dT
T+1

définit une connexion ∇V : D†
rig(V )[1/t] → D†

rig(V )[1/t] ⊗RK
Ω̂1

RK/K′ .
Soit V une représentation de de Rham de dimension n. On rappelle que Berger
montre qu’il existe un unique sous-RK-module libre de rang n de D†

rig(V )[1/t]

stable par t−1ν. On l’appelle NdR(V ). Il est stable par l’action du Frobenius
et de ΓK (cf. [3, §5.4 et §5.5] ou [4, IV.4]). On vérifie qu’il est une muni
d’une structure de Frobenius. Par construction, on associe à un morphisme de
représentations de de Rham V1 → V2, un morphisme d’équations différentielles
p-adiques NdR(V1) → NdR(V2).

Théorème 4.1 (Berger). [3, 5.20] On a un foncteur additif V 7→ NdR(V ), de
la catégorie des représentations p-adiques de de Rham de GK , dans la catégorie
des équations différentielles p-adiques sur RK munies d’une structure de Fro-
benius. Ce foncteur associe à une représentation de dimension n une équation
différentielle de rang n. C’est un ⊗-foncteur exacte et fidèle. L’équation NdR(V )
est quasi-unipotente si et seulement si la représentation V est potentiellement
semi-stable. L’équation NdR(V ) est unipotente (resp. triviale) si et seulement
s’il existe n tel que la restriction de V à GKn

soit semi-stable (resp. cristalline).

On étend ∇V en une connexion ∇V sur D†
log(V ) et NdR(V )⊗RK

RK [log T ], en

posant ∇V (log T ) = dT
T .

Soit M un module à connexion sur RK . On vérifie aisément que la dimension
sur L′ des sections horizontales de M ⊗RK

RL[log T ] est inférieure ou égale au
rang de M . Si on a l’égalité on dit que M est triviale sur RL[log T ]. Le module
M est unipotent si et seulement si M est triviale sur RK [log T ].

Corollaire 4.2. Si V est cristalline (resp. semi-stable), alors

Dcris(V ) ⊗Ka
K ′ ∼= (D†

rig(V )[1/t])
∇V ∼= (NdR(V ))

∇V

(
resp. Dst(V ) ⊗Ka

K ′ ∼= (D†
log(V )[1/t])

∇V ∼= (NdR(V ) ⊗RK
RK [log T ])

∇V

)
.

Démonstration. Le théorème 3.6 implique que Dcris(V ) ∼= (D†
rig(V )[1/t])

ΓK
.

Par définition de ∇V , on a (D†
rig(V )[1/t])

ΓK ⊆ (D†
rig(V )[1/t])

∇V
. Car si

x ∈ (D†
rig(V )[1/t])

ΓK
, alors ν(x) = limγ→IdΓK

γ(x)−x
χ(γ)−1 = 0. D’autre part, par

définition, on a aussi, (NdR(V ))
∇V ⊆ (D†

rig(V )[1/t])
∇V

. On vérifie facilement

que la dimension sur K ′ de (D†
rig(V )[1/t])

∇V
est inférieure ou égale à dimQp

V .

Comme V est cristalline, dimQp
V = dimKa

Dcris(V ) = dimK′ (NdR(V ))
∇V .

D’où les premiers isomorphismes. Le cas semi-stable est analogue.

Théorème 4.3 (André, Kedlaya, Mebkhout). [1, 7.1.5] [15, 1.1] [18, 5.0-
23] Tout module à connexion sur RK , admettant une structure de Frobenius
est quasi-unipotent.
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4.2 Rappels sur l’irrégularité d’une équation différentielle
p-adique

On rappelle brièvement la définition de l’indice d’une équation différentielle
p-adique introduite initialement par Robba (cf. [7, §2.3] et [8, §14]). Soient C
un corps et u un endomorphisme d’un C-espace vectoriel V . On dit que u admet
un indice si Keru et Coker u sont de dimension finie et on appelle indice de u
l’entier χ(u, V ) = dimC Ker u−dimC Coker u. On note A = {∑+∞

n=0 anTn ∈ R}.
C’est la sous-algèbre de R des séries convergentes sur le disque ouvert. On note
γ+ l’inclusion de A dans R et et γ+ la troncation

∑
n∈Z anTn 7→ ∑

n∈N anTn

de R sur A. Pour tout nombre naturel n, on note abusivement γ+ (resp. γ+)
l’inclusion de A⊕n dans R⊕n (resp. la projection de R⊕n sur A⊕n). Soit M
un module à connexion sur R de rang n. On choisit une base de M . Soient
ξ = T d

dT et G la matrice de la dérivation ∇ξ : M → M par rapport à cette

base. Soit u le Ka-endomorphisme T d
dT − G de R⊕n. On dit que M admet un

indice généralisé sur A si γ+ ◦ u ◦ γ+ admet un indice. Ceci ne dépend pas de
la base choisie. On note χ̃(M,A) = χ(γ+ ◦ u ◦ γ+,A⊕n). Si deux modules à
connexion sur R, M ′ et M ′′ ont un indice généralisé, alors pour toute extension
M de M ′ par M ′′, χ̃(M,A) = χ̃(M ′,A) + χ̃(M ′′,A).

Théorème 4.4 (Christol-Mebkhout). Soit M une équation différentielle
p-adique ayant une structure de Frobenius. Alors M admet un indice généralisé
sur A.

Démonstration. L’existence d’une structure de Frobenius implique la solubi-
lité de M et que ses exposants sont non-Liouville (cf. [7, §2.5]). Le corps de
constantes Ka est de valuation discrète donc maximalement complet. C’est
donc un cas particulier de [8, Th. 14.11].

Pour une équation différentielle p-adique M munie d’une structure de Frobe-
nius, on appelle irrégularité de M et on note irr(M), l’indice généralisé χ̃(M,A).

Remarque 4.5. 1. Soient L/Ka une extension finie et M un module libre
de rang r sur R ⊗Ka

L muni d’une connexion. On considère M comme une
équation différentielle p-adique sur R de rang r dimKa

L. Si M admet un indice

généralisé, on pose irr(M) = (dimKa
L)

−1
χ̃(M,A).

2. Soit M une équation différentielle p-adique sur RK . On choisit un élément
π dans OE†

K
comme dans 3.4. Via les isomorphismes ψπ : RK′ → RK et

RK′ ∼= R ⊗Ka
K ′, on peut définir l’irrégularité de M . On vérifie que ceci ne

dépend pas du choix de π.
3. L’indice généralisé cöıncide avec la définition d’indice sur E† de Tsuzuki
dans [23, §1] (cf. [17, §8]).

4.3 Équations quasi-unipotentes

La catégorie des équations différentielles p-adiques quasi-unipotentes est tan-
nakienne neutre. On rappelle ici des constructions classiques (cf. [1] et [17]).
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Soit k((T ))
sep

une clôture séparable fixée de k((T )) (dans la section 5 on sup-
pose k((T ))

sep ⊂ FrR). Soit E/k((T )) une extension séparable finie contenue
dans k((T ))

sep
. On note kE son corps résiduel, GE = Gal(k((T ))

sep
/E) et IE

le sous-groupe d’inertie. On pose E(E) = (Enr)
GE , E†(E) = E(E) ∩ E†nr

et
R(E) = R⊗E† E†(E). Évidement, si E est égal au corps de normes EL associé

à une extension finie L/K, alors E(EL) = EL, E†(EL) = E†
L et R(EL) = RL.

Les propriétés qu’on a rappelées dans les sections précédentes pour EL, E†
L,RL,

en dehors de l’action de ΓL, sont aussi valables pour E(E), E†(E),R(E). Soient
F/E une extension galoisienne finie et M un R(E)-module à connexion uni-
potent sur R(F ). On considère le FrW(kF )-espace vectoriel des sections hori-
zontales

SF (M) = (M ⊗R(E) R(F )[log T ])
∇

.

On le munit d’une action semi-linéaire de Gal(F/E) et d’un endomorphisme
nilpotent de la façon suivante. Pour tout g ∈ Gal(F/E) et x ∈ M ⊗R(E)

R(F )[log T ], on pose g(x) = (Id⊗g)(x). On considère sur M⊗R(E)R(F )[log T ]
l’application Id ⊗ N , où N est la R(F )-dérivation de R(F )[log T ] qui envoie
log T sur 1. Cette application commute avec l’action de Gal(F/E). Les dia-
grammes suivantes sont commutatifs :

M ⊗R(E) R(F )[log T ] ∇ //

Id⊗g

²²

M ⊗R(E) R(F )[log T ] ⊗RF
Ω̂1

RF / Fr W(kF )

Id⊗g⊗dg

²²
M ⊗R(E) R(F )[log T ] ∇ // M ⊗R(E) R(F )[log T ] ⊗RF

Ω̂1
RF / Fr W(kF )

et

M ⊗R(E) R(F )[log T ] ∇ //

Id⊗N

²²

M ⊗R(E) R(F )[log T ] ⊗RF Ω̂1
RF / Fr W(kF )

Id⊗N⊗Id

²²
M ⊗R(E) R(F )[log T ] ∇ // M ⊗R(E) R(F )[log T ] ⊗RF

Ω̂1
RF / Fr W(kF )

On en déduit sur SF (M), une action de Gal(F/E) et un endomorphisme,
qu’on note NSF (M), commutant entre eux. On vérifie facilement que NSF (M)

est nilpotent. On peut résumer ces données en disant que SF (M) est une
FrW(kF )-représentation semi-linéaire du schéma en groupes Gal(F/E) × Ga,
où Gal(F/E) est considéré comme schéma en groupes constant. La dimension
de SF (M) sur FrW(kF ) est par construction égale au rang de M . Inversement,
soit V une Fr W(kF )-représentation semi-linéaire de Gal(F/E) × Ga. On note
NV l’endomorphisme nilpotent de V associé à l’action de Ga. On pose

MF (V ) =

{
x ∈ V ⊗Fr W(kF ) R(F )[log T ]

∣∣∣∣
∀g ∈ Gal(F/E), g(x) = x,
(NV ⊗ Id + Id ⊗ N)(x) = 0

}
.
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Proposition 4.6. Sous les hypothèses ci-dessus, MF (V ) est un R(E)-module
libre de rang égal à la dimension de V .

Démonstration. Comme R(F ) = E†(F ) ⊗E†(E) R(E) et E†(E) est un corps on
vérifie que

(V ⊗Fr W(kF ) R(F ))
Gal(F/E)

= (V ⊗Fr W(kF ) E†(F ))
Gal(F/E) ⊗E†(E) R(E).

Comme Gal(E†(F )/E†(E)) = Gal(F/E), on en déduit par un raisonnement

classique (cf. [20, Ch.X Prop.3]) que (V ⊗Fr W(kF ) R(F ))
Gal(F/E)

est un R(E)-
module libre de rang égal à la dimension de V . On définit un isomorphisme

f : (V ⊗Fr W(kF ) R(F ))
Gal(F/E) → MF (V ),

en posant f(
∑

l vl ⊗ αl) =
∑

l

∑r−1
i=0 (−)

i
N i

V (vl) ⊗ αl(log T )
i
, où r

est un entier tel que Nr
V = 0. L’application inverse g : MF (V ) →

(V ⊗Fr W(kF ) R(F ))
Gal(F/E)

, est induite par la projection R(F )[log T ] → R(F )
qui envoie log T en 0. En fait, par construction gf = Id et pour conclure il
suffit de montrer que g est injective. Soit x =

∑
l vl ⊗ (

∑d
i=0 αi,l(log T )

i
).

Supposons que g(x) =
∑

l vl ⊗α0,l = 0. La relation (NV ⊗ Id + Id ⊗N)(x) = 0
équivaut à

∀i = 0, . . . , d,
∑

l

NV (vl) ⊗ αi,l = −
∑

l

vl ⊗ (i + 1)αi+1,l. (⋆)

Comme
∑

l vl⊗α0,l = 0, en appliquant NV ⊗Id+Id⊗N , on obtient
∑

l NV (vl)⊗
α0,l = 0. D’où par (⋆),

∑
l vl ⊗ α1,l = 0. Ainsi, par récurrence, on montre

x = 0.

On munit MF (V ) de la connexion induite par d : R(F )[log T ] →
Ω̂1

R(F )/ Fr W(kF ) et la connexion triviale sur V . Par construction, il est quasi-
unipotent. Les inclusions naturelles

SF (M) ⊆ M ⊗R(E) R(F )[log T ] et MF (V ) ⊆ V ⊗Fr W(kF ) R(F )[log T ]

induisent par linéarisation des isomorphismes

SF (M) ⊗Fr W(kF ) R(F )[log T ] → M ⊗R(E) R(F )[log T ],

MF (V ) ⊗R(E) R(F )[log T ] → V ⊗Fr W(kF ) R(F )[log T ]

compatibles aux structures supplémentaires. On en déduit que le foncteur MF

est un quasi-inverse de SF .
On introduit une variante de ces équivalences après extension des scalaires
à K. On rappelle que le produit R(E)K = R(E) ⊗Fr W(kE) K est intègre car
FrW(kE) est algébriquement fermé dans R(E). Pour une extension galoisienne
E/k((T )), on étend linéairement l’action de l’inertie I(E/k((T ))) à R(E)K . Si

F/E est une extension galoisienne finie, alors R(F )
I(F/E)

K
= R(E)K . Tout
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module à connexion M , libre de type fini sur R(E)K , provient par extension
des scalaires, d’un module M ′, libre de type fini sur R(E) ⊗Fr W(kE) L, où L

est une extension finie de FrW(kE) contenue dans K. On peut donc parler
d’irrégularité de M (cf. Rem.4.5-1 et 4.5-2). Soit M un module à connexion sur
R(E)K , unipotent sur R(F )K . On pose

S′
F (M) = (M ⊗R(E)K

R(F )K [log T ])
∇

.

C’est une représentation linéaire de I(F/E)×Ga. De façon analogue à ci-dessus,
le foncteur S′

F est une équivalence de catégories entre modules à connexion sur
R(E)K , unipotents sur R(F )K et représentations linéaires sur K du schéma
en groupes I(F/E) × Ga. Un quasi-inverse est donné par

M ′
F (V ) =

{
x ∈ V ⊗K R(F )K [log T ]

∣∣∣∣
∀g ∈ I(F/E), g(x) = x,

(NV ⊗ Id + Id ⊗ N)(x) = 0

}
.

Pour tout R(E)-module à connexion M , on considère son extension des sca-
laires M ⊗Fr W(kE) K comme module à connexion sur R(E)K . Il est évident

que S′
F (M ⊗Fr W(kE) K) = SF (M)⊗Fr W(kF ) K, où on ne considère sur SF (M)

que l’action du sous-groupe I(F/E) × Ga de Gal(F/E) × Ga.
La proposition suivante est une variante d’une proposition de Tsuzuki [23].

Proposition 4.7. [1, 7.1.2] Soient M un R(E)-module à connexion quasi-
unipotent et F/E une extension galoisienne finie telle que M soit unipotent
sur R(F ). Alors l’irrégularité de M est égale au conducteur de Swan de la
représentation SF (M) du groupe d’inertie I(F/E).

Démonstration. Comme le conducteur de Swan et l’irrégularité ne varient
pas par extension des scalaires on peut tensoriser avec K. L’équivalence
S′

F induit un isomorphisme entre le groupe de Grothendieck des R(E)K-
modules à connexion, unipotents sur R(F )K et le groupe de Grothendieck
des représentations de I(E/F ) × Ga sur K. Dans ce dernier la classe d’une
représentation V de I(E/F ) × Ga est égale à la classe de sa restriction à
I(F/E). Comme le conducteur de Swan et l’irrégularité se factorisent par le
groupe de Grothendieck, il suffit de vérifier qu’ils se correspondent par S′

F .
Dans cet isomorphisme l’induction d’une représentation correspond à l’oubli de
structure pour le module à connexion correspondant. Le conducteur de Swan
et l’irrégularité varient de la même façon par rapport à l’induction et à l’ou-
bli respectivement. On peut, en appliquant le théorème d’induction de Brauer
(cf. [21, §10] ), se réduire au cas de dimension 1. Soit M un module à connexion
sur R(E)K de rang 1, unipotent sur R(F )K . On considère la représentation
S = S′

F (M) de I = I(F/E). Soit Λ l’extension finie de Qp, obtenue en ajoutant
les racines m-ièmes de l’unité, où m est l’exposant du groupe I. Par un autre
théorème de Brauer (cf.[21, §12.2, Th.24] ), il existe une représentation S0 de
I sur Λ telle que S ∼= S0 ⊗Λ K. On note Λ′ ⊆ K l’extension non-ramifié de Λ
de corps résiduel kF . On rappelle que Tsuzuki [23] associe à S0 un module à
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connexion D†(S0) sur Λ′⊗Fr W(kE) E†(E), d’irrégularité égale au conducteur de
Swan de S0 (en fait le cas de dimension 1 est dû à Matsuda [16]). On vérifie que

D†(S0) = (S0 ⊗Λ (Λ′ ⊗Fr W(kF ) E†(F )))
I
, avec la connexion induite par celle de

E†(F ). Comme S est de rang 1, on a M ′
F (S) = (S ⊗K R(F )K)

I
. On termine

par,

M ′
F (S) ∼=

(
S0 ⊗Λ K ⊗Fr W(kF )

(
E†(F ) ⊗E†(E) R(E)

))I

∼= (S0 ⊗Λ Λ′ ⊗Fr W(kF ) E†(F ))
I ⊗(Λ′⊗Fr W(kE)E†(E)) (K ⊗Fr W(kE) R(E))

∼= D†(S0) ⊗(Λ′⊗Fr W(kE)E†(E)) R(E)K .

5 Preuve du théorème 1.1 et corollaires

Soient V une représentation p-adique de GK et L/K une extension galoisienne

finie. On rappelle (cf. §3.2) que les modules D(V|GL
), D†(V|GL

) et D†
rig(V|GL

)

sont munis d’une action naturelle de Gal(L∞/K). Pour tout x ∈ D†
rig(V|GL

)[1/t]

et g ∈ Gal(L∞/K), g(t−1ν(x)) = χ(g)
−1

t−1ν(g(x)). Pour V de de Rham, on en
déduit une action de Gal(L∞/K) sur NdR(V|GL

). On munit les modules D(V ),

D†(V ), D†
rig(V ) et NdR(V ) de l’action de Gal(L∞/K) via le quotient ΓK .

Lemme 5.1. Soient V une représentation p-adique de GK et L/K une extension
galoisienne finie. On a des isomorphismes canoniques :

i) D(V|GL
) ∼= EL ⊗EK

D(V ) ;

ii) D†(V|GL
) ∼= E†

L ⊗E†
K

D†(V ) ;

iii) D†
rig(V|GL

) ∼= RL ⊗RK
D†

rig(V ) ;

iv) pour V de de Rham, NdR(V|GL
) ∼= RL ⊗RK

NdR(V ).

Ces isomorphismes sont compatibles avec les actions de Gal(L∞/K).

Démonstration. i) On a une application EK-linéaire injective D(V ) → D(V|GL
),

compatible à l’action de Gal(L∞/K). Comme dimEK
D(V ) = dimEL

D(V|GL
) =

dimQp
V , elle induit un isomorphisme EL ⊗EK

D(V ) ∼= D(V|GL
) équivariant

pour l’action de Gal(L∞/K). ii) est une conséquence du Théorème 3.5. iii) se

déduit directement de ii). iv) L’injection NdR(V ) ⊆ D†
rig(V )[1/t] entrâıne que

RL ⊗RK
NdR(V ) ⊆ RL ⊗RK

D†
rig(V )[1/t] = D†

rig(V|GL
)[1/t]. C’est un sous-RL-

module stable par t−1ν, par l’unicité de NdR(V|GL
) il est égal à NdR(V|GL

).

Soit V une représentation potentiellement semi-stable de GK . Choisissons une
extension galoisienne finie L/K telle que la restriction de V à GL soit semi-
stable. Soit L′/Ka l’extension finie non-ramifiée associée à L dans la section
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§3.1 (au dessus de Lemme 3.2). On considère le L′-espace vectoriel des sections
horizontales

SEL
(NdR(V )) = (NdR(V ) ⊗RK

RL[log T ])
∇V .

L’action de Gal(L∞/K) sur NdR(V )⊗RK
RL[log T ] commute avec la connexion

par la définition même de cette dernière (cf. §4.1). On en déduit une action
semi-linéaire de Gal(L∞/K) sur SEL

(NdR(V )). La restriction de cette action
au sous-groupe Gal(L∞/K∞) correspond via l’identification Gal(EL/EK) ∼=
Gal(L∞/K∞) à l’action décrite au §4.3.

Proposition 5.2. Soient V une représentation galoisienne p-adique de GK

et L/K une extension galoisienne finie telle que la restriction de V à GL soit
semi-stable. Il existe un isomorphisme canonique

NdR(V ) ⊗RK
RL[log T ] ∼= Dst(V|GL

) ⊗La
RL[log T ]. (1)

Le groupe Gal(L∞/K) agit sur le deux membres de (1) : à gauche comme
décrit plus haut et à droite diagonalement, par son quotient Gal(L/K) sur
Dst(V|GL

) et par son action naturelle sur RL[log T ]. L’isomorphisme (1) est
équivariant pour cette action. Il est aussi horizontal où on considère à droite la
connexion triviale sur Dst(V|GL

). De façon équivalente, en prenant les sections
horizontales, on un isomorphisme canonique Gal(L∞/K)-équivariant

SEL
(NdR(V )) ∼= Dst(V|GL

) ⊗La
L′. (2)

Par conséquent, l’action de Gal(L∞/K) sur SEL
(NdR(V )) se factorise par

son quotient fini Gal(L ⊗La
L′/K). Le conducteur de Swan de V est égal à

sw(I(L ⊗La
L′/K), SEL

(NdR(V ))).

Démonstration. Par le corollaire 4.2, on a un isomorphisme

Dst(V|GL
) ⊗La

L′ ∼= (NdR(V|GL
) ⊗RL

RL[log T ])
∇V .

Il est équivariant par rapport à l’action de Gal(L∞/K) car il est le composé de
l’isomorphisme équivariant du théorème 3.6 avec une inclusion naturelle. Cette
action se factorise évidemment par Gal(L ⊗La

L′/K). Le lemme 5.1-iv) donne
un isomorphisme, Gal(L∞/K)-équivariant,

(NdR(V|GL
) ⊗RL

RL[log T ])
∇V ∼= (NdR(V ) ⊗RK

RL[log T ])
∇V =SEL

(NdR(V )).

Ceci montre (2). L’isomorphisme (1) suit en tensorisant (2) par RL[log T ] au
dessus de L′ et en composant avec l’isomorphisme canonique SEL

(NdR(V ))⊗L′

RL[log T ] ∼= NdR(V ) ⊗RK
RL[log T ].

Remarque 5.3. Un résultat analogue à la proposition 5.2 a été démontré par
N.Wach pour les représentations sur un corps absolument non-ramifié, qui sont
de de Rham et de hauteur finie (cf. [24, A5 et B1.4.2] ).
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Soit L/K une extension galoisienne finie quelconque contenue dans K. Pour
tout n ∈ N, on note Gn = Gal(Ln/Kn) et In son sous-groupe d’inertie. Pour
n ∈ N, la restriction induit un monomorphisme de groupes fn : Gn+1 →֒ Gn.
Soit n(L) le plus petit entier tel que Kn(L) contienne l’intersection de L avec
K∞. Pour n ≥ n(L), fn est un isomorphisme et le groupe Gn est canoniquement
isomorphe à Gal(EL/EK). Par abus on note encore fn : Gal(EL/EK) → Gn cet
isomorphisme. Le lemme suivant est une reformulation d’un résultat classique
de Sen (cf. [19, Lemma 1, pg. 40] et [25, 3.3.2] ).

Lemme 5.4. Pour n assez grand la filtration de ramification supérieure et
inférieure de Gn est stationnaire et correspond via l’isomorphisme fn à la fil-
tration de ramification de Gal(EL/EK).

Démonstration. On utilise ici une définition différente du corps de normes mais
équivalente à celle donnée dans le paragraphe 3.1. On considère la limite projec-
tive d’ensembles lim←−n∈N

OKn
, où les applications de transitions sont les normes.

Cet ensemble est isomorphe à OEK
muni de la multiplication composante par

composante et de la somme donnée par la formule suivante. Si x = (xn)n∈N et
y = (yn)n∈N appartient à OEK

, alors (x + y)n = limm→+∞ NKm/Kn
(xm + ym).

On note G = Gal(EL/EK). Soit π ∈ EL une uniformisante. Comme (Ln/K)n≥1

est cofinal dans l’ensemble des sous-extension finies de L∞/K, on peut écrire
π = (πn)n≥1 avec πn ∈ Ln. Soit n′ ≥ n(L) un entier tel que L∞/Ln′ soit tota-
lement ramifiée. Pour tout n ≥ n′, πn est une uniformisante de Ln. Pour tout
g ∈ G et n ≥ n′, on pose i(g) = iG(g) = vEL

(g(π)−π) et in(g) = iGn
(fn(g)) =

vLn
(fn(g)(πn) − πn). On doit montrer que i(g) = limn→+∞ in(g). En fait,

i(g) = vEL
(g(π) − π) = vLn′ ((g(π) − π)n′) =

= vLn′

(
lim

n′≤n→+∞
NLn/Ln′ (g(πn) − πn)

)
=

= lim
n′≤n→+∞

vLn′ (NLn/Ln′ (g(πn) − πn)) =

= lim
n′≤n→+∞

vLn
((g(πn) − πn)) = lim

n→+∞
in(g).

On rappelle qu’on a noté Vn = V|GKn
.

Lemme 5.5. Soit V une représentation potentiellement semi-stable. La suite
(sw(Vn))n∈N est stationnaire.

Démonstration. Par définition sw(Vn) = sw(Dpst(Vn)|IKn
). On a un monomor-

phisme évident Dpst(Vn) →֒ Dpst(V )|GKn
, qui est un isomorphisme car Dpst(Vn)

et Dpst(V ) ont la même dimension. Donc Dpst(Vn)|IKn

∼= Dpst(V )|IKn
et l’action

de IKn
se factorise par In. Par le lemme 5.4, pour n assez grand, le conducteur

sw(Dpst(V )|IKn
) est constant.
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Soit V une représentation de GK qui devient semi-stable sur L. Pour un
entier n assez grand, on considère Dpst(Vn) = Knr

a ⊗L′ Dst(V|GLn
) comme

Knr
a -représentation semi-linéaire de Gal(EL/EK) via l’isomorphisme fn. Cette

représentation ne dépend pas de n. Sa restriction à l’inertie est linéaire. Dans la
suite on la considère comme une représentation de GEK

et on la note D∞
pst(V ).

Par le lemme 5.5,

sw(D∞
pst(V )) = lim

n→+∞
sw(Vn). (3)

Démonstration du théorème 1.1. Par le théorème de monodromie p-adique
la représentation V est potentiellement semi-stable. Soit L/K une extension
galoisienne finie telle que V|GL

soit semi-stable. On choisit un entier n assez
grand de façon que Gn = Gal(Ln/Kn) soit isomorphe à Gal(EL/EK) avec
leurs filtrations de ramifications. Donc D∞

pst(V ) = Dpst(Vn) et sw(D∞
pst(V )) =

sw(I(Ln/Kn),Dst(V|GLn
)). Par la proposition 5.2, on a un isomorphisme

SELn
(NdR(V )) ∼= Dst(V|GLn

), équivariant par rapport à l’action de
Gal(Ln/K). D’où, par restriction, l’égalité de sw(I(Ln/Kn),Dst(V|GLn

)) et de
sw(I(EL/EK), SELn

(NdR(V ))). Comme EL = ELn
, ce dernier est égal à

l’irrégularité de NdR(V ), par la proposition 4.7.

Lemme 5.6. Soient V une représentation galoisienne p-adique de GK , L/K
une extension galoisienne finie telle que V|GL

soit semi-stable et n′ le plus petit
entier tel que Kn′ ⊇ (L ⊗La

L′) ∩ K∞. Alors :

i) Pour tout n ≥ n′, Dst(Vn) = Dst(Vn′) ∼= (NdR(V ) ⊗RK
RK [log T ])

∇V .

ii) Pour tout n ≥ n′, Dcris(Vn) = Dcris(Vn′) ∼= (NdR(V ))
∇V .

Démonstration. On pose D = Dst(V|GL
). i) On considère l’isomorphisme (1)

(prop. 5.2), D ⊗La
RL[log T ] ∼= NdR(V ) ⊗RK

RL[log T ]. En prenant les sec-
tions horizontales et les points fixès par Gal(L∞/K∞), on obtient Dst(Vn′) =

(D ⊗La
L′)Gal(L∞/K∞)

= (NdR(V ) ⊗RK
RK [log T ])

∇V . Pour m ≥ n′, de

façon analogue, on obtient Dst(Vm) = (NdR(V ) ⊗RK
RKm

[log T ])
∇V . Comme

HKm
= HK , on a RK = RKm

en tant qu’anneaux. D’où Dst(Vm) = Dst(Vn′).
ii) Par la proposition 5.2,

(NdR(V ))∇V ∼= (MEL
(D ⊗La

L′))
∇

=



x ∈ D ⊗La

RL[log T ]

∣∣∣∣∣∣

∀g ∈ Gal(L∞/K∞), g(x) = x,
(ND ⊗ Id + Id ⊗ N)(x) = 0,

(Id ⊗ d)(x) = 0





=

{
x ∈ D ⊗La

L′
∣∣∣∣
∀g ∈ Gal(L∞/K∞), g(x) = x,

(ND ⊗ Id)(x) = 0

}
= Dcris(Vn′).

On conclut comme dans i).
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Irrégularité et Conducteur de Swan p-adiques 431

Corollaire 5.7. Soit V une représentation de de Rham de GK . Alors :

lim
n→+∞

ar(Vn)

= irr(NdR(V )) + rg(NdR(V )) − dimK′ (NdR(V ) ⊗RK
RK [log T ])

∇V

et

lim
n→+∞

arcris(Vn) = irr(NdR(V )) + rg(NdR(V )) − dimK′ (NdR(V ))
∇V .

Démonstration. Soit L/K une extension galoisienne finie telle que V|GL
soit

semi-stable. On pose D = Dst(V|GL
). On rappelle que dimLa

DI(L/K) =

dimKa
DGal(L/K) car H1(Gal(kL/k),GLn(La)) est triviale (cf. [20,

Ch.X, Prop.3]). On a ar(V )− sw(V ) = dimLa
D−dimLa

DI(L/K) = dimLa
D−

dimKa
DGal(L/K) = dimQp

V − dimKa
Dst(V ) = rg(NdR(V )) − dimKa

Dst(V ).
Par le théorème 1.1 et le lemme 5.6-i) on obtient la première formule. On
en déduit facilement la deuxième en utilisant la définition de arcris(V ) et
5.6-ii).

Remarque 5.8. Le corollaire 5.7 généralise un résultat de Berger (cf. Th. 4.1
et [3, Th. 5.20] ) : l’équation NdR(V ) est unipotente (resp. triviale) si et seule-
ment si V est semi-stable (resp. cristalline) sur Kn, pour n assez grand. En
effet V est semi-stable (resp. cristalline) sur Kn si et seulement si ar(Vn) =
0 (resp. arcris(Vn) = 0). L’équation NdR(V ) est unipotente (resp. triviale)

si et seulement si rg(NdR(V )) = dimK′ (NdR(V ) ⊗RK
RK [log T ])

∇V (resp.

rg(NdR(V )) = dimK′ (NdR(V ))
∇V ) et dans ce cas on a aussi irr(NdR(V )) = 0.

Soit M une équation différentielle p-adique ayant une structure de Frobenius.
Dans [7], Christol et Mebkhout associent à M une décomposition en somme
directe indexée par les rationnels, la décomposition par les pentes p-adiques.
C’est un théorème profond de la théorie que la hauteur du polygone de Newton
associé à cette décomposition est égale à l’indice χ̃(M,A).

Corollaire 5.9. Soient V une représentation galoisienne p-adique de GK et
L/K une extension galoisienne finie telle que la restriction de V à GL soit
semi-stable.

i) On a un isomorphisme Gal(EL/EK)-équivariant,

D∞
pst(V ) ∼= Knr

a ⊗L′ SEL
(NdR(V )).

ii) Sous l’isomorphisme du i), la décomposition de Knr
a ⊗L′ SEL

(NdR(V ))
induite par les pentes p-adiques de NdR(V ), correspond à la décomposition
par les pentes de Swan de D∞

pst(V ) (cf. [14, Ch. 1] ). Par conséquent, on
a l’égalité des polygones de Newton associés.

Démonstration. On déduit l’assertion i) par restriction de l’isomorphisme
(2) (prop.5.2) à Gal(L∞/K∞). Pour ii), soit NdR(V ) = ⊕q∈QNdR(V )q la
décomposition par les pentes p-adiques. On pose Dq = Knr

a ⊗L′ SEL
(NdR(V )q).
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C’est un facteur directe de D∞
pst(V ) de dimension égal au rang de NdR(V )q.

C’est stable par ϕ et N . Par la proposition 4.7, on a sw(Dq) = irr(NdR(V )q) =
q rg NdR(V )q = q dimKnr

a
Dq. Pour conclure il suffit de montrer que toute pente

de Swan de Dq est égale à q. Soient s une pente de Swan de Dq et Dq,s 6= 0
sa partie isopentique de pente s. Par [14, Lemma 1.8] , Dq,s est stable par
Gal(EL/EK). Comme ϕ et N commutent avec Gal(EL/EK), l’unique pente
possible pour ϕ(Dq,s) et N(Dq,s) est s. Comme Dq,s est maximal de pente s,
on a ϕ(Dq,s) ⊆ Dq,s et N(Dq,s) ⊆ Dq,s. On en déduit que MEL

(Dq,s) est un
sous-module différentiel de NdR(V )q muni d’un Frobenius. Donc MEL

(Dq,s) a
comme seule pente q. Par 4.7,

sdimKnr
a

Dq,s = sw(Dq,s) = irr(MEL
(Dq,s)) = q rg MEL

(Dq,s) = q dimKnr
a

Dq,s.

D’où s = q.

Références
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Abstract. It is well-known that any bounded orbit of semilinear
parabolic equations of the form

ut = uxx + f(u, ux), x ∈ S1 = R/Z, t > 0,

converges to steady states or rotating waves (non-constant solutions
of the form U(x − ct)) under suitable conditions on f . Let S be the
set of steady states and rotating waves (up to shift). Introducing
new concepts — the clusters and the structure of S —, we clarify,
to a large extent, the heteroclinic connections within S; that is, we
study which u ∈ S and v ∈ S are connected heteroclinically and
which are not, under various conditions. We also show that ♯S ≥
N +

∑N
j=1[[

√
(fu(rj , 0))+/(2π)]] where {rj}N

j=1 is the set of the roots

of f( · , 0) and [[y]] denotes the largest integer that is strictly smaller
than y. In paticular, if the above equality holds or if f depends
only on u, the structure of S completely determines the heteroclinic
connections.
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1. Introduction

We will investigate the global dynamics of semilinear parabolic partial dif-
ferential equations on S1 = R/Z in X = C1(S1)

(1.1)

{
ut = uxx + f(u, ux), x ∈ S1,

u(x, 0) = u0(x), x ∈ S1.

The above problem is equivalent to a problem on the interval [0, 1] under the
periodic boundary conditions u(0, t) = u(1, t), ux(0, t) = ux(1, t) for t > 0.
Under suitable conditions on f , the solutions of (1.1) exist globally in t > 0.
Thus (1.1) defines a global semiflow Φt on X. We will call each solution of
(1.1) an orbit.

Angenent and Fiedler [AF88] and Matano [Ma88] have shown independently
that any solution of (1.1) approaches as t → ∞ to a solution (or a family of
solutions) of the form U(x− ct), where c is some real constant. Since U(x− ct)
is a solution to (1.1), the function U(ζ) should satisfy the following equation:

(1.2)
d2U

dζ2
+ c

dU

dζ
+ f

(
U,

dU

dζ

)
= 0, ζ ∈ S1,

where ζ = x−ct. Note that U(ζ+θ) is a solution to (1.2) for all θ ∈ S1 provided
that U(ζ) is a solution. If c 6= 0 and if U(ζ) is not a constant function, then
U(x − ct) is a time periodic solution called a rotating wave with speed c. If
c = 0 and if U(ζ) is not a constant function, then U(x) is called a standing
wave. Thus steady states consist of both standing waves and constant steady
states. By using these terms, the above assertion can be restated that any
solution of (1.1) approaches either rotating waves or steady states.

Under suitable conditions on f that will be specified later, (1.1) has the set
A ⊂ X called the global attractor. This set A is characterized as the maximal
compact invariant set and it attracts all the orbits of (1.1).

Matano and Nakamura [MN97] have shown that the global attractor A of
(1.1) consists of rotating waves, standing waves and connecting orbits that con-
nect these waves. Therefore, in order to understand the dynamical structure
of A it is important to know which pairs of waves are connected heteroclini-
cally and which pairs are not. The paper [AF88] proves the existence of some
connecting orbits for the problem (1.1) by using a topological method. We
are interested in finding out a sharper criterion for the existence of connecting
orbits.

In this paper we will give a precise lower bound for the number of mutually
distinct rotating waves and steady states (Corollary B). If the Morse index of
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every wave is odd or zero, then certain order relations among waves defined
below and the Morse index of all the waves determine which pairs of waves are
connected heteroclinically and which pairs are not (Theorem A). In particular,
if the actual number of the waves coincides with the lower bound given in
Corollary B, then the hypothesis of Theorem A is automatically fulfilled, hence
the heteroclinic connections are completely determined (Theorem C). In the
special case where f depends only on u, we can completely determine which
pairs of waves are connected heteroclinically and which are not (Theorems A
and A’), and we will present rather simple and explicit sufficient conditions on
f for the hypotheses of Theorem C to be satisfied (Proposition D).

Theorems A and C and Proposition D are proved by using the concepts of
clusters and the structure which we introduce in Section 2. Let S be the set
of all the waves. Roughly speaking, a cluster is a subset of S consisting of
waves sharing certain common features, and S is expressed as a disjoint union
of clusters. One can show that each cluster is a totally ordered set with respect
to the following order relation

u ⊲ v
def⇐⇒ R(u) ⊃ R(v),

where R(u) denotes the range of u (see Definition 2.5 and Remark 2.6). We
then define the structure of S by associating each cluster with the sequence of
(modified) Morse indices of its elements. Lemmas E, F and F’ give fundamental
properties of this sequence of modified Morse indices.

Now, many authors study the global attractor of (1.1) for the case where
the boundary conditions in (1.1) is replaced by the Dirichlet or the Neumann
boundary conditions. We can see [BF89] for the Dirichlet boundary conditions,
[FR96] and [Wo02] for the Neumann boundary conditions and [MN97] for pe-
riodic boundary conditions. Here we recall the results of [FR96]. In the case of
the Neumann boundary conditions on [0, 1], the global attractor consists of the
steady states and the connecting orbits between these steady states, if all the
steady states are hyperbolic. Let {Uj(x)}n

j=1 (U1(0) < U2(0) < · · · < Un(0))
be the set of all the steady states. Roughly speaking, the permutation that re-
arranges the sequence (U1(1), U2(1), . . . , Un(1)) in increasing order determines
the Morse indices of all the steady states and the zero number of functions
Uj(x) − Uk(x) (1 ≤ j < k ≤ n) (In brief, the zero number of a function, which
is defined in Section 2, is the number of the roots of the function). Once these
Morse indices and the zero number of the difference of all the pairs among the
waves are obtained, then this information tells which steady states are con-
nected and which are not. Wolfrum [Wo02] has simplified the conditions of
whether steady states are connected heteroclinically or not using the concept
of k-adjacent. The concept of k-adjacent also uses the zero number of functions
Uj(x) − Uk(x) and the value of one of end points Uj(0) (or Uj(1)). In the
case of the periodic boundary conditions, we cannot use the method of [FR96]
because the end points do not exist on S1, therefore the Morse indices and the
zero number of the difference of the pairs cannot be characterized in terms of
permutation. Instead the maximum value, the minimum value and the mode of
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the waves play an important role in determining the Morse index of the waves
and the zero number of the difference of the pairs, thereby giving the global
picture of their heteroclinic connection.

This paper is organized as follows: In Section 2 we introduce some notation
and definitions and state our main results (Theorems A A’ and C, Corollary
B, Proposition D and Lemmas E, F and F’). Roughly speaking, Corollary B
gives a lower bound for the number of the waves in terms of the derivatives of
f , and Lemma F is concerned with the modified Morse indices of waves and
the structure of clusters. Theorems A, A’ and C and Proposition D determine
the heteroclinic connections among waves under various conditions. In Section
3 we will prove Lemma 3.1 which is the key lemma of this paper. In Section
4 we will show that each cluster is a totally ordered set in our order relation.
We state the main results of [AF88]. We will prove Theorem C by using the
results. In Section 5 we will investigate a sequence of modified Morse indices of
waves in each cluster and prove Lemmas E and F and Corollary B. In Section
6 we will prove Theorem A, using Lemma F and main results of [AF88]. In
Section 7 we consider the case where f depends only on u. We will prove
Theorem A’ and Lemma F’. In Section 8 we prove Proposition D, which is
a special case of Theorems A and A’. We will give rather simple and explicit
sufficient conditions on f under which all the clusters are monotone and simple,
the meaning of which will be defined in Section 2. The monotonicity and
simplicity of clusters automatically determine the Morse index of all the waves
and the zero number of the difference of the pairs among the waves, hence their
heteroclinic connections.

Acknowledgment. The author would like to thank Professor H.Matano for
his valuable comments and many fruitful discussions, and thank the referee
for his/her useful suggestions. He would also like to express his gratitude to
Professor B. Fiedler, whose early work has given the author much inspiration.

2. Notation and Main Theorems

In this paper the nonlinear term f satisfies the following assumptions:

(A1) f: R × R → R is a C3-function.
(A2) There exists a constant L1 > 0 such that u ·f(u, 0) < 0 for |u| > L1,

and the function f( · , 0) has finitely many real roots.
(A3) ( i ) For any solution u(x, t) to (1.1),

||u( · , t)||C1(S1) := ||u( · , t)||C0(S1) + ||ux( · , t)||C0(S1) remains
bounded as t → ∞.

(ii) There exists a constant L2 > 0 such that

||U(ζ)||C1(R) := ||U(ζ)||C0(R) + ||Uζ(ζ)||C0(R) < L2
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for any periodic solution or constant solution U(ζ) to the following
equation:

(2.1)
d2U

dζ2
+ c

dU

dζ
+ f

(
U,

dU

dζ

)
= 0, ζ ∈ R,

where c is an arbitrary real number.

The assumption (A3) (ii) will be needed in Section 3, where we study the bifu-
cation structure of rotating waves and constant steady states. The assumption
(A3) is satisfied if the following condition (A3)′ holds:

(A3)′ For any constant M1 > 0, there exists a constant L3 > 0 such that
fu(u, p) ≤ 0 for |u| < M1 and |p| > L3.

From (A1), (A2) and (A3) it follows that (1.1) defines a global semiflow Φt

on X that is dissipative. Here a semiflow Φt on X is called dissipative if there
exists a ball B ⊂ X which satisfies the following: For any u0 ∈ X, there exists
t0 > 0 such that Φt(u0) ∈ B for all t ≥ t0 (see [Ma76]).

Hereafter, we assume (A1)+(A2)+(A3)′ throughout the present paper.
By the standard parabolic estimates, the mapping Φt is a compact mapping

for every t > 0. This, together with the dissipativity of Φt, implies that there
is the (nonempty) maximal compact invariant set A ⊂ X. It is well-known
from the general theory of dissipative dynamical systems that A is connected
and attracts all the orbits of (1.1). This set A is called the global attractor.
The Hausdorff dimension of A of (1.1) is 2 [M/2] + 1 where M is the maximal
generalized Morse index of the steady states or the rotating waves (see [MN97]).

Let us introduce some definitions and notation. In this paper we denote by
S the set of steady states and rotating waves of (1.1). Note that if U(x− ct) is
a rotating wave (or a steady state in the case where c = 0), then U(x− ct + θ)
is also a rotating wave (or a steady state) for any θ ∈ S1. Hereafter we identify
U( · ) and U( · + θ). In other words, we will understand S to be the set of
equivalence classes, each of which is expressed in the form

Γ(U) := {U(x − ct + θ)| θ ∈ S1},
where U(ζ) is a solution of (1.2). However in order to simplify notation, we
write U(x − ct) ∈ S to mean [U(x − ct)] ∈ S, where [U(x − ct)] denotes the
equivalence class to which U(x− ct) belongs. Therefore u(x, t) ∈ S shall mean
that u(x, t) = U(x − ct + θ) for some θ ∈ S1 where U(ζ) is a solution to (1.2).
Furthermore, by a heteroclinic connection from u(x, t)(:= U(x − ct)) ∈ S to
v(x, t)(:= V (x − c̃t)) ∈ S we mean that there is an orbit w(x, t) of (1.1) such
that

inf
θ1∈S1

‖w(x, t) − U(x − ct + θ1)‖L∞(S1) → 0 (t → −∞),

inf
θ2∈S1

‖w(x, t) − V (x − c̃t + θ2)‖L∞(S1) → 0 (t → +∞).
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In particular, if U and V are ‘hyperbolic’ (whose meaning is defined below in
this section), then a heteroclinic connection from u to v automatically implies
the following stronger convergence:

‖w(x, t) − U(x − ct + θ1)‖L∞(S1) → 0 (t → −∞) for some θ1 ∈ S1,

‖w(x, t) − V (x − c̃t + θ2)‖L∞(S1) → 0 (t → +∞) for some θ2 ∈ S1.

The number of the roots of f( · , 0) is finite owing to (A2). Let {rj}N
j=1

(r1 < r2 < · · · < rN ) be the roots of f( · , 0) throughout the present paper. All
the constant steady states are u(x, t) = rj (j ∈ {1, 2, . . . , N}).
Remark 2.1. If fu(rj , 0) 6= 0 for all j ∈ {1, 2, . . . , N}, then N is odd because of
(A2). Moreover u(x, t) = rj (j ∈ {1, 3, 5, . . . , N}) is a stable constant steady
state, while u(x, t) = rj (j ∈ {2, 4, 6, . . . , N−1}) is an unstable constant steady
state (see Remark 2.8 below).

The zero number is a powerful tool to analyze nonlinear single reaction-
diffusion equations in one space dimension:

z(w) := ♯
{
x| w(x) = 0, x ∈ S1

}
for w ∈ X,

where ♯Y denotes the number of elements of the set Y . It is well-known that
z(w( · , t)) is a non-increasing function of t if w is a solution of a one-dimensional
linear parabolic equation (see [Ma82], [Ni62] and [St36]). Furthermore, the
following proposition holds:

Proposition 2.2 (Angenent and Fiedler [AF88] and Angenent [An88]). Let
a(x, t) and b(x, t) be C2-functions in (x, t) ∈ S1×(0, τ) (τ > 0). Let w(x, t) ∈ X
be a solution to the following equations:

wt = wxx + a(x, t)wx + b(x, t)w, (x, t) ∈ S1×(0, τ).

Then z(w( · , t)) is finite for every t ∈ (0, τ) and is non-increasing in t. More-
over z(w( · , t)) drops at each t = t0 when the function x 7−→ w(x, t0) has a
multiple zero.

Remark 2.3. Angenent and Fiedler [AF88] have proved Proposition 2.2 in the
case where a(x, t) and b(x, t) are real analytic functions. Angenent [An88] has
relaxed this analyticity assumption.

Using the moving frame with speed c, we can rewrite (1.1) as follows:

(2.2) ut = uζζ + cuζ + f(u, uζ),

where ζ = x − ct. Let U(x − ct) ∈ S. The wave U(ζ)(= U(x − ct)) is a steady
state of (2.2). In order to analyze the stability of U(ζ), we define the linearized
operator of (2.2) at U(ζ) by

L
U
w = wζζ + cwζ + fu(U,Uζ)w + fp(U,Uζ)wζ , ζ ∈ S1,

provided that U is a non-constant steady state of (2.2). Here fp denotes the
derivative of f with respect to the second variable. If U is a constant steady
state of (2.2), then we define the linearized operator by

L
U
w = wζζ + fu(U, 0)w + fp(U, 0)wζ , ζ ∈ S1.
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By the standard spectral theory for ordinary differential operators of the second
order, the spectrum of L

U
consists of eigenvalues of finite multiplicity and has

no accumulation point except ∞. Let {λn}∞n=0 be the eigenvalues of L
U

that
are repeated according to their algebraic multiplicity. We define the Morse
index of U ∈ S by i(U) := ♯{λn| Re(λn) > 0}. By a Sturm-Liouville type
theorem (see [AF88] and [MN97]), we have

Re(λ0) > Re(λ1) ≥ Re(λ2) > Re(λ3) ≥ · · · ≥ Re(λ2j) > Re(λ2j+1) ≥ · · · .

Moreover if U is a non-constant steady state, we can see

(2.3) i(U) ∈ {z(Uζ), z(Uζ) − 1}
(see [AF88] and [MN97]). Note that z(Uζ) is even and z(Uζ)−1 is odd since Uζ

is a periodic function of ζ. We can see the Morse index of the constant steady
states by easy calculations (see Remark 2.8 below).

Next we define the hyperbolicity of U ∈ S. Because of translation equivari-
ance of the equation (1.1), each rotating wave and each non-constant steady
state form a one-dimensional manifold that is homeomorphic to S1. This equiv-
ariance has to be taken into account when we define the hyperbolicity of those
solutions.

Definition 2.4.

( i ) Let u be a (non-constant) rotating wave (c 6= 0) or a non-constant
steady state (c = 0). We say u is hyperbolic if 0 is the only eigenvalue
of Lu on the imaginary axis and if 0 is a simple eigenvalue.

(ii) Let u be a constant steady state (i.e. u(x, t) = rj). We say u is hyper-
bolic if there is no eigenvalue of Lu on the imaginary axis.

Definition 2.5. Let u(x, t) be a solution of (1.1). We define

R(u( · , t)) :=

{
y ∈ R

∣∣∣∣ min
x∈S1

u(x, t) ≤ y ≤ max
x∈S1

u(x, t)

}
.

Remark 2.6. If u ∈ S, then R(u( · , t)) is independent of t. Hereafter we simply
write R(u) if u ∈ S.

Definition 2.7. For u ∈ S, we define its “modified Morse index” by

I(u) :=





z(ux) if u is not a constant steady state;

i(u) + 1 if u is an unstable constant steady state;

0 if u is a stable constant steady state.

Remark 2.8. One can calculate the Morse index of the constant steady states.
Let u be a constant steady state (i.e. u(x) = rj). Then

i(u) =





2

[√
fu(rj , 0)

2π

]
+ 1 if fu(rj , 0) > 0;

0 if fu(rj , 0) ≤ 0,
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where [y] denotes the largest integer not exceeding y. If all the constant steady

states are hyperbolic, then i(u) = 2[
√

fu(rj , 0)/(2π)]+1 for j ∈ {2, 4, 6, . . . , N−
1} and i(u) = 0 for j ∈ {1, 3, 5, . . . , N}. Thus rj (j ∈ {1, 3, 5, . . . , N}) is stable
and rj (j ∈ {2, 4, 6, . . . , N − 1}) is unstable.

Note that I(u) is always a non-negative even integer. From (2.3) it follows
that

i(u) ≤ I(u) ≤ i(u) + 1.

Therefore I(u) is a good approximation of the real Morse index i(u). Clearly,
I(u) = i(u) if and only if i(u) is even.

While the modified Morse index I(u) is easily computable from Definition 2.7
and Remark 2.8, the real Morse index i(u) is not always easily to determine.
This is the reason why we introduce the notion modified Morse index.

Now we can define the cluster.

Definition 2.9. Let 1 ≤ k ≤ l ≤ N . We define the clusters by

Ckl := {u ∈ S| Skl ⊂ R(u), ({r1, r2, . . . , rN}\Skl) ∩ R(u) = ∅} ,

where Skl := {rk, rk+1, . . . , rl}.
It is not difficult to see that

Ckl ∩ Ck′l′ = ∅ if (k, l) 6= (k′, l′),

S =
⋃

1≤k≤l≤N

Ckl.

Furthermore one can see that, if k or l is odd, then

Ckk = {rk} and Ckl = ∅ (k 6= l).

The concept of clusters will be useful in the phase plane analysis as we will see
in Section 6.

Definition 2.10. Let Ckl be a cluster. We define

R(Ckl) :=
⋃

u∈Ckl

R(u).

Definition 2.11. Let u, v ∈ S. We define the order relation of S as follows:

u ⊲ v
def⇐⇒ R(u) ⊃ R(v).

Let u, v, w ∈ S. If u ⊲ v, then we say v is smaller than u in the order ⊲, and
u is bigger than v in the order ⊲. If there is no w such that u ⊲ w ⊲ v, then
we say that u is the smallest wave in the order ⊲ that satisfies u ⊲ v.

We have either R(u) ⊃ R(v) or R(v) ⊃ R(u) provided that R(u)∩R(v) 6= ∅.
This will be shown in Corollary 4.2 in Section 4. Consequently we have either
u ⊲ v or v ⊲ u if u, v ∈ Ckl. Thus Ckl is a totally ordered set. Hereafter, we
number the elements of each Ckl =

{
ukl

1 , ukl
2 , . . . , ukl

mkl

}
(with mkl := ♯Ckl) in

such a way that

ukl
1 ⊳ ukl

2 ⊳ · · · ⊳ ukl
mkl

.
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k
l
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1

1

(0)

(0)

(8,6,4,2)

O O

O

1

Figure 1. Wave profiles (left) and the structure of S (right)
for equation (2.4). The three horizontal lines indicate constant
steady states.

We call Ckl a monotone cluster if I(ukl
1 ) > I(ukl

2 ) > · · · > I(ukl
mkl

). The cluster
Ckk is called a simple cluster. We call Ckk a trivial cluster provided that
♯Ckk = 1. Note that Ckk always contains the constant steady state rk, but it
may contain other elements under certain circumstances.

Next we define an order relation among clusters in S.

Definition 2.12. Let Ck1l1 , Ck2l2 be clusters. We define the order relation ⊲
as follows:

Ck1l1 ⊲ Ck2l2
def⇐⇒ k1 ≤ k2 and l1 ≥ l2.

Let Ck1l1 , Ck2l2 be clusters. If Ck1l1 ⊲ Ck2l2 , then we say Ck2l2 is smaller
than Ck1l1 in the order ⊲.

We define the structure of S.

Definition 2.13. Let Ckl :=
{
ukl

1 , ukl
2 , . . . , ukl

mkl

}
(with mkl := ♯Ckl) be a

cluster. We call

Jkl := (I(ukl
1 ), I(ukl

2 ), . . . , I(ukl
mkl

))

the sequence of modified Morse indices. We call

(Jkl)1≤k≤l≤N

the structure of S.
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Example 2.14. Let us investigate the structure of the waves of the following
equation:

(2.4) ut = uxx + 500(u − u3), x ∈ S1.

Clearly, there are three constant steady states. Let r1 = 1, r2 = 0 and r3 = −1.
The nonlinear term depends only on u. Thus all the waves are standing waves
(see Remark 2.18). A simple calculation reveals that the nonlinear term satisfies
the hypothesis of Proposition D below. Thus we can see that all the clusters are
simple and monotone, using Proposition D. Since all the clusters are simple,
there are precisely three clusters: C11, C22 and C33 (where r1 ∈ C11, r2 ∈ C22

and r3 ∈ C33). We can see that C11 and C33 are trivial clusters, using (i) of
Lemma F. Furthermore r1 and r3 are stable (see Remark 2.1) and I(r1) =
I(r3) = 0 (see Definition 2.7 and Remark 2.8). The cluster C22 is monotone.
Thus Theorem C below tells us that the derivative of the nonlinear term at
u = r2 gives ♯C22 = 4, because

3 <

√
d

du {500(u − u3)}
∣∣
u=r2

2π
< 4.

Therefore C22 has three non-constant standing waves and one constant steady
state. The profile of the waves are as shown in Figure 1. We denote by u22

1 the
constant steady state in C22 and by u22

2 , u22
3 and u22

4 the non-constant standing
waves. We can assume that u22

1 ⊳ u22
2 ⊳ u22

3 ⊳ u22
4 , because all the clusters

are totally ordered sets. Since C22 is monotone, we can see by (ii) and (v) of
Lemma F that I(u22

1 ) = 8, I(u22
2 ) = 6, I(u22

3 ) = 4 and I(u22
4 ) = 2. Therefore

the structure of S is as shown in the table in Figure 1.

We introduce some more notation to state main theorems. Let u ∈ S and let
C(u) be the cluster containing u. Define

u+ := inf{w| w > u, w is a constant steady state},
u− := sup{w| w < u, w is a constant steady state},

and for each integer n ≥ 0, define un to be the smallest wave in the order ⊲
that satisfies the following: I(un) = 2n, un ⊲ u, and un ∈ C(u). That is,

un = min⊲{v ∈ C(u)| v ⊲ u, I(v) = 2n}.
Lemma F below tells us that such un exists for n ∈ {1, 2, . . . , [i(u)/2]}.

Roughly speaking u+ is the constant steady state that is just above u in the
usual order, and u− is the constant steady state that is just below u in the
usual order.

Theorem A. Suppose that all the elements of S are hyperbolic. Then

( i ) If the wave u is not a stable constant steady state, then u connects to
u+, u− and un for all n ∈ {1, 2, . . . , I(u)/2 − 1}.

(ii) Furthermore if i(u) is odd, then u does not connect to any other waves.
Therefore the structure of S determines completely which u ∈ S and
v ∈ S are connected and which are not, if the Morse index of every
wave is odd or zero.
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Remark 2.15. The statement (i) of Theorem A is obtained by Angenent-Fiedler
[AF88] (see Proposition 6.3 of the present paper).

Theorem A’. Suppose that f is dependent only on u, say f = g(u), and that
all the waves are hyperbolic. Let u be a wave whose Morse index i(u) is even.
Then u connects only to u+, u−, un (n ∈ {1, 2, · · · , I(u)/2}), and every v ∈ S
that satisfies the following: v ⊳ u, I(v) ≤ I(u), and there is no wave w such
that u ⊲ w ⊲ v, I(u) = I(w), and u 6= w 6= v.

Remark 2.16. The structure of S tells us the modified Morse index of every
wave. In the case where f depends only on u, we can know the (real) Morse
index of every wave by using Lemmas F and F’ stated below. Thus we see by
Theorems A and A’ that the heteroclinic connections are determined by the
structure of S provided that f depends only on u.

Corollary B.

♯S ≥ N +

N∑

j=1







√
(fu(rj , 0))+

2π





 ,

where [[y]] denotes the largest integer that is strictly smaller than y (i.e. [[y]] =
−[−y] − 1) and (y)+ := max{y, 0}.
Remark 2.17. The hyperbolicity of the solutions is not assumed in Corollary
B.

Theorem C. Suppose that all u ∈ S are hyperbolic. Then the following two
conditions are equivalent:

(a)

(2.5) ♯S = N +
N∑

j=1







√
(fu(rj , 0))+

2π





 ,

where (y)+ := max{y, 0}.
(b) all the clusters are simple and monotone.

Moreover, under these conditions, i(u) = I(u) − 1 = (z(ux) − 1) is odd for
any non-constant u ∈ S. Thus the hypotheses of Theorem A are satisfied.
The conclusions of Theorem A hold. Specifically the structure of S is uniquely
determined by the sequence [[

√
(fu(rj , 0))+/(2π)]] (j = 1, 2, . . . , N). The global

picture of heteroclinic connections in S is also uniquely determined as shown
in Figure 9.

In the case where f is dependent only on u, say f = g(u), we introduce other
two assumptions (A4) and (A5)j below. Let

(2.6) G(u) =

∫ u

0

g(r)dr.
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(A4) There exists an odd constant k such that G(r1) ≤ G(r3) ≤ · · · ≤
G(rk) ≥ G(rk+2) ≥ · · · ≥ G(rN ), G(r2) ≤ G(r4) ≤ · · · ≤ G(rk−1) and
G(rk+1) ≥ G(rk+3) ≥ · · · ≥ G(rN−1).

If k = 1 or k = n, then the second or the third inequalities in (A4) are not
assumed respectively. We will see in Section 8 that Ckl (k 6= l) is empty
provided that (A4) holds. Thus every cluster is simple (see Figures 11 and 12).
We impose the other assumption: For j ∈ {2, 4, 6, . . . , N − 1},

(A5)j g(u)/|u| is decreasing for u ∈ (rj−1, rj) ∪ (rj , rj+1).

The condition (A5)j guarantees that Cjj is monotone (Lemma 8.1). Hence we
obtain the following:

Proposition D. Suppose that f is dependent only on u, say f = g(u), and
that all the waves are hyperbolic. If (A4) holds and if (A5)j holds for all even

j ∈ {2, 4, 6, . . . , N − 1}, then the hypotheses of Theorem C are satisfied. Thus
the conclusions of Theorems A, A’ and C hold.

Remark 2.18. The equation (1.1) does not have rotating waves in the case where
the nonlinear term f depends only on u. For the details, see the beginning of
Section 7.

The next lemma is concerned with the structure of each cluster.

Lemma E (Cluster lemma 1). Suppose that all u ∈ S are hyperbolic. Let
1 ≤ k ≤ l ≤ N . Let Ckl = {ukl

1 , ukl
2 , . . . , ukl

mkl
} (mkl = ♯Ckl) be a cluster and

let Jkl = (I(ukl
1 ), I(ukl

2 ), . . . , I(ukl
mkl

)) be the corresponding sequence of modified
Morse indices. Then the following hold:

( i ) If k or l is odd and if k 6= l, then Ckl = ∅.
( ii ) If k is odd, then ♯Jkk = 1. Thus Ckk is a trivial cluster. Moreover

I(ukk
1 ) = 0.

Lemma F (Cluster lemma 2). Under the same hypotheses of Lemma E, the
following hold:

( i ) Every I(u) is an even integer, and I(ukl
n ) − I(ukl

n+1) is equal to −2, 0
or 2 for all n ∈ {1, 2, . . . ,mkl − 1}.

( ii ) If I(ukl
n1−1) < I(ukl

n1
) = · · · = I(ukl

n2
) < I(ukl

n2+1) (2 ≤ n1 ≤ n2 ≤
mkl − 1) or if I(ukl

n1−1) > I(ukl
n1

) = · · · = I(ukl
n2

) > I(ukl
n2+1) (2 ≤ n1 ≤

n2 ≤ mkl − 1), then n2 − n1 is even.
( iii ) If I(ukl

n1−1) < I(ukl
n1

) = · · · = I(ukl
n2

) > I(ukl
n2+1) (2 ≤ n1 ≤ n2 ≤

mkl − 1) or if I(ukl
n1−1) > I(ukl

n1
) = · · · = I(ukl

n2
) < I(ukl

n2+1) (2 ≤ n1 ≤
n2 ≤ mkl − 1), then n2 − n1 is odd.

( iv ) If Ckl is not trivial, that is, if ♯Jkl ≥ 2, then I(ukl
mkl

) = 2.

( v ) If k 6= l, and if Ckl 6= ∅, then I(ukl
1 ) = 2.
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η
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Figure 2. An example of h(ξ) mentioned in Remark 2.19.
In this case, the sequence of modified Morse indices is
(6, 4, 4, 6, 8, 8, 6, 4, 2, 2, 4, 4, 2).

Remark 2.19. In view of Lemma F, the sequence of modified Morse indices
Jkk =

(
I(ukk

j )
)mkk

j=1
may better be illustrated as the intersection points between

the graph of a function η = h(ξ) where 1/h(ξ) is the time-map and the hori-
zontal lines η = 2, 4, 6, 8, · · · (see Figure 2). The time-map is used in Section
3 (see the definition of T (a) in the statement of Lemma 3.1). This function h
satisfies that h′(ξ) 6= 0 whenever h(ξ) is an even integer, and that h(ξ) = 0 if
ξ is large.

Lemma F’ Suppose that f is dependent only on u, say f = g(u), and that
all the waves are hyperbolic. Let {ukl

b1
, ukl

b2
, . . . , ukl

bn
} (b1 < b2 < · · · < bn)

be the non-constant waves in a cluster Ckl whose modified Morse indices are
the same number (i.e. I(ukl

b1
) = I(ukl

b2
) = · · · = I(ukl

bn
)). Then i(ukl

bn−2j
) =

I(ukl
bn−2j

) − 1 (j ∈ {0, 1, . . . , [(n − 1)/2]}) and i(ukl
bn−2j−1

) = I(ukl
bn−2j−1

) (j ∈
{0, 1, . . . , [(n − 2)/2]}).

3. Proof of the Key Lemma

We will also prove three lemmas which are used in the proof of main theorems.
One of these lemmas (Lemma 3.1) is the key to the present paper.

In this section we assume that all the waves are hyperbolic in order to simplify
notation. The number of all the constant steady states N is odd owing to the
hyperbolicity and (A2) (see Remark 2.1). Using (A2), we can see that the
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r r r2k-1 2k 2k+1a

U(τ(a,c),a,c)

U

V

Figure 3. The picture denotes the arc that starts from the
point (a, 0) at the time 0 and arrives at a point (b, 0) (r2k−1 <
b < r2k) at a certain positive time. The U -coordinate of the
arrival point is denoted by U(τ(a, c), a, c) whose meaning is
specified below. The arc deforms with respect to a and c. If
we select suitable a and c, then the arrival point coincides with
the starting point (i.e. U(τ(a, c), a, c) = a), which means the
arc is a closed orbit.

following hold:

fu(r2k, 0) < 0 if k ∈ {1, 2, . . . , [N/2]};
fu(r2k−1, 0) > 0 if k ∈ {1, 2, . . . , [N/2] + 1}.

Let us introduce some notation. Let u(x, t) = U(ζ) ∈ S. The wave U(ζ)
should satisfy the following equation and periodic boundary conditions:

(3.1)

{
Uζζ + cUζ + f (U,Uζ) = 0, ζ ∈ (0, 1),

U(0) = U(1), Uζ(0) = Uζ(1).

We transform the equation of (3.1) into the normal form:

(3.2)





dU

dζ
= V

dV

dζ
= −cV − f(U, V ).

Let U -axis and V -axis be the horizontal and vertical axes of the phase plane
respectively. First, we note that no closed orbit appears near the points
(r2k−1, 0) (k ∈ {1, 2, . . . , [N/2] + 1}), since there points are saddle points. In
what follows we will construct closed orbits in a neighborhood of the points
(r2k, 0) (k ∈ {1, 2, . . . , [N/2]}) on the phase plane.

In order to explain our idea suppose that there is an orbit as shown in Figure
3. This orbit starts from the point (a, 0), passes the segment (r2k, r2k+1)×{0},
and arrives at a point on the segement (r2k−1, r2k) × {0}.

Let (b, 0) be the arrival point. As we will see in the proof of Lemma 3.1, the
value of b depends continuously on a and c as far as the orbit remains within the
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band domain r2k−1 < U < r2k+1. Hereafter by the arc corresponding to (a, c)
we shall mean the portion of the orbit of (3.2) starting at (a, 0) and ending at
a point on the segment (r2k−1, r2k) × {0} as shown in Figure 3.

Let τ(a, c) be the arrival time of this arc; that is τ(a, c) is the smallest positive
time τ such that U(τ(a, c), a, c) ∈ (r2k−1, r2k) and Uζ(τ(a, c), a, c) = 0 where
U(ζ, a, c) denotes the solution of (3.2) with initial data U(0) = a, V (0) = 0,
and Uζ denotes the derivative of U with respect to the first variable. Clearly
the arc forms a closed orbit of (3.2) if and only if

(3.3) a = U(τ(a, c), a, c).

Furthermore this closed orbit represents a solution of (3.1) if and only if

τ(a, c) =
1

n

for some n ∈ {1, 2, . . .}.
The following lemma shows that there is a continuous family of closed orbits

corresponding to varying choice of a and c.

Lemma 3.1. For each r2k (k = 1, 2, . . . , [N/2]), there exists a constant a with
r2k−1 ≤ a < r2k and a function c = c(a) ∈ C1((a, r2k)) such that the following
hold.

( i ) For each a ∈ (a, r2k), the relation (3.3) holds if and only if c = c(a).
(ii) Let T (a) be the period of the closed orbit obtained in ( i ), that is, T (a) =

τ(a, c(a)). Then

lim
a→a

T (a) = ∞, lim
a→r2k

T (a) =
2π√

fu(r2k, 0)
.

Proof. We begin with the outline of the proof. The proof consists of three steps.
In Step 1 we will show by using the bifurcation theory that there exists a family
of closed orbits of (3.2) near the point (r2k, 0). Thus c(a) can be defined near
a = r2k. In Step 2 we will show that whenever (a0, c0) satisfies (3.3), a C1-
function c(a) can be defined in a neighborhood of a0 such that c(a0) = c0. We
will use the implicit function theorem to show that. In Step 3 we will expand the
domain of the function c(a). We will define the infimum a such that c(a) can be

defined on the interval (a, r2k). We will prove lima→r2k
T (a) = 2π/

√
fu(r2k, 0)

where T (a) is the period of the closed orbit corresponding to (a, c(a)). We will
also prove lima→a T (a) = ∞.

Step 1 : We linearize (3.2) at the point (r2k, 0):

(3.4)
d

dζ

(
U
V

)
=

(
0 1

−fu(r2k, 0) −c − fp(r2k, 0)

)(
U
V

)
,

where fu and fp indicate derivatives of f with respect to the first and the
second variable respectively. Let ν± be the eigenvalues of the above matrix.
Then we have

Re(ν±) = −c + fp(r2k, 0)

2
, Im(ν±) = ±

√

−fu(r2k, 0) +

(
c + fp(r2k, 0)

2

)2

.
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We regard c as a parameter. If c = −fp(r2k, 0), then the matrix is non-singular,
has the pair of simple pure imaginary eigenvalues ±iµ (µ > 0), and has no
eigenvalue of the form ±ikµ (k ∈ N, k 6= 1). Moreover we can easily see that

dRe(ν±)

dc

∣∣∣∣
c=−fp(r2k,0)

= −1

2
< 0.

Therefore, (see for example Theorem 2.6 of [AP93] (Section 7, page 144)) a Hopf
bifurcation occurs at c = −fp(r2k, 0). Thus there are closed orbits encircling
the point (r2k, 0) on the phase plane that have any small amplitude.

Step 2 : From Step 1, we assume that there is a closed orbit corresponding
to (a0, c0) on the phase plane. The continuity of the arc with respect to a and
c guarantees that there is a constant ε > 0 such that the arc corresponding to
(a, c) exists as shown in Figure 3 provided that |a − a0| < ε and |c − c0| < ε.
Since the solution U(ζ) to (3.2) with initial data U(0) = a, Uζ(0) = 0 depends
on a and c continuously, we write U = U(ζ, a, c). Let F ( · , · ) be a function as
follows:

(3.5) F (a, c) := U(τ(a, c), a, c) − a,

where τ(a, c) which is defined in the first part of Section 3 is the arrival time
of the arc corresponding to (a, c). From (3.3), the arc corresponding to (a, c)
is a closed orbit if and only if F (a, c) = 0. We will prove that there exists a
C1-function c(a) in a neighborhood of a0 that satisfies F (a, c(a)) = 0. First
we see by the assumption that F (a0, c0) = 0. Second we see that U(ζ, a, c)
is a C2-function of ζ, a and c by the general theory of ordinary differential
equations. Using the equation

Uζ(τ(a + ∆a, c), a + ∆a, c) − Uζ(τ(a, c), a, c) = 0,

where ∆a is a small number and the definition of the derivative, we can show
that τ(a, c) is of class C1. Thus F (a, c) is of class C1. Third we will show that
Fc(a0, c0) 6= 0 where

Fc(a, c) = Uζ(τ(a, c), a, c)τc(a, c) + Uc(τ(a, c), a, c).

Since Uζ(τ(a0, c0), a0, c0) = 0, we obtain

Fc(a0, c0) = Uc(τ(a0, c0), a0, c0).

We will prove in Lemma 3.2 below that

(3.6) Uc(τ(a0, c0), a0, c0) 6= 0.

Now we assume that Lemma 3.2 holds. Then the implicit function theorem
says that there is a C1-function c(a) that satisfies F (a, c(a)) = 0 for a ∈
(a0 − ε̃, a0 + ε̃) where ε̃ (> 0) is so small that |c0 − c(a)| < ε and |a0 − a| < ε
for a ∈ (a0 − ε̃, a0 + ε̃).

We will see in Lemma 3.2 that U(τ(a, c), a, c) is non-decreasing in c and
(3.6) holds. Thus U(τ(a, c), a, c) is increasing in c. For each fixed a, if there
exists c satisfying (3.3), then c is uniquely determined. The function c(a) is
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Figure 4. The phase planes of (3.2) for two extreme cases.
Circles in each picture are the closed orbit corresponding to
(a0, c0). If c is large, then the arc corresponding to (a, c) (a <
a0) cannot pass the segment (r2k−1, r2k+1)×{−δ} and the ar-
rival point is in the inside of the closed orbit (the left picture).
If −c is large, then the arc corresponding to (a, c) does not
pass the segment (r2k, r2k+1) × {0} (the right picture).

uniquely determined. This means that there is no closed orbit corresponding
to (a0, c1) (c1 6= c0) when there is a closed orbit corresponding to (a0, c0).

Step 3 : Hereafter we suppose that there exists the closed orbit corresponding
to (a0, c0). We define a as follows:

a := inf{a ∈ R| c = c(ξ) can be defined for all ξ ∈ (a, a0)}.

Note that there is a closed orbit corresponding to (a, c(a)) for all a ∈ (a, a0).
We will show by contradiction that the family of closed orbit corresponding
to (a, c(a)) (a ∈ (a, a0)) is not uniformly away from two points (r2k−1, 0) and
(r2k+1, 0). We assume that the family is uniformly away from two points.

We will show that there exists a constant c∗ > 0 such that the following
holds: if |c| > c∗, then a closed orbit starting from the point (a, 0) (a < a0)
does not exists.

For any δ > 0, there is a constant c (> 0) such that −cV − f(U, V ) > 0 on
the segment (r2k−1, r2k+1) × {−δ}. The segment should intersect the closed
orbit corresponding to (a0, c0) provided that δ is small. If there is a closed
orbit corresponding to (a, c) (a < a0), then it should intersect the other closed
orbit and this contradicts to Lemma 4.1. Similarly, if −c (> 0) is large, then
there should not exist closed orbits corresponding to (a, c) (a < a0).

If the closed orbit corresponding to (a, c) (a < a0) exists, then c = c(a) is
bounded.

Let {am}∞m=1 be a sequence that satisfies the following:

am > a, am → a as m → ∞.
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Since c(a) is bounded, then there exists a constant c∗ such that the following
holds:

c(am) → c∗ as m → ∞.

We consider the arc corresponding to (a, c∗). Let (U(ζ), Uζ(ζ)) be a closed
orbit with period T1. Then U(ζ) satisfies (2.1). From Lemma 3.3 below, there
is a constant M > 0 such that ||Uζ(ζ)|| ≤ M . Thus any closed orbit is bounded
on the phase plane.

Because of the continuity of arcs with respect to a and c, the boundedness
of arcs, and the assumption that the family of closed orbit is uniformly away
from the two points, the arrival point of the arc corresponding to (a, c∗) exists.
Thus U(τ(a, c∗), a, c∗) can be defined. Using the continuity of U(τ(a, c), a, c)
with respect to a and c, we can obtain a contradiction if we assume that
U(τ(a, c∗), a, c∗) 6= a. Thus we see that

U(τ(a, c∗), a, c∗) = a.

This implies that there exists a closed orbit that contains (a, 0) on the phase
plane. This is a contradiction because of the definition of a and Step 2. Thus the
family is not uniformly away from the two points (r2k−1, 0) and (r2k+1, 0). This
means that a = r2k−1 or the shortest distance of the closed orbit corresponding
to (a, c(a)) and the point (r2k+1, 0) goes to zero as a → a.

We will show that c(a) can be defined in (a, r2k). We define ā as follows:

ā := sup{a ∈ R| c = c(ξ) can be defined for all ξ ∈ (a, ā)}.
Suppose ā < r2k. From Step 1 we can find ã with ā < ã < r2k so that there
is a closed orbit that contains (ã, 0) on the phase plane. Since there are closed
orbits with any small amplitude encircling the point (r2k, 0). The function c(a)
can be defined at some ã for ã ∈ (ā, r2k). Using Step 2, we can expand the
domain of c(a) to the left. Since c(a) is unique, this contradicts to the definition
of ā. Thus ā = r2k.

Since c(a) is unique and continuous, there is precisely one closed orbit that
contains the point (a, 0). Thus the limit lima→r2k

T (a) should coincide with
the limit in the statements of Theorem 2.6 in Section 7 of [AP93]. We have

lim
a→r2k

T (a) =
2π√

fu(r2k, 0)
.

Hereafter we will show that lima→a T (a) = ∞ in the case where the short-
est distance of the family of periodic orbits and the point (r2k+1, 0) goes to
zero. First, we consider the linearized eigenvalue problem of (3.2) at the point
(r2k+1, 0). Let λ1, λ2 be the eigenvalues. Then we have

λ1 =
1

2

{
−(c + fp(r2k+1, 0)) −

√
(c + fp(r2k+1, 0))

2 − 4fu(r2k+1, 0)

}
,

λ2 =
1

2

{
−(c + fp(r2k+1, 0)) +

√
(c + fp(r2k+1, 0))

2 − 4fu(r2k+1, 0)

}
.
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0aa
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V

Figure 5. This picture indicates the phase plane displayed in
the new coordinate. The thick curved arrow (Ũ , Ṽ ) is the arc
that we observe. Two dashed lines are directions of the two
eigenvectors of the matrix. The time required for traveling
through the thick part of the arc diverges as a1 → 0.

Because fu(r2k+1, 0) < 0, we have λ1 < 0 < λ2. Thus the equilibrium point
(r2k+1, 0) on the phase plane is hyperbolic. Then the Grobman-Hartman the-

orem says that there is a local homeomorphism Ψ such that φt ◦ Ψ = Ψ ◦ φ̃t

and Ψ(0, 0) = (r2k+1, 0) where φt, φ̃t are the semiflows on R2 formed by (3.2)
and (3.4) respectively.

We can see that the time required for traveling through a neighborhood of
the origin diverges as the shortest distance of the arc and the origin tends to
zero. We omit the details of the proof of this fact.

We consider arcs of (3.2) in a neighborhood (r2k+1, 0). For each arc cor-
responding to (a, c), there is an orbit of (3.4) that is mapped to the arc by
Ψ. Since c(a) is bounded, the time which needs the orbit of (3.4) to pass a
neighborhood of the origin uniformly diverges. Thus the time which needs the
arc corresponding to (a, c(a)) to pass a neighborhood of the origin diverges as
a → a. This means

(3.7) lim
a→a

T (a) = ∞.

We can prove (3.7) similarly in the case where a = r2k−1. The proof is
completed. ¤

Lemma 3.2. Let F (a, c) be the function defined by (3.5). If there is a closed
orbit corresponding to (a0, c0) on the phase plane, then Fc(a0, c0) 6= 0.

Proof. We use the notation used in the proof of Lemma 3.1. We assume
that a closed orbit corresponding to (a0, c0) exists. Differentiating F (a, c) =
U(τ(a, c), a, c) − a with respect to c yields

Fc(a, c) = Uζ(τ(a, c), a, c)τc(a, c) + Uc(τ(a, c), a, c).
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Figure 6. The thick closed curve represents the closed orbit
corresponding to (a0, c0) whose starting and arrival points are
(a0, 0). The dashed curve represents the arc corresponding to
(a0, ĉ) (ĉ > c0) whose starting point is also (a0, 0). The short
arrow represents the vector (ξ, η). This picture indicates that
the vector (ξ, η) points toward the interior of the closed orbit.

We have

Fc(a0, c0) = Uc(τ(a0, c0), a0, c0),

because Uζ(τ(a0, c0), a0, c0) = 0. We have to show that Uc(τ(a0, c0), a0, c0) 6= 0.
Let ĉ (> c0) be a real number that is close to c0. Using the vector(

V
−c0V − f(U, V )

)
, we can see by [Du53] that the arc corresponding to (a0, c0)

does not intersect with the arc corresponding to (a0, ĉ) in spite that all as-
sumptions of [Du53] are not satisfied on {V = 0}. The continuity of the arc
corresponding to (a, c) with respect to c, togather with the above fact, tells us
that the point (U(ζ, a0, ĉ), V (ζ, a0, ĉ)) (ζ > 0) is in the domain surrounded by
the closed orbit corresponding to (a0, c0). This means that U(τ(a, c), a, c) is
non-decreasing in c. We define ξ and η as follows:

ξ(ζ) := Uc(ζ, a0, c0), η(ζ) := Vc(ζ, a0, c0),

where Uc is a derivative of U with respect to the third variable. Let G(ζ) be the

inner product of

(
Vζ

−Uζ

)
and

(
ξ
η

)
. Namely G(ζ) = ξ(ζ)Vζ(ζ)−η(ζ)Uζ(ζ).

Then we have G(ζ) ≥ 0, because the vector

(
ξ
η

)
points toward the interior

of the closed orbit (see Figure 6).
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Differentiating (3.2) with respect to c yields

(3.8)





dξ

dζ
= η

dη

dζ
= −v − cη − fu(U(ζ), V (ζ))ξ − fp(U(ζ), V (ζ))η.

Using (3.2) and (3.8), we can express G(ζ), Gζ(ζ), Gζζ(ζ) and Gζζζ(ζ) with ξ,
η, c, V and derivatives of f as follows:

G(ζ) = − (cξV + ξf + ηV ),

Gζ(ζ) =(cξV + ξf + ηV )(c + fp) + V 2,

Gζζ(ζ) =(cξV + ξf + ηV )
{
fupV − (cV + f)fpp − (c + fp)

2
}

− 3cV 2 − V 2fp − 2V f,

Gζζζ(ζ) =(cξV + ξf + ηV )
[
(cV + f)2fppp + {4(c + fp)(cV + f) − V fu} fpp

− (4cV + 3V fp + fp)fup − V (3cV + 1)fupp

+V 2fuup − V 2 + (c + fp)
3
]

− V 2(V fup − cV fppffpp) − 2V (V fu − cV fp − ffp)

+ 2(cV + f)(3cV + ffpV + f).

We suppose that Uc(τ(a0, c0), a0, c0) = ξ(τ(a0, c0)) = 0. Since
V (τ(a0, c0), a0, c0) = 0, we obtain G(τ) = Gζ(τ) = Gζζ(τ) = 0 and
Gζζζ(τ) = 2f2 > 0 where τ = τ(a0, c0). Therefore, there is a small con-
stant δ > 0 such that G(P − δ) < 0. This is a contradiction, because
G(ζ) ≥ 0. ¤

Lemma 3.3. There is a constant M > 0 such that supζ∈R |Uζ(ζ)| ≤ M for any
closed orbit (U(ζ), Uζ(ζ)) of (3.2) .

Proof. Let (U(ζ), Uζ(ζ)) be a closed orbit of (3.2) with some c. Then U(ζ)
satisfies (2.1). Thus from (A3) there is a constant L2 > 0 such that
||U(ζ)||C1(S1) < L2 for any periodic solution or constant solution. The lemma
is proved. ¤

Lemma 3.2 completes the proof of Lemma 3.1.

4. Preparation for the Proof of Theorem A

In this section we will show that every cluster is a totally ordered set in the
order ⊲ (Corollary 4.2). We will show that z(u − v) = z(vx) provided that
u, v ∈ S and v ⊲ u (Lemma 4.4). The two lemmas are used to prove Theorem
A.

The following Lemma 4.1 is a generalized version of Corollary 4.2 below.

Lemma 4.1. Let (u(x), ux(x)), (v(x), vx(x)) be closed orbits on the phase plane.
Then the two closed orbits does not intersect.
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We can prove Lemma 4.1 by contradiction. We omit the proof.
Using a phase plane analysis and Lemma 4.1, we immediately obtain the

following corollary.

Corollary 4.2 (Matano and Nakamura [MN97]). Let u, v ∈ S. If R(u) ∩
R(v) 6= ∅, then Int(R(v)) ⊃ R(u) or Int(R(u)) ⊃ R(v) where Int(R(u)) indi-
cates the set consists of the interior points of R(u).

Remark 4.3. Let u, v ∈ S (u 6= v). By Corollary 4.2, we can see that u ⊲ v
means that Int(R(u)) ⊃ R(v).

Let u, v ∈ S. By using Corollary 4.2, we have either u ⊲ v or v ⊲ u provided
that R(u) ∩ R(v) 6= ∅.

Corollary 4.2 and the definition of the clusters show that every cluster
is a totally ordered set. Thus we can number the elements of each cluster{
ukl

1 , ukl
2 , . . . , ukl

mkl

}
in such a way that

ukl
1 ⊳ ukl

2 ⊳ · · · ⊳ ukl
mkl

.

Lemma 4.4 (Matano and Nakamura [MN97]). Let u, v ∈ S. If v ⊲ u, then
z(u − v) = z(vx).

5. Proof of Corollary B and Lemmas E and F

In this section we will prove Corollary B and Lemmas E and F by using
Lemma 5.1 and the results in Sections 3 and 4.

Let c = c(a) be the function defined in the statement of Lemma 3.1, and let
T = T (a) be the period of the closed orbit corresponding to (a, c(a)) defined
in the statement of Lemma 3.1.

Lemma 5.1. Let u ∈ S be the closed orbit corresponding to (a0, c(a0)) in Section
3. If u is hyperbolic, then ∂aT (a)|a=a0

6= 0.

Proof. We will prove the lemma by contradiction. We assume that
∂aT (a)|a=a0

= 0. Let u(x, t) = U(ζ) (ζ = x − ct) be a rotating wave or a
steady state. We can suppose that U(0) = a and Uζ(0) = 0 without loss
of generality. The function U = U(ζ, a, c(a)) defined in Section 3 satisfies
Uζζ + c(a)Uζ + f(U,Uζ) = 0. Differentiating the equation with respect to a
gives

∂ζζ(Ua + caUc) + c∂ζ(Ua + caUc) + fu·(Ua + caUc) + fp∂ζ(Ua + caUc) = −caUζ .

Let ϕ(ζ) = Ua(ζ)+caUc(ζ). The function ϕ(ζ) satisfies the following equation:

(5.1) ϕζζ + cϕζ + fuϕ + fpϕζ = −caUζ , ζ ∈ S1.

If ca(a0) = 0, then α · Uζ(ζ) (α ∈ R) are the solutions to (5.1) because of the
hyperbolicity of U(ζ). If ca(a0) 6= 0, then (5.1) has no solution. Because 0 is a
simple eigenvalue of the following problem:

ϕζζ + cϕζ + fuϕ + fpϕζ = λϕ, ζ ∈ S1.
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Case 1 : ca(a0) = 0
Differentiating U(0, a, c(a)) = U(T (a), a, c(a)) with respect to a gives

(5.2) Ua(0, a, c(a)) + ca(a)Uc(0, a, c(a))

= ∂aT (a)Uζ(T (a), a, c(a)) + Ua(T (a), a, c(a)) + ca(a)Uc(T (a), a, c(a)).

Substituting ∂aT (a)|a=a0
= 0 and ca(a0) = 0 for (5.2) gives Ua(0, a0, c(a0)) =

Ua(T (a0), a0, c(a0)). Since Ua( · , a0, c(a0)) is a periodic function and the period
T (a0) is equal to 1/n for some n ∈ {1, 2, · · · }, we have Ua(0, a0, c(a0)) =
Ua(1, a0, c(a0)). Since ϕ(ζ) = Ua(ζ), we have

(5.3) ϕ(0) = ϕ(1).

We differentiate Uζ(0, a, c(a)) = Uζ(T (a), a, c(a)) with respect to a, and
substitute a0 for it. Then we obtain

Uζa(0, a0, c(a0)) = Uζa(T (a0), a0, c(a0)) + ∂aT (a)|a=a0
Uζζ(T (a0), a0, c(a0)).

Since ϕζ(ζ) = Uζa(ζ, a0, c(a0)), we have

ϕζ(0) = ϕζ(T (a0)) + ∂aT (a)|a=a0
Uζζ(T (a0), a0, c(a0)).

Since ∂aT (a)|a=a0
= 0 and ϕζ(T (a0)) = ϕζ(1), we have

(5.4) ϕζ(0) = ϕζ(1).

Using (5.3) and (5.4), we can see that ϕ(ζ)(= Ua(ζ)) satisfies (5.1) and periodic
boundary conditions. By the hyperbolicity of u(x, t)(= U(ζ)), we see that
ϕ(ζ) = α · Uζ(ζ) (α ∈ R) are the solutions to (5.1). On the other hand ϕ(0) =
Ua(0) = 1. It contradicts that Uζ(0) = 0. We can see that ∂aT (a)|a=a0

6= 0.
Case 2 : ca(a0) 6= 0

Using the assumption of contradiction ∂aT (a)|a=a0
= 0, we can obtain the

following two equalities in a similar way of Case 1:

(5.5) ϕ(0) = ϕ(1), ϕζ(0) = ϕζ(1).

Using (5.5), we can see that ϕ(ζ) satisfies (5.1) and periodic boundary condi-
tions. The function ϕ(ζ) is a non-trivial solution to (5.1). This is a contradic-
tion. Therefore, we obtain ∂aT (a)|a=a0

6= 0. ¤

Hereafter, we consider the structure of each cluster. We divide the clusters
in two types. One is a type of clusters that contain a constant steady state,
and the other is a type of clusters that do not have a constant steady state.

First, we consider the type of clusters that have a constant steady state.
Since the cluster Ckl has a constant steady state, we can see that k = l by
using a phase plane analysis. If k is odd, then ♯Ckk = 1 and the element of
Ckk is a stable constant steady state. If k is even, then ♯Ckk ≥ 1 and Ckk has
precisely one unstable constant steady state.

Second, we consider the type of clusters Ckl that do not have a constant steady
state. By observing the phase plane, we see that l ≥ k+2, and k and l are even.
If u(x, t) = U(x − ct) is an element of Ckl that satisfies (U(0), Uζ(0)) = (a, 0)
and U(ζ) ≤ a, then we can deform the closed orbit (U(ζ), Uζ(ζ)) on the phase
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Figure 7. The picture shows the graph of T (a) in the case
of Ckl (k 6= l). Each of the intersections of the curve and the
lines corresponds to a rotating wave. In this case, the sequence
of modified Morse indices is (2, 2, 2, 4, 6, 8, 8, 6, 4, 2).

plane by using a similar way of Step 2 and Step 3 in the proof of Lemma
3.1, and enlarge the domain of c = c(a). Let (a, ā) be the maximal connected
domain of the function c = c(a). The closed orbit that corresponds to (a, c(a))
approaches (r2k−1, 0) or (r2l+1, 0) as a → a. Since c(a) is bounded, the function
T (a) diverges to +∞ as a → a. The function T (a) diverges to +∞ as a → ā,
because the closed orbit approaches (r2k, 0), . . . , (r2l−1, 0) or (r2l, 0), and c(a)
is bounded. Hence the graph of T (a) is as shown in Figure 7.

Proof of Lemma E. The statements (i) and (ii) are easily understood by ob-
serving a phase plane. ¤

Proof of Lemma F. We can see that (i), (iv) and (v) follow from Figures 7 and
8. Lemma 3.1 implies (ii) and (iii). ¤

Proof of Corollary B. Since S =
⋃

1≤k≤l≤N Ckl, we obtain the following:

♯S =
∑

1≤k≤l≤N

♯Ckl

≥
N∑

j=1

♯Cjj

≥
by Figure 8

N +

N∑

j=1







√
(fu(rj , 0))+

2π





 .

¤
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1

1/2

1/3
1/4
1/5

T(a)

a
a r2j

2

f(r ,0)u 2k

π

Figure 8. The picture indicates the graph of T (a) in (a, r2k).
Each of the intersections of the curve and the lines corresponds
to a rotating wave. The sequence of modified Morse indices is
easily computed from this picture. In this case, the sequence
of modified Morse indices is (4, 4, 6, 8, 8, 6, 4, 2, 2, 2).

Remark 5.2. If ♯S attains the lower bound, then every cluster is simple and
monotone. If every cluster is simple, then the equality in the first inequality in
the proof of Corollary B holds. If every cluster is monotone, then the equality
in the second inequality in the proof of Corollary B holds. Therefore, ♯S attains
the lower bound if and only if every cluster is simple and monotone.

6. Proof of Theorems A and C

In this section we will prove Theorems A and C by using Lemma 6.1, Lemma
F and the main results of [AF88]. A simple example is given at the end of this
section.

Lemma 6.1 (Blocking lemma). Let v, w ∈ S (w ⊲ v and I(w) < I(v)). If there
exists a wave v̄ ∈ S such that w ⊲ v̄ ⊲ v and I(v̄) = I(w), then v does not
connect to w.

The proof of Lemma 6.1 is essentially the same as the explanation after
Definition 1.6 of [FR96].

Remark 6.2. Lemma 6.1 is called the zero number blocking (see Definition 1.6
of [FR96]).

We will use the following proposition to prove Theorem A.

Proposition 6.3 (Angenent and Fiedler [AF88]). Let u ∈ S with i(u) > 0 be
hyperbolic. Then

( i ) The wave u connects to u+ and u−.
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(ii) For any n ∈ N, 0 < 2n ≤ i(u), there exists a wave u(n) ∈ S such that
u− < u(n) < u+, z(u(n) − u) = 2n, and u connects to u(n).

We are in a position to prove Theorem A.

Proof of Theorem A. Let v be a wave in Ckl (k ≤ l) and let w be a wave
in Cmn (m ≤ n). We prove whether v connects to w or not. When there
is a connecting orbit u = u(t) that connects v and w, we can suppose that
I(w) ≤ I(v), because i(w) + 1 ≤ z(u− v) ≤ i(v) (see Lemma 3.7 in [AF88]). If
I(v) = 0, then there is no connecting orbit starting from v. Thus we assume
that I(v) > 0. We can see that k and l are odd, using a phase plane analysis.

There are two cases in general terms. In one case, w belongs to the same
cluster as v (i.e. (m,n) = (k, l)). In the other case, w belongs to another cluster
which does not include v (i.e. (m,n) 6= (k, l)). First, we consider the case where
w ∈ Cmn ((m,n) 6= (k, l)).

Case 1 : (m,n) 6= (k, l)
We can divide the case into four more cases.

Case 1-1 : (m,n) ∈ {(k − 1, k − 1), (l + 1, l + 1)}
Since both k − 1 and l + 1 are even, the cluster Cmn has precisely one wave
(This wave is a stable constant steady state). We can see that v connects to w
by (i) of Theorem 6.3, because w = v+ or w = v−.

Case 1-2 : (m,n) 6∈ {(k − 1, k − 1), (l + 1, l + 1)} and R(Ckl) ∩ R(Cmn) = ∅
There is a wave w̄ ∈ S (I(w̄) = 0) between v and w in the usual order (i.e.
v(x) < w̄(x) < w(x) or w(x) < w̄(x) < v(x)). We assume that there is a
connecting orbit u(t) that connects v and w. The function z(u(t)− w̄(t)) is not
non-increasing in t. This is a contradiction. Therefore, the wave v does not
connect to any w ∈ Cmn. Namely the wave v does not connect to any wave
of the above clusters and below clusters in the usual order except for the two
clusters of Case 1-1.

Case 1-3 : Ckl ⊲ Cmn

We see that i(v) ∈ {I(v), I(v) − 1} generally. We have

i(v) = I(v) − 1,

in the case that i(v) is odd. We suppose that there is a connecting orbit u(t)
that connects v and w. Then

(6.1) z(u − v) ≤ i(v),

(see Lemma 3.7 in [AF88]). Lemma 4.4 tells us that (6.1) contradicts that
z(u(t) − v(t)) = I(v) for large t > 0. The wave v does not connect to any
w ∈ Cmn. Namely v does not connect to any wave of the clusters that is
smaller than Ckl in the order ⊲.

Case 1-4 : Cmn ⊲ Ckl

There is a w̄ ∈ S (I(w̄) = 0) such that R(v) ∩ R(w̄) = ∅ and w ⊲ w̄. We
suppose that there is a connecting orbit u(t) which connects v and w. The
function z(u(t) − w̄(t)) is not non-increasing in t. This is a contradiction.
Therefore, v does not connect to any w ∈ Cmn.
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The Case 1 can be summarized as follows: If v connects to w in another
cluster, then w should be v+ or v−.

Case 2 : (m,n) = (k, l)
Let w be another wave of the same cluster Ckl. We divide this case in two more
cases.

Case 2-1 : v ⊲ w
We suppose that there is a connecting orbit u(t) that connects v and w. We
can see that

I(v) = z(u(t) − v(t)) ≤ i(v) for large t,

(see Lemma 3.7 in [AF88]), because v ⊲ w. Thus if i(v) is odd (i.e. i(v) =
I(v) − 1), then we obtain a contradiction. The wave u does not connect to w
provided that i(v) is odd.

Case 2-2 : w ⊲ v
Owing to Theorem 6.3, the wave v connects to w that attains the following
minimum for each d (d = 2, 4, 6, . . . , I(v) − 2):

min
I(w)=2d,w⊲v

|R(w)|,

where |R(u)| := maxx∈S1 u(x, t) − minx∈S1 u(x, t). Suppose i(v) is odd. The
wave v, however, does not connect to any other w, because Lemma F tells us
that there exists a wave w̄ such that w ⊲ w̄ ⊲ v and I(w) = I(w̄). Thus we
can see by Lemma 6.1 that the zero number blocking occurs.

The Case 2 can be summarized as follows. The wave v connects to I(v)/2−1
different waves that are bigger than v in the order ⊲ in the same cluster. The
wave does not connect to any other wave in the same cluster provided that i(v)
is odd.

The Case 1 and the Case 2 cover all the combinations of v and w. Thus the
proof is completed. ¤

Proof of Theorem C. We show that the hypotheses of Theorem C satisfy those
of Theorem A.

Every cluster is simple and monotone if and only if ♯S attains the lower bound
(see Remark 5.2).

We will show that the Morse index of every wave is odd or zero. Suppose
that there is a wave u ∈ S whose Morse index is even and not zero. Using
Proposition 6.3, we can see that there exists a wave v ∈ S such that I(u) = I(v)
and u connects to v heteroclinically. However, u and v are not in the same
cluster, because the cluster is monotone. Thus v belongs to another cluster.
However, there is no heteroclinic connection, because every cluster is simple and
there should be a stable steady state between u and v in the usual order. This
is a contradiction. Therefore all the hypotheses of Theorem A are satisfied. ¤

Example 6.4. Figure 9 shows the profile of every u ∈ S and the diagram
that shows which u ∈ S and v ∈ S are connected heteroclinically and
which are not when {rj}5

j=1 are the roots of f( · , 0), [[
√

fu(r2, 0)/(2π)]] = 2,

[[
√

fu(r4, 0)/(2π)]] = 3, ♯S = 10, and all u ∈ S are hyperbolic.
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Figure 9. In the left figure, the thick curves and the lines
indicate the profile of all the waves that move to the right or the
left at each constant speed. In the right figure, the horizontal
axis indicates the modified Morse index and the vertical axis
indicates the suffix of Cjj . The points mean elements of S.
The thick curves and the lines represent the connecting orbits.
The lower figure shows closed orbits and equibrium points in
the uux-plane. Note that they do not necessarily correspond
to the same value of c.

Remark 6.5. If there is a wave v ∈ S such that i(v)(6= 0) is even, then we
cannot determine by the method used in the proof of Theorem A whether v
connects to waves that are smaller than v in the order ⊲ or not.

Remark 6.6. We have shown Theorem A by using the structure and the results
of [AF88]. This means that the results of [AF88] that looks a partial answer is
a complete answer in some sense when the Morse index of every wave is odd
or zero.
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7. Proof of Theorem A’ and Lemma F’

In this section we will study the case where the nonlinear term f depends only
on u, and establish a sufficient condition that guarantees that all the clusters
are simple and monotone.

We will use a character g to denote the nonlinear term (i.e. f(u, ux) = g(u)).
In this case (1.1) is written as follows:

(7.1)

{
ut = uxx + g(u), x ∈ S1,

u(x, 0) = u0(x), x ∈ S1.

Matano [Ma88] showed that (1.1) does not have rotating waves provided that
f(u, p) = f(u,−p). Since the nonlinear term g depends only on u and satisfies
this property, the equation (7.1) does not have rotating waves.

We consider the following Neumann problem:

(7.2)

{
ut = uxx + g(u), x ∈ (0, 1/2),

ux(0) = 0 = ux(1/2).

Let u(x) be a wave of (7.1). Then there exists θ(∈ S1) such that ux(θ) = 0
and u(x) ≤ u(θ) for all x ∈ S1. We can see by a phase plane analysis that
ux(θ + 1/2) = 0. Therefore u(x + θ) (0 < x < 1/2) is a steady state of (7.2).
Let ũ(x) denotes u(x + θ). Thus ũ(x) is a steady state of (7.2).

Next, let v(x) be a non-constant steady state of (7.2) that satisfies v(x) ≤
v(0). Then u(x) is a standing wave of (7.1) where

u(x) =

{
v(x), 0 ≤ x ≤ 1/2;

v(1 − x), 1/2 ≤ x ≤ 1.

We can identify any wave u of (7.1) with a steady state ũ of (7.2), and by the
steady state associated with u of (7.2) we shall mean ũ. In short ũ = v.

Let v, w be steady states of (7.1) and let ṽ, w̃ be steady states associated
with v, w respectively. Suppose that a heteroclinic orbit ũ(x, t) of (7.2) that
connects ṽ and w̃ exists. Then u(x, t) is a solution of (7.1) where

u(x, t) =

{
ũ(x, t), 0 ≤ x ≤ 1/2;

ũ(1 − x, t), 1/2 ≤ x ≤ 1.

Moreover u( · , t) → v(x) (t → −∞) and u( · , t) → w(x) (t → ∞). Thus u(x, t)
is a connecting orbit of (7.1) that connects v and w. In short, v connects to w
if ṽ connects to w̃. We will use this fact to prove the existence of connecting
orbits in the proof of Theorem A’.

We give two lemmas about (7.2) without proofs.

Lemma 7.1. Let {ukl
1 , ukl

2 , . . . , ukl
mkl

} be a cluster and let {ũkl
1 , ũkl

2 , . . . , ũkl
mkl

} be
the set of steady states of (7.2) associated with the waves of the cluster. Let
{ukl

b1
, ukl

b2
, . . . , ukl

bn
} (b1 < b2 < · · · < bn) be the waves whose Morse indices are

the same number (i.e. I(ukl
b1

) = I(ukl
b2

) = · · · = I(ukl
bn

)). Then i(ũkl
bn−2j

) =
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I(ukl
bn−2j

)/2 for j ∈ {0, 1, . . . , [(n − 1)/2]}, and i(ũkl
bn−2j−1

) = I(ukl
bn−2j−1

)/2 + 1

for j ∈ {0, 1, . . . , [(n − 2)/2]}.
Proof. In the case of the Dirichlet problem, we can find the proof in Lemma
2.1 of [BF89]. We can prove the lemma in a similar way. ¤

Lemma 7.2. Let u, v, w be waves and let ũ, ṽ be the steady states associated
with u, v. If i(u) is even, then the steady state ũ connects to every ṽ that
satisfies the following: u ⊲ v, and there is no wave w such that u ⊲ w ⊲ v and
I(u) = I(w).

Proof. In the case of the Neumann problem, the problem of the heteroclinic
connections are completely determined by [FR96]. We can prove the lemma by
using Lemma 7.1, Definition 1.6 of [FR96] and Lemma 1.7 of [FR96]. ¤

Proof of Lemma F’. If bn−2j > 1, then there exists v (⊳ ukl
bn−2j

) such that v

blocks the connections from ukl
bn−2j

to all the wave that are smaller than ukl
bn−2j

in the order ⊲. This means that i(ukl
bn−2j

) = I(ukl
bn−2j

) − 1. If bn−2j = 1, then

k = l. There also exists a wave v that satisfies the above conditions (the wave
v may be a constant steady state). Thus i(ukl

bn−2j
) = I(ukl

bn−2j
) − 1. In short

i(ukl
bn−2j

) = I(ukl
bn−2j

) − 1 for j ∈ {0, 1, . . . , [(n − 1)/2]}.
We consider whether i(ukl

bn−2j−1
) = I(ukl

bn−2j−1
) − 1 or i(ukl

bn−2j−1
) =

I(ukl
bn−2j−1

). If n − 2j − 1 > 1, then ũkl
bn−2j−1

connects to ũkl
bn−2j−2

. Thus

ukl
bn−2j−1

connects to ukl
bn−2j−2

. This means that i(ukl
bn−2j−2

) = I(ukl
bn−2j−1

). If

n−2j−1 = 1, then there exists a wave ṽ such that the following hold: v ⊳ ukl
b1

and ũkl
b1

connects to ṽ. Thus ukl
b1

connects to v. Hence i(ukl
b1

) = I(ukl
b1

). In short

i(ukl
bn−2j−1

) = I(ukl
bn−2j−1

) for j ∈ {0, 1, . . . , [(n − 2)/2]}.
¤

Proof of Theorem A’. Let u be a non-constant wave whose Morse index is even.
In Theorem A we have identified waves that are connected by u and that satisfy
z(u− v) ≤ I(u)− 2. Thus we have to check whether u connects to v or not, in
the case where z(u − v) = I(u).

Case 1 : v ⊲ u
Let w be a wave that satisfies the following: w is the smallest wave in the order
⊲ that satisfies w ⊲ u and I(u) = I(w). Because of Lemma F’, w exists in the
cluster to which u belongs, and i(w) = I(w)− 1. Let ũ and w̃ be steady states
of (7.2) associated with u and w respectively. We can see that ũ connects to
w̃ (see Case 2-1 in the proof of Lemma F’). Thus u connects to w. There is
no other wave that is connected by u, because w blocks other connections (see
Lemma 6.1).

Case 2 : v ⊳ u
Since v ⊳ u, it is automatically satisfied that z(u − v) = I(u). If there is a
wave w such that u ⊲ w ⊲ v and I(u) = I(w), then u does not connect to v
because w blocks the connection (see Lemma 6.1). On the other hand, if there
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Modifed Morse index

Figure 10. Each black point indicates a wave whose Morse
index is even (i.e. i(ukl

j ) = I(ukl
j )) and each white point indi-

cates a wave whose Morse index is odd (i.e. i(ukl
j ) = I(ukl

j )−1).
The point A connects only to B, C, D and two constant steady
states.

is no such wave, then u connects to v because ũ connects to ṽ (see Lemma 7.2).
Therefore the theorem is proved. ¤

Example 7.3. Let Jkl =
(
I(ukl

j )
)mkl

j=1
(k 6= l) be a sequence of modified Morse

indices. Figure 10 represents the sequence of modified Morse indices Jkl (see
Remark 2.19). Since k 6= l, we see by (v) of Lemma F that I(ukl

mkl
) = 2. If

i(u) is odd, all connections toward a smaller wave in the order ⊲ (i.e. toward
the left in Figure 10) are blocked. If i(u) is even, the connections to a smaller
wave in the order ⊲ are not necessarily blocked.

8. Proof of Proposition D

In this section we consider the case where the nonlinear term does not depend
on ux (see (7.1)). We will use the notation used in Section 7.

We will show a sufficient condition that guarantees clusters to be monotone.
The following lemma is well-known:

Lemma 8.1. Suppose g( · ) has exactly three roots {ri}3
i=1 and r1 < r2 = 0 < r3.

If g(u)/|u| is decreasing for u ∈ (r1, 0) ∪ (0, r3), then there are only three
monotone clusters.

The proof of Lemma 8.1 is essentially the same as that of Theorem 5.2 of
[CI74]. We omit the proof.
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k=1 k=n1<k<n

Figure 11. The graph of G(r); k = 1 (left), 1 < k < n
(center) and k = n (right).

We will prove Proposition D after we state some definitions and notation.
Hereafter, we assume that every wave of S is hyperbolic. Hence g′(rj) 6= 0 for
all j ∈ {1, 2, . . . , N}. The point G(rj) (j ∈ {1, 3, 5, . . . , N}) is a local maximum
point and G(rj) (j ∈ {2, 4, 6, . . . , N − 1}) is a local minimum point where G(r)
is defined by (2.6).

First, we define a set of intervals

W (r) := {ρ | G(ρ) < r}.
We impose the following condition of the function G:

(A6) Let I be a bounded connected component of W (r) for r ∈ R. Let
J = {rk, rk+1, . . . , rl−1, rl} (1 ≤ k ≤ l ≤ N). If I ⊃ J , then ♯J = 1.

The closed curves described as {(u, v)| v2 + 2G(u) = constant} on the phase
plane are candidates of steady state solutions of (7.1). If (A6) holds, then
Ckl (k 6= l) is empty. Therefore, when (A6) holds, there is only one possibility
which is the condition (A4) in Section 2. When (A4) is satisfied, the graph of
G(r) looks like one of Figure 11.

Example 8.2. If the graph of G(r) is as shown in the center of Figure 11, the
corresponding phase portrait is as shown in Figure 12.

If (A4) holds, then every cluster is simple. If (A5)j holds, then Cjj is mono-
tone. Now we can prove Proposition D.

Proof of Proposition D. If (A4) holds, then (A6) holds. Thus every Ckl (k 6= l)

is empty. Namely all the clusters are simple. After all S =
⋃N

j=1 Cjj . Since

every wave is hyperbolic, the cluster Cjj (j ∈ {1, 3, 5, . . . , N}) has precisely one
wave which is the stable constant steady state (see Remark 2.1). The condition
(A5)j tells us that the cluster Cjj (j ∈ {2, 4, 6, . . . , N − 1}) is monotone. Thus
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Figure 12. The picture indicates the phase portrait when
G(p) is as shown in the center of Figure 11. The thick closed
curves indicate the closed orbits which correspond to stand-
ing waves, and the points indicate equilibrium points which
correspond to constant steady states.

every cluster is monotone. Therefore, all the hypotheses of Theorem C are
satisfied. The proof is completed. ¤

After completing this work, the author has been informed about the pa-
per [FRW04] written by Fiedler, Rocha and Wolfrum. They have given the
necessary and sufficient conditions whether any pair of waves is connected het-
eroclinically or not, and the method to calculate the Morse index of waves (i.e.
the method to decide whether i(u) = I(u) or i(u) = I(u) − 1).
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Abstract. Let X, Y be Fano threefolds of Picard number one and
such that the ample generators of Picard groups are very ample. Let
X be of index one and Y be of index two. It is shown that the only
morphisms from X to Y are double coverings. In fact nearly the
whole paper is the analysis of the case where Y is the linear section
of the Grassmannian G(1,4), since the other cases were more or less
solved in another article. This remaining case is treated with the help
of Debarre’s connectedness theorem for inverse images of Schubert
cycles.
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Some twenty-five years ago, Iskovskih classified the smooth complex Fano three-
folds with Picard number one. Apart from P3 and the quadric, his list includes
5 families of Fano varieties of index two and 11 families of varieties of index one
(for index one threefolds, the cube of the anticanonical divisor takes all even
values from 2 to 22, except 20). Recently, the author ([A]) and C. Schuhmann
([S]) made some efforts to classify the morphisms between such Fano threefolds,
the starting point being a question of Peternell: let f : X → Y be a non-trivial
morphism between Fano varieties with Picard number one, is it then true that
the index of X does not exceed the index of Y ?
In particular, Schuhmann ([S]) proved that there are no morphisms from index-
two to index-one threefolds, and that any morphism between index-two three-
folds is an isomorphism (under certain additional hypotheses, some of which
were handled later in [A], [IS]). As for morphisms from index-one to index-two
Fano threefolds, such morphisms do exist: an index-two threefold has a double
covering (branched along an anticanonical divisor) which is of index one. It is
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therefore natural to ask if every morphism from index-one Fano threefold X
with Picard number one to index-two Fano threefold Y with Picard number one
is a double covering. In [A], I proved a theorem (Theorem 3.1) indicating that
the answer should be yes, however not settling the question completely. The
essential problem was that the methods of [A] would never work for Y = V5,
the linear section of the Grassmannian G(1, 4) in the Plücker embedding (all
smooth three-dimensional linear sections of G(1, 4) are isomorphic). Though
there are several ways to obtain bounds for the degree of a morphism between
Fano threefolds with second Betti number one ([HM], [A]), these bounds are
still too rough for our purpose.
This paper is an attempt to handle this problem. The main result is the
following

Theorem Let X be a smooth complex Fano threefold of index one and such
that Pic(X) = Z. Suppose moreover that X is anticanonically embedded. Let
f : X → V5 be a non-trivial morphism. Then X is of degree 10 (“X is of type
V10”) and f is a double covering. In other words, X is a hyperquadric section
of a cone over V5 in P7.

I believe that the extra assumption made on X is purely technical and can be
ruled out if one refines the arguments below. This assumption excludes two
families of Fano threefolds: sextic double solids and double coverings of the
quadric branched along a hyperquartic section.
Together with Theorem 3.1 of [A] and a few remarks, this theorem implies
that any morphism from an index-one to an index-two threefold with cyclic
Picard group is a double covering, at least under an additional assumption of
the very ampleness of the generator of the Picard group of the two threefolds
(see Theorem 4.1 of Section 4).
The proof, somewhat unexpectedly, relies on a connectedness theorem due to
Debarre, which enables one to show that the inverse images of certain special
lines on V5 must be connected; at the same time it is well-known that, if
f : X → V5 is as in our theorem, then the inverse image of a general line
on V5 is a disjoint union of conics. Starting from this, we use some Hilbert
scheme manipulations to show that the connected inverse images must have
very special properties, and deduce the theorem.
A smooth anticanonically embedded Fano threefold of index one and Picard
number one is sometimes called a prime Fano threefold. We shall also call it
thus throughout this paper.

Acknowledgements: It is a pleasure to thank A. Van de Ven, with whom I had
some helpful discussions at the early stage of this work. I am very grateful
to L. Gruson for his preliminary reading of this text and for reassuring me on
certain points; and also to F. Campana for moral support.
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1. Preliminaries: the geometry of V5

Let us recall some more or less classical facts on the threefold V5 ⊂ P6, most
of which can be found in [I] or [FN]. First of all, as any Fano threefold of
index two and Picard number 1, it has a two-dimensional family of lines. A
general line has trivial normal bundle (call it a (0, 0)-line), whereas there is a
one-dimensional subfamily of lines with normal bundle OP1(−1)⊕OP1(1) (call
them (−1, 1)-lines). The Hilbert scheme of lines on V5 is isomorphic to P2,
the curve of (−1, 1)-lines is a conic in this P2, and there are 3 lines through a
general point of V5. More precisely, the (−1, 1)-lines form the tangent surface
D to a rational normal sextic B on V5 (in particular, they never intersect), and
there are three lines through any point away from D, two lines through a point
on D but not on B, and one line through a point of B. The surface D is of
degree 10, thus a hyperquadric section of V5.

We shall denote by U resp. Q the restriction to V5 of the universal bundle
UG resp. the universal quotient bundle QG on the Grassmannian G(1, 4). The
cohomology groups related to those bundles are computed starting from the
cohomologies of vector bundles on the Grassmannian. In particular the bundles
U and Q remain stable.

We shall also use the following result from [S]: let X be a prime Fano threelold,
and let f : X → V5 be a finite morphism. Let m be such that f∗OV5

(1) =

OX(m). Then the inverse image of a general line consists of m2deg(X)
10 disjoint

conics; in general, if one replaces V5 by another Fano threefold Y of index two
with Picard number one, the inverse image of a general line shall consist of
m2deg(X)
2deg(Y ) disjoint conics. Here by deg(Y ) we mean the self-intersection number

of the ample generator of Pic(Y ).

Our starting point is the following fact, which shall be proved in the end of
this section:

Proposition 1.1 For l a (−1, 1)-line on V5, any irreducible projective variety
X and a surjective morphism f : X → V5, f−1(l) is connected.

To prove this proposition, we shall need some further details on the geometry
of V5.

Remark that the Schubert cycles of type σ1,1 , which are sets of points of G(1, 4)
corresponding to lines lying in a fixed hyperplane, and are also caracterized as
zero-loci of sections of the bundle dual to the universal, are 4-dimensional
quadrics in the Plücker G(1, 4), so each of them intersects V5 along a conic.
Conversely, every smooth conic on V5 is an intersection with such a Schubert
cycle. Indeed, every conics on a Grassmannian is obviously contained in some
G(1, 3); and if this conic is strictly contained in G(1, 3) ∩ V5, then G(1, 3) ∩ V5

is a surface, so the bundle U∗ has a section vanishing along a surface; but this
contradicts the stability of U∗.
The same is (by the same argument) true for pairs of intersecting lines on
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V5. Moreover, the correspondence between the Schubert cycles and the con-
ics is one-to-one (it is induced by the restriction map on the global sections
H0(G(1, 4), U∗

G) → H0(V5, U
∗) which is an isomorphism).

Let us show that among these conics, there is a one-dimensional family of
double lines.

Proposition 1.2 Fix an embedding V5 ⊂ G(1, 4) ⊂ P9. There is a one-
dimensional family of Schubert cycles Σt such that for each t, the intersection
of V5 and Σt is a (double) line. Moreover, lines on V5 which are obtained
as a set-theoretic intersection with a Schubert cycle of type σ1,1, are exactly
(−1, 1)-lines.

Proof: The three-dimensional linear sections of G(1, 4) in the Plücker embed-
ding are parametrized by the Grassmann variety G(6, 9); let, for P ∈ G(6, 9),
VP denote the intersection of G(1, 4) with the corresponding linear subspace
(which we will denote also by P ). The Schubert cycles are parametrized by
G(3, 4) = P4; likewise, denote by Σt the Schubert cycle corresponding to t ∈ P4.
Consider the following incidence subvariety I ⊂ G(6, 9) × P4:

I = {(P, t) ∈ G(6, 9) × P4|VP ∩ Σt is a line}.

The fiber It of I over any t ∈ P4 parametrizes the six-dimensional subspaces P
of P9 intersecting Σt along a line. Σt is a quadric in P5 ⊂ P9, and P intersects
it along a line l if and only if the plane H = P ∩P5 is tangent to Σt along l, i.e.
lies in every TxΣt, x ∈ l. The intersection of all tangent spaces to Σt ⊂ P5 along
l is a three-dimensional projective space (the tangent spaces form a pencil of
hyperplanes in P5, because Σt is a quadric). This means that for every l, the
planes tangent to Σt along l form a one-dimensional family. The family of lines
on a 4-dimensional quadric (= G(1, 3)) is a 5-dimensional flag variety, so the
planes in P5 tangent to Σt along a line are parametrized by a six-dimensional
irreducible variety (a P1-bundle over a flag variety). This implies that It is
irreducible of codimension 3 in G(6, 9), so I is irreducible of codimension 3 in
G(6, 9) × P4.

We must show that the first projection p1 : I → G(6, 9) is surjective and its
general fiber is of dimension one. First of all, remark that there are points P in
the image of p1 such that the corresponding VP is smooth (so, is a V5). Indeed,
fix, as above, Σt, l ⊂ Σt, H a plane in P5 =< Σt > such that H ∩ Σt = l;
the remark will follow if we show that for a general P6 = P ⊂ P9 containing
H, G(1, 4) ∩ P is smooth. We have H ∩ G(1, 4) = H ∩ Σt = l (because
G(1, 4)∩ < Σt >= Σt), so the smoothness away from l is obvious, and one
checks, again by standart dimension count, that for x ∈ l, the set Ax = {P |H ⊂
P,G(1, 4) ∩ P is singular at x} is of codimension two in the space of all P ’s
containing H. Therefore for P general in the image of p1, VP is smooth.

It is clear that if a smooth VP = G(1, 4) ∩ P is such that VP ∩ Σt = l, then
the corresponding plane H is tangent along l not only to Σt, but also to VP .
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Thus the normal bundle Nl,VP
has a subbundle Nl,H of degree 1, and so l is

of type (−1, 1) on VP . Since we have only one-dimensional family of (−1, 1)-
lines on a smooth VP , we deduce that a fiber of p1 over a point P such that
VP is smooth, is at most one-dimensional. The irreducibility of I now implies
that p1 is surjective and its general fiber is of dimension one. This proves the
Proposition.

Proof of Proposition 1.1:

Let us recall the following result of Debarre ([D], partial case of Théorème 8.1,
Exemple 8.2 (3)):
Let X be an irreducible projective variety, and let f : X → G(d, n) be a mor-
phism. Let Σ be a Schubert cycle of type σm. If in the cohomologies of G(d, n),
[f(X)] · σm+1 6= 0, then f−1(Σ) is connected.
Let X be an irreducible projective variety and f : X → V5 be a surjective
morphism. Composing with the embedding i : V5 → G(1, 4), we can view f as
a morphism to G(1, 4). By Proposition 1.2, each (−1, 1)-line is the intersection
of f(X) with a Schubert cycle of type σ1,1 on our grassmannian G(1, 4) =
G(1, P(U)), where U is a five-dimensional vector space. By duality, we can
view this Grassmannian as G(2, P(U∗)), and this point of view transforms the
Schubert cycles of type σ1,1 into Schubert cycles of type σ2. The condition
[f(X)] · σ3 6= 0 is obviously satisfied because f(X) = V5 is cut out by three
hyperplanes. Thus Proposition 1.1 follows from Proposition 1.2 and Debarre’s
theorem.

Remark 1.3 If we knew that the inverse image of a general line is always con-
nected, this would immediately solve our problem; indeed, for a Fano threefold

X of index and Picard number one, the equality m2deg(X)
10 = 1 implies that

m = 1, deg(X) = 10 and f is a double covering. However, as shows an ex-
ample of Peternell and Sommese, this is false in general, even if one supposes
that X is a Fano threefold. In the example of [PS], X is the universal family
of lines on V5, which turns out to be a Fano threefold (of Picard number two,
of course), and f is the natural triple covering. The inverse image of a general
line has two connected components.

Remark 1.4 One can ask if there is a similar connectedness statement for other
Fano threefolds of Picard number one and index two. Recall that these are the
following: intersection of two quadrics in P5; cubic in P4; double covering of
P3 branched in a quartic; double covering of the cone over Veronese surface
branched in a hypercubic section.
Smooth quadrics in P5 are Grassmannians G(1, 3), and a smooth intersection of
two quadrics in P5 is a quadric line complex. It is classically known (see [GH],
Chapter 6) that on a quadric line complex, there is a finite (and non-zero)
number of lines obtained as set-theoretic intersection with a plane in G(1, 3).
These lines are obviously (−1, 1)-lines, since the corresponding plane is tangent
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to the quadric line complex along this line. Our intersection of two quadrics
is contained in a pencil of such Grassmannians, so there is a one-dimensional
family of lines on it such that each line is the intersection with a plane lying on
some Grassmannian of the pencil. The curve of (−1, 1)-lines is irreducible (it
follows from the results in [GH], Chapter 6, that it is smooth and that it is an
ample divisor on the Fano surface of lines, in particular, it is connected). Thus
it is just the closure of that family. So that it follows again from Debarre’s
paper that the inverse image of a general (−1, 1)-line is connected.
As for the cubic, even if such a connectedness statement could hold, it would
not, as far as I see, follow from any well-known general result. One can, though,
remark that in the examples of Peternell-Sommese type “(universal family of
lines on Y )→ Y ”, the inverse image of a (−1, 1)-line has a tendency to be
connected, whereas the inverse image of a (0, 0)-line is certainly not connected.
Indeed, it is observed in the literature that, on the threefolds as above (the
cubic, the quadric line complex, V5), a line l is in the closure of the curve
Cl ={lines intersecting l but different from l} on the Hilbert scheme if and
only if l is a (−1, 1)-line.

2. A Hilbert scheme argument

The previous considerations show that on our Fano threefold X, a disjoint
union of conics degenerates flatly to a connected l.c.i. scheme. Recall the
following classical example: if one degenerates a disjoint union of two lines in
the projective space into a pair of intersecting lines, the pair of intersecting
lines shall have an embedded point at the intersection. So if one wants the
limit to be a connected l.c.i., this limit must be a double line. This suggests to
ask if a similar phenomenon can occur in our situation, that is: can it be true
that a connected l.c.i. limit of disjoint conics is necessarily a multiple conic?
In any case it is easily checked that, say, a connected limit of pairs of disjoint
conics does not have to have embedded points when the two conics become
reducible and acquire a common component. So this is very probably false,
and in any case there is no simple argument. In this paragraph we shall prove,
though, that the inverse image of a sufficiently general (−1, 1)-line is either a
multiple conic, or supported on a union of lines, and in fact even slightly more
(Proposition 2.5).
Let T be the Hilbert scheme of lines on V5 and let M ⊂ T ×V5 be the universal
family. We have the “universal family of the inverse images of lines under f”

S = M×V5
X ⊂ T × X.

Since f is flat and M is flat over T , S is flat over T .
Let H ′ be the Hilbert scheme of conics on X. Consider the irreducible compo-
nents of H ′ which are relevant for our problem, that is, the components such
that their sufficiently general points correspond to conics which are in the in-
verse image of a sufficiently general line on V5. Denote by H the union of all
such components (each of them is, of course, two-dimensional).
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For every point x ∈ H, the image of the corresponding conic Cx is a line.
Indeed, “f(C) is a line” is a closed condition on conics C because f is a finite
morphism (for f arbitrary, “f(C) is contained in a line” would be a closed
condition on C).

This allows to construct a morphism p : H → T taking every conic to its image
under f . Indeed,

L = {(C, f(x))|x ∈ C,C ∈ H} ⊂ H × V5

is a family of lines over H; though apriori it is not clear that it is flat, this is a
“well-defined family of algebraic cycles” in the sense of Kollar ([K], Chapter I)
and so corresponds to a morphism from H to the Chow variety of lines on V5,
and this is the same as T .

We claim that p is finite. Indeed, it is clear that the only obstruction to the
finiteness of p could be the existence of infinitely many double structures of
arithmetic genus zero on some lines on X (“non-finiteness of the Hilbert-Chow
morphism for the family of conics on X”). This obviously happens if one
considers conics in P3 rather than conics on X. In our situation, however, this
is impossible, and the Hilbert-Chow morphism is even one-to-one. Indeed, by
[I], the normal bundle of a line in a prime Fano threefold is either OP1⊕OP1(−1),
or OP1(1) ⊕OP1(−2), and there is the following

Lemma 2.1 Let l ⊂ X be a line on a prime Fano threefold. If Nl,X =
OP1 ⊕ OP1(−1), then there is no locally Cohen-Macaulay double structure of
arithmetic genus 0 on l. If Nl,X = OP1(1)⊕OP1(−2), then such a structure is
unique.

Proof: All locally Cohen-Macaulay double structures on smooth curves in a
threefold are obtained by a construction due to Ferrand (see for example [BF],
or else [N] for details): if Y ⊂ V is a smooth curve on a smooth threefold,
and Ỹ is a double structure on Y , write L for IY /IỸ ; in fact L is a locally
free rang-one OY -module and IỸ contains I2

Y . The double structure is thus
determined by the natural surjection from the conormal bundle of Y in V to
L, up to a scalar. Now take Y = l, V = X and let L be as above; we have an
exact sequence

0 → L → Ol̃ → Ol → 0,

from which it is clear that pa(l̃) = 0 if and only if L = OP1(−1). Now in
the first part of our assertion, there is no non-trivial surjection from N∗

l,X to
OP1(−1), and in the second part, such a surjection is unique up to a scalar.

Note that we do not have to consider curves which are not locally Cohen-
Macaulay, since, for example, the above argument shows that there are no
higher genus locally Cohen-Macaulay double structures, and an embedded
point decreases the genus.
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Thus, for any t ∈ T , p−1(t) is a finite set {h1, . . . , hk}, and to each hi there
corresponds one conic Ci on X, mapped to lt by f . The next step is to show
that f and p “agree with each other”:

Lemma 2.2 Let t ∈ T be any point and lt ∈ V5 be the corresponding line. Let
h1, . . . , hk be the points of p−1(t) and C1, . . . , Ck the corresponding conics on
X. Then the support of f−1(lt) is

⋃
i Ci.

Proof: Indeed, for a general t ∈ T , it is true: f−1(lt) =
⋃

i Ci. For a special
t ∈ T , choose a curve V ⊂ T through t, such that t is the only “non-general”
point of V in the above sense, and let U = p−1(V ). Denote by CU ⊂ U × X
the restriction to U of the universal family of conics over H. The support of
the fiber over t of (p × id)(CU ) ⊂ V × X is equal to

⋃
i Ci. But the family

S|V coincides with (p × id)(CU ) except at t. S|V being flat, it must be the
scheme-theoretic closure of (p× id)(CU )|V −{t} in V ×X, and thus the support
of S|V is (p × id)(CU ), q.e.d.

Let now t ∈ T be a point corresponding to a sufficiently general (−1, 1)-line. We
know that f−1(lt) is connected. Suppose that the number k from the Lemma
is > 1, so that there are several conics in the Supp(f−1(lt)). Decompose the
set of those conics into two disjoint non-empty subsets Σ1 and Σ2.

Proposition 2.3 There exists a conic in Σ1 which has a common component
with a conic in Σ2; in other words, (

⋃
C∈Σ1

C)
⋂

(
⋃

C∈Σ2
C) cannot be zero-

dimensional.

Proof Choose a suitable small 1-dimensional disc (V, 0) centered at t. The in-
verse image p−1V is a disjoint union of two analytic sets U1 and U2 (Ui consists
of points corresponding to conics near those of Σi). Repeat the procedure of
the previous lemma: consider the universal families Ci of conics over Ui and
their images Si = (p × id)(Ci) ⊂ V × X. Let S0, S0

i denote the restriction
of our families S, Si to the punctured disc V 0 = V − {0}. The family S0 is
just the disjoint union of S0

i . Now take the closure of all those (as analytic
spaces) in V ×X: the closure of S0 is just S|V , by flatness, and the closure S ′

i

of S0
i has the same support as Si, is contained in S|V and is flat over V . The

fiber of S ′
i over 0, denoted Si, is contained in the fiber S of S, since the tensor

multiplication preserves the surjectivity. So f−1(lt) = S contains S1 ∪ S2. By
construction, Si are flat limits of disjoint unions of ai conics and S is a flat

limit of disjoint unions of a1 + a2 (= m2deg(X)
10 ) conics.

If S1 and S2 do not have common components, then, since by flatness deg(S) =
deg(S1)+deg(S2), this implies S = S1∪S2, because S is purely one-dimensional
(being an inverse image of a line under a finite morphism). But then we can
apply the exact sequence

0 → OS → OS1
⊕OS2

→ OS1∩S2
→ 0
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and get a contradiction, since by flatness χ(OS) = χ(OS1
) + χ(OS2

), S1 ∩ S2

is non-empty and it is zero-dimensional by assumption. Thus S1 and S2 must
have common components, and, as Si is supported on

⋃
C∈Σi

C, the Proposition
is proved.

Corollary 2.4 In the situation as above, f−1(lt) is supported either on a
single conic, or on a union of lines.

Indeed, the proposition shows that if f−1(lt) contains more than one conic,
then any conic from f−1(lt) must have a common component with the rest of
these conics, that is, it must be singular.

Some results from commutative algebra allow to prove a stronger (“local”)
version of Proposition 2.3:

Proposition 2.5 In the situation of Proposition 2.3, through each intersection
point P of

⋃
C∈Σ1

C and
⋃

C∈Σ2
C passes some common component of

⋃
C∈Σ1

C
and

⋃
C∈Σ2

C.

Proof: The family S is flat over T which is smooth, and the fibers are l.c.i.,
thus locally Cohen-Macaulay. It follows ([EGA], 6.3.1, 6.3.5) that S is locally
Cohen-Macaulay, and that the same it true for the restriction of S to any
smooth curve in T . Suppose that Proposition 2.5 is not true for some inter-
section point P . Let x = (t, P ) ∈ T × X be the point corresponding to P in
S. Consider the restriction of S to a general curve through t, and an analytic
neighbourhood of x in this restriction. Clearly, if one removes x, this neighbour-
hood becomes disconnected: there are at least two branches corresponding to
SuppSi as in Proposition 2.3. But this is impossible by Hartshorne’s connect-
edness ([H]), which implies that a connected Cohen-Macaulay neighbourhood
remains connected if one removes a subvariety of codimension at least two.

Remark 2.6 The argument of the Proposition is more or less the following: “if
we have a disjoint union of certain smooth curves A and B, which degenerates
flatly into a certain connected C in such a way that A and B do not acquire
common components in the limit, then C will have embedded points at the
intersection points of the limits of A and B, so this is impossible if we know that
C is purely one-dimensional”. Examples show that one cannot say anything
reasonable if one allows A and B to acquire common components. But in fact
our “C”, that is, f−1(lt), is more than just purely one-dimensional: it is a
locally complete intersection. I do not know if its being a flat limit of disjoint
unions of conics can impose stronger restrictions on its geometry.

To illustrate how we shall apply this, let us handle the case when f−1(lt) is
supported on a single conic.
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Proposition 2.7 In this case X = V10 and f is a double covering.

Proof: As the degree of the subscheme f−1(lt) of X is m2deg(X)
5 , this conic is of

multiplicity m2deg(X)
10 in f−1(lt). That is, the local degree of f near a general

point of such a conic is also m2deg(X)
10 . Now this is the local degree of f along

a certain divisor, because we have chosen the line lt to be “sufficiently general
among the (−1, 1) lines”: it varies in a one-dimensional family. This divisor

is thus a component of the ramification divisor of f , and m2deg(X)
10 − 1 is its

ramification multiplicity.

Now the ramification divisor of f is an element of |OX(2m − 1)|, and so the
local degree of f at its general point is at most 2m, and if it is 2m, then the
ramification divisor is the inverse image of the surface covered by the (−1, 1)-
lines and set-theoretically a hyperplane section of X. So we have:

m2deg(X)

10
≤ 2m, mdeg(X) ≤ 20,

and if the equality holds, then f is unramified outside the inverse image of

the surface of (−1, 1)-lines. Also, m2deg(X)
10 must be an integer. The inequality

thus only holds for deg(X) = 10 and m = 1 (this is a double covering) or
m = 2 (in this case it is an equality), and for deg(X) = 4 and m = 5 (also
an equality). Let us exclude the last two cases. If f is unramified outside the

inverse image of the surface of (−1, 1)-lines, then p is m2deg(X)
10 -to-one every-

where except over the conic parametrizing the (−1, 1)-lines on T = P2. It is
thus a topological covering of the complement to this conic in T . But the latter

is simply-connected; so that H has m2deg(X)
10 irreducible components and each

one maps one-to-one on T . Notice that the number m2deg(X)
10 is superiour to

three in both cases. But this is impossible. Indeed, on V5 one has only 3 lines
through a general point; whereas, if H has k components, each component
would give at least one conic through a general point of X. Those conics are
mapped to different lines through f(x), because they intersect; thus k ≤ 3.

3. Proof of the Theorem

We have seen that the inverse image of a general (−1, 1)-line is supported either
on one conic, or on a union of lines, and settled the first case in the end of the
second section. Let us now settle the remaining case, using Proposition 2.5.

The following lemma is standart (and follows e.g. from the arguments of [M],
Chapter 3):

Lemma 3.1 Let g : X1 → X2 be a proper morphism of complex quasiprojective
varieties, which is finite of degree d. Suppose that X2 is smooth. Then the
inverse image of any point x ∈ X2 consists of d points at most, and if there
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are exactly d points in the inverse image of all x ∈ X2, then topologically g is
a covering.

Let H be as in the last section, and let C be the universal family of conics over
H. Each conic of H is contained in the inverse image of some line on V5, and
set-theoretically such an inverse image is a union of conics of H. Denote by D
the surface covered by (−1, 1)-lines on V5. Recall that through each point of
the complement to D in V5 there are three lines, that D is a tangent surface
to a rational normal sextic and that there are two lines (one (−1, 1)-line and
one (0, 0)-line) through any point of D away from this sextic and a single line
through each point of the sextic. Since the inverse image of a general (0, 0)-
line is a disjoint union of conics of H, there are three conics of H through a
general point of X, and at least three through any point away from f−1(D).
The natural morphism q : C → X is proper and finite of degree three. Lemma
3.1 has thus an obvious corollary:

Corollary 3.2 There are at most three conics of H through any point of X,
and exactly three conics of H through any point of X away from f−1(D).

Let l be a general (−1, 1)-line on V5. Consider the case when Z = f−1(l) is a
set-theoretic union of degenerate conics C1, ..., Ck of H.

Lemma 3.3 Z contains a line which belongs to a single Ci (say C1).

Proof: Suppose the contrary, that is, that any component of Z is contained
in at least two conics of H. Through a general point x of this component
there is at least one more conic of H, coming from the inverse image of the
(0, 0)-line through f(x). This implies that the morphism q : C → X is three-to-
one outside an algebraic subset A of codimension at least two in X. That is,
C−q−1(A) is, topologically, a covering of X−A. But X−A is simply-connected
because X is Fano and thus simply-connected. This means that C is reducible,
consists of three components and each of them maps one-to-one to X. Since
X is smooth, it must be isomorphic to each of those components (by Zariski’s
Main Theorem). But this is impossible because the components are fibered in
conics and X has cyclic Picard group.

Before continuing our argument, let us recall some well-known facts on lines on
prime Fano threefolds ([I]). Lines on our Fano threefold X are parametrized by
a curve, which may of course be reducible or non-reduced. Its being reduced
or not influences the geometry of the surface covered by lines on X. Namely, if
a component of the Hilbert scheme of lines on X is reduced, then the natural
morphism from the corresponding component of the universal family to X is
an immersion along a general line; and there is a classical computation ([I], [T])
which says that if its image M is an element of |OX(d)|, then a general line
of M intersects d + 1 other lines of M . If a component of the Hilbert scheme
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of lines is non-reduced, then the surface M covered by the corresponding lines
is either a cone (but this can happen only on a quartic), or a tangent surface
to a curve. One knows only one explicit example of a Fano threefold as above
such that the surface covered by lines on it is a tangent surface to a curve, it
is constructed by Mukai and Umemura (having been overlooked by Iskovskih)
and has degree 22. The surface itself is a hyperplane section of this threefold
and its lines never intersect.
The following Proposition, due to Iliev and Schuhmann, is the main result of
[IS] slightly reformulated:

Proposition 3.4 Let X be a prime Fano threefold, L a complete one-
dimensional family of lines on X and M the surface on X covered by lines
of L. If X is different from the Mukai-Umemura threefold, then a general line
of L intersects at least one other line of L.

An outline of the proof: If not, then, by what we have said above, the surface
M must be a tangent surface to a curve. Studying its singularities, Iliev and
Schuhmann prove that it must be a hyperplane section of X. Then they show,
by case-by-case analysis (of which certain cases appear already in [A]), that
the only prime Fano threefold containing a tangent surface to a curve as a
hyperplane section, is the Mukai-Umemura threefold.

“Lines contained in a single Ci” cover a divisor on X as Z varies (this is the
branch divisor of q). Since (−1, 1)-lines on V5 never intersect, Proposition 3.4
implies that if X is not the Mukai-Umemura threefold, then in Z there are
at least two lines contained in a single conic (say, l1 ⊂ C1 and l2 ⊂ C2), and
that they intersect, say at the point P . Notice that C1 is necessarily different
from C2: otherwise we get a contradiction with Proposition 2.5 by considering
Σ1 = {l1 ∪ l2}, Σ2 the set of all the other Ci and the intersection point P .

Claim 3.5 Both C1 and C2 are pairs of lines intersecting at the point P , and
Z is supported on C1 ∪ C2. Thus Z is, set-theoretically, the union of three or
four lines through P .

Proof:
1) If C1 is a double line, we get a contradiction with Proposition 2.5 by con-
sidering Σ1 = {C1} and the point P ; the same is true for C2.
2) Let C1 = l1 ∪ l′1. If l′1 does not pass through P , we get the contradiction in
the same way, thus P ∈ l′1. Also, P ∈ l′2, where C2 = l2 ∪ l′2.
3)There are two possibilities:
a)If l′1 6= l′2, then there must be another conic from Z through P , containing
l′1. Indeed, otherwise we again get a contradiction with Proposition 2.5. In
the same way, there is a conic from Z through P which contains l′2. In fact it
is the same conic, because otherwise there are at least four conics through P ,
contradicting Corollary 3.2. Denote it by C3. No other conic from Z passes
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through P . So C3 = l′1 ∪ l′2, and l′1, l
′
2 are not contained in conics others than

C1, C2, C3.

b) If l′1 = l′2, then no other conic from Z contains this line (otherwise through
its general point there will pass at least four conics from H, the fourth one
coming from the inverse image of the correspondent (0, 0)-line).

4) Now the union C1 ∪ C2 ∪ C3 in the case a), resp. the union C1 ∪ C2 in
the case b), cannot have any points in common with the other components
of Z; otherwise, taking Σ1 = {C1, C2, C3}, resp. Σ1 = {C1, C2}, we obtain a
contradiction with Proposition 2.5. But Z is connected, so Z is supported on
the lines l1, l

′
1, l2, l

′
2, q.e.d.

We are now ready to finish the proof of the theorem stated in the introduction.

Proof of the theorem: If X is the Mukai-Umemura threefold, then the lines on
X never intersect at all, so that f−1(l) must be supported on a single conic.
Proposition 2.7 shows that a morphism from X to V5 is impossible. (It should
be, however, said at this point that the paper [HM] contains a better proof of
the non-existence of morphisms from the Mukai-Umemura threefold onto any
other smooth variety, besides P3!).

If X is not the Mukai-Umemura threefold and f−1(l) is not supported on a
single conic, then we know by Claim 3.5 how f−1(l) looks. Remark that f−1(D)
is a reducible divisor: it has two components, one swept out by the lines l1 and
l2 as Z varies, another by l′1 and l′2 (the components are really different because,
by construction, l1 and l2 are lines contained in a single conic of H, whereas
l′1 and l′2 are not). Neither component is a hyperplane section: indeed, if a
hyperplane section of X is covered by lines, then it is either a cone (impossible
in our situation), or a general line intersects two other lines on the surface by
the classical computation from [T] mentioned above, since a hyperplane section
cannot be a tangent surface to a curve by [IS]. Let k be the multiplicity of the
component corresponding to li and k′ be the multiplicity of the component
corresponding to l′i. As f∗(D) is a divisor from |OX(2m)|, k + k′ ≤ m. At the

same time, Z must be of degree m2deg(X)
5 , and thus 2k + 2k′ = m2deg(X)

5 , so
m2deg(X) ≤ 10, leavng the only possibility m = 1, deg(X) = 10.

4. Concluding remarks

In this section, we shall make a further (minor) precision on Theorem 3.1 from
[A].

In that theorem, it was proved that if X, Y are Fano threefolds with Picard
number one and very ample generator of the Picard group, X is of index one,
Y is of index two different from V5 (that is, Y is a cubic or a quadric line
complex), and f : X → Y is a surjective morphism, then f is a “projection”,
that is, f∗OY (1) = OX(1). The argument of the theorem also worked for Y
a quartic double solid, whereas there were some problems (hopefully technical

Documenta Mathematica 9 (2004) 471–486



484 Ekaterina Amerik

ones) for Y a double Veronese cone and for X not anticanonically embedded.
Even in the “good” cases, the theorem proves a little bit less than one would
like; that is, we want f to be a double covering and we prove only that
f∗OY (1) = OX(1). This still leaves the following additional possibilities:
(1) If Y is a cubic, X can be V12, deg(f) = 4 (X cannot be V18 because of the
Betti numbers: b3(V18) < b3(Y ));
(2) If Y is an intersection of two quadrics, X can be V16, deg(f) = 4 (here V12

is impossible since in this case the inverse image of a general line would consist
of 3/2 conics).
The first possibility can be excluded by using an inequality of [ARV]: it says
that for a finite morphism f : X → Y and a line bundle L on Y such that
ΩY (L) is globally generated, deg(f)ctopΩY (L) ≤ ctopΩX(f∗L), so, for X and
Y of dimension three, deg(f)(c3(ΩY ) + c2(ΩY )L + c1(ΩY )L2) must not exceed
c3(ΩX) + c2(ΩX)f∗L + c1(ΩX)f∗L2.
Consider the situation of (1): we may take L = OY (2), and we know
that c3(ΩY ) = 6 and c3(ΩX) = 10. Using the equalities c2(X)c1(X) =
c2(Y )c1(Y ) = 24, we arrive at 4(6 + 24− 24) ≤ 10 + 48− 48, which is false. So
the case (1) cannot occur.
This inequality does not work in the case (2): indeed, now c3(ΩY ) = 0,
c3(ΩY ) = 2 and the inequality reads as follows: 4(0 + 24 − 32) ≤ 2 + 48 − 64,
so does not give a contradiction. However we can rule out this case by our
connectedness argument. Indeed, the inverse image of a general (−1, 1)-line is
connected (Remark 1.4) and the inverse image of a general (0, 0)-line consists
of two disjoint conics. The results of Section 2 apply, of course, to our situa-
tion; it follows that the inverse image of a general (−1, 1)-line is either a double
conic, or a union of two reducible conics which have a common component. In
both cases, it is clear that the ramification locus of f projects onto the surface
covered by (−1, 1)-lines. But the ramification divisor is a hyperplane section of
V16, and thus can project onto a surface from |OY (4)| at most. Whereas it is
well-known (and follows for example from the results in [GH], Chapter 6) that
the surface covered by (−1, 1)-lines on Y is an element of |OY (8)|.
All this put together gives the following

Theorem 4.1 Let X, Y be smooth complex Fano threefolds of Picard number
one, X of index one, Y of index two. Assume further that the ample generators
of Pic(X) and Pic(Y ) are very ample. Then any morphism from X to Y is a
double covering.

I would like to mention that the verification of this statement without the very
ampleness hypothesis amounts to a very small number of particular cases; for
instance, if Y is a double Veronese cone, then already the formula of [ARV]
combined with the knowledge of Betti numbers implies that for any morphism
f : X → Y with X Fano of index one with cyclic Picard group, deg(f) = 2
and X is a sextic double solid. It seems that one could be able to work out the
remaining cases without any essentially new ideas.
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Abstract. Panin and Smirnov deduced the existence of push-forwards,
along projective morphisms, in a cohomology theory with cup products,
from the assumption that the theory is endowed with an extra structure
called orientation. A part of their work is a proof of the Projective Bundle
Theorem in cohomology based on the assumption that we have the first
Chern class for line bundles. In some examples we have to consider a
pair of theories, cohomology and homology, related by a cap product. It
would be useful to construct transfer maps (pull-backs) along projective
morphisms in homology in such a situation under similar assumptions. In
this note we perform the projective bundle theorem part of this project
in homology.

Keywords and Phrases: (Co)homology theory, Chern structure, projective
bundle, algebraic variety

1. Introduction

Let k be a field and Sm be the category of smooth quasi-projective algebraic
varieties over k. Let P denote the category of pairs (X,U), with X ∈ Sm and
U a Zarisky open in X, where a morphism (X,U) → (X ′, U ′) is a morphism
f : X → X ′ in Sm such that f(U) ⊂ U ′. Sm embeds into P by X 7→ (X, ∅).
For any functor A defined on P, we can compose it with this embedding and
write A(X) for A(X, ∅).
For f : (X,U) → (X ′, U ′) we will denote by fA (resp. fA) the morphism A(f) :
A(X,U) → A(X ′, U ′) (resp. A(f) : A(X ′, U ′) → A(X,U)) if A is covariant
(respectively, contravariant). We will call such maps push-forwards or pull-
backs respectively. Note that the rule (X,U) 7→ (U, ∅) defines an endofunctor
on P.
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Definition. A homology theory over k with values in an abelian category M
is a covariant functor A. : P → M endowed with a natural transformation d :
A.(X,U) → A.(U) called the boundary homomorphism, subject to the following
requirements:
(h1) (Homotopy invariance) The arrow pA : A.(X × A1) → A.(X) induced by
the projection p : X × A1 → X is an isomorphism for any X ∈ Sm.
(h2) (Localization sequence) For any (X,U) ∈ P, the sequence

. . . → A.(U) → A.(X) → A.(X,U)
d−→ A.(U) → A(X) → . . .

is exact.
(h3) (Nisnevich excision) Let (X,U), (X ′, U ′) ∈ P, Z = X − U , and Z ′ =
X ′ − U ′. Then for any étale morphism f : X ′ → X such that f−1(Z) = Z ′

and f : Z ′ → Z is an isomorphism, the map fA : A.(X ′, U ′) → A.(X,U) must
be an isomorphism.

These axioms are dual to the axioms of a cohomology theory given in [PS] and
[PS1].1 The objective of [PS1] is to provide simple conditions under which one
can construct transfer maps (push-forwards) along projective morphisms in a
cohomology theory. This, in its turn, is a prerequisite for the proof of a very
general version of the Riemann-Roch Theorem in [Pa]. All the assumptions
made in [PS] and [Pa] are true for many particular cohomology theories such
as, for instance, K-theory, étale cohomology, higher Chow groups, and the
algebraic cobordism theory introduced by Voevodsky in [V]. We therefore get,
in a very uniform way, the existence of push-forwards and the Riemann-Roch
Theorem in all these theories.
In some situations we have to consider a pair of theories (A·, A.) consisting of
a cohomology and a homology theory related by a cap-product. An impor-
tant example of this is given by motivic cohomology and homology introduced
by Suslin and Voevodsky in [SV]. An ultimate goal in such a situation is to
obtain a Poincaré duality in the sense of [PY] for the pair (A·, A.). Among
the assumptions from which the Poincaré duality is deduced in [PY], there is
the assumption of existence of transfer maps in both A· and A.. However, the
homology part of this, i.e. the verification of existence of transfers (pull-backs)
in homology is still lacking. A general objective in this context is to construct
transfers along projective morphisms in a homology theory starting from simple
assumptions analogous to those made in [PS] for cohomology.
The purpose of this note is to prove the Projective Bundle Theorem in homology
(PBTH), which is a part of the whole program aimed towards the existence of
transfer maps in homology. In Section 2 we provide definitions and state the
main result (PBTH). Its proof is given in Sections 3 and 4.
A similar result was obtained independently by K. Pimenov in a slightly dif-
ferent framework [Pi].

1[PS] is a part of [PS1] which has been published already.

Documenta Mathematica 9 (2004) 487–497



Projective Bundle Theorem in Homology Theories . . . 489

Acknowledgements. I wish to thank Ivan Panin for attracting my atten-
tion to the problem of existence of pull-backs in homology, for his continuous
interest in my work, and for numerous useful remarks. Special thanks are due
to the Alexander von Humboldt Foundation (Germany) for sponsoring my stay
in Bielefeld in May 2003, where the very initial steps of the project were un-
dertaken. I am grateful to the University of Regina (Canada) where the work
was completed.

2. Definitions and the Main Result

Let A. be a homology theory satisfying (h1-h3) and let A· be a cohomology the-
ory in the sense of [PS, Def. 2.0.1]. The latter means that A· is a contravariant
functor P → M equiped with a natural transformation d : A·(U) → A·(X,U)
and satisfying the dual set of axioms that we will call (c1-c3). All the gen-
eral properties of a cohomology theory deduced from (c1-c3) in [PS, Sect. 2.2]
have their duals for a homology theory, obtained by inverting the arrows. In
particular, the Mayer-Vietoris exact sequence in homology and the localization
sequence for a triple can be deduced from (h1-h3).
We will use the “(co)homology with support” notation AZ(X) = A(X,U),
where Z = X − U , for both A. and A·. For simplicity, we will assume that A.
and A· take their values in the category Ab of abelian groups. From now on
we will often write just A for the homology groups, while keeping the upper
dot in the cohomology notation.

2.1. Product structures. We will assume that A· is a ring cohomology
theory in the sense of [PS, Sect. 2.4]. This, in particular, means that A· is
equiped with cup-products

∪ : A·
Z(X) × A·

Z′(X) → A·
Z∩Z′(X)

that are functorial with respect to pull-backs and satisfy the following proper-
ties:
(cup1)(associativity) (a ∪ b) ∪ c = a ∪ (b ∪ c) in A·

Z1∩Z2∩Z3
(X) for any a ∈

A·
Z1

(X), b ∈ A·
Z2

(X), c ∈ A·
Z3

(X).
(cup2) The absolute cohomology groups A·(X) become associative unitary
rings; the pull-back maps fA : A·(X) → A·(Y ) are homomorphisms of such
rings for all f : Y → X.
(cup3) The groups A·

Z(X) become two-sided unitary modules over A·(X) for
all X and closed Z ⊂ X.
We say that a ∈ A·

Z(X) is a central element if a∪ b = b∪ a for any b ∈ A·(X).
We say that a is universally central if fA(a) ∈ A·

Z′(X ′) is central for any
f : (X ′,X ′−Z ′) → (X,X−Z) in P. Note that the notion of a ring cohomology
theory also requires compatibility of cup-products with boundary maps, which
implies compatibility of cup-products with Mayer-Vietoris arguments, etc.
We will also assume that A is a left unitary module over A· in the sense that
we have cap-products

∩ : A·
Z(X) × AZ∩Z′(X) → AZ′(X)
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satisfying the properties:
(cap1) (a∪ b)∩ c = a∩ (b∩ c) in AZ3

(X) for any a ∈ A·
Z1

(X), b ∈ A·
Z2

(X), c ∈
AZ1∩Z2∩Z3

(X).
(cap2) 1 ∩ a = a whenever defined.
(cap3) Let U and U ′ (resp. V and V ′) be Zarisky opens in X (resp. in
Y ). Let Z = X − U, Z ′ = X − U ′, T = Y − V, T ′ = Y − V ′. Then for
any f : (Y, V, V ′) → (X,U,U ′) and any a ∈ A·

Z(X), b ∈ AT∩T ′(Y ), we have
fA(fA(a) ∩ b) = a ∩ fA(b) in AZ′(X).
(cap4) (compatibility with boundary maps)

Chern structure. We will assume that A· is equiped with a Chern structure
in the sense of [PS, Def. 3.2.1], i.e., to any X ∈ Sm and any line bundle L
over X there is assigned a universally central element c(L) ∈ A·(X) called the
(first) Chern class of L, subject to the requirements:
(ch1) Functoriality with respect to pull-backs; c(L) = c(L′) if L ∼= L′ over X.
(ch2) c(1X) = 0 ∈ A·(X), where 1X denotes the trivial line bundle X × A1

over X, for any X.
(ch3) For any X ∈ Sm, let ξ = c(OX×P1(−1)) ∈ A·(X × P1), where
OX×P1(−1) = p∗(OP1(−1)), OP1(−1) denotes the tautological line bundle over
P1, and p : X × P1 → P1 is the projection. Define the maps f (0), f (1) :
A·(X) → A·(X × P1) by f (0) = pA and f (1) = (ξ ∪ −) ◦ pA. Then the map
(f (0), f (1)) : A·(X) ⊕ A·(X) → A·(X × P1) is an isomorphism.
In the homology, define the maps f0, f1 : A.(X × P1) → A.(X) by f0 = pA

and f1 = pA ◦ (ξ ∩ −). We will say that we have an extended Chern structure
(extended to homology) if
(ch4) The map (f0, f1) : A.(X × P1) → A.(X) ⊕ A.(X) is an isomorphism for
any X ∈ Sm.
The axioms (ch3) and (ch4) can be considered as a dim = 1 case of the PBTC
and PBTH accordingly. Our goal is to show that the extended Chern structure
on (A·, A.) implies the following general version of PBTH for A.

Projective Bundle Theorem. Let X be a smooth quasiprojective variety
over k and E a vector bundle over X of rank n + 1. Assume that the pair of
theories (A·, A.) is endowed with a product structure and an extended Chern
structure. Denote P(E) the projectivisation of E, O(−1) the tautological line
bundle over P(E), and let ξ = c(O(−1)) ∈ A·(P(E)) be its Chern class. For

0 ≤ i ≤ n, denote fi = fn,i the composite map A.(P(E))
ξi∩−−−−→ A.(P(E))

pA−→
A.(X), where p : P(E) → X is the natural projection. Then the map

Fn := (f0, f1, . . . , fn) : A.(P(E)) −→ A.(X) ⊕ A.(X) ⊕ . . . ⊕ A.(X)

is an isomorphism.

A crucial reason for which we cannot consider the theory A. separately and must
rather work with the pair (A·, A.) is that ξ lives in the cohomology. However,
everything works smoothly along the same guidelines as in [PS, Sect. 3.3].
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3. Proof: Part I

Localizing and applying the Mayer-Vietoris, we reduce the situation to the case
of a trivial bundle E ∼= X × An+1, P(E) ∼= X × Pn. Next we can reduce it to
the case X = pt. We leave it to the reader to check that X ×− can be inserted
throughout the proof. Thus we want to prove that the map

(f0, . . . , fn) : A.(Pn) → A.(pt) ⊕ . . . ⊕ A.(pt)

is an isomorphism.

We proceed by induction on n. Choose homogeneous coordinates [x0 : . . . : xn]
in Pn and introduce the following notation:

(i) 0 = [1 : 0 : . . . : 0] the distinguished point;

(ii) for 0 ≤ i ≤ n, Pn−1
i is the projective hyperplane xi = 0;

(iii) for 1 ≤ i ≤ n, P1
i is the projective axis on which all xj = 0 for j 6= 0, i;

(iv) An
i = Pn − Pn−1

i for 0 ≤ i ≤ n; we will often write just An for An
0 ;

(v) A1
i = P1

i ∩ An and An−1
i = Pn−1

i ∩ An for 1 ≤ i ≤ n.

Consider the localization sequence of the pair (Pn, Pn − 0):

(3.1) . . . → A(Pn − 0)
uA−−→ A(Pn)

vA−→ A0(P
n) → . . . ,

where u : Pn−0 → Pn and v : (Pn, ∅) → (Pn, Pn−0) are the natural maps. Note
that Pn − 0 can be considered as a line bundle over Pn−1

0 , with the projection
map t : Pn − 0 → Pn−1

0 given by [x0 : x1 : . . . : xn] 7→ [0 : x1 : . . . : xn]. Denote
by s : Pn−1

0 → Pn−0 the inclusion map, then by (h1), sA : A(Pn−1
0 ) → A(Pn−0)

and tA : A(Pn − 0) → A(Pn−1
0 ) are inverse isomorphisms. Let u′ : Pn−1

0 → Pn

be the inclusion map, then u′ = us and u′
A = uAsA. Consider the diagram

(3.2)

A(Pn−1
0 )

u′
A−−−−→ A(Pn)

Fn−1

y
yFn

⊕n−1
i=0 A(pt)

an−1,n−−−−→ ⊕n
i=0 A(pt)

where an−1,n maps each summand of
⊕n−1

i=0 A(pt) to the same summand in⊕n
i=0 A(pt) as the identity map, the last summand in the latter group is there-

fore not being covered. We claim that the diagram commutes. For it suffices
to prove that the diagram

A(Pn−1
0 )

u′
A−−−−→ A(Pn)

fn−1,i

y
yfn,i

A(pt)
1−−−−→ A(pt)
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commutes for every 0 ≤ i ≤ n − 1 and that fn,nu′
A = 0. The first assertion

follows from the commutativity of the diagram

A(Pn−1
0 )

u′
A−−−−→ A(Pn)

ξi
n−1∩−

y
yξi

n∩−

A(Pn−1
0 )

u′
A−−−−→ A(Pn)

which commutes by (cap3) since the restriction of OPn(−1) to Pn−1
0 is isomor-

phic to O
P

n−1
0

(−1) and (u′)A(ξn) = ξn−1. The same diagram with i = n implies

that the composition fn,nu′
A vanishes as ξn

n−1 = 0. (See [PS, Sect. 3.3] for a
standard argument that proves ξn

n−1 = 0.)

Now consider the map an,n−1 :
⊕n

i=0 A(pt) → ⊕n−1
i=0 A(pt) that identically

maps the ith summand to the ith summand for all 0 ≤ i ≤ n− 1 and vanishes
on the nth summand. As an,n−1an−1,n = 1, the commutativity of (3.2) implies
Fn−1 = an,n−1an−1,nFn−1 = an,n−1Fnu′

A. By the inductional hypothesis Fn−1

is an isomorphism, whence u′
A is a split monomorphism, and so is uA as sA is

an isomorphism. This has two important consequences:
(i) (3.1) is in fact a split short exact sequence;
(ii) the map fn,n : A(Pn) → A(pt) factors uniquely through vA.
Denote by g : A0(Pn) → A(pt) the factoring map: fn,n = gvA. The diagram

0 −−−−→ A(Pn−1
0 )

u′
A−−−−→ A(Pn)

vA−−−−→ A0(Pn) −−−−→ 0
yFn−1

yFn

yg

0 −−−−→ ⊕n−1
i=0 A(pt)

an−1,n−−−−→ ⊕n
i=0 A(pt) −−−−→ A(pt) −−−−→ 0

shows that we will be done as soon as it is proved that g is an isomorphism.
For 1 ≤ i ≤ n, consider the cohomology localization sequence of the pair
(Pn, An

i ):

(3.3) A·
P

n−1
i

(Pn)
vA

i−−→ A·(Pn)
uA

i−−→ A·(An
i ) ,

where ui : An
i → Pn and vi : (Pn, ∅) → (Pn, An

i ) are the natural maps. As
A·(An

i ) ∼= A·(pt) by (c1), this is a split short exact sequence, the splitting
for uA

i given by 1 7→ 1. The element ξn ∈ A·(Pn) maps to zero via uA
i as

the restriction of O(−1) to An
i is isomorphic to the trivial line bundle. Thus

ξn comes from a uniquely determined element ξ̄n,i ∈ A·
P

n−1
i

(Pn). Note that

Pn−1
1 ∩ . . . ∩ Pn−1

n = {0} and consider the diagram

A·
P

n−1
1

(Pn) ⊕ A·
P

n−1
2

(Pn) ⊕ . . . ⊕ A·
P

n−1
n

(Pn)
∪−−−−→ A·

0(P
n)

vA
1 ⊕...⊕vA

n

y
yvA

A·(Pn) ⊕ A·(Pn) ⊕ . . . ⊕ A·(Pn)
∪−−−−→ A·(Pn)

Documenta Mathematica 9 (2004) 487–497



Projective Bundle Theorem in Homology Theories . . . 493

which commutes since ∪ is compatible with pull-backs. It follows that the
element

t̄hn := ξ̄n,1 ∪ ξ̄n,2 ∪ . . . ∪ ξ̄n,n ∈ A·
0(P

n)

satisfies vA(t̄hn) = ξn
n .

Now apply (cap3), with X = Y = Pn, U = U ′ = Pn−0, V = V ′ = ∅ and f = v,
to a = t̄hn and any b ∈ A(Pn) and get the commutativity of the diagram

A(Pn)
ξn

n∩−−−−−→ A(Pn) −−−−→ A(pt)

vA

y
y1

y1

A0(Pn)
t̄hn∩−−−−−→ A(Pn) −−−−→ A(pt)

The composition of the top arrows is fn,n. As g is the unique arrow satisfying
fn,n = gvA, we can conclude that g equals the composition of the bottom
arrows.
Let j : An → Pn denote the inclusion map, and let ji : (An, An − An−1

i ) →
(Pn, Pn − Pn−1

i ), with 1 ≤ i ≤ n, and j̃ : (An, An − 0) → (Pn, Pn − 0) denote
the corresponding maps of pairs. Define ξn,i ∈ A·

A
n−1
i

(An) to be the image of

ξ̄n,i under the map jA
i : A·

P
n−1
i

(Pn) → A·
A

n−1
i

(An). The diagram

A·
P

n−1
1

(Pn) ⊕ . . . ⊕ A·
P

n−1
n

(Pn)
∪−−−−→ A·

0(P
n)

jA
1 ⊕...⊕jA

n

y
yj̃A

A·
A

n−1
1

(An) ⊕ . . . ⊕ A·
A

n−1
n

(An)
∪−−−−→ A·

0(A
n)

shows that the element

thn := ξn,1 ∪ . . . ∪ ξn,n ∈ A·
0(A

n)

satisfies j̃A(t̄hn) = thn.
Consider the diagram

A0(An)
thn∩−−−−−→ A(An)

∼−−−−→ A(pt)

j̃A

y
yjA

y1

A0(Pn)
t̄hn∩−−−−−→ A(Pn) −−−−→ A(pt)

that commutes by (cap3). Recall that our current goal is to prove that g, which
equals the composition of the bottom arrows in the diagram, is an isomorphism.
As j̃A is an isomorphism by excision and A(An) → A(pt) is an isomorphism by
homotopy invariance, it now suffices to prove that thn ∩ − : A0(An) → A(An)
is an isomorphism. This will be done in the next section.
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4. Proof: Part II

First we will obtain another description for the elements ξn,i and thn. Consider
the short exact sequnce

0 −→ A·
0(P

1) −→ A·(P1) −→ A·(P1 − 0) −→ 0 ,

which is the one-dimensional version of (3.3). The element ξ1 = c(O(−1)) ∈
A·(P1) maps to zero and comes therefore from a uniquely determined element
t̄ ∈ A·

0(P
1). Let t ∈ A·

0(A
1) denote its image under the restriction map

A·
0(P

1) → A·
0(A

1). (As the one-dimensional case plays a distinguished role,
we change the notation and denote these elements by t̄ and t.) If we think of
P1 and A1 as coordinate axes P1

i and A1
i in Pn and An accordingly, 1 ≤ i ≤ n,

then we will denote the corresponding elements by t̄i ∈ A·
0(P

1
i ) and ti ∈ A·

0(A
1
i ).

Denote by pri : An → A1
i the projection to the i-th coordinate and consider

the map prA
i : A·

0(A
1
i ) → A·

A
n−1
i

(An). It is proved in [PS] that prA
i (ti) = ξn,i,

and we can therefore rewrite thn in the form

(4.1) thn = prA
1 (t1) ∪ prA

2 (t2) ∪ . . . ∪ prA
n (tn).

(NB: In [PS] thn is defined by the above formula and then it is proved that
prA

i (ti) can be replaced by ξn,i, with a different notation.)
To proceed further we first need to prove a technical lemma which is the ho-
mology counterpart of [PS, Lemma 3.3.2]. Let Y ∈ Sm and Z ⊂ Y be a closed
subset. Let p : Y × A1 → Y and pr : Y × A1 → A1 denote the projections.
Consider the map prA : A·

0(A
1) → A·

Y ×0(Y × A1) and the image prA(t) of

t ∈ A·
0(A

1) under this map. The cap-product

∩ : A·
Y ×0(Y × A1) × AZ×0(Y × A1) → AZ×A1(Y × A1)

induces the map prA(t) ∩ − : AZ×0(Y × A1) → AZ×A1(Y × A1).

Lemma. The map prA(t) ∩ − : AZ×0(Y × A1) → AZ×A1(Y × A1) is an iso-
morphism.

Proof. As pA : AZ×A1(Y × A1) → AZ(Y ) is an isomorphism by (h1), the
assertion of the lemma is equivalent to the claim that the composed map

T := pA ◦ (prA(t) ∩ −) : AZ×0(Y × A1) → AZ(Y )

is an isomorphism. It is this claim that we will actually prove.
We will make use of the localization sequence of the triple (Y × P1, Y × P1 −
Z × 0, (Y − Z) × P1):
(4.2)

. . . −→ AZ×A1
∞

(Y ×P1 −Z × 0)
αA−−→ AZ×P1(Y ×P1)

βA−−→ AZ×0(Y ×P1) −→ . . . ,

where A1
∞ := P1−0 and α and β are the corresponding inclusion maps of pairs.
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Consider the inclusion i : (Y × A1
∞, (Y − Z) × A1

∞) → (Y × P1 − Z × 0, (Y −
Z) × P1). One checks that i satisfies the excision conditions (Zarisky version),
whence iA : AZ×A1

∞
(Y × A1

∞) → AZ×A1
∞

(Y × P1 − Z × 0) is an isomorphism.

Let p̃ : (Y × P1 − Z × 0, (Y − Z) × P1) → (Y, Y − Z) and p′ = p̃i : (Y ×
A1

∞, (Y −Z)×A1
∞) → (Y, Y −Z) be the projections. As p′A is an isomorphism

by (h1), p′A = p̃AiA shows that p̃A : AZ×A1
∞

(Y × P1 − Z × 0) → AZ(Y ) is an
isomorphism too.

Let p̄ : (Y ×P1, (Y −Z)×P1) → (Y, Y −Z) denote the projection. Then p̃ = p̄α
and p̃A = p̄AαA, which implies that αA is a split monomorphism. It follows
that βA is surjective and (4.2) is a short exact sequence.

Let p̄r : Y × P1 → P1 denote the projection. Consider the diagram

(4.3)

A·
0(P

1) −−−−→ A·(P1)

p̄rA

y
yp̄rA

A·
Y ×0(Y × P1) −−−−→ A·(Y × P1)

and the cap-products

∩ : A·
Y ×0(Y × P1) × AZ×0(Y × P1) → AZ×P1(Y × P1)

∩ : A·(Y × P1) × AZ×P1(Y × P1) → AZ×P1(Y × P1) .

The element p̄rA(t̄) maps to p̄rA(ξ1) via the bottom arrow in (4.3). By (cap3),
it follows that the diagram

(4.4)

AZ×P1(Y × P1)
βA−−−−→ AZ×0(Y × P1)

p̄rA(ξ1)∩−
y

yp̄rA(t̄)∩−

AZ×P1(Y × P1)
1−−−−→ AZ×P1(Y × P1)

commutes. Denote T̄ = p̄A◦(p̄rA(t̄)∩−), fZ
0 = p̄A, and fZ

1 = p̄A◦(p̄rA(ξ1)∩−).
We are now prepared to consider the diagram

AZ×A1
∞

(Y × P1 − Z × 0)
αA−−−−→ AZ×P1(Y × P1)

βA−−−−→ AZ×0(Y × P1)

p̃A

y
y

(
fZ
0

fZ
1

) yT̄

AZ(Y )

(
1

0

)

−−−−→ AZ(Y ) ⊕ AZ(Y )
(0,1)−−−−→ AZ(Y )

where the rows are short exact sequences, with undisplayed zeros on both sides.
The right square commutes since (4.4) commutes. To prove the commutativity
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on the left we must check that fZ
1 αA = 0 (recall that p̄AαA = p̃A). Consider

the diagram

AZ×A1
∞

(Y × A1
∞)

αAiA−−−−→ AZ×P1(Y × P1)

iA(p̄rA(ξ1))∩−
y

yp̄rA(ξ1)∩−

AZ×A1
∞

(Y × A1
∞)

αAiA−−−−→ AZ×P1(Y × P1)

which commutes by (cap3). But iA(p̄rA(ξ1)) ∈ A·(Y ×A1
∞) vanishes as O(−1)

restricted to A1 is trivial. Thus (p̄rA(ξ1) ∩ −)αAiA = 0. As iA is an isomor-
phism, (p̄rA(ξ1)∩−)αA = 0, whence fZ

1 αA = 0 and the big diagram commutes.

Now we claim that the arrow
(

fZ
0

fZ
1

)
is an isomorphism. The absolute (without

supports) version of this is postulated in (ch4). The ‘with supports’ version
can be deduced from (ch4) by applying the five-lemma to obvious localiza-
tion sequences. Recall that p̃A is an isomorphism and conclude that T̄ is an
isomorphism.
To complete the proof, consider the diagram

AZ×0(Y × A1)
prA(t)∩−−−−−−−→ AZ×A1(Y × A1) −−−−→ AZ(Y )

y
y

y1

AZ×0(Y × P1)
p̄rA(t̄)∩−−−−−−−→ AZ×P1(Y × P1) −−−−→ AZ(Y )

where A1 now denotes P1 − ∞ (as opposed to A1
∞). It commutes by (cap3)

as p̄rA(t̄) maps to prA(t) via the map A·
Y ×0(Y × P1) → A·

Y ×0(Y × A1). The

top composition is T , the bottom one is T̄ , and the left vertical arrow is an
isomorphism by excision. We conclude that T is an isomorphism. The lemma
is proved.

Define A(k) to be the k-dimensional affine subspace of An given by x1 = . . . =
xn−k = 0, for 0 ≤ k ≤ n. Then A(k+1) ∩ An−1

n−k = A(k). By (4.1) and (cap1),
the map thn ∩ − : A0(An) → A(An) can be decomposed as

A0(A
n)

prA
n (tn)∩−−−−−−−−→ AA(1)(An)

prA
n−1(tn−1)∩−−−−−−−−−−−→ AA(2)(An)

prA
n−2(tn−2)∩−−−−−−−−−−−→

. . .
prA

1 (t1)∩−−−−−−−−→ A(An) .

A generic step of this decomposition is a map

(4.5) prA
n−k(tn−k) : AA(k)(An) → AA(k+1)(An) .

In the notation of the lemma, put Y = An−1
n−k, Z = A(k), and think of A1 as

A1
n−k. Then Y × A1 can be identified with An, Z × A1 with A(k+1), prA(t)

becomes prA
n−k(tn−k), and we get that (4.5) is an isomorphism. The theorem

is proved.

Applying (h2) we obtain
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Corollary (PBTH with supports). If Z is a closed subvariety in a smooth
X, E is a vector bundle over X of rank n + 1, and EZ is its restriction to Z,
then the map

Fn = (f0, . . . , fn) : AP(EZ)(P(E)) → AZ(X) ⊕ . . . ⊕ AZ(X)

defined the same way as Fn in PBTH is an isomorphism.
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Abstract. After giving an explicit description of all the non vani-
shing Dolbeault cohomology groups of ample line bundles on grass-
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ture by Fulton and Lazarsfeld about the connectivity of some degene-
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Introduction

Soit X une variété projective complexe, E un fibré vectoriel sur X et L un
fibré en droites. Supposons que l’on ait une forme quadratique sur E à valeurs
dans L, soit une section de S2E∗ ⊗ L. Si k est un entier, on note Dk(E) le
sous-schéma de X où cette section est au plus de rang k. Dans [FL 81, Remark

2,p.50], on peut lire la conjecture suivante (t(x) := x(x+1)
2 ) :

Conjecture 1 Soit E un fibré vectoriel de rang e, sur une variété X lisse,
projective, connexe et de dimension n. Supposons que E est muni d’une forme
quadratique à valeurs dans un fibré en droites L. Soit k un entier et supposons
que
– dimDk(E) = ρ := n − t(e − k) ≥ 1.
– S2E∗ ⊗ L est ample.
Alors, Dk(E) est connexe.

Dans cet article, je montre cette conjecture sous l’hypothèse supplémentaire
que e − k ≤ 4 et ρ ≥ 2. J’obtiens en fait les résultats plus précis suivants :
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Théorème 3 : Sous les hypothèses de la conjecture précédante, à part que X
n’est plus supposée connexe, et si de plus ρ ≥ 2 et e− k ≤ 4, alors l’application
de restriction Hq(X,OX) → Hq(Dk(E),ODk(E)) est un isomorphisme pour
0 ≤ q < ρ − 1, et est injective pour q = ρ − 1.

La conjecture de Fulton et Larzarsfeld a été résolue en utilisant une technique
différente par Tu [Tu 89], dans le cas où k est pair. Par ailleurs, [Tu 88] montre
aussi la connexité, mais à condition que ρ ≥ e−k. Si e−k = 3 ou 4, ma borne,
2, est donc meilleure. J’espère aussi que ce travail est un pas de plus vers une
parfaite compréhension des phénomènes combinatoires qui permettent d’établir
les théorèmes d’annulation. Mentionnons enfin que [Lay 96, prop 2.3] donne
en utilisant la même technique que moi la connexité d’un lieu de dimension
strictement positive, mais pour e − k ≤ 2, ce qui, comme le lecteur pourra le
mesurer, simplifie considérablement le problème.

Il est bien connu que la conjecture découle de théorèmes d’annulation adéquats
[Man 97] : il suffit en effet d’utiliser une résolution du faisceau structural de
Dk(E) par des fibrés vectoriels qui sont des puissances de Schur de E, et d’ap-
pliquer les théorèmes d’annulation aux termes de cette résolution. Dans le cas
où e − k ≤ 2, seuls des crochets, à savoir des partitions dont seule la première
part est éventuellement supérieure à 2, interviennent, et le théorème 2.1 dans
[LN 02] convient. Dans cet article, je propose une généralisation de ce résultat
pour des produits tensoriels de crochets. Cette généralisation donne bien en-
tendu un théorème d’annulation pour toutes les partitions ; malheureusement,
la borne obtenue est insuffisante pour établir la conjecture. Je propose donc
dans cet article une méthode un peu nouvelle, de “comparaison de suites spec-
trales”, pour établir des théorèmes d’annulation plus puissants. Le théorème 3
est alors conséquence des théorèmes d’annulation obtenus par cette méthode.

L’efficacité des théorèmes d’annulation obtenus dépend directement de notre
compréhension de la cohomologie des fibrés en droites homogènes amples sur
une grassmannienne ; Snow [Sno 86] a donné pour la calculer une méthode dia-
grammatique commode. L’inconvénient de cette méthode est qu’il est difficile
d’en déduire, pour r < e et l des entiers fixés, l’entier maximal p tel qu’il existe
q avec Hp,q[G(r, e),O(l)] 6= 0 (G(r, n) désigne la grassmannienne des r-plans
vectoriels dans un espace vectoriel de dimension n et O(l) est la l-ième puis-
sance du déterminant du fibré quotient). Pourtant, comme nous allons le voir,
la détermination de cet entier est cruciale pour obtenir des théorèmes d’annu-
lation. Je propose donc une description nouvelle de la cohomologie de O(l) sur
une grassmannienne, basée sur celle de Snow, et j’en déduis le théorème 1 qui
permet de déterminer cet entier.

Je remercie mon directeur de thèse Laurent Manivel pour son aide tout au long
de l’élaboration de cet article.
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1 Cohomologie de Dolbeault des fibres O(l) sur une grassman-
nienne

1.1 Description explicite de toutes les partitions admissibles

Rappelons tout d’abord la description de Snow [Sno 86] des groupes de coho-
mologie non nuls sur une grassmannienne. Une partition est suite décroissante
finie d’entiers. Je note λi le i-ième entier de λ ; c’est par convention la i-ième
part de λ. Le poids de λ, noté |λ|, est la somme de ses parts. Sa longueur,
l(λ), est le nombre de parts non nulles. Dans de nombreuses circonstances, il
est pratique de représenter les partitions par un diagramme comme le suggère
l’exemple qui suit :

partition (6, 4, 1).

A chaque partition λ correspond un foncteur de la catégorie des espaces vecto-
riels dans elle-même que j’appelle “de Schur” et que je note Sλ [FH 91].
Lorsque λ est une partition, on peut attribuer à chaque case de cette partition
son nombre de crochet qui est le nombre de cases de λ situées en-dessous ou à
droite de cette case, cette case comprise. Par exemple, les cases de la partition
suivante ont été numérotées par leurs nombres de crochets :

6 4 2 1
3 1
1

.

Convenons alors, si l est un entier, que λ sera appelée l-admissible si toutes les
cases reçoivent un numéro différent de l.
Snow [Sno 86] a montré qu’il existe une bijection, à r < e et l fixés, entre les
composantes des groupes de cohomologie Hp,q[G(r, e),O(l)] et les partitions de
longueur inférieure ou égale à r dont toutes les parts sont inférieures ou égales à
e− r (par la suite je les appellerai simplement partitions de taille (e− r, r)) qui
sont l-admissibles. Si λ est une partition l-admissible, soit hλ− (respectivement
vλ−) la suite d’entiers telle que hλ−

i (respectivement vλ−
j ) est le nombre de

cases situées sur la i-ième ligne (respectivement sur la j-ème colonne) dont le
nombre de crochet est strictement inférieur à l. Nous allons voir que hλ− et vλ−

sont des partitions. Si p = |λ| et q est le nombre de cases qui ont un nombre de
crochets strictement supérieur à l, alors Hp,q[G(r, e),O(l)] contient SµCe, si µ
est la partition obtenue en réordonnant toutes les parts (l − hλ−

i ) et vλ−
j .

Le seul inconvénient de cette méthode est que l’ensemble des partitions l-
admissibles n’est pas aisé à décrire. Je propose dans ce paragraphe de montrer
qu’il est en bijection avec l’ensemble de toutes les partitions de taille (l− 1, r),
et d’étudier des propriétés de cette bijection.

Proposition 1 L’application λ 7→ hλ− est une bijection de l’ensemble des
partitions l-admissibles dans l’ensemble des partitions de taille (l − 1, r).
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Demonstration : Tout d’abord si λ est l-admissible, alors ∀i, hλ−
i < l puisque

les nombres de crochet sont strictement décroissants sur une ligne. Introduisons
quelques notations.

Definition 1

– Soit hi,j le nombre de crochet de la case située sur la i-ième ligne et la j-ème
colonne. Convenons que hi,0 = +∞.

– Pout tout i, soit (gi,j)j∈N
la suite strictement croissante d’entiers dont

l’image est le complémentaire dans N de l’ensemble des hi,j.
– Notons δi l’entier l − hλ−

i , tel que gi,δi
= l. Notons enfin xi,j le numéro de

colonne de la dernière case sur la i-ième ligne de nombre de crochet supérieur
à gi,j.

Ainsi, on a gi,0 = 0, xi,0 = λi et pour j >> 1, xi,j = 0, par nos conventions.
Alors, par la définition des nombres de crochet, on a hi−1,j = hi,j +λi−1−λi+1.
Les nombres de crochet qui apparaissent sur la (i − 1)-ième ligne sont donc
1, · · · , λi−1 −λi et les hi,j +λi−1 −λi +1. Ainsi, gi−1,j+1 = gi,j +λi−1 −λi +1.
En particulier, gi−1,δi+1 > l, donc δi−1 ≤ δi et donc hλ− est une partition. On
démontre maintenant un résultat plus précis que la proposition 1 :

Lemme 1 Pout toute partition ν de taille (l−1, r), il existe une unique partition
l-admissible λ telle que hλ− = ν ; pour celle-ci, on a :
– λi = λi+l−νi

+ νi.
– xi,j = λi+j.

Demonstration : On démontre par récurrence descendante sur i0 qu’une
partition a ses nombres de crochet différents de l à partir de la ligne i0 et
vérifie hλ−

i = νi pour i ≥ i0 si et seulement si elle vérifie les deux points du
lemme pour i ≥ i0.
On a λr = νr, xr,0 = λr et xr,j = 0 pour j > 0, de sorte que la propriété de
récurrence est vraie pour i0 = r. Soit maintenant i0 fixé tel que cette hypothèse
est vérifiée pour i0 + 1. Alors posons δ = δi0(= l − νi0) et d = λi0 − λi0+1

(d dépend de λi0 qui est pour l’instant inconnu). On a vu que gi0,0 = 0 et
gi0,j+1 = gi0,j + d + 1 pour j ≥ 0. Les nombres de crochet de λ en-dessous et
sur la i0-ième ligne sont différents de l si et seulement si gi0,δ = l, ce qui équivaut
donc à d = l−1−gi0+1,δi0−1

. Il existe donc exactement une possibilité pour λi0 .
De plus, on a toujours xi0,j+1 = xi0+1,j = λi0+j+1 et le fait qu’effectivement
hλ−

i0
= νi0 implique que λi0 = xi0,δ + νi0 = λi0+δ + νi0 . •

Notation 2 Si ν est une partition de taille (l − 1, r), je noterai ν̂ la partition
λ telle que hλ− = ν. Par aileurs je noterai p(ν) et q(ν) le poids et le nombre
de cases de nombre de crochet supérieur à l de λ.

J’ai affirmé qu’aussi vλ− est une partition, cela découle du fait que λ∗ est l-
admissible et vλ− = h(λ∗)−, où λ∗ désigne la partition dont la i-ième part est
la longueur de la i-ième colonne du diagramme représentant λ.
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Si λ1, λ2 sont des partitions, on note λ1 ⊂ λ2 le fait que ∀i, λ1,i ≤ λ2,i. Par une
récurrence immédiate, le lemme 1 implique :

Proposition 2 Si ν1 ⊂ ν2, alors ν̂1 ⊂ ν̂2.

Proposition 3 Soient k et l deux entiers et λ une partition. Si λ est l-
admissible, alors elle est (kl)-admissible.

Demonstration : En effet, si Gi désigne l’ensemble des entiers naturels qui
n’apparaissent pas parmi les nombres de crochet sur la i-ième ligne, on sait
que pour tout i, l ∈ Gi et il existe di tel que Gi−1 = (di + 1 + Gi) ∪ {0}.
Une récurrence immédiate prouve alors que pour tout i, Gi vérifie la propriété
x ∈ Gi ⇒ x + l ∈ Gi. La proposition en découle. •

La contraposée de cette proposition implique que pour toute partition λ exac-
tement inscrite dans un rectangle r × (e − r) (c’est-à-dire que λ1 = e − r et
l(λ) = r), il existe une case dont le nombre de crochet est d pour tout d diviseur
de e− 1. Une telle partition n’est donc pas d-admissible. Si λ correspond à une
composante non nulle de H∗,∗[G(r, Ce),O(d)], on a donc soit λ1 < e − r soit
l(λ) < r. Ainsi, si SµCe ⊂ H∗,∗[G(r, Ce),O(d)], on a soit µe = 0, soit µ1 = d.

1.2 Partitions admissibles de poids maximal

Comme nous le verrons au paragraphe suivant, pour démontrer des théorèmes
d’annulation pour la cohomologie de fibrés vectoriels amples, il est utile de bien
comprendre la cohomologie des fibrés homogènes sur une grassmannienne, et
plus précisément quelle est, pour l, n et r des entiers quelconques, la valeur
maximale de p telle qu’il existe un entier q avec Hp,q(G(r, n),O(l)) non nul. Si
n > rl, cet entier a été déterminé par Laurent Manivel [Man 92, proposition
1.2.1, p.111] et cela a permis de démontrer de nombreux théorèmes d’annula-
tion, dont celui de F. Laytimi et W. Nahm concernant les partitions en forme de
crochets [LN 02]. Lorsque n, r et l ne satisfont plus cette inégalité, la combina-
toire des partitions l-admissibles devient nettement plus compliquée et aucun
résultat ne donne cet entier p.
Soit n, r, l des entiers fixés. Si a, α, β, c, γ sont des entiers, notons µ(a, α, β, c, γ)
la partition µ définie par :





∀ i ≤ α(l − a), µi = a
∀ α(l − a) < i ≤ α(l − a) + β(l − a + 1), µi = a − 1
∀ α(l − a) + β(l − a + 1) < i ≤ α(l − a) + β(l − a + 1) + γ, µi = c

Cette partition est de longueur (α+β)(l−a)+β+γ et un calcul direct utilisant
le lemme 1 montre que µ̂1(a, α, β, c, γ) = (α + β)a − β + c.
Notons δ(α, β) = min{α, β} si β 6= 0, et δ(α, 0) = α. Rappelons que si µ est
une partition, µ̂ a été définie comme l’unique partition telle que hµ̂− = µ (cf
lemme 1).
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Theoreme 1 Soient n, r et l des entiers, et λ une partition l-admissible de
longueur r et telle que λ1 ≤ n − r.
Alors, soit λ est de la forme µ̂(a, α, β, c, γ) avec γ ≤ l − a, soit il existe des
entiers a, α, β, c, γ avec γ ≤ l−a et tels que µ̂(a, α, β, c, γ) soit aussi l-admissible
de longueur r et de première part inférieure ou égale à n − r, et que de plus
|µ̂(a, α, β, c, γ)| ≥ |λ|+ δ(α, β). De plus, ces entiers sont tels que α +β et γ + c
sont le quotient et le reste de la division euclidienne de n par l.

Demonstration : Considérons n > r et l trois entiers, et soit λ une partition
l-admissible de longueur au plus r et telle que λ1 ≤ n− r. On va raisonner sur
la partition hλ− : nous allons voir que dans trois cas, on peut modifier cette
partition pour en obtenir une de poids supérieur et encore de longueur au plus
r et de même première part. Définissons une suite ai par

{
a1 = 1
ai+1 = min{ai + l − hλ−

ai
, r + 1}.

Soit A le plus grand entier i tel que ai ≤ r. Le lemme 1 montre que pour i ≤ A,

λai
=

∑

i≤j≤A

hλ−
aj

.

En particulier, si µ est une partition telle que ∀i ≤ A,µai
= hλ−

ai
, alors on a

µ̂1 = λ1. Par exemple, si µ la partition définie par ∀i ≤ A,∀j ∈ [ai, ai+1 − 1],
µj = hλ−

ai
, on a, par la proposition 2, µ̂ ⊃ λ, et µ̂1 = λ1. Par exemple, pour

l = 5, on remplace la partition par .

Supposons qu’il existe des entiers i, a et b avec b ≤ a − 2 et tels que

{ ∀j ∈ [i + 1, i + l − a], hλ−
j = a

∀j ∈ [i + l − a + 1, i + 2(l − a) + 1], hλ−
j = b.

a l − a

b l − a

Alors, considérons la partition µ définie par





∀j ∈ [i + 1, i + l − a], µj = a − 1
∀j ∈ [i + l − a + 1, i + 2(l − a) + 1], µj = b + 1
∀j 6∈ [i + 1, i + 2(l − a) + 1], µj = hλ−

j .

a − 1 l − a

b + 1 l − a

Le lemme 1 implique que




∀j ∈ [i + 1, i + l − a], µ̂j = λj

∀j ∈ [i + l − a + 1, i + 2(l − a) + 1], µ̂j ≥ λj + 1
∀j 6∈ [i + 1, i + 2(l − a) + 1], µ̂j = λj .
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Par conséquent, on a |µ̂| ≥ |λ|+ l− a + 1. Appelons “transformation A” le fait
de remplacer hλ− par µ.

Supposons enfin l’existence d’entiers i, a, b, β ≥ 1 tels que




∀j ∈ [i + 1, i + l − a − 1], hλ−
j = a + 1

∀j ∈ [i + l − a, i + (1 + β)(l − a) − 1], hλ−
j = a

∀j ∈ [i + (1 + β)(l − a), i + (2 + β)(l − a) − 1], hλ−
j = b.

a + 1 l − a − 1

a β(l − a)

b l − a

Alors, considérons la partition µ définie par





∀j ∈ [i + 1, i + (1 + β)(l − a) − 1], µj = a
∀j ∈ [i + (1 + β)(l − a), i + (2 + β)(l − a) − 1], µj = b + 1

∀j 6∈ [i + 1, i + (2 + β)(l − a) − 1], µj = hλ−
j .

a l − a − 1

a β(l − a)

b+1 l − a

Le lemme 1 implique que





∀j ∈ [i, i + l − a − 1], µ̂j = λj

∀j ∈ [i + l − a, i + (2 + β)(l − a) − 2], µ̂j = λj + 1
∀j 6∈ [i + 1, i + (2 + β)(l − a) − 1], µ̂j = λj .

En particulier, on a donc |µ̂| ≥ |λ| + 2(l − a). Appelons “transformation B” le
fait de remplacer hλ− par µ.

On peut donc construire une suite finie de partitions µi par récurrence : tout
d’abord, on pose µ0 = hλ−. Ensuite, on impose que pour passer de µi à µi+1,
soit on ajoute une case, soit on fait l’une des deux transformations A ou B,
lorsque cela est possible de façon à ce que µ̂i+1 reste dans un rectangle de taille
r × (n − r). A un certain indice N , on ne peut plus faire aucune de ces trois
opérations. Soit (bi) les nombres définis comme ai pour la partition µN :

{
b1 = 1
bi+1 = inf{bi + l − µN

bi
, r + 1}.

Comme on ne peut plus ajouter de cases, on a µN
j = µN

bi
pour bi ≤ j ≤ bi+1−1,

et comme aucune des deux configurations étudiées ne peut avoir lieu, µN est
de type µ(a, α, β, c, γ) avec γ ≤ l−a. De plus, puisque l’on ne peut pas ajouter
une case, on a soit l[µ(a, α, β, c, γ)] = r, soit c = 0. Si c = 0, µ(a, α, β, c, γ) ne
dépend pas de γ ; on peut donc dans tous les cas supposer que

α(l − a) + β(l − a + 1) + γ = r.

Pour montrer que |µN | ≥ |λ|+δ(α, β), il suffit de montrer que |µN | ≥ |µN−1|+
δ(α, β). Or, quand on applique l’opération A, on obtient une partition qui a
exactement l − a parts égales à a − 1, et quand on applique l’opération B, on
obtient une partition qui a exactement 2(l− a)− 1 parts égales à a : ce ne sont
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donc pas des partitions de type µ(a, α, β, c, γ). On en déduit donc que pour
passer de µN−1 à µN = µ(a, α, β, c, γ), on a ajouté une case. Soit cette case se
trouvait sur la r-ième ligne, et on a |µN |−|µN−1| = α+β+1 ; soit, si β > 0, elle
se trouvait sur la α(l−a)+β(l−a+1)-ième ligne, et on a |µN |−|µN−1| = β ; soit,
enfin, elle se trouvait sur la α(l−a)-ième ligne, et dans ce cas |µN |−|µN−1| = α ;
on voit que dans tous les cas, |µN | − |µN−1| ≥ δ(α, β).

Pour achever la preuve du théorème, il ne reste plus qu’à calculer α+β et γ+c.
Or, on a vu que µ̂1(a, α, β, c, γ) = (α+β)a−β + c ; comme les transformations
effectuées ne changent pas la première part, on en déduit λ1 = (α+β)a−β +c.
Par ailleurs, on a r = (α + β)(l − a) + β + γ. On en déduit donc que

n = r + λ1 = (α + β) l + (γ + c). (1)

Or, on a vu que γ ≤ l−a et c ≤ a. Par convention, on exclut les égalités γ = l−a
et c = a, car µ(a, α, 0, a, l − a) = µ(a, α + 1, 0, 0, 0) ; on a donc γ + c < l. La
formule (1) exprime donc la division euclidienne de n par l, concluant la preuve
du théorème. •

2 Suite spectrale de Borel Le-Potier

Dans ce paragraphe, je rappelle la définition de la suite spectrale de Borel
Le-Potier, qui est à la base de mes théorèmes d’annulation.

Soit π : Y → X une fibration localement triviale propre et E un fibré vectoriel
sur Y . Soit Ωi

Y/X le fibré des i-formes sur Y relatives à π, défini par Ωi
Y/X =

ΛiΩY/X et la suite exacte de fibrés sur Y suivante :

0 → π∗ΩX
π∗

→ ΩY → ΩY/X → 0.

Soient aussi les fibrés Gt,p := Ωp−t
Y/X ⊗ π∗Ωt

X . Pour chaque p, on a [LP 77] une

suite spectrale aboutissant sur Hp,q(Y,E) et dont les termes d’ordre 1 sont :

pEt,q−t
1 = Hq(Y,Gt,p ⊗ E).

Pour calculer les groupes de cohomologie Hq(Y,Gt,p ⊗ E), on utilise une suite
spectrale de Leray. La suite spectrale de termes d’ordre 2

p,tEk,j−k
2 = Hk(X,Rj−kπ∗G

t,p) = Ht,k[X,Rj−kπ∗(E ⊗ Ωp−t
Y/X)] (2)

aboutit sur pEt,j
1 . Introduisons enfin une notation :

Notation 3 Si π : Y → X est une fibration et E un fibré vectoriel sur Y ,
notons Rp,qπ∗E le faisceau Rqπ∗(E ⊗ Ωp

Y/X).
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3 Theoreme d’annulation pour un produit tensoriel de crochets

W. Nahm et F. Laytimi ont montré un théorème d’annulation pour la coho-
mologie d’une puissance de Schur correspondant à un crochet d’un fibré ample
[LN 02, th 2.1]. Dans ce paragraphe, je généralise leur résultat à un produit de
crochets. Si α et β sont des entiers, notons Zα,β le foncteur Sλ pour la partition
λ de longueur α+1 et de poids β telle que λ1 = β−α et ∀1 < i ≤ α+1, λi = 1.

Proposition 4 Soit E un fibré ample de rang e sur une variété X projective
et lisse de dimension n. Soit a ∈ N, (ki)1≤i≤a et (αi)1≤i≤a des entiers tels que
αi < ki ; soit σ =

∑
αi et k =

∑
ki ; alors,

Hp,q(X,⊗iZ
ki−αi−1,kiE) = 0 si q > n−p+[δ(n−p)+σ][ae−k+2σ]−σ(σ+1).

Posons Q(p, σ) = n − p + [δ(n − p) + σ][ae − k + 2σ] − σ(σ + 1).

Demonstration : Reprenant les idées de [LN 02], soit Ck
2 = k(k−1)

2 et δ

la fonction définie par ∀n ∈ N, C
δ(n)
2 ≤ n < C

δ(n)+1
2 . On peut alors définir un

ordre sur N2. Celui-ci est donné par l’ordre lexicographique sur N3 et l’injection

(x, σ) 7→ (δ(x) + σ, x − C
δ(x)
2 , σ). Notons N l’ensemble N2 muni de cet ordre.

L’intérêt principal de N est qu’il vérifie :

Lemme 2 [LN 02] : Pour tous (x, σ) ∈ N , µ ∈ Z − {0}, si r = δ(x) et si
x + µr ∈ N, alors (x + µr, σ − µ) < (x, σ).

On démontre la proposition par récurrence sur les couples (n−p, σ) ∈ N . Cette
récurrence peut sembler peu naturelle et troubler le lecteur ; aussi, je donne les
10 premiers éléments de N pour qu’il puisse suivre plus aisément les premiers
pas de la récurrence.

n − p σ δ(n − p) + σ n − p − C
δ(n−p)
2 σ

1 0 0 1 0 0
2 1 0 2 0 0
3 0 1 2 0 1
4 2 0 2 1 0
5 3 0 3 0 0
6 1 1 3 0 1
7 0 2 3 0 2
8 4 0 3 1 0
9 2 1 3 1 1
10 5 0 3 2 0

Si on place ces numéros d’apparition sur un plan repéré par n − p selon l’axe
des abscisses et σ selon l’axe des ordonnées, on obtient le schéma suivant :

σ
↑
7

9 6 3
n − p ← 10 8 5 4 2 1
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La méthode employée est celle maintenant classique qui consiste à constater
que les groupes de cohomologie que l’on cherche à annuler apparaissent dans
une suite spectrale qui calcule la cohomologie d’un fibré en droites ample sur
une variété adéquate Y elle-même fibrée au-dessus de X. Ce dernier groupe
est nul par le théorème de Kodaira si q est suffisant ; il suffit donc de s’assurer
que ces groupes “passent à travers” la suite spectrale, ce qui fait intervenir une
récurrence.
Soit donc Xn, Ee, p, q, (ki) et σ0 vérifiant les hypothèses de la proposition fixés.
On va montrer l’annulation de Hp,q(X,⊕αi:

∑
αi=σ0

⊗i Zki−αi−1,kiE) en sup-
posant la proposition vraie pour tous les couples (p′, σ) tels que (n − p′, σ) <
(n−p, σ0). Supposons la suite (ki) croissante. Soit r = δ(n−p) ; soit aussi li et
si les quotients et restes de la division de ki par r : ki = rli + si. Un premier
lemme assure que l’on peut supposer que e > r tous les li sont supérieurs ou
égaux à

l0 =

{
rσ0+(n−p)

r−1 si r > 2

σ + 1 si r = 1

Lemme 3 Soit l un entier tel que la proposition 4 soit vraie pour une certaine
valeur de n − p et de σ, et pour toutes les variétés et tous les fibrés vectoriels
amples, à la condition que tous les li soient supérieurs ou égaux à l et que
e > δ(n−p). Alors cette proposition est vraie sans restrictions pour ces valeurs
de e et de σ.

Demonstration : Soit E un fibré sur une variété X et L un fibré en droites
ample sur X. On peut supposer l > δ(n − p). La proposition est vraie pour
l′i = li+l (c’est-à-dire, puisque k′

i = rl′i+si, pour k′
i = ki+rl) et les fibrés amples

E′ de rang supérieur à δ(n − p). Pour le fibré ample E′ = E ⊕ L⊕rl de rang
e+rl, et pour k′

i = ki +rl, on a donc l’annulation de Hp,q(X,⊗iZ
k′

i−αi−1,k′
iE′)

si
q > [δ(n − p) + σ][a(e + rl) − k′ + 2σ] − σ(σ + 1)

= [δ(n − p) + σ][ae − k + 2σ] − σ(σ + 1).

Mais comme Zk′
i−αi−1,k′

iE′ ⊃ Zki−αi−1,kiE ⊗ L⊗rl, on en déduit que pour
toute variété X, tous fibrés E et L, Hp,q(X,⊗iZ

ki−αi−1,kiE ⊗ L⊗arl) = 0 si
q > [δ(n−p)+σ][ae−k+2σ]−σ(σ+1). En vertu du lemme suivant, ce résultat
reste vrai si L est trivial, et le lemme 3 est donc prouvé. •
Lemme 4 Soient n, p, q0, e des entiers et λ une partition tels que Hp,q(X,SλE⊗
L) = 0 pour toute variété projective lisse X de dimension n, tout fibré vectoriel
ample E de rang e et tout fibré en droites ample L sur X, si q > q0.
Alors Hp,q(X,SλE ⊗ L) = 0 sous les mêmes conditions, sauf que L est seule-
ment nef.

Demonstration : La démonstration du lemme 1.5.1 p.128 dans [Man 97] est
valable sous ces hypothèses. •
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On suppose donc dorénavant que l1 ≥ l0 et e > r. Si 0 < s < r < e sont des
entiers et V un espace vectoriel de dimension e, on notera Ms,r(V ) la variété de
drapeaux absolue constituée de l’ensemble des couples (Vr, Vs) de sous-espaces
vectoriels de V avec

0 ⊂ Vr ⊂ Vs ⊂ V, codim(Vr) = r, codim(Vs) = s.

Soit alors Ms,r(E) la variété de drapeaux relative à E, c’est-à-dire la variété
fibrée au-dessus de X dont la fibre au-dessus du point x s’identifie à la variété
Ms,r(Ex) des drapeaux de la forme

(0 ⊂ Er ⊂ Es ⊂ Ex), codim(Vr) = r, codim(Vs) = s.

Soit aussi Ql+1,l le fibré en droites sur Ms,r(V ) dont la fibre au-dessus du
drapeau précédent s’identifie à (det(Ex/Es))

l+1⊗(det(Es/Er))
l = det(E/Es)⊗

(det(E/Er))
l. Considérons alors le produit au-dessus de X défini par Y :=

×Msi,r(E) et le fibré en droites L au-dessus de Y égal au produit ⊗π∗
i Qi, si πi

désigne la projection de Y sur Msi,ri
(E) et Qi le fibré Qli+1,li sur cette variété

de drapeaux relative. Comme e > r > si pour tout i, cette variété a bien un
sens.

Laurent Manivel a étudié une partie de la cohomologie des fibrés en droites
Ql+1,l sur une variété de drapeaux absolue, partie suffisante pour établir notre
proposition. Néanmoins, j’ai besoin de généraliser ses résultats à un produit
de variétés de drapeaux. Cette généralisation sera une conséquence facile de la
formule de Kunneth.

Soit Ms,r(V ) une variété de drapeaux absolue et Ql+1,l comme précédemment.

Notons λ = l − 1, t(r) = r(r+1)
2 et k = rl + s. Notons πr,s = s(2r−s+1)

2 et pour
π un entier,

ns(π) = #{c ∈ {0, 1}r, |c| = s et
∑

ici = π}
Ainsi ns(π) = 0 si π < 0 ou π > πr,s.
Alors, on a [Man 92, proposition 1.2.1, p.111 et lemme 1.3.1, p.114] :

Proposition 5 Supposons p = λ.t(r) + π avec π ≥ πr,s − k + l. Alors

Hp,q(Ms,r(V ), Ql+1,l) =

l⊕

α=0

ns(π + rα)δq,p−rλ−s+αZk−α−1,kV.

Considérons maintenant un produit Y = ×Msi,r(V ) de variétés de drapeaux
et le fibré en droites L = ⊗π∗

i Qi, avec Qi le fibré Qli+1,li sur Msi,r(V ) et πi la
projection naturelle de Y sur Msi,r. Je propose alors la généralisation suivante
de la proposition 5, si λi désigne li − 1, λ =

∑
λi, l =

∑
li, s =

∑
si, et

k =
∑

ki :

Documenta Mathematica 9 (2004) 499–525



510 Pierre-Emmanuel Chaput

Proposition 6 Supposons que p = λ.t(r) + π avec π ≥ ∑
πr,si

− k + l.
Soit σ = q + rλ + s − p. Alors

Hp,q(Y,L) = ns(π + rσ)
⊕

αi:
∑

αi=σ

⊗iZ
ki−αi−1,kiV.

Dans cette proposition, ns(π) désigne le nombre

ns(π) :=
∑

∑
πi=π

nsi
(πi) = #{ci,j ∈ {0, 1}r2

: ∀i |ci| = si et
∑

i,j

jci,j = π}.

Cette proposition montre que le fait qu’un groupe ⊗iZ
ki−αi−1,kiV soit ou non

dans Hp,q(Y,L) ne dépend que de la somme σ des αi, et non des valeurs de
tous les αi ; c’est ce qui fait que l’on obtient un théorème d’annulation où la
borne ne dépend aussi que de σ.

Demonstration : On applique tout d’abord la formule de Kunneth :

Hp,q(Y,L) =
⊕

∑
pi=p,

∑
qi=q

⊗Hpi,qi(Msi,r, Q
li,li+1).

Ecrivons chaque pi comme λit(r) + πi. Si une telle suite d’entiers pi fournit
un groupe non nul, alors par la proposition 5, on a pour tout i la relation
πi ≤ πr,si

. Si donc il existe i tel que πi < πr,i − ki + li, comme π =
∑

πi, on en
déduit que π <

∑
πr,i − k + l, ce qui contredit l’hypothèse de la proposition.

Ainsi, pour tout i on a πr,si
− ki + li ≤ πi ≤ πr,si

, et donc on peut en déduire
par la proposition 5 que

Hpi,qi(Msi,r, Q
li,li+1) = ⊕αi

ns(πi + rαi)δqi,pi−rλi−si+αi
Zki−αi−1,kiV.

Si donc ⊗iZ
ki−αi−1,kiV apparâıt dans notre groupe de cohomologie, cela im-

plique que qi = pi − rλi − si + αi, et par sommation que q = p − rλ − s + σ.
Enfin, la multiplicité de ce groupe est bien la somme sur les πi des produits
des multiplicités de Zki−αi−1,kiV dans Hpi,qi(Msi,r, Q

li,li+1), soit ns(π). •

Notons Pmax = λ.t(r) +
∑

πr,si
et Qmax = λ.t(r − 1) +

∑
πr,si

− S. Une
conséquence de la proposition 6 est :

Proposition 7 Soit p et q deux entiers. Alors :
– Si p > Pmax ou q > Qmax, alors Hp,q(Y,L) = 0.
– Si p ≥ Pmax − rσ ou q ≥ Qmax − (r − 1)σ, alors

Hp,q(Y,L) ⊂
⊕

∑
αi≤σ

⊗iZ
ki−αi−1,kiV.
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On considère maintenant la fibration en variétés de drapeaux π : Y → X
introduite précédemment. Soit PEi,j

m la suite spectrale de Borel-Le Potier, avec
P = p + Pmax − rσ0. Le résultat souhaité va être conséquence de propriétés
de cette suite spectrale. La première exhibe un terme de la suite spectrale de
Borel-Le Potier qui contient le groupe que l’on veut annuler :

Lemme 5 Soit q0 = Qmax − (r − 1)σ0. Alors

PEp,q+q0−p
1 ⊃ Hp,q(X,⊕αi:

∑
αi=σ0

⊗i Zki−αi−1,kiE).

Demonstration : Comme on a supposé que l1(r − 1) ≥ rσ0 + (n − p), on a

n + Pmax − k1 + l1 = n + Pmax − l1(r − 1) − s1

≤ n + Pmax − rσ0 − (n − p)
= Pmax + p − rσ0 = P.

Ainsi, si p ≤ n, alors P − p ≥ P −n ≥ Pmax − k1 + l1. Si p > n, il est clair que
PEp,q+q0−p

1 = 0. On peut donc utiliser les propositions 6 et 7 pour obtenir des

renseignements sur les HP−p,q′

(Y,L) pour tous q′. Pour tous les entiers q1 et
q2, on a (cf notation 3)

P,pEq1,q2

2 = Hp,q1 [X,RP−p,q2π∗L].

Si fi,j sont les applications de changement de cartes de E, on a vu que
RP−p,q2π∗L est un fibré vectoriel de fibre type HP−p,q2(Y,L) (soit x ∈ X ;
Y = π−1(x) et L est la restriction du fibré en droites L à Y ), et dont les chan-
gements de carte sont induits par fi,j . Supposons que HP−p,q2(Y,L) = SλEx.
Nous savons que |λ| =

∑
rli + si. On en déduit donc que pour g ∈ GL(Ex),

l’application induite par g sur HP−p,q2(Y,L) est Sλg. En effet, c’est vrai
g ∈ SL(Ex) par le théorème de Bott et pour g une homothétie, puisque l’ap-
plication induite par λ.Id est λ

∑
rli+si (l’action de λ.Id sur le fibré tangent est

triviale).
Les applications de changement de cartes de RP−p,q2π∗L sont donc les appli-
cations Sλfi,j , si fi,j est une application de changement de cartes de E. On a
donc RP−p,q2π∗L = SλE.

Or HP−p,q0(Y,L) = ⊕αi:
∑

αi=σ0
⊗i Zki−αi−1,kiV . En effet, si un terme de

la forme ⊕αi:
∑

αi=σ ⊗i Zki−αi−1,kiV est une composante de ce groupe, alors
on doit avoir σ = q0 + rL + S − (P − p) = σ0. Par ailleurs, il est clair que
ns(

∑
πr,si

) = 1. On en déduit donc que P,pEq,q0

2 = Hp,q(X,⊕αi:
∑

αi=σ0
⊗i

Zki−αi−1,kiE).
Par ailleurs, si q2 > q0 et q1 est quelconque, alors la proposition 7 montre que
P,p1Eq1,q2

2 = 0. Enfin, si q1 > q et q2 < q0, et si
Hp,q1(X,⊕αi:

∑
αi=σ ⊗i Zki−αi−1,kiE) ⊂ P,p1Eq1,q2

2 , alors on a σ < σ0 et

Hp,q1(X,⊕αi:
∑

αi=σ ⊗i Zki−αi−1,kiE) = 0 par l’hypothèse de récurrence.
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Toutes les différentielles dm issus de ou aboutissant sur P,pEq0,q
m sont donc

nulles, et P,pEq0,q
∞ = Hp1,q1(X,⊕αi:

∑
αi=σ0

⊗i Zki−αi−1,kiE), ce qui implique
notre lemme. •

Pour vérifier que ce groupe passe à travers la suite spectrale de Borel-Le Potier,

il suffit de montrer l’annulation des groupes PE
p+m,q−p−m+sgn(m)+q0

1 , pour
tous les entiers m non nuls. Soit donc m un tel entier et p1, q1 et q2 des entiers

tels que P,p1Eq1,q2∞ soit un élément d’une filtration de PE
p+m,q−p−m+sgn(m)+q0

1 ,
c’est-à-dire des entiers tels que :
p1 = p + m et q1 + q2 − p1 = q − p − m + sgn(m) + q0. Remarquons que de
manière équivalente, on a p1 = p + m et q1 + q2 = q + q0 + sgn(m).
De nouveau, il suffit de montrer que tous les groupes P,p1Eq1,q2

2 sont nuls. Or
ceux-ci valent Hp1,q1 [X,HP−p1,q2(Y,L)]. Supposons que

⊕αi:
∑

αi=σ ⊗i Zki−αi−1,kiV ⊂ HP−p1,q2(Y,L).

Alors par la proposition 7, P − p1 ≤ Pmax − rσ = (P − p) − r(σ − σ0), donc
p1 ≥ p + r(σ − σ0), soit m ≥ r(σ − σ0). Par ailleurs cette même proposition
assure que q2 ≤ Qmax − (r − 1)σ = q0 − (r − 1)(σ − σ0).
L’égalité q1+q2 = q+q0+sgn(m) donne alors q1 ≥ q+sgn(m)+(r−1)(σ−σ0).
Notons µ = σ − σ0, comme nous avons vu que m ≥ rµ, sgn(m) ≥ sgn(µ) et
nous avons donc établi :

σ = σ0 + µ
p1 ≥ p + µr

q1 ≥ q + sgn(µ) + (r − 1)µ.

Sous ces hypothèses, il ne nous reste plus, en utilisant l’hypothèse de récurrence,
qu’à prouver l’annulation de Hp1,q1(X,⊕αi:

∑
αi=σ ⊗i Zki−αi−1,kiE). Remar-

quons tout d’abord que l’on peut supposer que ae − k + σ ≤ 0, car sinon
⊕αi:

∑
αi=σ ⊗i Zki−αi−1,kiE = 0.

Lemme 6 Dans l’ensemble ordonné N , on a : (n − p1, σ) < (n − p, σ0)

Demonstration : Cet ordre étant croissant selon les deux coordonnées (c’est-
à-dire que si x ≤ x′, y ∈ N, alors (x, y) ≤ (x′, y) et (y, x) ≤ (y, x′)), cela découle
du lemme 2. •

Lemme 7 Si q > Q(p, σ0) alors q1 > Q(p1, σ).

Demonstration : On peut supposer que p1 = p + µr et q1 = q + µ(r − 1) +
sgn(µ). Calculons alors Q(p, σ0)−Q(p + µr, σ0 + µ) + sgn(µ) + (r − 1)µ. Cette
quantité vaut :
2µr+2µσ0 +µ2 +sgn(µ)+(r+σ0)(ae−k +2σ0)− [δ(n−p−µr)+σ0 +µ][ae−
k + 2σ0 + 2µ]. En remarquant que 2µr + 2µσ0 = 2µ(r + σ0) et en factorisant
par r + σ0, on en déduit que cette quantité égale
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(ae−k+2σ0+2µ)(r+σ0)−(ae−k+2σ0−2µ)[δ(n−p+µr)+σ0−µ]+µ2+sgn(µ),
soit (ae − k + 2σ)[r + µ − δ(r + µr)] + µ2 + sgn(µ).
Comme ae−k+σ ≥ 0, il découle de la définition de δ que ce nombre est positif.•

Enfin, on a l’inégalité suffisante pour assurer que PEp,q−p+q0∞ = 0 :

Lemme 8 On a P + q + q0 − dimY > 0.

Demonstration : Tout d’abord,

2
∑

πr,si
− S = 2rS + S −

∑
s2

i − S ≥ rS et k = (L + a)r + S.

Ainsi :

P + q + q0 − dimY
= p + q + Lt(r) + Lt(r − 1) + 2

∑
πr,si

− S − (2r − 1)σ0 − n − ar(e − r)
≥ σ0(ae − k + σ0) •

Nous avons ainsi (péniblement) achevé la preuve de la proposition 4. Nous
allons maintenant montrer une autre proposition qui rétablit la symétrie entre
p et q :

Proposition 8 Soit E un fibré ample de rang e sur une variété X projective
lisse et de dimension n. Soit a ∈ N, (ki)1≤i≤a et (αi)1≤i≤a des entiers tels que
αi < ki ; soit σ =

∑
αi et k =

∑
ki, alors

Hp,q(X,⊗iZ
ki−αi−1,kiE) = 0 si p > n−q+[δ(n−q)+σ][ae−k+2σ]−σ(σ+1).

Demonstration : Posons P (q, σ) = n−q+[δ(n−q)+σ][ae−k+2σ]−σ(σ+1).
La démonstration est très similaire à celle de la proposition 4. En effet, soit
r = δ(n − q) et comme précédemment Y := ×Msi,r(E) et le fibré en droites L
au-dessus de Y égal au produit ⊗π∗

i Qi , où li et si sont le quotient et le reste de
la division euclidienne de ki par r et Qi = Qli,li+1. Soit aussi p+Pmax−rσ0, le
lemme 5 reste vrai et pour voir que ce groupe passe à travers la suite spectrale,
il suffit comme précédemment de montrer en utilisant l’hypothèse de récurrence
que si

σ = σ0 + µ
p1 ≥ p + µr

q1 ≥ q + sgn(µ) + (r − 1)µ,

alors Hp1,q1(X,⊕αi:
∑

αi=σ ⊗i Zki−αi−1,kiE) = 0.
Ceci découle du fait que le lemme 8 reste vrai et que l’on a l’analogue des
lemmes 6 et 7 :

Lemme 9 Dans l’ensemble ordonné N , on a : (n − q1, σ) < (n − q, σ0).
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Demonstration : On peut aussi supposer que q1 = q + sgn(µ) + (r − 1)µ et
σ = σ0 + µ. Alors si µ < 0, q1 ≥ q + rµ et le lemme 2 s’applique. Si µ = 1, ce
même lemme fonctionne car q1 = q + r. Pour µ > 1, en posant x = n− (q + r),
ce lemme donne (n− (q +r)− (µ−1)δ(n− (q +r)), σ +µ) < (n− (q +r), σ +1).
Comme δ(n− (q + r)) ≤ δ(n− q)−1, on a (n− (q + r)− (µ−1)(r−1), σ +µ) <
(n−(q+r), σ+1).L’égalité n−q1 = n−q−1−µ(r−1) = n−(q+r)−(µ−1)(r−1)
donne alors (n − q1, σ) < (n − q, σ0), et le lemme est démontré. •

Lemme 10 Si p > P (q, σ0) alors p1 > P (q1, σ).

Demonstration : On peut supposer que p1 = p + µr et q1 = q + µ(r − 1) +
sgn(µ). Calculons alors P (q, σ0)−P (q + µ(r − 1) + sgn(µ), σ0 + µ) + µr. Cette
quantité vaut :

2µr + 2µσ0 + µ2 + sgn(µ) + (r + σ0)(ae − k + 2σ0)
−[δ(n − q − sgn(µ) − µ(r − 1)) + σ0 + µ][ae − k + 2σ0 + 2µ].

En remarquant que 2µr + 2µσ0 = 2µ(r + σ0) et en factorisant par r + σ0, on
voit que cette quantité égale

µ2 + sgn(µ) + (ae − k + 2σ0 + 2µ)(r + σ0)
−(ae − k + 2σ0 + 2µ)[δ(n − q − sgn(µ) − µ(r − 1)) + σ0 + µ],

soit (ae − k + 2σ)[r − µ − δ(n − q − sgn(µ) − µ(r − 1))] + µ2 − sgn(µ).
Comme ae − k + σ ≥ 0 et que le lemme 9 implique
δ(n − q − sgn(µ) − µ(r − 1)) + µ ≤ δ(n − q) = r, ce dernier nombre est donc
positif. •

On peut maintenant regrouper les propositions 4 et 8 sous la forme du

Theoreme 2 Soit E un fibré ample de rang e sur une variété X de dimension
n, a ∈ N, (ki)1≤i≤a et (αi)1≤i≤a des entiers tels que αi < ki ; soit σ =

∑
αi et

k =
∑

ki, alors

Hp,q(X,⊗iZ
ki−αi−1,kiE) = 0
si

p + q > n + [min[δ(n − p), δ(n − q)] + σ][ae − k + 2σ] − σ(σ + 1).

4 Resultats topologiques en petit co-rang

4.1 Resultats topologiques

L’objet de ce paragraphe est la démonstration du
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Theoreme 3 Soit E un fibré vectoriel de rang e, sur une variété X lisse, pro-
jective et de dimension n. Supposons que E est muni d’une forme quadratique
à valeurs dans un fibré en droites L. Soit k un entier et supposons que
– dimDk(E) = ρ := n − t(e − k).
– S2E∗ ⊗ L est ample.
– e − k ≤ 4.
Alors, l’application de restriction Hq(X,OX) → Hq(Dk(E),ODk(E)) est un
isomorphisme pour 0 ≤ q < ρ − 1, et est injective pour q = ρ − 1.

Demonstration : Notons D := Dk(E). Tout d’abord, il existe une résolution
du faisceau OD sur OX par des fibrés vectoriels : le i-ième terme Ri d’une telle
résolution est donné par

Ri :=
⊕

λ = (2l, µ, µ∗)
|µ| + l(2l − 1) = i

Sλ(k−1)E ⊗ L−l(2l+k−1).

Dans cette formule, l’expression λ = (2l, µ, µ∗) signifie que la partition λ est
de rang 2l, que λi = 2l + µi si 1 ≤ i ≤ 2l et λi+2l = µ∗

i . Si λ est une partition,
λ(k − 1) est obtenue en intercalant k − 1 parts égales au rang de λ à λ : si par

exemple λ = , alors λ(2) = . Si k = 0, alors (2l, µ, µ∗)(−1) est

la partition ν telle que νi = 2l + µi pour 1 ≤ i ≤ 2l − 1, ν2l = µ∗
1 + µ2l, et

ν2l−1+i = µ∗
i pour i ≥ 2.

L’existence de cette résolution, bien connue des spécialistes, peut se justifier
de la façon suivante : soit Y l’espace total du fibré S2E∗ ⊗ L et D ⊂ Y le
schéma des formes symétriques de rang au plus k. Par [JPW 81, théorème 3.19,
p.139] et [Nie 81], on a une résolution de OD par des OY -modules localement
libres analogue à celle que j’ai décrite. La section s de S2E∗ ⊗ L induit un
morphisme X → Y et, comme l’explique Nielsen [Nie 81], on peut tirer en
arrière cette résolution pour obtenir la résolution de ODk(E) souhaitée. Pour

cela, il suffit en effet d’annuler les faisceaux TorY
i (OD,OX) pour i > 0, ce

qui résulte d’une version du corollaire 1.10 de [PS 73], où l’on peut remplacer,
avec leurs notations, l’hypothèse prof(Bp) ≥ prof(Aϕ−1(p)) par l’hypothèse

prof(Bp) ≥ dpA(M). Pour annuler TorY
i (OD,OX), on applique ce corollaire

à Spec(B) un ouvert affine de X trivialisant S2E∗ ⊗ L, Spec(A) ⊂ Y l’image
réciproque de Spec(B) par la projection Y → X et M le A-module définissant
le faisceau OD sur Spec(A). Pour tout idéal p ⊂ B correspondant à un point
du support de M ⊗A B, on a prof(Bp) ≥ t(e−k), puisque X est supposée lisse
et dim Dk(E) = n − t(e − k). L’hypothèse prof(Bp) ≥ dpA(M) est donc bien
vérifiée.
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Convenons qu’une partition λ de la forme (2l, µ, µ∗)(k − 1) sera dite (k − 1)-
symétrique (si k − 1 = 0, ceci signifie que λ∗ = λ). Si λ est (k − 1)-symétrique,
notons i(λ, k) l’entier tel que SλE∗ ⊗ L−l(2l+k−1) ⊂ Ri(λ,k).

En utilisant cette résolution, il est facile de montrer que le théorème 3 est
conséquence de la proposition suivante (cet argument est par exemple expliqué
dans [Man 97]) :

Proposition 9 Soit F un fibré vectoriel ample de rang e sur une variété X
projective lisse de dimension n. Soit k un entier tel que 0 < e− k ≤ 4 et λ une
partition (k−1)-symétrique. Alors, Hn,q(X,SλF ) = 0 si q > t(e−k)+1−i(λ, k).

Demonstration : Puisque e − k ≤ 4, le rang 2l d’une partition (k − 1)-
symétrique et de longueur inférieure ou égale à e est nécessairement inférieur
ou égal à 4 ; on a donc l = 1 ou l = 2. Les partitions obtenues avec l = 2 ne
nous posent pas de problème, car le théorème A’ de [Man 97] donne la borne
10 − i. Il suffit donc de traiter le cas l = 1.
Pour simplifier les notations, j’ai supposé, dans le tableau suivant, que de plus
k = 1, et l’ai listé toutes les partitions λ à considérer, et indiqué, en face,
l’entier q0 tel que si q > q0, alors Hn,q(X,SλE) = 0 pour tout fibré E ample
de rangs 4 et 5. La dernière colonne indique le numéro du lemme qui montre
l’annulation du groupe de cohomologie pour la borne indiquée. L’indication A’
renvoie au théorème A’ de [Man 97]. La colonne intermédiaire indique la valeur
t(e − k) + 1 − i de q0 maximale pour montrer le théorème 3. Lorsque k prend
d’autres valeurs que 1 mais que e − k reste égal à 3 ou 4, puisque les lemmes
indiqués donnent une borne qui ne dépend que de e − k, on obtient encore la
proposition 9.
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rang(E) = 4 rang(E) = 5

partition q0 7-i lemme

4 6 A’

5
4

5
11
12

4 4 15

2 4 A’

0 2 A’

2 3 17

partition q0 11-i lemme

0 4 A’

3 7 A’

6 10 A’

8 9 11

4
3

5
13
14

8 8 15

8 8 15

6 6 16

4 6 17

7
6

7
19
20
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4.2 Theoremes d’annulation

Dans ce paragraphe, je montre les lemmes annoncés dans le précédent. Soit X
une variété projective lisse de dimension n, E un fibré ample de rang e sur X,
et L un fibré en droites nef.
Pour des raisons qui sont expliquées après le lemme 13, je note λ = [a, b, c, d]
la partition de rang 2 telle que λ1 = a + 2, λ2 = b + 2, λ∗

1 = e − c, λ∗
2 = e − d.

Par exemple, S[0,0,0,0]E = (det E)2. De même, je note λ = [a, b] la partition de
rang 1 telle que λ1 = a + 1 et λ∗

1 = e− b. Par la suite, a ≤ b, c ≤ d, t, q sont des
entiers positifs ou nuls.

Lemme 11 Hn,q(X,S[1,c+1]E ⊗ S[0,d]E ⊗ Lt) = 0 si q > 2c + d + 2, et
Hn−1,q(X,S[0,c]E ⊗ S[0,d]E ⊗ Lt) = 0 si q > 2c + d + 1.

Remarque : Le théorème 2 donne la borne 2c+2d+2 au lieu de 2c+ d+2 et
les autres résultats que je connais ont une borne qui dépend de k (par exemple,
[Man 97, théorème A] donne la borne k+c+d) ; il est clair que pour démontrer
le théorème 3 par cette méthode, il faut une borne indépendante de k.
Demonstration : Pour montrer ce lemme, je vais appliquer la technique,
nouvelle à ma connaissance, de “comparaison de suites spectrales”.
Tout d’abord, on peut supposer que e − c est pair. En effet, supposons que ce
lemme est vrai pour e− c pair. Si e− c est impair et M est un fibré en droites
ample sur X, alors on peut considérer le fibré vectoriel E ⊕ M de rang e + 1 ;
comme e + 1 − c est alors pair, on peut appliquer le lemme, et comme pour le
lemme 3, on en déduit que Hn,q(X,S[1,c+1]E⊗S[0,d]E⊗Lt) = 0 si q > 2c+d+2
et Hn−1,q(X,S[0,c]E ⊗ S[0,d]E ⊗ Lt) = 0 si q > 2c + d + 1.
Soit alors un entier l tel que e − c = 2l. Considérons d’abord la variété Y =
PE∗ ×X PE∗, notons π : Y → X la projection naturelle, et considérons le fibré
en droites L = O(2l, e−d)⊗π∗Lt sur Y . Comme O(2l, e−d) est ample (en effet,
E est ample) et π∗L nef, L est ample. Soit aussi P = n+(2l−1)+(e−d−1)−1.
Déterminons les groupes P,tEi,j

2 de la suite spectrale de Leray introduite au
paragraphe 2. Ceux-ci valent, par la formule (2), Ht,i[X,RP−t,jπ∗O(2l, e−d)⊗
Lt]. Ces groupes sont donc nuls si t > n ou P − t > (2l − 1) + (e − d − 1).
En effet, si V est un espace vectoriel fixé et l et m sont des entiers positifs,
alors Hi,j [PV,O(l)] = 0 si i ≥ l (conséquence directe de la proposition 1), et
donc Hi,j [PV ×PV,O(l,m)] = 0 si i ≥ l + m (formule de Künneth). Les seules
valeurs possibles sont donc t = n ou t = n − 1, et on a

P,n−1Ei,0
2 = Hn−1,i(X,S[0,c]E ⊗ S[0,d]E ⊗ Lt), et

P,nEi,0
2 = Hn,i(X,Lt ⊗ R(2l−1)+(e−d−1)−1,0π∗O(2l, e − d))

= Hn,i(X,S[1,c+1]E ⊗ S[0,d]E ⊗ Lt)
⊕ Hn,i(X,S[0,c]E ⊗ S[1,d+1]E ⊗ Lt).

Ces suites spectrales sont donc dégénérées, et on en déduit que

PEn−1,q−n+1
1 = Hn−1,q(X,S[0,c]E ⊗ S[0,d]E ⊗ Lt),

PEn,q−n
1 = Hn,q(X,S[1,c+1]E ⊗ S[0,d]E ⊗ Lt)

⊕ Hn,q(X,S[0,c]E ⊗ S[1,d+1]E ⊗ Lt),
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et les autres termes sont nuls. Par ailleurs, PEp,q−p
∞ est une composante de

HP,q(X,L) ; il est donc nul par le théorème de Kodaira si

P + q > n + 2(e − 1), soit q > n + 2(e − 1) − P = c + d + 1.

On en déduit donc que dans ce cas, la flêche connectant PEn−1,q−n+1
1 et

PEn,q−n+1
1 est un isomorphisme, ce qui conduit à :

Hn−1,q(X,S[0,c]E ⊗ S[0,d]E ⊗ Lt)
= Hn,q+1(X,S[1,c+1]E ⊗ S[0,d]E ⊗ Lt)
⊕ Hn,q+1(X,S[0,c]E ⊗ S[1,d+1]E ⊗ Lt) si q > c + d + 1.

En considérant une autre suite spectrale, on va obtenir une autre égalité fai-
sant intervenir ces termes ; en comparant ces égalités, on prouvera qu’ils sont
nuls. Soit donc maintenant Y = G2(E

∗) ×X PE∗ et L = O(l, e − d) sur
Y , et posons P = n + 3(l − 1) + (e − d − 1) − 1. On a alors de façon si-

milaire PEn−1,q−n+l
1 = Hn−1,q(X,S[0,c]E ⊗ S[0,d]E ⊗ Lt), mais par contre,

PEn,q−n+l−1
1 = Hn,q(X,S[0,c]E ⊗ S[1,d+1]E ⊗ Lt). Ceci conduit à l’égalité

Hn−1,q(X,S[0,c]E ⊗ S[0,d]E ⊗ Lt) = Hn,q+1(X,S[0,c]E ⊗ S[1,d+1]E ⊗ Lt)
si q > 2c + d + 1.

En comparant ces égalités, on obtient

Hn,q(X,S[1,c+1]E ⊗ S[0,d]E ⊗ Lt) = 0,

soit la première affirmation du lemme. En utilisant la règle de Littlewood-
Richardson, on va montrer l’autre résultat du lemme. En effet, rappelons que
c ≤ d ; si c = d, on peut conclure ; supposons donc c < d. Cette règle implique
que

S[1,c+1]E ⊗ S[0,d]E =
⊕

0≤x≤c+1 S[1,0,x,d+c+1−x]E
⊕

R1

S[0,c]E ⊗ S[1,d+1]E =
⊕

0≤x≤c S[1,0,x,c+d+1−x]E
⊕

R2,

où R1 et R2 sont des sommes de composantes de type S[0,0,x,y], que l’on sait
déjà annuler. L’annulation de la cohomologie de S[1,c+1]E⊗S[0,d]E⊗Lt entraine
donc celle de S[0,c]E ⊗ S[1,d+1]E ⊗ Lt, et le lemme est alors conséquence d’une
des égalités démontrées. •

Notons que ce lemme montre par exemple Hn,q(X,S[1,0,c,c+1]E) = 0 si q >
3c + 2, car S[1,0,c,c+1]E ⊂ S[1,c+1]E ⊗ S[0,c]E. Ce n’est pas la borne indiquée
dans le tableau p. 517. En effet, pour cette partition particulière, on peut un peu
raffiner le raisonnement précédent. Auparavant, je souhaite faire une remarque
d’ordre général qui allègera les calculs.
En généralisant le raisonnement utilisé pour le lemme précédent, on voit
que l’on obtient simultanément l’annulation de Hp1,q(X,Sλ1

E) et celle de
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Hp2,q(X,Sλ2
E) ; supposons que p1 < p2 : la borne q1 obtenue pour le groupe

Hp1,q(X,Sλ1
E) est la différence entre la dimension de Y et la somme i+j +p1,

où i et j sont les entiers tels que si V est un espace vectoriel fixé, YV la fibre de la
projection Y → X, et LV la restriction du fibré en droites L sur une telle fibre,
alors Hi,j(YV ,LV ) = SλV . La borne q2 pour Hp2,q(X,Sλ2

E) vaut q1 + t, où t
est l’entier tel que les flêches de la suite spectrale connectent Hp1,q(X,Sλ1

E) et
Hp2,q+t(X,Sλ2

E). Attention, cette recette n’est bien sûr valable que si aucun
autre terme de la suite spectrale ne vient compenser les termes que l’on veut
annuler. Par ailleurs, on peut facilement exprimer cette différence :

Remarque 4 Une suite spectrale donnée par un fibré en droites sur Gr(E
∗)×X

Gs(E
∗) peut montrer l’annulation de Hp,q(X,S[a,b]E ⊗ S[c,d]E ⊗ Lt) pour q >

(r − 1)a + rb + (s − 1)c + sd.

Demonstration : En effet, comme je l’ai expliqué, il s’agit d’évaluer la
différence entre dim Gr(V ) et i + j, où i et j sont les entiers tels que
Hi,j(Gr(V ),O(l)) = S[a,b]V . Cette différence vaut ra + (r − 1)b, car i =
(l − 1)t(r) − ar, j = (l − 1)t(r − 1) − a(r − 1), et dim V = rl − a + b. •

Dans le lemme qui suit, je traite des partitions qui sont un cas particulier de
celles traitées par le lemme 11 ; pour ces partitions particulières, je peux réduire
de 1 la borne donnée par le lemme 11.

Lemme 12 Supposons c > 0.

Hn,q(X,S[1,0,c+1,c]E ⊗ Lt) = 0 si q > 3c + 1, et
Hn−1,q(X,S[0,0,c,c]E ⊗ Lt) = 0 si q > 3c.

Demonstration : Tout d’abord, on peut supposer que e − c est impair et
e − c >> 0. Dans la démonstration du lemme 11, j’ai montré comment tenir
compte de Lt ; pour alléger les notations, je suppose dorénavant que t = 0.
Soit alors l un entier tel que e− c = 2l +1. Considérons d’abord la variété Y =
PE∗ ×X PE∗, et le fibré O(2l +1, 2l +1) sur Y . Comme dans la démonstration
du lemme précédent, on montre que

2Hn,q+1(X,S[1,c+1]E ⊗ S[0,c]) = Hn−1,q(X,S[0,c]E ⊗ S[0,c]E) si q > 2c + 1.

Soit maintenant O(2l, l + 1) → PE∗ ×X G2(E
∗). On a alors de façon similaire

Hn,q+1(X,S[1,c+2]E ⊗ S[0,c−1]E) = Hn−1,q(X,S[0,c+1]E ⊗ S[0,c−1]E) si q > 3c.
Par la règle de Littlewood-Richardson, S[1,c+1]E ⊗ S[0,c]E = S[1,c+2]E ⊗
S[0,c−1]E ⊕ S[1,0,c,c+1]E (à des termes de type S[0,0,x,y]E près), et S[0,c]E ⊗
S[0,c]E = S[0,c−1]E ⊗ S[0,c+1]E ⊕ S[0,0,c,c]E.
Je donne maintenant une dernière égalité faisant intervenir les groupes
Hn,q+1(X,S[1,0,c,c+1]E) et Hn−1,q(S[0,0,c,c]E), qui permettra de conclure.
Considérons O(e − c) → G2(E

∗). La proposition 1 montre que toute par-
tition λ, de taille au plus (e − 2) × 2 et (e − c)-admissible, vérifie soit
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λ1, λ2 ≤ e − c − 2, soit λ1 = λ2 + e − c − 1. Dans le deuxième cas, on a
|λ| = λ1 +λ2 ≤ [e− 2− (e− c− 1)]+ [e− 2] = e+ c− 3. Par contre, la partition
(e−c−2, e−c−2) est de poids 2(e−c−2). Il est clair qu’à c fixé, si e est grand,
le poids de cette partition est strictement supérieur à toute constante plus le
poids d’une partition du deuxième type. Quitte à augmenter e, on peut donc
faire comme si seules les partitions du premier type intervenaient. En posant
P = n + 2(e − c − 2) − 1, on montre alors que

Hn,q+1(X,S[1,0,c,c+1]E) = Hn−1,q(X,S[0,0,c,c]E) si q > 2c + 1.

Les trois égalités montrent que si q > 3c, alors Hn,q+1(X,S[1,c+1]E⊗S[0,c]E) =
0. La première implique alors le reste du lemme. •

Lemme 13 Hn,q(X,S[a,0]E ⊗ S[b+1,1]E ⊗ Lt) = 0 si q > a + 2, et
Hn−1,q(X,S[a,0] ⊗ S[b,0]E ⊗ Lt) = 0 si q > a + 1.

Remarque : Ce lemme me donne l’occasion de justifier mes notations. Les
partitions les plus faciles à traiter sont celles qui correspondent à une puissance
du déterminant : en effet, puisque (detE)l est ample pour tout l, le théorème de
Kodaira donne directement que Hp,q(X, (det E)l) = 0 si p + q > n. Lorsqu’on
s’écarte de cette partition, je vais expliquer qu’il existe une symétrie entre le
fait d’allonger les premières parts et le fait de creuser le bas de la partition.
Autrement dit, dans la notation λ = [a, b, c, d], a et c, et b et d, jouent des
rôles symétriques. On peut d’ailleurs remarquer que le théorème 2 n’échappe
pas à ce principe : si l’on note r = min{δ(n− p), δ(n− q)}, alors la borne vaut
q0 = n − p + (r + σ)(ae − k + 2σ) − σ(σ + 1). Or, avec mes notations, on a
Zki−αi−1,ki = [αi, e − ki + αi]. Notons βi = e − ki + αi ; on a ae − k + σ =∑

i(e − ki + αi) =
∑

i βi =: τ . Ainsi, on a donc

q0 = n − p + (r + σ)(τ + σ) − σ(σ + 1) = n − p + r(σ + τ) + σ(τ − 1). (3)

On voit bien que cette formule est symétrique en σ et τ (−1). Le lecteur intrigué
pourra s’amuser de constater que la démonstration du théorème 2 fonctionne
de façon tout à fait similaire si l’on fait jouer par τ le rôle joué par σ, et
donne le même résultat. Il est vraisemblable que le démonstration de théorèmes
d’annulation efficaces pour des partitions de rang strictement supérieur à 1
utilise une récurrence qui fasse intervenir de façon combinée σ et τ .
Le lemme 13, pour cette symétrie, est le symétrique du lemme 11 ; il se démontre
de façon tout à fait similaire :
Demonstration : On se ramène comme précédemment au cas e+a pair, puis
on considère le fibré en droites O(e + a, e + b) sur PE∗ ×X PE∗, et le fibré
en droites O(e + b, e+a

2 ) sur PE∗ ×X G2(E
∗). On utilise aussi, comme pour

démontrer le lemme 11, la règle de Littlewood-Richardson. En tenant compte
de la remarque 4, on trouve ainsi Hn−1,q(X,S[a,0]⊗S[a+1,1]E) = 0 si q > a+1.
Dans la suite spectrale, il y a une flèche entre Hn,q+1(X,S[a,0]E ⊗ S[a+1,1]E)
et Hn−1,q(X,S[a,0] ⊗ S[a+1,1]E) ; Hn,q(X,S[a,0]E ⊗ S[a+1,1]E) s’annule donc si
q > a + 2.
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•

Par ailleurs, on peut, comme le fait le lemme 12, raffiner un peu le lemme
précédent pour traiter certains cas particuliers :

Lemme 14 Supposons a > 0.

Hn,q(X,S[a+1,a,0,1]E ⊗ Lt) = 0 si q > a + 1, et
Hn−1,q(X,S[a,a,0,0]E ⊗ Lt) = 0 si q > a.

Demonstration : Similaire à celle du lemme 12. •

Lemme 15 Hn,q(X,S[1,c+1]E⊗S[1,c+1]E⊗Lt) = Hn,q(X,S[0,c+2]E⊗S[0,c]E⊗
Lt) = 0 si q > 4c + 4, et Hn−1,q(X,S[1,c+1] ⊗ S[0,c]E ⊗ Lt) = 0 si q > 4c + 3.

Demonstration : Comme précédemment, on peut supposer que e−c est pair
et t = 0 ; soit donc l tel que e− c = 2l. Considérons le fibré en droites O(2l, 2l)
sur PE∗×X PE∗, et la suite spectrale correspondante pour P = n+2(2l−1)−2.
Les termes PEi,j

1 ne peuvent être non nuls que si i vaut n, n − 1, ou n − 2. Or
PEn−2,q−n+2

1 = Hn−2,q(X,S[0,c]E ⊗ S[0,c]E), qui est nul si q > 4c + 2 par le
théorème 2. On en déduit donc que si q > 4c + 2, alors

Hn,q+2(X,S[1,c+1]E ⊗ S[1,c+1]E) ⊕ 2Hn,q+2(X,S[2,c+2]E ⊗ S[0,c]E)
= 2Hn−1,q+1(X,S[1,c+1] ⊗ S[0,c]E).

De même, en considérant O(2l, l) → PE∗ ×X G2(E
∗), on montre que

Hn,q+2(X,S[2,c+2]E ⊗ S[0,c]E) = Hn−1,q+1(X,S[1,c+1] ⊗ S[0,c]E) si q > 4c + 2.

Ce système donne Hn,q+2(X,S[1,c+1]E ⊗ S[1,c+1]E) = 0. Mais comme

S[1,c+1]E ⊗ S[1,c+1]E ⊃ S[2,c+2]E ⊗ S[0,c]E,

on en déduit qu’aussi Hn,q+2(X,S[2,c+2]E ⊗ S[0,c]E) = 0, et donc
Hn−1,q+1(X,S[1,c+1] ⊗ S[0,c]E) = 0. •

Le symétrique du lemme précédent est :

Lemme 16 Hn,q(X,S[a+1,1]E⊗S[a+1,1]E⊗Lt) = Hn,q(X,S[a+2,2]E⊗S[a,0]E⊗
Lt) = 0 si q > 2a + 4 et Hn−1,q(X,S[a+1,1] ⊗ S[a,0]E ⊗ Lt) = 0 si q > 2a + 3.

Demonstration : Comme pour le lemme précédent, on pose 2l = a+e et t = 0,
et on compare les suites spectrales correspondant à O(2l, 2l) → PE∗ ×X PE∗

et O(2l, l) → PE∗ ×X G2(E
∗). •

Jusqu’à maintenant, nous avons considéré des partitions de type [a, ǫ] ⊗ [b, ǫ′]
(ǫ, ǫ′ = 0 ou 1), ou de type [ǫ, a] ⊗ [ǫ′, b]. Etudions finalement des partitions
“panachées”, c’est-à-dire de type [a, ǫ, b, ǫ′].
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Lemme 17 Si a et c ont même parité, alors Hn,q(X,S[a,0]E⊗S[1,c+1]E⊗Lt) =
0 si q > 2c + 2, et Hn,q(X,S[a+1,1]E ⊗ S[0,c]E ⊗ Lt) = 0 si q > a + 2. Si
q > max(a, 2c) + 1, alors Hn−1,q(X,S[a,0]E ⊗ S[0,c]E ⊗ Lt) = 0.

Remarque : Ce lemme illustre la difficulté du problème qui consiste à obtenir
des théorèmes d’annulation optimaux : le lemme 16 avec a = 1 donne la borne 6

pour la partition (si e = 5) ; cette borne convient pour démontrer

le théorème 3 mais n’est pas optimale, puisque le lemme 17 donne la borne 4
(a = 3, c = 1). Par contre, j’aurai besoin de cette bonne borne pour montrer
le lemme 19. Pour démontrer un analogue du théorème 3 en tous rangs, il faut
probablement prendre en compte ce genre de subtilités.
Demonstration : On suppose que a + e = 2l, e − c = 2m et t = 0. Si l’on
considère O(2l, 2m) → PE∗ ×X PE∗, alors on obtient

Hn−1,q(X,S[a,0]E ⊗ S[0,c]E) =
Hn,q+1(X,S[a,0]E ⊗ S[1,c+1]E) ⊕ Hn,q+1(X,S[a+1,1]E ⊗ S[0,c]E) si q > c + 1.

Avec O(2l,m) → PE∗ ×X G2(E
∗), on a

Hn−1,q(X,S[a,0]E ⊗ S[0,c]E) = Hn,q+1(X,S[a+1,1]E ⊗ S[0,c]E) si q > 2c + 2.

Enfin, O(l, 2m) → G2(E
∗) ×X PE∗, donne

Hn−1,q(X,S[a,0]E ⊗ S[0,c]E) = Hn,q+1(X,S[a,0]E ⊗ S[1,c+1]E) si q > a + 2.

Le lemme découle de ces trois remarques. •

Lemme 18 Si a et c ont même parité, alors

Hn−2,q(X,S[a,0]E ⊗ S[0,c]E ⊗ Lt) = 0 si q > a + 2c + 2.

Demonstration : Si t = 0, 2l = e + a et 2m = e − c, on regarde la suite
spectrale associée à O(l,m) → G2(E

∗) ×X G2(E
∗), pour P = n + (2e −

l − 3) + (3(m − 1)) − 2. Par la remarque 4, pour q > a + 2c + 2, celle-
ci compare Hn−2,q(X,S[a,0]E ⊗ S[0,c]E) et Hn,q+2(X,S[a+1,1]E ⊗ S[0,c]E) ⊕
Hn,q+2(X,S[a,0]E ⊗ S[1,c+1]E). Or, ces deux derniers groupes sont nuls, grâce
au lemme 17, si q > max{a, 2c}. •

Lemme 19 Si a et c ont même parité, alors

Hn,q(X,S[a+1,1]E ⊗ S[1,c+1]E ⊗ Lt) = 0 si q > a + 2c + 4.
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Demonstration : Si t = 0, 2l = e + a et 2m = e − c, alors O(2l, 2m) →
PE∗ ×X PE∗ donne, pour q > a + 2c + 2,

Hn,q+2(X,S[a+1,1]E ⊗ S[1,c+1]E) ⊕ Hn,q+2(X,S[a+2,2]E ⊗ S[0,c]E)
⊕ Hn,q+2(X,S[0,a]E ⊗ S[2,c+2]E)
= Hn−1,q+1(X,S[1,a+1]E ⊗ S[0,c]E) ⊕ Hn−1,q(X,S[0,a]E ⊗ S[1,c+1]E).

En effet, Hn−2,q(X,S[a,0] ⊗ S[0,c]E) = 0 si q > a + 2c + 2 par le lemme 18. De
même, O(l, 2m) → G2(E

∗) ×X PE∗ et O(2l,m) → PE∗ ×X G2(E
∗) donnent

respectivement, pour q > 2a + c + 2,

Hn,q+2(X,S[a+2,2]E ⊗ S[0,c]E) = Hn−1,q+1(X,S[1,a+1]E ⊗ S[0,c]E) et
Hn,q+2(X,S[0,a]E ⊗ S[2,c+2]E) = Hn−1,q(X,S[0,a]E ⊗ S[1,c+1]E). •

Remarquons enfin que l’on peut améliorer la borne pour S[2,1]E ⊗ S[1,2]E. En
effet, en généralisant la démonstration du lemme précédent, on voit que l’an-
nulation Hn−2,q(X,S[1,0]E ⊗ S[0,1]E) = 0 si q > q0 implique Hn,q(X,S[2,1]E ⊗
S[1,2]E) = 0 si q > q0 +2. Le lemme précédent utilisait la borne q0 = 5 montrée
dans le lemme 18 ; je vais montrer que Hn−2,q(X,S[1,0]E⊗S[0,1]E) = 0 si q > 4
par un argument qui ne fonctionne que pour S[1,0]E ⊗ S[0,1]E. La remarque
spécifique est que, par la règle de Littlewood-Richardson,

S[1,0]E ⊗ S[0,1]E = (det E)2 ⊕ det E ⊗ S[1,1]E.

Puisqu’on a Hn−2,q(X, (det E)2) = 0 si q > 2, il suffit de montrer que
Hn−2,q(X,det E ⊗ S[1,1]E) = 0 si q > 4. Pour cela, on peut supposer que
le rang de E est multiple de 4, e = 4f , et on regarde la suite spectrale corres-
pondant à O(f, 4f) → G4(E)×X PE. Dans cette suite spectrale, notre groupe,
Hn−2,q(X,det E⊗S[1,1]E) = 0, est connecté à Hn−3,q−1(X, (det E)2) (qui s’an-
nule si q − 1 > 3), Hn−1,q+1(X,det E ⊗ S[2,2]E) (nul pour q + 1 > 5 : lemme
17), et enfin Hn,q+1(X,det E⊗S[3,3]E) = 0 (nul pour q+1 > 3 par le théorème
A’ de [Man 97]). On a donc démontré

Lemme 20 Hn,q(X,S[2,1]E ⊗ S[1,2]E) = 0 si q > 6.

Ceci illustre à nouveau la complexité du sujet : on obtient de meilleures bornes
pour des partitions spécifiques que celles obtenues par la méthode générale.
Par ailleurs, comme nous utilisons une récurrence, le fait de ne pas obtenir le
théorème d’annulation optimal pour une partition précise se répercute sur de
nombreuses autres partitions, entrainant progressivement la “catastrophe”.
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Abstract. The general problem we discuss in this paper is how
to prove stability properties for a linear combination of characters of
irreductible discrete series of p-adic groups. Here we give ideas on
how to reduce the case where the Langlands parameter is trivial on
the wild ramification group to the case where this Langlands param-
eter factorizes through the Frobenius; we handle only the case of an
odd orthogonal group. The principal result is that the localization
commutes with the Lusztig’s induction.
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Précisons tout de suite que dans ce qui suit, F est un corps extension finie de Qp

avec p 6= 2 et même pour le théorème principal p grand. Le but de ce travail est
de produire des fonctions sur les groupes p-adiques orthogonaux impairs dont
les intégrales orbitales sur les éléments elliptiques réguliers ne dépendent que
des classes de conjugaison stable. Au passage, on produit aussi des fonctions
dont la somme des intégrales orbitales à l’intérieur d’une classe stable fixée
est nulle. A la fin du papier, on interprète ce résultat en terme de stabilité
des représentations elliptiques de niveau 0 pour ces groupes orthogonaux. Si
l’on a bien prédit les signes qui dépendent encore de la traduction en terme
d’algèbre de Hecke de l’induction de Lusztig (ceci devrait être l’objet de [2]),
c’est la somme des représentations dans un paquet qui est stable et ces combi-
naisons linéaires engendrent l’espace distributions stables combinaison linéaires
de représentations elliptiques.
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Dans le détail, on commence par rappeler ce qu’est une représentation de niveau
zéro et comment on peut lui associer un pseudo-coefficient; ce n’est pas nou-
veau et n’est pas au cœur du papier. C’est quand on passe à la description des
paramètres de ces représentations que l’on entre dans le vif du sujet. On décrit
ces paramètres en terme d’ensemble d’orbites unipotentes de groupes complexes
convenables et de systèmes locaux sur ces orbites; la façon classique de faire
cela est de considérer le morphisme de Langlands-Lusztig, ψ, de WF ×SL(2, C)
dans Sp(2n, C) (le groupe dual) et de décomposer d’abord la restriction de ψ
à WF . Ici on décompose la restriction de ψ au sous-groupe de WF noyau de
l’application WF →< Fr > (où Fr est un Frobénius) et c’est dans le commu-
tant de l’image par ψ de ce sous-groupe que vivent les orbites unipotentes et
systèmes locaux ci-dessus. Pour faire cette classification, on utilise le fait que
ψ est de niveau 0 (cf la définition donnée dans le texte) mais ceci n’est pas
une hypothèse importante à cet endroit. On peut alors utiliser les méthodes de
Lusztig et la représentation de Springer généralisée pour associer aux systèmes
locaux trouvés, des fonctions sur des groupes finis, qui sont en fait des para-
horiques en réduction du groupe orthogonal de départ; c’est là que l’hypothèse
de niveau 0 intervient. Ce sont les faisceaux caractères de Lusztig. On remonte
ces fonctions sur le groupe parahorique en les rendant invariantes par le radi-
cal pro-p-unipotent et on les prolonge par zéro pour en faire des fonctions sur
le groupe orthogonal. Ce sont ces fonctions pour lesquelles on peut calculer
le comportement des intégrales sur les classes de conjugaison d’éléments ellip-
tiques à l’intérieur d’une classe de conjugaison stable. Avec cette méthode, ce
ne sont pas des combinaisons linéraires de paramètres de Langlands qui don-
nent des objets stables mais directement certains paramètres; c’était déjà le cas
en [8] et ici c’est expliqué en 5.1. On revient à des combinaisons linéraires plus
habituelles en faisant une opération style transformation de Fourier, cf. 6.1.

Pour finir, on veut interpréter ces fonctions comme un ensemble de pseudo
coefficients pour les représentations elliptiques (elliptiques au sens d’Arthur)
de niveau zéro (cf. 6.2); vu ce qui est rappelé au début de ce papier, pour le
faire on doit calculer ce que l’on appelle la restriction aux parahoriques des
représentations, c’est-à-dire calculer l’action de chaque parahorique dans la
sous-représentation formée par les vecteurs invariants sous l’action du radical
pro-p-unipotent du dit parahorique. Pour cela, on a besoin de 2 résultats. Le
premier est un résultat non disponible (cf. [2]) qui ramène l’étude de l’algèbre
de Hecke des représentations induites de cuspidales de niveau 0 pour un groupe
réductif à des algèbres de Hecke de représentations induites à partir de cusp-
idales de réduction unipotente pour des groupes réductifs convenables; ici ce
résultat fera intervenir d’autres groupes orthogonaux et des groupes unitaires
et il y aura sans doute un signe et même si on voit les idées le calcul est loin
d’être acquis.

Il faut ensuite savoir calculer la restriction aux parahoriques des représentations
de réduction unipotente pour ces groupes orthogonaux et unitaires. Pour les
groupes orthogonaux, c’est essentiellement fait en [12] (nous l’avons déjà utilisé
dans [8]) et pour les groupes unitaires c’est fait dans [7]. Moyennant ces
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restrictions, on a donc une bonne description de pseudo coefficient pour les
représentations elliptiques de niveau 0 des groupes orthogonaux considérés ici.
Et en utilisant les résultats d’Arthur ([1]) qui ramènent les problèmes de sta-
bilité pour des représentations elliptiques à la stabilité des intégrales orbitales
en les éléments elliptiques de leurs pseudo-coefficients, on en déduit une descrip-
tion des paquets stables de représentations elliptiques de niveau zéro. Tout ceci
est réminiscent de [8].
Pour finir cette introduction, je remercie Anne-Marie Aubert pour les con-
versations que nous avons eues et le texte qu’elle a écrit pour moi, ainsi que
Jean-Loup Waldspurger qui m’a fait un nombre certain de calculs.

1 Représentations de niveau zéro.

En suivant les définitions usuelles et en particulier celles de [8], on appelle
réseau presque autodual un réseau L de V tel que

ωF L̃ ⊂ L ⊂ L̃.

Pour L un réseau presque autodual comme ci-dessus, on note K(L) le stabil-
isateur du réseau et U(L) le radical pro-p-unipotent. Plus généralement, on
appelle châıne de réseaux presque autoduaux une famille L. = (L0, L1, · · · , Lr)
de réseaux de V telle que:

ωF L̃r ⊂ Lr ⊂ · · · ⊂ L1 ⊂ L0 ⊂ L̃0.

Et on généralise de façon évidente la définition de K(L.) et U(L.). Une de-
scription totalement explicite de ces objets a été donnée en [8] 1.2. On y a en
particulier défini la notion d’association.
Soit π une représentation irréductible de G(F ); on dit que π est de niveau 0 s’il
existe un réseau presque autodual L tel que l’espace des invariants sous U(L),
πU(L) est non nul; c’est une définition standard reprise en particulier de [3]. On
note alors πL la représentation de K(L)/U(L) dans ces invariants; c’est une
représentation (non irréductible en général) d’un groupe réductif sur le corps
Fq.
La notion de représentation de niveau zéro pour les groupes GL est de même
ordre et nous l’utiliserons.
La construction de pseudo-coefficients pour les séries discrètes (ou plus
généralement les représentations elliptiques au sens d’Arthur) faite en [8] 1.9
(iv) s’étend au cadre des représentations elliptiques de niveau 0. C’est ce que
nous allons expliquer dans cette partie.

1.1 Support cuspidal

Soit π une représentation irréductible de G(F ); on appelle support cuspidal de
π la donnée d’un sous-groupe de Levi M de G, qui est le Levi d’un parabolique
défini sur F et une représentation cuspidale πcusp de M(F ) tel que π soit
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quotient de l’induite de πcusp (grâce à un parabolique de Levi M). La donnée
de (M,πcusp) est alors définie à conjugaison près par le groupe de Weyl de G.
A partir de maintenant, on suppose que π est de niveau zéro. Il résulte de [9]
6.11 que πcusp l’est aussi (le groupe G étant remplacé par M). On vérifie alors
que l’on peut construire une châıne de réseaux presque autoduaux, L. de V , en
bonne position par rapport à M , telle que πcusp ait des invariants (non nuls)

sous U(L.) ∩ M(F ) =: UM (L.); on note π
UM (L.)
cusp cet espace d’invariants. On

note KM (L.) := K(L.)∩M(F ) et π
UM (L.)
cusp est naturellement une représentation

du groupe fini KM (L.)/UM (L.); elle est cuspidale. On note χcusp la donnée de
cette représentation et du groupe fini qui opère; cela sous-entend que la donnée
d’une châıne de réseaux presque autoduaux, L.,cusp ait été faite. Un tel choix
n’est pas unique mais il l’est à association près.
Il résulte de [9] que pour L un réseau presque autodual de V , la représentation
πL n’est pas nulle si et seulement si K(L) est associé à un sous-groupe
parahorique contenant K(L.,cusp) et le support cuspidal de πL comme
représentation du groupe fini K(L)/U(L) est conjuguée de χcusp. On note
C(K(L))χcusp

l’ensemble des fonctions sur le groupe fini K(L)/U(L) engendré
par les caractères des représentations irréductible ayant un conjugué de χcusp

comme support cuspidal. Et on note C(K(L))cusp,χcusp
la projection de l’espace

C(K(L))χcusp
sur l’ensemble des fonctions cuspidales.

Lusztig associe aux représentations des groupes finis et donc à χcusp un
élément semi-simple sχ dans un certain groupe sur Fq, le groupe Sp(2n′, Fq)×
O(2n′′, Fq). La classe de conjugaison de sχ dans GL(2n, Fq) est elle bien définie.
On dira que sχ, ou plutôt sa classe de conjugaison, est la classe de conjugaison
semi-simple associée à χcusp.

1.2 Représentation elliptique

Comme en [8] 1.7, on utilise la notion de représentation elliptique telle que
précisée par Arthur; c’est, une représentation elliptique est une combinaison
linéaire de représentations tempérées. Si l’on fixe un Levi M de G, Levi d’un
sous-groupe parabolique de G défini sur F et une représentation cuspidale πcusp

de M(F ), on dit que la représentation elliptique, π, est de support cuspidal
(M,πcusp) si toutes les représentations irréductibles qui interviennent dans sa
combinaison linéaire ont cette propriété; et on dit qu’elle est de niveau 0 si le
support cuspidal est de niveau 0.

1.3 Pseudo-coefficients

On reprend les notations de 1.1, en particulier χcusp et C(K(L))cusp,χcusp
. En

suivant [8], on remonte tout élément f de C(K(L))cusp,χcusp
, en une fonction sur

K(L) invariante par U(L) et on la prolonge en une fonction notée fG sur G(F )
en l’étendant par 0 hors de K(L). Par cette procédure, on obtient une fonction
cuspidale sur G(F ), c’est-à-dire une fonction dont les intégrales orbitales sur
les éléments semi-simples non elliptiques sont nulles. Quand on somme cette
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construction sur tous les supports cuspidaux de niveau 0, on construit ainsi un
morphisme de ⊕L/∼C(K(L))cusp dans l’ensemble des fonctions cuspidale sur
G(F ).
On note PsG

ell,χcusp
:= ⊕L/∼C(K(L))cusp,χcusp

que l’on munit d’un pro-
duit scalaire. Pour définir ce produit scalaire, il faut fixer un ensemble de
représentants des groupes K(L) modulo association (les sommes sur K ci-
dessous signifient la somme sur un ensemble de représentants)

(
∑

K

φK ,
∑

K

φ′
K) =

∑

K

w(K)−1(φK , φ′
K)K ,

où le dernier produit scalaire est le produit scalaire usuel sur un groupe fini et
où w(K) est un volume décrit en [8] 1.6. Quand on somme cette construction
sur l’ensemble des supports cuspidaux de niveau 0, on définit PsG

ell,0 muni d’un
produit scalaire. La décomposition suivant les supports cuspidaux (modulo
conjugaison) est une somme directe.
On rappelle la construction des pseudo coefficients pour les représentations
elliptiques de niveau 0 faite (essentiellement) en [8] 1.9. et qui repose sur les
travaux de [10] et de [4]
Pour tout K comme ci-dessus, définissons B(K) (resp. B(K)χcusp

) une base
de C(K)cusp (resp. C(K)cusp,χcusp

) et pour toute représentation virtuelle
tempérée, D, posons

φD := ⊕K

∑

f∈B(K)

w(K)D(fG)f ;

φD,χcusp
:= ⊕K

∑

f∈B(K)χcusp

w(K)D(fG)f.

Théorème. L’application D 7→ φD induit un isomorphisme de l’espace en-
gendré par les caractères des représentations elliptiques de niveau 0 sur PsG

ell,0.
Cet isomorphisme est compatible à la décomposition suivant le support cuspi-
dal.
On peut récrire φD sous la forme la plus utilisable. On pose:

ϕD :=
∑

K

w(K)trK(D),

où trK(D) est la trace pour la représentation de K/UK dans l’espace des in-
variants de la représentation D sous UK (le radical pro p-unipotent de K).
On note projellϕD la projection de ϕD sur les fonctions cuspidales (cette pro-
jection se fait pour chaque parahorique K individuellement). On sait alors
définir (projellϕD)G qui est un pseudo coefficient de D si D est elliptique
(cf [8] 1.9 (iv)). Si D a χcusp (cf. ci-dessus) pour support cuspidal, alors
projellϕD ∈ ⊕KC[K]cusp

Remarque. Avec les notations ci-dessus, (projellϕD)G est un pseudo-
coefficient de la représentation elliptique D.
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On rappelle aussi que d’après Arthur [1] 6.1, 6.2 (on a enlevé l’hypothèse
relative au lemme fondamental en [8] 4.6) une combinaison linéaire D de
représentations elliptiques est stable si et seulement si les intégrales orbitales de
ϕG

D sont constantes sur les classes de conjugaison stable d’éléments elliptiques
réguliers.

2 Classification des paramètres discrets de niveau 0

On considère les couples (ψ, ǫ) de morphismes continus suivants:

ψ : WF × SL(2, C) → Sp(2n, C)
ǫ : CentSp(2n,C)(ψ) → {±1},

où, en notant IF le sous-groupe de ramification de WF , la restriction de ψ à
IF est triviale sur le groupe de ramification sauvage et où le centralisateur de
ψ dans Sp(2n, C) n’est pas inclus dans un sous-groupe de Levi de Sp(2n, C).
De tels couples sont appelés des paramètres discrets de niveau 0; comme la
condition ne porte que sur ψ et non sur ǫ, on peut dire aussi que ψ est discret
de niveau 0 sans référence à ǫ.

2.1 Morphismes de paramétrisation

Pour donner la classification des morphismes comme ci-dessus, il est plus simple
d’avoir fixé un générateur du groupe abélien IF /PF , où PF est le groupe de
ramification sauvage. Et pour cela, il est plus simple de fixer une extension
galoisienne modérément ramifiée E/F et de ne considérer que les morphismes
ψ qui se factorisent par le groupe de Weil relatif WE/F . On fixe Fr une
image réciproque d’un Frobénius de l’extension non ramifiée dans WE/F et
sE un générateur du groupe multiplicatif du corps résiduel de E. Dans ce
cas la restriction de ψ à IF est déterminée par l’image de sE . A conjugaison
près c’est donc la donnée des valeurs propres de la matrice image de sE par
ψ qui détermine cette restriction. On va donc fixer cette restriction en la
notant χ, c’est à dire fixer une matrice de Sp(2n, C) dont les valeurs propres
sont des racines de l’unité d’ordre premier à p. On peut donc oublier E et
garder χ et considérer que χ est déterminé par une collection de racines de
l’unité, l’ensemble des valeurs propres ensemble que l’on note V P (χ). Pour
u ∈ V P (χ) on note mult(u) la multiplicité de u en tant que valeur propre.
L’action du Frobenius transforme χ en χq, ainsi si u ∈ V P (χ) alors uq ∈
V P (χ) et mult(u) = mult(uq). Comme χ est à valeurs dans Sp(2n, C), l’espace
propre pour la valeur propre u est en dualité avec l’espace propre pour la valeur
propre u−1, d’où aussi mult(u) = mult(u−1). A l’intérieur de V P (χ) on définit
l’équivalence engendrée par la relation élémentaire u ∼ uq. On note [V P (χ)]
les classes d’équivalence et si u ∈ V P (χ), on note [u] sa classe d’équivalence.
On vérifie que s’il existe u ∈ V P (χ) tel que u−1 /∈ [u] alors le centralisateur de
ψ est inclus dans un sous-groupe de Levi de Sp(2n, C); on suppose donc que
u−1 ∈ [u] pour tout u. Pour tout u ∈ V P (χ), u /∈ {±1}, on définit ℓ[u] comme
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le plus petit entier tel que u−1 = uq
ℓ[u]

; le cardinal de la classe [u] est alors
2ℓ[u]. On pose: m([u]) := mult(u) où u ∈ V P (χ) dans la classe de [u] comme
la notation le suggère. On remarque que

2n = m(1) + m(−1) +
∑

[u]∈[V P (χ)],u/∈{±1}
m([u])2ℓ[u].

Soit M un entier et U une orbite unipotente de GL(M, C); on dit que U
est symplectique (resp. orthogonale) si tous les blocs de Jordan sont pairs
(resp. impairs) et on dit qu’elle est discrète si son nombre de blocs de Jordan
d’une taille donnée est au plus 1. D’où la notation symplectique discrète et
orthogonale discrète qui allie les 2 définitions.
Proposition. L’ensemble des homomorphismes ψ ci-dessus (c’est-à-dire dis-
crets et de niveau 0), pris à conjugaison près, dont la restriction à IF est
conjuguée de χ est en bijection avec l’ensemble des collections d’orbites unipo-
tentes {U[u],ζ , [u] ∈ [V P (χ)], ζ ∈ {±1}}, de groupe GL(m([u], ζ), C), ce qui
définit l’entier m([u], ζ) (éventuellement 0) avec les propriétés suivantes:

∀[u] ∈ [V P (χ)], m([u],+) + m([u],−) = m([u]);

pour tout [u] ∈ [V P (χ)], u 6= ±1, l’orbite U[u],+ est une orbite symplectique
discrète, l’orbite U[u],− est une orbite orthogonale discrète et les orbites U[±1],±
sont des orbites symplectiques discrètes.
L’intérêt de ramener la classification à une collection d’orbites unipotentes est
de pouvoir ensuite utiliser la représentation de Springer généralisée pour con-
struire des représentations de groupes de Weyl, puisque l’on aura aussi des
systèmes locaux sur ces orbites.
On a décrit avant l’énoncé comment on comprenait la restriction de ψ à IF ;
pour avoir la restriction de ψ à WF , il faut encore décrire l’image du relèvement
du Frobénius, Fr, à conjugaison près. Par commodité et uniquement dans
cette démonstration, on note V l’espace vectoriel C2n et pour u ∈ V P (χ), on
note V [u] l’espace propre correspondant à cette valeur propre. Les conditions
que doivent vérifier ψ(Fr) sont: être une matrice symplectique et induire un
isomorphise entre V [u] et V [uq] pour tout u ∈ V P (χ).
Pour traduire ces conditions, fixons u ∈ V P (χ). Il faut distinguer les 2 cas:

premier cas: u 6= ±1. On remarque que ψ(Frq2ℓu
) induit un isomorphisme de

V [u] dans lui-même. On note Fu cet homomorphisme. Le groupe GL(V [u])
s’identifie naturellement à un sous-groupe de Sp(2n, C). Comme on ne cherche
à classifier les morphismes ψ qu’à conjugaison près, on peut encore conjuguer
sous l’action de GL(V [u]); cela se traduit sur Fu par la conjugaison habituelle.
A conjugaison près Fu est donc déterminé par ses valeurs propres dont on note
V P (Fu) l’ensemble. On vérifie encore que si V P (Fu) contient un élément autre
que ±1, alors l’image de ψ est incluse dans un sous-groupe de Levi propre de
Sp(2n, C). Pour ζ ∈ {±1}, on note V [u, ζ] l’espace propre pour la valeur propre
ζ de Fu. On remarque pour la suite que V [u, ζ] est muni du produit scalaire:

∀v, v′ ∈ V [u, ζ], < v, v′ >u:=< v,ψ(Fr)qℓu
v′ > .
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Et, pour v et v′ comme ci-dessus:

< v,ψ(Fr)qℓu
v′ > = < ψ(Fr)−qℓu

v, v′ >

= ζ < ψ(Fr)−qℓu
Fuv, v′ >

= ζ < ψ(Fr)qℓu
v, v′ > (1)

= −ζ < v′, ψ(Fr)qℓu
v >

= −ζ < v′, v >u .

(2)

Ainsi, la forme < , >u est symplectique pour ζ = 1 et orthogonale pour ζ = −1.
Il est facile de vérifier que cette forme est non dégénérée. Ces constructions
se font donc pour tout u ∈ V P (χ) différent de ±1. De plus ψ(Fr) induit une
isométrie de V [u, ζ] sur V [uq, ζ]; ceci permet de définir intrinsèquement l’espace
orthogonal ou symplectique V ([u], ζ) pour tout [u] ∈ [V P (χ)] muni du produit
scalaire < , >[u].

deuxième cas: u ∈ {±1}. On définit ici Fu comme l’action de ψ(Fr) comme
automorphisme de V [u]. On vérifie comme ci-dessus que si Fu a des valeurs
propres autres que ±1, l’image de ψ se trouve dans un Levi de Sp(2n, C); on
définit donc encore V [u, ζ] pour ζ = ±1 les valeurs propres de Fu. Mais ces
espaces sont ici des espaces symplectiques par restriction de la forme symplec-
tique.

Comme ψ(SL(2, C)) commute à ψ(WF ) les images des éléments unipotents
de SL(2, C) s’identifient à des éléments unipotents des automorphismes des
espaces V ([u], ζ) pour tout [u] ∈ [V P (χ)] et tout ζ ∈ {±1}. A conjugaison
près, le morphisme ψ restreint à SL(2, C) est même uniquement déterminé par
l’orbite de ces éléments. Ce sont ces orbites qui sont notées U[u],ζ dans l’énoncé.
Comme les éléments de ψ(SL(2, C)) commutent à ψ(Fr) et respectent la forme
symplectique, ils respectent chaque forme < , >u. Ce sont donc des orbites
unipotentes du groupe d’automorphismes de la forme. Il reste à remarquer
que si l’une de ces orbites a 2 blocs de Jordan de même taille, alors l’image de
ψ est incluse dans un Levi. Réciproquement la donnée des orbites permet de
reconstruire (à conjugaison près) l’homomorphisme ψ.

Remarque. Soit χ comme ci-dessus et identifions les racines de l’unité d’ordre
premier à p de C avec leurs analogues dans Fq. Les éléments de V P (χ) avec
leur multiplicité définissent donc un élément de GL(2n, Fq) dont la classe de
conjugaison est bien définie.

Avec cette remarque, on peut associer à χ un élément semi-simple sχ bien défini
à conjugaison près dans GL(2n, Fq). C’est l’analogue du sχ de 1.1.

2.2 Système local

On fixe ψ, ǫ commme dans l’introduction de cette section et on reprend les
notations de la preuve précédente en notant Jord(U[u],ζ), où [u] ∈ [V P (χ)] et
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ζ ∈ {±1}, l’ensemble des blocs de Jordan des orbites unipotentes associées à
ψ.
Remarque. Le centralisateur de ψ est isomorphe à

∏

[u]∈V P (χ)

∏

α∈Jord(U[u],ζ)

{±1}.

L’image du centre de Sp(2n, C) dans ce commutant est l’élément −1 diag-
onal. Ainsi ǫ s’identifie à une application de ∪[u]∈[V P (χ)];ζ∈{±1}Jord(U[u],ζ)
dans {±1}.
En reprenant la preuve précédente, on voit que le commutant de ψ s’identifie
au commutant de ψ(SL(2, C)) vu comme sous-ensemble de ×[u]∈[V P (χ)] ×ζ=±
Aut(V ([u], ζ), < , >u). On sait calculer ce commutant. C’est alors un produit
de groupes orthogonaux ×[u],ζ ×α∈Jord(U[u],ζ) O(multα, C), où multα est la
multiplicité de α comme bloc de Jordan de l’orbite en question; pour ψ discret
cette multiplicité est 1. Pour avoir ce résultat la seule hypothèse utilisée est
que U[u],ζ est symplectique si < , >u est symplectique et orthogonale sinon. On
aura aussi à regarder le cas elliptique où cette hypothèse sur le type de U[u],ζ est
satisfaite mais pas la multiplicité 1; on utilisera alors cette description. Dans
le cas de la multiplicité 1, le groupe orthogonal se réduit à {±1}; d’où l’énoncé,
l’identification du centre étant immédiate.
Remarquons encore que quelle que soit la multiplicité, on peut voir le ǫ comme
une application de ×[u],ζJord(U[u],ζ) dans {±1}.

3 Faisceaux caractères.

3.1 Construction de fonctions.

Soit m ∈ N; on utilisera fréquemment la notation D(m) pour l’ensemble
des couples d’entiers (m′,m′′) tels que m = m′ + m′′. On fixe χ un mor-
phisme comme en 2.1. On reprend les notations [V P (χ)] de 2.1. Pour
tout [u] ∈ [V P (χ)] avec [u] 6= ±1, on a défini les entiers m([u]) (qui sont
les multiplicités des valeurs propres). On pose n([u]) = m([u]) si [u] 6=
±1 et n(1) = m(1)/2, n(−1) = m(−1)/2. Pour (n′

[u], n
′′
[u]) ∈ D(n([u])),

on note C[Ŵn′
[u]

,n′′
[u]

] := C[Ŝn′[u]] ⊗ C[Ŝn′′[u]] et C[ŴD([u])] l’espace vecto-

riel ⊕(n′
[u]

,n′′
[u]

)∈D(n([u])C[Ŵn′
[u]

,n′′
[u]

], où les chapeaux représentent les classes

d’isomorphie de représentations du groupe chapeauté. Pour u = ±1, la sit-
uation est plus compliquée à cause de l’existence de faisceaux caractères cusp-
idaux. On garde la même notation (pour unifier) mais on remplace Ŝn′[u] et

Ŝn′′[u] par l’ensemble des symboles de rang n′[u] respectivement n′′[u] de défaut
impair respectivement pair; il est rappelé en [13] 2.2, 2.3 comment ces symboles
paramétrisent aussi des représentations irréductibles de groupes; un symbole
de défaut impair, I =: 2h+1, et de rang n′([u]) paramétrise une représentation
du groupe de Weyl de type C et de rang n′([u])−h2−h. Dans le cas du défaut
pair, il faut admettre les défauts négatifs; dans la référence donnée tout est
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expliqué avec précision, les difficultés venant de la non connexité des groupes
orthogonaux pairs et du fait que pour un tel groupe il faut regarder simul-
tanément la forme déployée et celle qui ne l’est pas. Grosso modo, un symbole
de défaut pair, 2h′′, et de rang n′′([u]) paramétrise une représentation d’un
groupe de Weyl de type C de rang n′′([u]) − (h′′)2.
Fixons maintenant un ensemble de paires (n′[u], n′′[u]) ∈ D(n([u]). On pose:

n′ :=
∑

[u]∈[V P (χ)];[u] 6=[±1]

n′[u]ℓ[u] + (n′[1] + n′[−1]),

n′′ :=
∑

[u]∈[V P (χ)];[u] 6=[±1]

n′′[u]ℓ[u] + (n′′[1] + n′′[−1]).

On pose ♯ = iso si G est déployé et ♯ = an sinon. On note alors Kn′,n′′ un sous-
groupe parahorique (non connexe) de G dont le groupe en réduction, Kn′,n′′

est isomorphe à SO(2n′ + 1, Fq) × O(2n′′, Fq)♯ (cf. 1.1). Il est bien défini à
association près. On note M un sous-groupe de Kn′,n′′ isomorphe à

×[u] 6=[±1]U(n′[u], Fq2ℓ[u]/Fqℓu ) × SO(2(n′[1] + n′[−1]) + 1, Fq)

×[u] 6=[±1]U(n′′[u], F
q
2ℓ[u] /Fqℓu ) × O(2(n′′[1] + n′′[−1]), Fq)♯;

ci-dessus, on n’a pas précisé le plongement car cela n’a pas d’importance, sur
les corps finis il n’y a qu’une classe de formes unitaires. On note n′ et n′′ les
collections (n′[u]) et (n′′[u]) comme ci-dessus. Grâce à Lusztig (étendu au cas
non connexe cf. [13] 3.1 et 3.2), on sait associer à un élément de C[Ŵn′,n′′ ]
et à χ une fonction sur M, la trace du faisceau caractère associé. Puis on
définit cette fonction sur Kn′,n′′ (par induction); c’est une fonction invariante
par conjugaison.
En sommant sur toutes les décompositions D(χ), on construit ainsi une appli-
cation de C[ŴD(χ)] dans l’ensemble des fonctions ⊕n′,n′′∈D(n)C[Kn′,n′′ ]. On
remonte ensuite de telles fonctions en des fonctions sur Kn′,n′′ par invariance et
on les prolonge à SO(2n + 1, F )♯ par 0. On note k♯,χ cette application. Quand
on fait une somme directe de ♯ = iso avec ♯ = an, on la note kχ.

3.2 Support cuspidal des faisceaux caractères

Dans cette section, on fixe quelques notations relatives aux faisceaux caractères
quadratiques unipotents; elles viennent essentiellement (à des modifications
formelles près) de [13] 3.1 et 3.7 lui-même fortement inspiré de Lusztig. Les
difficultés viennent de la présence de faisceaux caractères cuspidaux; c’est le
cas des groupes orthogonaux impairs et pairs qui a été sommairement expédié
ci-dessus qu’il faut préciser.
Pour les groupes orthogonaux impairs, SO(2m′ + 1, Fq) on forme les faisceaux
caractères quadratiques unipotents avec la donnée d’un couple ordonné de 2
symboles de défaut impair dont la somme des rangs est m′. Notons Λ′

+,Λ′
− ces

2 symboles et I+, I− leurs défauts. On écrit encore I± =: 2h′
± + 1 en utilisant
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le fait que les défauts sont impairs. On retrouve alors à peu près les notations
de [13] 3.7. On considère le couple d’entier (h′

+ + h′
− + 1, |h′

+ −h′
−|) et le signe

σ′ := + si h′
+ ≥ h′

− et − sinon. Dans ce couple d’entiers, l’un des nombres
est pair et l’autre est impair; on note r′p celui qui est pair et r′im celui qui est
impair. On note n′

± le rang de Λ′
± et on pose N ′

± := n′
± − h′

±(h′
± + 1). Ainsi

Λ′
± paramétrise une représentation du groupe de Weyl de type C de rang N ′

±.
Tandis que le couple r′im, σ′r′p détermine un faisceau cuspidal pour le groupe

SO(r
′2
im + r

′2
p , Fq) et l’on a: 2N ′

+ + 2N ′
− + r

′2
im + r

′2
p = 2m′ + 1.

Pour les groupes orthogonaux pairs, O(2m′′, Fq)♯, on forme un faisceau car-
actère quadratique unipotent à l’aide d’un couple ordonné de 2 symboles eux-
mêmes ordonnés au sens qu’un symbole est formé de 2 ensembles de nom-
bres (avec des propriétés). Au sens habituel, l’ordre des ensembles n’a pas
d’importance et le défaut est la différence entre le cardinal de l’ensemble ayant
le plus d’élément (au sens large) et celui de l’ensemble ayant le moins d’éléments
(au sens large). Ici, les 2 ensembles sont ordonnés et le défaut est la différence
entre le cardinal du premier ensemble et celui du deuxième, ainsi le défaut
peut-être négatif. On demande uniquement que les défauts soient pairs (0 est
un nombre pair). On note Λ′′

+,Λ′′
− le couple des 2 symboles et P+, P− la valeur

absolue de leur défaut et ζ+, ζ− les signes des défauts; on fera une convention
sur le signe quand le défaut est 0 ci-dessous, pour le moment on n’en a pas
besoin. Ainsi P± sont des nombres positifs ou nuls pairs. On pose encore
r′′± := (ζ+P+ ± ζ−P−)/2; on a ainsi 2 éléments de Z de même parité. On note
n′′
± le rang de Λ′′

± et N ′′
± := n′′

±−(h′′
±)2 (où h′′

± = 1/2P±). Ainsi Λ′′
± paramétrise

une représentation du groupe de Weyl de type C de rang N ′′
±. Tandis que le

couple r′′+, r′′− détermine un faisceau cuspidal pour le groupe O(r
′′2
+ + r

′′2
− , Fq)

(cf. [13] 3.1) et l’on a: 2N ′
+ + 2N ′

− + r
′′2
+ + r

′′2
− = 2m′′.

On aura à considérer simultanément 2 couples ordonnés formé chacun de 2
symboles (Λ′

ǫ,Λ
′′
ǫ ); ǫ ∈ {±} où, pour ǫ = + ou −, Λ′

ǫ est de défaut impair, Iǫ et
Λ′′

ǫ est de défaut pair ζǫPǫ avec Pǫ ∈ N et ζǫ ∈ {±} avec ici la convention que
si Pǫ = 0 alors ζǫ = (−1)(Iǫ−1)/2.

Pour ǫ = +1 ou −1, on pose précisément ŴD(n[ǫ]) l’ensemble des couples de
symboles Λ′

ǫ,Λ
′′
ǫ comme ci-dessus dont la somme des rangs vaut n[ǫ]. Ainsi

ŴD(n[+1])×ŴD(n[−1]) est un ensemble en bijection avec l’ensemble des quadru-
plets de symboles ordonnés dont le premier et le troisième sont de défaut impair
et les 2 autres de défaut pair avec des conditions sur la somme des rangs. On
pourra donc interpréter cet ensemble en utilisant ce qui est ci-dessus comme un
ensemble des couples de représentations quadratiques unipotentes des groupes
SO(2m′ + 1, Fq) × O(2m′′, Fq) où m′ + m′′ = n[+1] + n[−1]. Avec cette in-
terprétation et ce que l’on a vu ci-dessus, les défauts des symboles déterminent
des faisceaux cuspidaux, c’est-à-dire, combinatoirement, des nombres entiers
r := (r′+, r′′+, r′−, r′′−) et un signe σ′ avec r′+ positif et impair, r′− positif ou
nul et pair et r′′+, r′′− des entiers relatifs de même parité. On pose alors |r| le
quadruplet (r′+, |r′′+|, r′−, |r′′−|). C’est lui qui permet de construire des fonctions
de Green utiles pour la localisation (cf. 4.1).
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On note C[ŴD(n[+1])] ⊗ C[ŴD(n[−1])] l’espace vectoriel de base ŴD(n[+1]) ×
ŴD(n[−1]).

3.3 Représentation de Springer-Lusztig

On fixe (ψ, ǫ) un paramètre discret de niveau 0 et on note encore χ la restriction
de ψ au groupe de ramification de WF . A un tel paramètre, on a associé une
collection d’orbites U[u],ζ où [u] ∈ [V P (χ)] et ζ ∈ {±1} et ǫ s’identifie à un
caractère du groupe des composantes du centralisateur d’un élément de U[u],ζ ;
on voit donc ǫ comme un morphisme de ∪[u],ζJord(U[u],ζ) dans {±1} (cf. 2.2).
Pour [u] ∈ [V P (χ)], [u] 6= ±1, on pose U[u] := U[u],+ ∪ U[u],− ou plutôt l’orbite
unipotente de GL(m([u]), C) engendrée et on pose:

n′[u]ψ,ǫ :=
∑

α∈Jord(U[u]);ǫ(α)=+1

α, n′′[u]ψ,ǫ :=
∑

α∈Jord(U[u]);ǫ(α)=−1

α.

On définit alors U ′
[u] comme l’orbite unipotente de GL(n′([u])ψ,ǫ, C) ayant

comme bloc de Jordan l’ensemble des α blocs de Jordan de U[u] pour lesquels
ǫ(α) = +. On définit de même U ′′

[u].
Pour u = ±1, on pose:

n′[u]ψ,ǫ =
∑

α∈Jord(U[u],+)

α, n′′[u]ψ,ǫ =
∑

α∈Jord(U[u],−)

α.

Pour unifier les notations, on pose ici aussi U ′
[u] := U[u],+ et U ′′

[u] :=

U[u],−. Cette collection de paires (n′[u]ψ,ǫ, n
′′[u]ψ,ǫ) est naturellement notée

n′
ψ,ǫ, n

′′
ψ,ǫ et on voit la représentation de Springer-Lusztig comme l’élément de

C[Ŵn′
ψ,ǫ,n′′

ψ,ǫ
] défini ainsi:

soit [u] ∈ [V P (χ)], [u] 6= ±1; Springer a associé à l’orbite U ′
[u] une

représentation de Sn′[u]ψ,ǫ
, non irréductible en général, dans la cohomologie

de la variété des Borel (on regarde toute la représentation pas seulement celle

en degré maximal). Cela définit donc un élément de C[Ŝn′[u]ψ,ǫ
]. On fait la

même construction en remplaçant U ′
[u] par U ′′

[u] et on obtient un élément de

C[Ŝn′′[u]ψ,ǫ
].

Soit maintenant u = ±1. Ce sont les constructions de Lusztig qui sont rappelées
en [8] 5.5 (et [12] 5.1). Ici la situation est un peu plus compliquée puisque l’on
a 4 orbites les Uu,ǫ′ , pour u, ǫ′ ∈ {±1} avec des systèmes locaux et non pas
2 comme dans [8]. A chacune de ces orbites, Uu,ǫ′ avec son système local
est associé par la correspondance de Springer généralisée, un entier noté ku,ǫ′

et une représentation non irréductible en général du groupe de Weyl de type
C, WNu,ǫ′

, où l’on a posé Nu,ǫ′ := 1/2(
∑

α∈Jord(Uu,ǫ′ )
α − ku,ǫ′(ku,ǫ′ + 1)).

On considère les 2 couples indexés par le choix d’un élément u dans {±1}
(ku,+ +ku,− +1, |ku,+−ku,−|) et les 2 signes ζu qui sont le signe de ku,+−ku,−
quand ce nombre est non nul; s’il est nul le signe est (−1)ku,+ par convention.
Dans les couples l’un des nombres est impair et on le note Iu et l’autre est
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pair et est noté Pu. En regardant le produit tensoriel de la représentation de
WNu,+

avec celle de WNu,− , on obtient une représentation du produit qui se
traduit en terme de couples de symboles dont le premier est de défaut Iu et le
deuxième de défaut ζuPu. C’est donc ainsi que l’on construit un élément de
C[Ŵn′(u)ψ,ǫ,n′′(u)ψ,ǫ

].

3.4 Induction, restriction

Je ne connais pas d’autre justification aux constructions faites ci-dessous que
le fait que le résultat énoncé en [8] 5.5 et démontré en [12] suggère la conjecture
de 6.2.
Il s’agit de construire une application ρ ◦ ι de C[ŴD(χ)] dans lui-même. Cela
provient d’un produit tensoriel d’applications ρ[u] ◦ ι[u] de même nature pour
tout [u] ∈ [V P (χ)]. Ces applications sont définies en [8] 3.18 pour [u] = [±1]
et [8] 3.1 et 3.2 dans le cas de [u] 6= [±1]; on en rappelle la définition d’autant
que l’on en donne une présentation un peu différente.
Considérons le cas où [u] 6= ±1; on note Wm[u] le groupe de Weyl de type C et de
rang m([u]). Pour (n′[u], n′′[u]) ∈ D(m[u]), on définit de même Wn′[u],Wn′′[u];
il existe une application naturelle de Wn′[u] × Wn′′[u] sur Sn′[u] × Sn′′[u]. On
peut ainsi remonter des représentations de Sn′[u]×Sn′′[u] en des représentations
de Wn′[u] × Wn′′[u]; ensuite on tensorise la représentation obtenue par le car-

actère sgnCD de Wn′′[u]. Puis on induit pour trouver un élément de C[Ŵm[u]].
L’application ι[u] est la somme sur toutes les paires dans D(m[u]) de toutes ces
opérations; ι[u] définit alors un isomorphisme de

⊕(n′[u],n′′[u])∈D(m[u])C[Ŝn′[u] × Ŝn′′[u]] → C[Ŵm[u]].

Fixons encore (n′[u], n′′[u]) ∈ D(m[u]). On voit maintenant Sn′[u] × Sn′′[u]

comme un sous-ensemble de Wn′[u] × Wn′′[u]. Il y a en fait 2 façons presque
naturelles d’envoyer le groupe Sm dans le groupe Wm (m ∈ N); la première est
l’homomorphisme évident σ 7→ w avec w(±i) = ±σ(i) pour tout i ∈ [1,m]. La
deuxième façon n’est pas un homomorphisme de groupe car elle est définie par
σ 7→ w avec w(±i) = ∓σ(i); bien que cette application n’est pas un morphisme
de groupe, elle est équivariante pour l’action adjointe. En revenant à notre
inclusion cherchée c’est le produit de la première façon appliquée à Sn′[u] avec la
deuxième appliquée à Sn′′[u]. Cela permet alors de restreindre des éléments de

C[Ŵm[u]] en des éléments de C[Ŝn′[u] × Ŝn′′[u]]. En sommant ces constructions
sur toutes les paires dans D(m[u]), on obtient ρ[u]. Contrairement à ι[u], ρ[u]

n’est pas un isomorphisme mais ce qui est important mais qui n’intervient que
de façon cachée dans 6.2 est que le composé ρ[u] ◦ ι[u] est un isomorphisme si on
se limite aux fonctions à support dans les éléments U -elliptiques, c’est-à-dire
aux permutations qui se décomposent en produit de cycles de longueur impaire
(cf. loc. cit.).
On va décrire d’une autre façon cette application ρ◦ ι précisément quand on se
limite aux permutations qui se décomposent en produit de cycles de longueur
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impaire, en utilisant le fait qu’induire puis restreindre peut aussi se faire en sens
inverse, d’abord restreindre puis induire. Pour cela soit m ∈ N; on note D(m)
l’ensemble des couples (m′,m′′) tels que m = m′+m′′ et DD(m) l’ensembles des
quadruplets (mi,j ; i, j ∈ {′,′′ }) tels que

∑
i,j mi,j = m. Soit (m′,m′′) ∈ D(m)

et (mi,j) ∈ DD(m); on dit que (mi,j) <d (m′,m′′) si m′ = m
′,′ + m

′,′′ et
(mi,j) <e (m′,m′′) si m′ = m

′,′ + m
′′,′ (d est pour direct et e pour entrelacé).

On notera plus génériquement m et m les éléments de D(m) et de DD(m).
Pour m ∈ D(m), on considère de façon évidente le groupe Sm = Sm′ × Sm′′ ;
on définit de même les groupes Sm pour m ∈ DD(m). On note χm le signe

(−1)m
′′,′′

.

Fixons m ∈ D(m); pour m ∈ D(m), on définit l’application resd,m,m de C[Ŝm]

dans C[Ŝm] comme l’application de restriction évidente si m <d m et 0 sinon.

Et on note inde,m,m l’application de C[Ŝm] dans C[Ŝm] qui est l’induction si
m <e m et 0 sinon; ici il faut, pour l’induction, considérer l’inclusion naturelle
de Sm dans Sm où l’on échange d’abord 2e et 3e facteur.

Remarque. Fixons m0 ∈ D(m) et considérons ρ ◦ ι comme une application

de C[Ŝm0
] dans ⊕m∈D(m)C[Ŝm]. On a alors, en se limitant aux fonctions

invariantes de support l’ensemble des permutations ayant des cycles de longueur
impaire:

ρ ◦ ι = ⊕m∈D(m)

∑

m∈DD(m)

inde,m,m ◦
(

χmresd,m0,m

)

Le seul point est de remarquer que sur les permutations n’ayant que des cycles
de longueur impaire le signe χm cöıncide avec sgnCD tel que définit ci-dessus.

Définition. Dans la suite, on définit ρ ◦ ι comme dans la remarque ci-dessus.

Les définitions du cas [u] = [±1] sont plus compliquées (cf. [8] en partic-
ulier 3.18 et 3.19) à cause de la partie cuspidale. On les présente ainsi. On
fixe ǫ ∈ {±1}; on doit définir une application de ŴD(n[ǫ]) dans C[ŴD(n[ǫ])]

que l’on prolongera linéairement en un endomorphisme de C[ŴD(n[ǫ])]. Et on
veut l’interpréter comme une restriction suivie d’une induction tordue par un
caractère. Un élément de ŴD(n[ǫ]) est la donnée de deux symboles l’un de
défaut impair et l’autre de défaut pair dont la somme des rangs est n′[ǫ]. De
façon beaucoup plus compliquée mais équivalente (et qui permet de parler de
représentations) c’est la donnée:

d’un entier impair Iǫ, d’un entier pair Pǫ, d’un signe ζǫ, de 2 entiers N ′
ǫ, N

′′
ǫ

tous ces nombres vérifiant l’égalité N ′
ǫ + N ′′

ǫ + (I2
ǫ + P 2

ǫ − 1)/4 = n[ǫ] et de 2
représentations irréductibles l’une de WN ′

ǫ
et l’autre de WN ′′

ǫ
, les groupes de

Weyl de type C et de rang écrit en indice. On suppose que ζǫ = (−1)(Iǫ−1)/2

si Pǫ = 0.

On pose ζ̃ǫ := (−1)(Iǫ−1)/2ζǫ; en particulier, on a ζ̃ = 1 si Pǫ = 0.

On note χ̃ le caractère trivial si Iǫ > Pǫ et le caractère sgnCD sinon.
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On définit une application de C[ŴN ′
ǫ
× ŴN ′′

ǫ
] dans

⊕(M ′
ǫ,M ′′

ǫ )|M ′
ǫ+M ′′

ǫ =N ′
ǫ+N ′′

ǫ
C[ŴM ′

ǫ
× ŴM ′′

ǫ
]

par restriction puis induction tordue de façon similaire le cas des groupes
symétriques; c’est-à-dire que l’on fixe M ′

ǫ,M
′′
ǫ avec M ′

ǫ + M ′′
ǫ = N ′

ǫ + N ′′
ǫ et

considère les quadruplets N i,j
ǫ où i, j ∈ {′,′′ } vérifiant N i,′

ǫ + N i,′′

ǫ = N i
ǫ pour

i =′ et ′′ et N
′,j
ǫ + N

′′,j
ǫ = M j

ǫ pour j =′ et ′′, s’il en existe (sinon on ne fait
rien pour ce choix de M ′

ǫ,M
′′
ǫ ). On restreint la représentation de WÑ ′

ǫ
×WÑ ′′

ǫ

au groupe ×i,jWNi,j
ǫ

, on tensorise la restriction par le caractère de ce groupe

qui vaut: sgn
(1−ζǫ)/2
CD sur W

N
′,′′
ǫ

, χ̃ sur W
N

′′,′
ǫ

, 1 sur W
N

′,′
ǫ

et χ̃sgn
(1+ζǫ)/2
CD sur

W
N

′′,′′
ǫ

.

On induit au groupe WM ′
ǫ
×WM ′′

ǫ
après avoir échangé les 2e et 3e facteurs, c’est-

à-dire W
N

′,′′
ǫ

et W
N

′′,′
ǫ

. Puis on somme sur tous les quadruplets. Ensuite on

identifie ⊕(M ′
ǫ,M ′′

ǫ )|M ′
ǫ+M ′′

ǫ =N ′
ǫ+N ′′

ǫ
C[ŴM ′

ǫ
×ŴM ′′

ǫ
] à l’ensemble des combinaisons

linéaires de base les couples de symboles ordonnés le premier de défaut impair
égal à Iǫ et le deuxième de défaut pair égal à ζ̃ǫPǫ.
C’est la construction de [8] 3.18 que l’on a complètement explicitée. C’est assez
compliqué; remarquons que la présence du caractère χ̃ n’a joué de rôle dans
[8] qu’en 5.5. Il en est de même ici, ce caractère ne joue aucun rôle sauf dans
l’énoncé de la conjecture 6.2. La prise en compte de ζǫ dans la définition, elle
joue un rôle mais dans la définition de kχ, ζǫ aussi joue un rôle et en fait ces 2
prises en compte se compensent en grande partie (cf. la preuve de 4.2).

4 Localisation

4.1 Localisation des faisceaux caractères

On va avoir besoin d’une formule due à Lusztig qui calcule les faisceaux car-
actères au voisinage des points semi-simples en terme de fonctions de Green.
Elle est écrite en toute généralité dans [5] et explicitée dans certains cas dans
[13] et [8]; c’est la présentation de [13] par.7 que l’on reprend. On fixe un
élément semi-simple gs de SO(2n + 1, F )♯ et on suppose que toutes les valeurs
propres de gs sont des racines de l’unité d’ordre premier à p. On fixe aussi
gu un élément topologiquement unipotent de SO(2n + 1, F )♯ commutant à
gs. On suppose qu’il existe un parahorique Kn′,n′′ (pour n′, n′′ convenables)
contenant gsgu et on note s, u les réductions de gs et gu modulo le radical pro-
p-unipotent. On se donne aussi n ∈ D(χ) que l’on suppose relatif à (n′, n′′) au
sens

∑
[u]∈[V P (χ)] n

′([u])ℓ[u] = n′ et
∑

[u]∈[V P (χ)] n
′′([u])ℓ[u] = n′′.

Dans la suite, on fixe, pour ǫ ∈ {±1}, des données Iǫ, Pǫ, ζ̃ǫ comme dans les
paragraphes précédents, c’est-à-dire une donnée cuspidale ˜cusp; on a choisi
cette notation pour qu’elle soit analogue à celle de la fin de 3.4. Donc en
particulier, la propriété de ζ̃ǫ est de vérifier ζ̃ǫ = + si Pǫ = 0. Et dans l’espace
vectoriel

⊕ǫ∈{±1} ⊕m′(ǫ),m′′(ǫ);m′(ǫ)+m′′(ǫ)=m(ǫ) C[Ŵm′(ǫ)] ⊗ C[Ŵm′(ǫ)]
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on ne regarde que les sous-espaces vectoriels correspondant aux symboles re-
latifs à ces donnés cuspidales. Pour manifester cette restriction, on ajoute ˜cusp
en indice. En fonction de ce que l’on a rappelé en 3.2 cela revient au même que
de regarder les représentations des différents groupes ×ǫ∈{±1}WN ′(ǫ) ×WN ′′(ǫ),
où W est un groupe de Weyl de type C et où les nombres N ′(ǫ), N ′′(ǫ) vérifient
les conditions:

2N ′(ǫ) + 2N ′′(ǫ) + (I2
ǫ + P 2

ǫ )/2 = m(ǫ).

On utilise la convention que si Pǫ = 0 alors ζ̃ = +1. On pose ζǫ = (−1)(Iǫ−1)/2ζ̃ǫ

et on retrouve la convention de 3.4 que si Pǫ = 0, alors ζǫ = (−1)(Iǫ−1)/2.

Soit alors φ un élément de C[Ŵn, ˜cusp]. Le point est de calculer kχ(φ)(gsgu)
à l’aide des fonctions de Green du commutant de s dans le groupe Kn′,n′′ en
réduction. Pour le faire, on suppose s elliptique.

On décrit d’abord le commutant de gs dans SO(2n + 1, F ); on note [V P (gs)]
l’ensemble des valeurs propres de gs regroupées en paquets λ et λ′ sont dans le
même paquet s’il existe a ∈ N tel que λ′ = λqa

. On note m([λ]) la multiplicité
de λ. Si λ 6= ±1, on note ℓ[λ] := 1/2 |[λ]|. Pour unifier pour ǫ = ±, on
pose ℓǫ = 1. Pour λ 6= ±1, on note F2ℓ[λ]

l’extension non ramifiée de F de
degré 2ℓ[λ] et il existe une forme hermitienne (pour l’extension F2ℓ[λ]

/Fℓ[λ]
)

< , >[λ] sur l’espace vectoriel sur F2ℓ[λ]
de dimension m([λ]) tel que la partie

du commutant de gs relative à la valeur propre λ soit précisément le groupe
unitaire de cette forme. Des formes hermitiennes, comme ci-dessus, il y en a
exactement 2 qui se distinguent par la parité de la valuation du déterminant,
donc par un signe que nous noterons ǫ[λ]. Si l’on note Uǫ[λ]

le groupe de la
forme correspondant à ǫ[λ], on rappelle que Uǫ[λ]

≃ U−ǫ[λ]
si m([λ]) est impair;

mais nos constructions dépendront de ǫ[λ] comme en [8] 3.3 et suivants, et il
faut donc garder la distinction.

Une valeur propre dans {±1} introduit une forme orthogonale < , >± (± est ici
le signe de la valeur propre considérée) sur un F -espace vectoriel de dimension
m(±1) et la partie du commutant qui lui correspond est le groupe orthogonal
de la forme; on utilise la notation η± et ǫ± pour le signe du discriminant
et l’invariant de Hasse; il y a toujours un problème sur la normalisation du
discriminant et ici on suit les conventions de [8], c’est-à-dire que le discriminant
est invariant par ajout de plans hyperboliques mais il n’est donc pas additif. Le
signe du discriminant est l’image du discriminant par le caractère quadratique
non ramifié de F ∗ et la non additivité n’est un problème pour le signe du
discriminant que si −1 n’est pas un carré.

Remarquons tout de suite, puisque l’on en aura besoin, que toutes les quantités
qui viennent d’être introduites sont constantes sur la classe de conjugaison
stable de gs sauf la famille des ǫ[λ] pour [λ] ∈ [V P (gs)]. Cette famille est
soumise à la condition ×[λ]ǫ[λ] = ♯ et l’ensemble de ces familles soumises à
cette condition paramétrise l’ensemble des classes de conjugaison dans la classe
de conjugaison stable de gs dans SO(2n + 1, F )♯. Si l’on enlève la condition de
produit, l’ensemble plus grand paramétrise la classe de conjugaison stable de
gs dans SO(2n + 1, F )iso ∪ SO(2n + 1, F )an.
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Revenons au parahorique Kn′,n′′ que l’on a fixé au début et qui contient gs

et gu. On définit s, u comme ci-dessus. Décrivons le commutant de s dans la
partie réductive du parahorique; on écrit s = (s′, s′′) avec s′ ∈ SO(2n′ + 1, Fq)
et s′′ ∈ O(2n′′, Fq). Les valeurs propres de s sont les ”mêmes“ que celles de gs ;
pour [λ] ∈ [V P (gs)], on note m′([λ]) la multiplicité d’un élément λ ∈ [λ] comme
valeur propre de s′ et m′′([λ]) l’analogue pour s′′. On a m′([λ]) + m′′([λ]) =
m([λ]). De même pour [λ] ∈ [V P (gs)], λ 6= ±1, il existe une forme hermitienne
< , >′

[λ] (resp. une forme hermitienne < , >′′
[λ]) sur un F2ℓ[λ]

espace vectoriel

de dimension m′([λ]) (resp. m′′([λ])) et des formes orthogonales pour λ = ±1,
telles que le commutant de s′ (resp. s′′) dans SO(2n′+1, Fq) (resp. O(2n′′, Fq))
soit les éléments de déterminant 1 dans le produit (resp. le produit) des groupes
de ces formes. Il y a évidemment des rapports entre < , >′

[λ], < , >′′
[λ] et < , >[λ].

Supposons d’abord que λ /∈ {±1}. Si ǫ[λ] = 1 (défini ci-dessus), alors m′′([λ])
est nécessairement pair alors que ce nombre est impair si ǫ[λ] = −1, ensuite
< , >′

[λ] ⊗ < , >′′
[λ] est obtenu par réduction (à l’aide d’un réseau convenable)

de < , >[λ].
Supposons maintenant que λ ∈ {±1}. Alors m′′([λ]) a la même parité que
vF (η[λ]). On note η′

[λ] et η′′
[λ] les discriminants des formes < , >′

[λ] et < , >′′
[λ];

on les voit comme des signes, c’est-à-dire qu’au lieu de regarder le discriminant
comme un élément de Fq modulo les carrés, on regarde sont image dans {±1}.
Si vF (η[λ]) est pair, l’image de η′′

[λ] dans F∗
q/F∗2

q est ǫ[λ] tandis que si vF (η[λ])

est impair c’est l’image de η′
[λ] dans le même groupe qui est ǫ[λ]. De plus le

signe du discriminant de < , >[λ] vérifie:

sgn(η[λ]) = sgn(−1)m′([λ])m′′([λ])(−1)vF (η[λ])ǫ[λ]η
i
[λ], où i([λ]) =′ si vF (η[λ]) est

pair et ′′ sinon.
On pose ici pour [λ] 6= [±1], Wmgs

(λ) := Sm′
gs

(λ) ×Sm′′
gs

(λ). Pour λ = ±1, il y
a des difficultés liées à l’existence de faisceaux cuspidaux; ici on ne s’intéresse
qu’aux fonctions de Green et les paramètres pour la partie cuspidales sont alors
des quadruplets d’entiers positifs ou nuls. On écrit les choses comme on en aura
besoin; on avait fixé ci-dessus une donnée cuspidale, ˜cusp; on note |cusp| un
quadruplet d’entiers positifs ou nuls, |r|iǫ′ pour i ∈ {′,′′ } et ǫ′ ∈ {±1}, qui est
la partie cuspidale pour les fonctions de Green. Ce quadruplet dépend de ˜cusp
par les formules:
|r|′+1, |r|′−1 est à l’ordre près le couple I+ + I−, |I+ − I−| avec |r|′+1 impair par
hypothèse et |r|′′+1, |r|′′−1 est à l’ordre près le couple P+ + P−, |P+ − P−| avec

|r|′′+1 ≥ |r|′′−1 si et seulement si ζ+ζ− = (−1)1+(I++I−)/2.
On pose alors pour λ ∈ {±1} que l’on note plutôt ǫ′, et pour un couple d’entier
m′(ǫ′),m′′(ǫ′) vérifiant m′(ǫ′) + m′′(ǫ′) = m(ǫ′)

Wm′(ǫ′),m′′(ǫ′),|cusp| := W1/2(m′(ǫ′)−|r′
ǫ′
|2) × W1/2(m′′(ǫ′)−|r′′

ǫ′
|2)

étant entendu que ce groupe est nul si l’un des indices n’est pas un entier positif
ou nul.
Pour la donnée d’un ensemble de couple mgs

:= {m′(λ),m′′(λ) ∈ D(mgs
(λ))},

on pose Wmgs
,|cusp| le produit des groupes définis ci-dessus. Et les fonctions
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de Green donnent une application de C[Ŵmgs
] dans l’ensemble des fonctions à

support unipotent du commutant de gs dans SO(2n′ +1, Fq)×O(2n′′, Fq); cela
s’interprète encore comme des fonctions à support dans l’ensemble des éléments
topologiquement unipotents de Kn′,n′′ commutant à gs. Quand on somme sur

tous les mgs
, on définit C[ŴD(gs),|cusp|] et on s’autorisera la suppression du

cusp quand il n’y a pas d’ambiguité.
On revient maintenant à φ et donc pour tout [u] ∈ [V P (χ)] on a un élément
(n′[u], n′′[u]) ∈ D(m([u])) de telle sorte que

∑
[u]∈[V P (χ)] n

′[u]ℓ[u] = n′ et on
rappelle que l’on a aussi fixé une donnée cuspidale, ˜cusp. On note n l’ensemble
de ces paires et on a défini Wn, ˜cusp. On va définir une application de C[Ŵn]

dans C[Ŵmgs
]. Mais on a besoin d’un certain nombre d’objets intermédiaires.

Soit une collection de paires ν([u], [λ]) = (ν′([u], [λ]), ν′′([u], [λ])) soumises aux
conditions, où ℓ[u] et ℓ[λ] sont comme ci-dessus (pour a, b des entiers, on note
(a, b) le pgcd de ces nombres):

∑

[u]

ν̃([u], [λ])ℓ[u]/(ℓ[u], ℓ[λ]) = mgs
([λ]);

la somme de couples, se fait terme à terme. Et on a aussi:

∑

[λ]

ν([u], [λ])/(ℓ[u], ℓ[λ]) = n([u]).

On pose Wν([u],[λ]) := Sν′([u],[λ])×Sν′′([u],[λ]) si soit [u] soit [λ] n’est un élément
de {±1}. Pour traiter le cas de ±1, on réutilise la donnée de la partie cuspidale
|cusp| et on pose, pour ǫ ∈ {±1} et ǫ′ ∈ {±1} Wν([ǫ],[ǫ′]) =
W1/2(ν′([ǫ],[ǫ′])−(|r|′

ǫ′
)2) × W1/2(ν′′([ǫ],[ǫ′])−(|r|′′

ǫ′
)2); en particulier cela sous-entend

que ces nombres écrits en indice sont des entiers positifs ou nuls (sinon le groupe
défini est 0). Et on note Wν(χ,gs),cusp l’union de tous ces groupes.
Pour δ =′ ou ′′ et pour [u] ∈ [V P (χ)], [λ] ∈ [V P (gs)], on a besoin de définir une
application de Wνδ([u],[λ]) dans Wnδ([u])[λ]

et dans Wnδ([λ])[u]
on précisera dans

chaque cas les rapports entre les entiers νδ([u], [λ]), nδ([u])[λ] et νδ([λ])[u]. Cette
application n’est pas un morphisme de groupes mais simplement compatible
à l’action adjointe; au passage, on définit aussi une fonction invariante par
conjugaison sur Wνδ([u],[λ]) que l’on note χδ

[u],[λ]. Le point qui n’est pas nouveau

est que pour les groupes unitaires qui interviennent soit pour [u] quand [u] 6= ±1
soit pour [λ] quand [λ] 6= ±1, un tore n’est pas vraiment associé à un élément
du groupe symétrique convenable mais au produit d’un tel élément par un
Frobénius.
On décrit ces constructions au cas par cas: premier cas: [u], [λ] ∈ ±1; ici,
on veut νδ([u], [λ]) = nδ([u])[λ] et l’application de Wνδ([u],[λ]) = Wνδ([u],[λ])

dans Wnδ([u])[λ]
= Wnδ([u])[λ]

est l’identité. On fait une construction analogue

en remplaçant [u] par [λ]. Quand à la fonction χδ
[u],[λ] c’est l’identité sauf si

u = λ = −1 où c’est le sgnCD(−1)νδ([u],[λ])(q−1)/2.
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deuxième cas: [u] 6= [±1], [λ] 6= [±1] et ℓ[u] et ℓ[λ] sont divisibles par la même
puissance de 2 (cette dernière condition donne des renseignements sur les tores
des groupes unitaires intervenant). L’application de Wνδ([u],[λ]) = Sνδ([u],[λ])

dans Snδ([u])[λ]
se décrit quand nδ([u])[λ] = νδ([u], [λ])ℓ[λ]/(ℓ[u], ℓ[λ]). A une

permutation dont les cycles sont (α1, · · · , αr) on associe la permutation de
cycles (α1ℓ[λ]/(ℓ[u], ℓ[λ]), · · · , αrℓ[λ]/(ℓ[u], ℓ[λ])). Quand on considère [λ] au lieu
de [u], on échange simplement les rôles de ℓ[u] et ℓ[λ]. Pour décrire la fonction

χδ
[u],[λ], on a besoin d’une notation auxiliaire. On pose, pour α ∈ N, y ∈ Q:

φα,[λ],y := y−1(ℓ[λ])
−1(λα+λαq + · · ·+λαq

ℓ[λ]−1

+λ−α+λ−αq + · · ·+λ−αq
ℓ[λ]−1

),

où λ est n’importe quel élément dans [λ]. Alors sur l’élément w associé aux
cycles α1, · · · , αr, χδ

[u],[λ](w) =
∏

s∈[1,r] φαs,[λ],(ℓ[u],ℓ[λ]).

troisième cas: [u] 6= [±1], [λ] 6= [±1] et ℓ[u] et ℓ[λ] ne sont pas divisibles par la

même puissance de 2. Ici on veut alors, nδ([u])[λ] = 2νδ([u], [λ])ℓ[λ]/(ℓ[u], ℓ[λ]).
A une permutation dont les cycles sont (α1, · · · , αr) on associe, ici, la permuta-
tion de cycles (2α1ℓ[λ]/(ℓ[u], ℓ[λ]), · · · , 2αrℓ[λ]/(ℓ[u], ℓ[λ])). Quand on considère
[λ] au lieu de [u], on échange simplement les rôles de ℓ[u] et ℓ[λ]. Et la fonction

χδ([u], [λ]) vaut sur ce w,
∏

s∈[1,r] φαs,[λ],(ℓ[u],ℓ[λ])/2.

quatrième cas: u = ±1 et [λ] 6= [±1]. Ici on veut nδ([u])[λ] = νδ([u], [λ])ℓ[λ]

et nδ([λ])[u] = νδ([u], [λ]). L’application de Sνδ([u],[λ]) dans Snδ([λ])[u]
est

l’identité. L’application de Sνδ([u],[λ]) dans Wnδ([u])[λ]
envoie l’élément w de cy-

cle (α1, · · · , αr, α
′
1, · · · , α′

r′), où les α sont pairs et les α′ impairs sur l’élément de
Wnδ([u])[λ]

qui correspond à 2 partitions (α1ℓ[λ], · · · , αrℓ[λ];α
′
1ℓ[λ], · · · , α′

r′ℓ[λ]).

Quand à la fonction χδ([u], [λ]), c’est l’identité si [u] = [+1] et est constante de

valeur (−1)νδ([u],[λ])(1+q
ℓ[λ] )/2 pour [u] = [−1].

cinquième cas: [u] 6= [±1] et λ = ±1. On échange les rôles de [u] et [λ] dans le
cas ci-dessus.

Il faut aussi prendre en compte une contribution de la partie cuspidale; là
il n’y a pas de groupes mais simplement une fonction à définir, χδ

cusp,ν (où
δ ∈ {′,′′ } comme ci-dessus) qui dépend de ν ∈ D(χ, gs) et de w ∈ Wν . Pour

cela, on pose χδ
+,ν(w) := (−1)

∑
[u]∈[V P (χ)]−{±1} νδ([u],+)sgnCDwνδ(+,+)wνδ(−,+)

et une définition analogue, χδ
−,ν en remplaçant + par −. On note aussi ǫI

(resp. ǫP ) le signe tel que IǫI
− I−ǫI

> 0 (resp. PǫP
− P−ǫP

> 0); si les 2
nombres sont égaux à 0, on prend le signe ǫI = ǫP = + par convention et si
l’un seulement des nombres vaut 0, alors on prend par convention ǫI = ǫP . On
pose r′im l’élément impair du couple (I+ + I−)/2, |I+ − I−|/2 et l’on a (x′ ∈ N
ne nous sert à rien mais est le δ(r′, r′′) de [13] et il en est de même pour x′′):

χ′
cusp,ν(w) = qx′

(−1)(q−1)(r′−1)/4×

(χ′
+,ν(w)χ′

−,ν(w)η′
+(gs)η

′
−(gs))

(IǫI
−1)/2

{
1 si ǫI = +

η′
−(gs)χ

′
−,ν(w) si ǫI = −.
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ci-dessous y′′ est r′′+ si ce nombre est pair, et r′′− − 1 sinon,

χ′′
cusp,ν(w) = qx′′

(−1)(y′′(q − 1)/4)(η′′
+(gs)η

′′
−(gs)χ

′′
+,νχ′′

−,ν)(IǫP
−1)/2





1 si ζǫP
> 0 et ǫP = +

η′′
−(gs)χ

′′
−,ν(w) si ζǫP

= + et ǫP = −
η′′
+(gs)χ

′′
+,ν(w) si ζǫP

= − et ǫP = −
η′′
+(gs)η

′′
−(gs)χ

′′
+,ν(w)χ′′

−,ν(w) si ζǫP
= − et ǫP = +.

Le produit de ces 2 fonctions se simplifie un peu. On écrit ce produit comme
le produit des 3 termes
Ccusp qui est une constante,
ccusp(gs) := (η′

+(gs)η
′
−(gs))

(IǫI
−1)/2(η′′

+(gs)η
′′
−(gs))

(IǫP
−1)/2×

{
1 si ζǫP

= +

η′
+(gs)η

′
−(gs) si ζǫP

= − ×
{

1 si ǫI = +

η′
−(gs) si ǫI = − ×

{
1 si ǫP = +

η′′
−(gs) si ǫP = −

χcusp,ν(w) := (χ′
+,ν(w)χ′

−,ν(w))(IǫI
−1)/2(χ′′

+,ν(w)χ′′
−,ν(w))(IǫP

−1)/2×
{

1 si ζǫP
= +

χ′
+ν(w)χ′

−,ν(w) si ζǫP
= − ×

{
1 si ǫI = +

χ′
−,ν(w) si ǫI = − ×

{
1 si ǫP = +

χ′′
−,ν(w) si ǫP = −

Supposons maintenant donné n ∈ D(χ) et m ∈ D(gs). Soit ν ∈ D(χ, gs) et on
suppose que les égalités suivantes sont vérifiées:
pour δ ∈ {′,′′ }, pour tout [u] ∈ [V P (χ)],

∑

[λ]∈[V P (gs)]

νδ([u], [λ])2x[u],[λ]ℓ[λ]/(ℓ[u], ℓ[λ]) = nδ([u]),

où x[u],[λ] = 0 sauf si ℓ[u]/(ℓ[u], ℓ[λ]) ou ℓ[λ]/(ℓ[u], ℓ[λ]) est pair, où il vaut 1.
Et pour δ ∈ {′,′′ }, pour tout [λ] ∈ [V P (gs)],

∑

[u]∈[V P (χ)]

νδ([u], [λ])2x[u],[λ]ℓ[u]/(ℓ[u], ℓ[λ]) = mδ([λ]),

où x[u],[λ] est comme ci-dessus.
En faisant des produits convenables des constructions ci-dessus, on a une appli-
cation de Wν d’une part dans Wn et d’autre part dans Wm. Partant donc d’un

élément de C[Ŵn] on peut le restreindre en un élément de C[Ŵν ], le multiplier
par le χ′

cusp,νχ′′
cusp,ν

∏
[u]∈[V P (χ)],[λ]∈[V P (gs)] χ

′([u], [λ])χ′′([u], [λ]) puis l’induire

en un élément de C[Ŵm].
L’application cherchée est la somme sur toutes les collections ν(χ, gs) comme
ci-dessus. Elle est notée, locgs,m.
Définition. Pour gs comme ci-dessus, on note locgs

:=
∑

m∈D(gs) locgs;m.
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On rappelle que les fonctions de Green définissent, pour m ∈ D(gs), une ap-
plication de Ŵm dans les fonctions sur le centralisateur de s (la réduction de
gs) dans la réduction de Kn′,n′′ ; on remarque que n′ et n′′ sont déterminés par
m. On remonte ensuite en des fonctions sur un sous-groupe compact ouvert
convenable du centralisateur de gs dans SO(2n + 1, F )♯ par invariance sous le
radical pro-p-unipotent puis on les prolonge par zéro en des fonctions sur ce
centralisateur. On note Q cette application. On peut donc définir Q(locgs

(ρ))

pour ρ ∈ Ŵn où n ∈ D(χ) (avec une donnée cuspidale fixée)

Remarque. La définition précédente ne dépend de gs dans sa classe de con-
jugaison stable que par le facteur ccusp(gs).

Pour cette section, plutôt que de travailler avec kχ qui a été normalisé pour
avoir de bonnes propriétés (cf. [13]), on énonce un résultat pour un ana-
logue de kχ non normalisé, c’est-à-dire que les fonctions de Green généralisées
associent, pour n fixé dans D(χ) et une donnée cuspidale fixée ˜cusp, à
un élément du groupe w ∈ Wn, ˜cusp une fonction sur un groupe fini con-
venable. Et, pour φ une représentation de Wn, ˜cusp, on a défini kχ(φ) :=∑

w∈Wn, ˜cusp
λ(w)tr(φ)(w)kχ(w), où λ(w) est un caractère qui dépend de la

donnée cuspidale. On utilise ici simplement knn
χ (φ) l’analogue en supprimant

λ. La raison est que ρ ◦ ι dépend aussi du support cuspidal et que l’on ne
s’intéresse qu’au composé kχ ◦ ρ ◦ ι; les normalisations s’annulent partiellement
et il vaut donc mieux ne pas se fatiguer à les faire. Et on a, pour gu un élément
topologiquement unipotent qui commute à gs:

Lemme: Pour ˜cusp, n et φ comme ci-dessus, (i)knn
χ (φ)(gsgu) =

Q(locgs;m(φ))(gu).

(ii)On a les égalités d’intégrales orbitales (où le groupe est mis en exposant)

ISO(2n+1,F )♯(gs, k
nn
χ (φ)) = ICent0SO(2n+1,F )gs(gu, Q(locgs

(φ)).

(i) C’est un problème sur le groupe fini SO(2n′+1, Fq)×O(2n′′, Fq) où il s’agit
de localiser au voisinage de la réduction de gs le faisceau caractère associé
à ρ. Cela a été fait en toute généralité par Lusztig et il faut expliciter ses
formules. En [8] 2.16, on a traité le cas où [V P (χ)] est réduit à +1 mais
il n’y a pas de restriction sur gs. En [13] est traité le cas où [V P (χ)] et
[V P (gs)] contiennent +1 et −1. La formule de Lusztig s’applique aux faisceaux
caractères associés à des éléments de WD(χ) et non pas aux représentations de
ce groupe. La démonstration de [13] 7.1 qui se place dans ce cadre est très
générale et elle montre que le seul point est le calcul de la constante notée z2

en loc.cit. Cette constante est la somme des valeurs du caractère déterminé
par χ sur les conjugués de s. Le calcul est plus compliqué qu’en loc.cite mais
c’est le calcul des χ′([u], [λ]) et χ′′([u], [λ]). Ensuite [13] 7.2 déduit le résultat
cherché.

(ii) pour pouvoir utiliser (i), on décompose l’orbite de gs sous SO(2n + 1, F )♯

en orbites sous Kn′,n′′ (le parahorique qui sert à la définition de kχ(ρ)). Ces
orbites sont paramétrées par les éléments de D(gs); seuls comptent les orbites

Documenta Mathematica 9 (2004) 527–564



548 Colette Moeglin

qui coupent Kn′,n′′ et pour cela il faut la relation:

∑

[λ]∈[V P (χ)]

m′([λ])ℓ[λ] = n′.

Si cette relation n’est pas satisfaite, on remarque que les sommes intervenant
sont vides et locgs;m(ρ) = 0. On n’a donc pas à se préoccuper de cette condition.
Ensuite on calcule l’intégrale sous chaque Kn′,n′′ -orbite en utilisant (i). Il y a
clairement des mesures à prendre en compte; c’est fait en [8] 3.17, le |W (d)|
n’intervient pas pour nous car il a été pris en compte quand on travaille avec
des représentations des groupes W et non les éléments de ces groupes et les
constantes (c(γ), c(γ)♯ de loc.cit) ont été mises dans la définition de locgs

.

4.2 Restriction des représentations et localisation des faisceaux
caractères

Dans cette section, il s’agit de montrer que l’opération de restriction aux para-
horiques des représentations commute à l’action de restriction des caractères
auprès des éléments semi-simples elliptiques, même si l’on ne peut l’exprimer en
ces termes tant que la conjecture 6.2 n’est pas démontrée. En plus comme on
peut s’y attendre, vu la complexité des formules, il n’y a vraiment commutation
que dans les cas favorables.
On fixe une donnée cuspidale, cusp, pour les faisceaux caractères, c’est-à-dire
pour nous, 2 entiers impairs, I+ et I− et 2 entiers pairs P+, P− ainsi que 2 signes
ζ+, ζ− avec la convention que si pour ǫ = ±, Pǫ = 0 alors ζǫ = (−1)(Iǫ−1)/2.
Dans C[ŴD(χ)], on ne considère que la partie relative à cette donnée cusp-
idale; on définit comme en 3.4 une autre donnée cuspidale ˜cusp simplement
en changeant les signes, ζ̃± := (−1)(I±−1)/2ζ± et on reprend la notation χ̃ de
loc.cite; on note˜l’application évidente de la partie de C[ŴD(χ)] relative à cusp
dans son homologue relative à ˜cusp qui en terme de représentation de groupes
de Weyl est tout simplement l’identité (mais on a changé le support cuspidal)
composé avec la multiplication par le caractère χ̃.
Soit gs un élément semi-simple elliptique dont les valeurs propres sont des
racines de l’unité d’ordre premier à p. On reprend la notation [V P (gs)] pour
signifier l’ensemble des valeurs propres de gs regroupées en paquets λ, λ′ sont
dans le même paquet s’il existe a ∈ N tel que λ′ = λqa

; la multiplicité d’une
valeur propre λ est notée m([λ]) car elle ne dépend que du paquet auquel λ
appartient.
On note D(gs) l’ensemble des décompositions {(m′([λ]),m′′([λ])) ∈
D(m([λ]))}[λ]∈[V P (gs)]; pour chaque élément m ∈ D(gs), on a une classe
d’association de parahorique Kn′,n′′ où n′ =

∑
[λ] m

′([λ]) et à l’intérieur de ce
parahorique une classe de conjugaison d’éléments semi-simples de réduction
semi-simple elliptique incluse dans la classe de conjugaison de gs; on con-
nait les valeurs propres des éléments dans cette classe de conjugaison. Pour
m ∈ D(gs), on reprend la notation Wm de 4.1. On a défini ci-dessus des

opérations de localisation de C[ŴD(χ)] dans C[Ŵm]; en sommant sur tous les
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éléments de D(gs), on définit donc une application de localisation de C[ŴD(χ)]

dans C[ŴD(gs)] que l’on note locgs
.

On remarque que ρ ◦ ι se définit aussi de C[ŴD(gs)] dans lui-même; ce sont
exactement les définitions de [8] 3.1, 3.2 et 3.9, 3.10. On les présente un peu
différemment de façon similaire aux formules de 3.4. Précisément, on note
DD(gs) l’ensemble des u-plets {mi,j([λ]); i, j ∈ {′,′′ }, [λ] ∈ [V P (gs)]}. Pour
m ∈ DD(gs), on définit Ŵm de façon similaire à 3.4, la partie cuspidale possible

étant simplement donnée comme en 4.1 (notée |cusp|). Et ici, ρ◦ι est la somme
sur tous les m ∈ DD(gs) de la restriction à Wm suivie de l’induction après

avoir tordu par (−1)
∑

[λ]/∈{±1} m
′′,′′ ([λ])(sgnCD)|W

N
′′,′′

+

×W
N

′′,′′

−

, les notations et

les inclusions entre les groupes étant celles décrites en 3.4.
Pour traiter tous les cas, on pose encore quelques définitions. Pour ǫ′ ∈ {±1},
on note Xǫ′ l’endomorphisme de C[ŴD(gs)] qui est la tensorisation par le car-

actère trivial sur tous les facteurs sauf Ŵm′′(ǫ′) où il vaut sgnCD, suivie par
l’inversion des facteurs relatifs m′(ǫ′) et m′′(ǫ′) (à ce stade cette inversion est
assez formelle mais elle a de l’importance quand ensuite on applique ρ ◦ ι). On
rappelle la donnée cuspidale fixée et on reprend les notations ǫI et ǫP de 4.1.
On note Xcusp l’endormophisme de C[ŴD(gs)] défini par:

Xcusp :=





1 si ǫI = ǫP et ζǫP
= +

X+X− si ǫI = ǫP et ζǫP
= −

X
(−1)1+(I++I−)/2 si ǫI 6= ǫP et ζǫP

= −
X

(−1)(I++I−)/2 si ǫI 6= ǫP et ζǫP
= +.

Lemme: Fixons la donnée cuspidale comme ci-dessus. Alors le diagramme
ci-dessous est commutatif pour tout élément gs comme en 4.1:

C[ŴD(χ)]
ρ◦ι→ C[ŴD(χ)]yXcusp ◦ locgs

◦˜
ylocgs

C[ŴD(gs)]
ρ◦ι→ C[ŴD(gs)]

Pour démontrer ce lemme, on réintroduit le groupe auxiliaire WDD(χ) et son
avatar WDD(gs) qui permettent de calculer ρ ◦ ι. De même, on réintroduit
WD(χ,gs). On espère que le lecteur voit une localisation de WDD(χ) vers
WDD(gs) qui utilise le groupe WDD(χ,gs)) suggérée par les notations; ce groupe
est construit comme tous les groupes de même type mais en utilisant des col-
lections d’entiers νi,j([u], [λ]) pour i, j ∈ {′,′′ }, [u] ∈ [V P (χ)] et [λ] ∈ [V P (gs)]
qui vérifient:

∑

i,j,[u]

νi,j([u], [λ])ℓ[u](ℓ[u], ℓ[λ])
−1 = mgs

([λ]) (∗)

et une égalité de même type en échangeant les rôles de [u] et de [λ].
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On écrit le diagramme:

C[Ŵn]
res→ C[ŴDDn(χ)]

ind→ C[ŴD(χ)]
↓ res ↓ res ↓ res

C[ŴD(χ,gs)]
res→ C[ŴDn(D(χ,gs))]

ind→ C[ŴD(χ,gs)]
↓ ind ↓ ind ↓ ind

C[ŴD(gs)]
res→ C[ŴDD(gs)]

ind→ C[ŴD(gs)]

Expliquons ce qu’est l’objet central, le WDn(D(χ,gs)) est un sous-groupe de

WD(D(χ,gs)); les collections νi,j([u], [λ]) qui servent à le construire sont as-
treintes aux relations de (*) mais aussi à, pour tout i ∈ {′,′′ } et pour tout
[u] ∈ [V P (χ)]: ∑

j,[λ]

νij([u], [λ])ℓ[λ](ℓ[u], ℓ[λ])
−1 = ni[u].

Un diagramme comme celui-ci est commutatif, le seul point est une formule à la
Mackey du genre res ◦ ind = ind ◦ res; une telle formule nécessite des sommes:
précisément considérons un groupe fini H avec des sous-groupes H ′,H ′′. Soit
aussi une représentation de dimension finie, ρ′ de H ′ et on calcule la restriction à
H ′′ de l’induite de ρ′ à H. Cette restriction est isomorphe à la somme sur γ dans
un ensemble de représentants des doubles classes H ′\H/H ′′ des induites à H ′′

de la représentation ρ′ transportée par γ et restreinte au groupe γ−1H ′γ ∩H ′′

(dans [8], ce raisonnement est utilisé en 3.19 ce qui suit (4)). Comme en loc.cit
il y a la difficulté que les inclusions ne sont pas complètement évidentes. On
applique cette formule 2 fois, pour le carré en bas à gauche, et pour le carré en
haut à droite. Pour le carré en bas à gauche, on l’applique avec H ′ = WD(χ,gs),
H = WD(gs) et H ′′ = WDD(gs). Les doubles classes sont précisément indexées
par DD(χ, gs); en effet, pour [λ] 6= [±1], [λ] ∈ [V P (gs)], on a à considérer les
doubles classes:

×[u]∈[V P (χ)]Sν′([u],[λ]\Sm′([λ)]/Sm′,′ ([λ]) × Sm′,′′ (λ)

et un objet analogue où ′ est remplacé par ′′, en tenant compte du fait que
l’inclusion de Sν′([u],[λ]) dans Sm′([λ]) est décrite dans ce qui précède l’énoncé
(il faut multiplier les cycles des permutations par ℓ[u]/(ℓ[u], ℓ[λ])). L’ensemble
de ces doubles classes est bien indexé par les collections (νi,j([u], [λ]); i, j ∈
′,′′, [u] ∈ [V P (χ)] soumises aux conditions:

∀[u] ∈ [V P (χ)],∀i ∈ {′,′′ }, νi,′([u], [λ]) + νi,′′([u], [λ]) = νi([u], [λ]),

∀i, j ∈ {′,′′ },
∑

[u]∈[V P (χ)]

νi,j([u], [λ])ℓ[u]/(ℓ[u], ℓ[λ]) = νi,j([λ]).

Et ensuite il reste à identifier ×(νi,j([u],[λ]);i,j∈′,′′,[u]∈[V P (χ)] ×i,j∈′,′′,[u]∈[V P (χ)]

Sνi,j([u],[λ]) avec ×γγ−1H ′γ ∩H ′′ (avec les notations précédentes). Si λ = ±1,
dans les objets ci-dessus, il faut remplacer certains groupes symétriques par
des groupes de Weyl de type C; cela ne change rien.
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On a un raisonnement du même type à faire pour le carré en haut à droite du
diagramme.

Le point maintenant à considérer est que ρ ◦ ι n’est pas exactement ind ◦ res
écrit sur les lignes; il faut tordre les éléments de la colonne du milieu. Le
même phénomène se produit pour locgs

et c’est ce qui motive l’introduction
de l’endomorphisme Xcusp: pour [u] ∈ [V P (χ)] et [λ] ∈ [V P (gs)] regardons

par quelle fonction il faut multiplier le facteur C[⊗i,j∈{′,′′}Ŵνi,j([u],[λ])] avant

d’induire pour arriver dans C[ŴD(gs)] pour que l’on obtienne le même résultat
qu’en faisant le chemin, première ligne horizontale et dernière ligne verticale.
Dans toute la discussion ci-dessous, on néglige, dans les flèches verticales tous
les termes dépendant symétriquement de νi,j(., .), symétriquement en i, j; c’est
ce que l’on peut appeler de la torsion symétrique car elle ne gêne pas la com-
mutation du diagramme.

Supposons d’abord que λ 6= ±1. Si [u] 6= ±1, la ligne horizontale multiplie

par le signe (−1)ν
′′,′′ ([u],[λ]) et la ligne verticale n’introduit que de la torsion

symétrique; si on fait le chemin de gauche, i.e. première ligne verticale et
dernière ligne horizontale, c’est pareil et l’on n’a pas de problème de commu-
tation.

Si [u] = ±1, la ligne horizontale du haut tensorise par sgnCDwν′′,′′ ([u],[λ])χ̃

si ζu = (−1)(Iu−1)/2; si cette égalité n’est pas vérifiée c’est une autre torsion
mais il faut alors aussi tenir compte de la torsion dans la définition de kχ et
la combinaison des 2 ramènent à la formule sgnCDwν′′,′′ ([u],[λ])χ̃. Quand on
fait l’autre chemin, on trouve la multiplication par χ̃ qui est introduite par

l’application ˜ puir le signe (−1)ν
′′,′′ ([u],[λ]); ces 2 signes cöıncident grâce à la

définition de l’inclusion donnée en 4.1.

Reste le cas où λ = ±1; on note alors ǫ′ au lieu de λ; on rappelle que les
inclusions des groupes Sm dans Wm (pour m un entier) considérées sont telles
que (−1)m est aussi la valeur du sgnCD de l’image par l’inclusion. On ne par-
lera donc que de sgnCD. A priori il y a une différence quand [u] 6= ±1 et son
contraire mais comme ci-dessus, cette différence s’efface quand on tient compte
de la défintion de kχ; on oublie aussi le signe χ̃ qui est pris en compte par
l’application .̃ Ainsi la première ligne horizontale et la définition de kχ intro-
duisent la multiplication par sgnCD(wν′′,′′ ([u],ǫ′)); la ligne verticale multiplie
par le signe de la forme

∏

i=′,′′

(sgnCDwνi,′ ([u],ǫ′))
(IǫI

−1)/2(sgnCDwνi,′′ ([u],ǫ′))
(IǫP

−1)/2

×
{

1 si ζǫP
= +

wνi,′′ ([u],ǫ′) si ζǫP
= −
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et si ǫ′ = − il faut encore multiplier par le caractère

{
1 si ǫI = +∏

i=′,′′ sgnCDwνi,′ ([u],−) si ǫI = − ×





1 si ǫP = +

∏
i=′,′′ sgnCDwνi,′′ ([u],−) si ǫP = −

×

{
1 si (IǫI

+ IǫP
)/2 est impair∏

i=′,′′ sgnCDwνi,δ([u],ǫ′

où δ =′ si (IǫI
− 1)/2 est impair et (IǫP

− 1)/2 est pair et δ =′′ sinon.

Par l’autre chemin, l’application verticale introduit un caractère similaire à
celui qui vient d’être écrit sauf que ce qui était νi,′ devient n

′,i et ce qui
était νi,′′ devient n

′′,i. Il n’y a donc pas de difficulté quand ce qui inter-
vient vraiment est un produit sur (i, j) ∈ {′,′′ }. C’est le cas quand ǫI = ǫP et
ζǫP

= +. L’introduction du Xcusp est exactement fait pour résoudre les autres
cas. Vérifions la commutativité du diagramme; on pose ζ = 0 si ζǫP

= +
et 1 sinon et on pose aussi ǫ = 0 si ǫI = ǫP et 1 sinon et finalement, on
pose Σ := (IǫI

+ IǫP
)/2). On vérfie que Xcusp n’est autre que le produit

X1+ζ+Σ
+ X1+ǫ+ζ+Σ

− . On étudie le chemin horizontal puis vertical; il s’introduit
donc, d’abord le signe sgnCDwν′′,′′ ([u],ǫ′) puis par la dernière flèche verticale,
un signe χcusp. Mais pour les problèmes de commutation, on peut multiplier
ce signe par n’importe quel signe de la forme

∏
i,j∈{′,′′} sgnCDwνi,j([u],ǫ′0)

, où

ǫ′0 ∈ {±1} comme expliqué ci-dessus. Ce qui veut dire qu’au lieu d’utiliser
χcusp tel qu’il a été écrit, on peut utiliser

(χ′′
+χ′′

−)1+Σ+δ(χ′′
−)ǫ = (χ′′

+)1+δ+Σ(χ′′
−)1+δ+ǫ+Σ. (∗)

Quand on fait la dernière flèche verticale, en terme de wνi,j cela devient un
produit sur tout [u] ∈ [V P (χ)] de

∏

i∈{′,′′}
sgnCDw1+δ+Σ

νi,′′ ([u],+)

∏

i∈{′,′′}
sgnCDw1+δ+ǫ+Σ

νi,′′ ([u],−)
.

En incorporant le signe de la ligne horizontale, on trouve, un produit sur tout
[u]

sgnCDw1+δ+Σ
ν′,′′ ([u],+)

sgnCDwδ+Σ
ν′′,′′ ([u],+)

sgnCDw1+δ+ǫ+Σ
ν′,′′ ([u],−)

sgnCDwδ+ǫ+Σ
ν′′,′′ ([u],−)

. (∗∗)

On examine maitenant le chemin utilisant d’abord la première flèche verticale
puis l’action de Xcusp et la dernière ligne horizontale. Dans Xcusp on com-
mence par multiplier par un caractère qui est exactement le caractère (*) qui
s’introduit par la flèche verticale après la simplification effectuée ci-dessus. Fi-
nalement, pour ce chemin, il suffit de regarder le caractère de la dernière ligne
horizontale en tenant compte de l’inversion éventuelle. Or on a inversion entre
m′(+) et m′′(+) par hypothèse si δ +Σ est impaire et inversion entre m′(−) et
m′′(−) si δ + ǫ + Σ est impaire. L’inversion entre ′ et ′′ a pour effet que ρ ◦ ι
introduit le signe sgnCDwν′,′′ ([u],ǫ′) au lieu de sgnCDwν′′,′′ ([u],ǫ′). On trouve

donc exactement le caractère (**). Cela termine la preuve.
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5 Stabilité

5.1 Stabilité, définition

On reprend encore les définitions de [8]; soit G un groupe classique qui est
donc le groupe des automorphismes d’une forme (ici orthogonale ou unitaire);
on doit considérer simultanément 2 formes de ce groupe correspondant à 2
formes orthogonale ou unitaire, séparée dans le cas orthogonal par l’invariant
de Hasse et dans le cas unitaire par la parité de la valuation du déterminant. On
note ces 2 formes Giso et Gan en imposant que Giso est la forme quasidéployée
et que Gan est l’autre groupe; dans tous les cas, Gan est une forme intérieure
de Giso mais éventuellement, on a même un isomorphisme Gan ≃ Giso; ces 2
formes interviennent dans le calcul du centralisateur d’un élément semi-simple
tel que fait dans 4.1 et les constructions dépendent de la forme orthogonale
ou unitaire qui intervient et pas seulement de son groupe d’automorphismes,
d’où la nécessité de garder la différence dans les notations. On sait définir
la classe de conjugaison stable de tout élément fortement régulier de G♯ pour
♯ = iso ou an et on sait aussi définir une inclusion de l’ensemble des classes
de conjugaison stable de Gan dans l’ensemble des classes de conjugaison stable
dans Giso. Soit φ = (φiso, φan) une fonction dans C∞

c (Giso)⊕C∞
c (Gan); on dit

qu’elle est stable si les intégrales orbitales de φiso et de φan sont constantes sur
les classes de conjugaison stable et si les intégrales orbitales de φiso et de φan

se correspondent pour l’inclusion des classes stables pour Gan dans les classes
stables de Giso et φiso a une intégrale nulle sur les classes stables de Giso ne
provenant pas de Gan); il a évidemment fallu fixer des mesures cohérentes. On
dit que φ est semi-stable si φiso et φan sont stables mais si pour tout γ fortement
régulier dans Gan, l’intégrale orbitale de φan sur la classe de conjugaison stable
de γ est l’opposée de l’intégrale de φiso sur la classe de conjugaison stable dans
Giso correspondant à celle de γ. On dit que φiso est instable si pour tout γ
fortement régulier l’intégrale sur la classe de conjugaison stable de γ est nulle;
on définit de même φan instable et on dit que φ est instable si φiso et φan sont
instables.

Soit n ∈ D(χ) avec une donnée cuspidale cusp; on dit que

1. n, cusp est stable si ǫI = ǫP , ζ+ = ζ− = +, |Iǫ − Pǫ| = 1 pour ǫ = ± et
n′′[u] = 0 pour tout [u] ∈ [V P (χ)].

2. On dit que n, cusp est semi-stable si ǫI = ǫP , ζ+ = ζ− = −, |Iǫ − Pǫ| = 1
pour ǫ = ± et n′([u]) = 0 pour tout [u] ∈ [V P (χ)].

3. On dit que n, cusp est instable dans tous les autres cas.

Remarque. Soit (ψ, ǫ) un paramètre discret de niveau zéro. Le couple
nψ,ǫ, cusp qui lui est associé avec la représentation de Springer-Lusztig est
stable si et seulement si pour tout [u] ∈ [V P (χ)] 6= [±1], ǫ[u] est le caractère
trivial et si U[±1],− = ∅ (avec les notations de 2.1); nψ,ǫ, cusp est semi-stable si
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ǫ[u] ≡ −1 pour tout [u] ∈ [V P (χ)] 6= [±1] et si U[±1],+ = ∅. Et nψ,ǫ, cusp est
instable dans tous les autres cas.

On rappelle les formules données dans 3.3. Pour [u] 6= [±1], la traduction de
n′([u]) = 0 ou n′′([u]) = 0 en terme du caractère du groupe des composantes
est claire .
Le cas de u = ±1 est plus compliqué. On regarde d’abord la partie cuspidale;
à chaque orbite Uu,ǫ′ munie de son caractère du groupe des composantes est
associé un entier ku,ǫ′ par la représentation de Springer généralisée. On fixe
u, ǫ′ ∈ {±1} et on montre d’abord l’équivalence:

ku,ǫ′ = 0 ⇔ |Iu − Pu| = 1 et ζu = ǫ′.

En effet, on vérifie d’après les formules données que ku,ζu
= (Iu + Pu − 1)/2 et

ku,−ζu
= (|Iu − Pu| − 1)/2. Et l’équivalence est alors claire, en tenant compte

du fait que Iu est impair alors que Pu est pair par hypothèse. Ensuite, c’est
presque les définitions que Uu,ǫ′ = 0 est équivalente à ku,ǫ′ = 0 et nδ(u) = 0 où
δ =′ si ǫ′ = + et ′′ si ǫ′ = −.

5.2 Stabilité, théorème

On fixe une donnée cuspidale cusp et n ∈ D(χ).
Théorème. soit φ ∈ C[Ŵn,cusp] et soit Φ := kχ ρ ◦ ι(φ). Alors Φ est stable si
et seulement si n, cusp est stable; de même Φ est semi-stable si et seulement si
n, cusp est semi-stable et Φ est instable si et seulement si n, cusp est instable.
On suit la méthode de [8] 3.20 (qui démontre le même théorème dans le cas
où [V P (χ)] = [1]. On écrit Φ := (Φiso,Φan). On fixe un élément semi-
simple fortement régulier g ∈ SO(2n + 1, F )iso et on étudie les intégrales or-
bitales de Φiso pour les éléments de la classe de conjugaison stable de g ainsi
que celles de Φan pour la classe de conjugaison stable dans SO(2n + 1, F )an

quand elle existe. Il est clair que ces intégrales orbitales sont nulles si g n’est
pas elliptique et compact. On écrit g = gsgu comme en 4.1. L’ensemble
[V P (gs)] est indépendant de g dans sa classe de conjugaison stable et quand
g varie dans sa classe de conjugaison stable vue dans SO(2n + 1, F )iso ∪
SO(2n + 1, F )an gs varie exactement dans sa classe de conjugaison stable
dans SO(2n + 1, F )iso ∪ SO(2n + 1, F )an. Les classes de conjugaison dans la
classe de conjugaison stable de gs sont paramétrées ([11] 1.7) par les collections
{♯[λ] ∈ {+1,−1} ≃ {iso, an}}[λ]∈[V P (gs)] de telle sorte que si gs correspond
à la collection {♯[λ](gs);λ ∈ [V P (gs)]} le commutant de gs est isomorphe au
produit Aut((F ′

[λ])
m[λ] , < , >♯[λ](gs)) où F ′

[λ] est une extension non ramifiée de

degré 2 de F[λ] l’extension non ramifiée de F de degré ℓ[λ] (2ℓ[λ] est le cardinal
de l’ensemble [λ]) et où < , >♯[λ](gs) est une forme unitaire (pour l’extension
F ′

[λ] de F[λ]) dont le déterminant est de valuation paire ou impaire suivant que

♯[λ](gs) = 1 ou −1, si [λ] 6= ±1 et est une forme orthogonale si [λ] = [±1]
(il n’y a alors pas d’extension de degré 2 à considérer); dans ce dernier cas,
on a la même propriété que précédemment mais ”parité de la valuation du
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déterminant” étant remplacé par invariant de Hasse. Pour décrire les classes
de conjugaison dans la classe de conjugaison stable de g, il faut encore décrire
où varie gu quand gs est fixé. Comme on appliquera le début de la section 3
de [8] tel quel, nous n’avons pas besoin de faire cette description et on renvoie
le lecteur à loc. cite.
Fixons maintenant g = gsgu ∈ SO(2n + 1, F )iso ∪ SO(2n + 1, F )an comme
ci-dessus et calculons Ig(Φ). On note ♯(g) l’élément iso ou an tel que g ∈
SO(2n + 1, F )♯(g). On a défini la fonction de Green Q(locgs

(Φ)) en 4.1; c’est
une fonction à support les éléments topologiquement unipotents sur le groupe

×
[λ]∈[V P (gs)],[λ] 6=±1

U(m(λ), F ′
[λ]/F[λ])♯[λ](gs)×

SO(m([1]), F )♯[1](gs) × O(m([−1]), F )♯[−1](gs),

où les notations sont celles de 4.1. L’élément gu définit une classe de conjugaison
d’éléments topologiquement unipotents dans ce groupe. Pour la suite on notera
(locgs

(Φ))[λ] la fonction sur le groupe indexé par [λ] définie par (locgs
(Φ)) quand

les points dans les groupes indexés par [λ′] 6= [λ] sont fixés.
Fixons une classe de conjugaison stable dans SO(2n + 1, F ) d’éléments semi-
simples réguliers Cst; sans restreindre la généralité, on les suppose compacts
(sinon les intégrales orbitales sont nulles). On note génériquement C les
classes de conjugaison incluses dans Cst; les classes de conjugaison le sont
pour un groupe, c’est-à-dire qu’une telle classe C correspond à une valeur de
♯ qui est notée ♯(C). Pour chaque classe C, on fixe un élément g(C) ∈ C.
On a à calculer pour Φ comme ci-dessus et pour ♯ fixé Ist,♯(Cst,Φ) :=∑

C∈Cst,♯(C)=♯ ISO(2n+1,F )♯(g(C),Φ). On écrit chaque g(C) = gs(C)gu(C). On

établit une relation d’équivalence entre les C ∈ Cst par C ∼ C′ si gs(C) est
conjugué de gs(C′); on les supposera alors égaux. On écrira donc gs([C]) plutôt
que gs(C).
Il existe une classe stable d’éléments semi-simples dont les valeurs propres
sont des racines de l’unité d’ordre premier à p, Cs,st tel que gs([C]) soit un
représentant des classes de conjugaison dans Cs,st. On l’utilisera plus bas mais
tout d’abord, on écrit:

Ist,♯(Cst,Φ) :=
∑

[C]∈Cst/∼,♯(C)=♯

∑

C∈[C]

I
CentSO(2n+1,F )♯(gs([C]))(gu(C), locgs([C])ρ◦ι φ).

On utilise 4.2 pour récrire, pour [C] fixée:

∑

C∈[C]

I
CentSO(2n+1,F )♯(gs([C]))(gu(C), locgs([C])ρ ◦ ι φ)

=
∑

C∈[C]

I
CentSO(2n+1,F )♯(gs([C]))(gu(C), Q ρ ◦ ιXcusplocgs([C])̃(φ)).

On utilise tout de suite le fait que [V P (gs([C]))] est indépendant de [C] dans
Cst; ce qui varie sont les invariants des formes < , >[λ], cf. 4.1 et ci-dessus. On
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remplace donc la notation [V P (gs)] par [V P (Cst)]. On décompose la somme
ci-dessus en produit sur les [λ] ∈ [V P (Cst)] et on constate qu’elle est nulle si
l’une des composantes Qρ ◦ ιXcusp(locgs([C ]̃(φ))[λ] est instable. La condition
d’instabilité pour ce genre de fonction (c’est à dire pour des fonctions dans
l’image de Qρ◦ι) est décrite dans [8] 3.4 pour les groupes unitaires (c’est-à-dire
ici pour [λ] 6= ±1) et en [8] 3.12 pour les groupes orthogonaux (c’est-à-dire ici
pour [λ] = [±1]). Pour [λ] 6= [±1], on a instabilité si m′([λ])m′′([λ]) 6= 0. Pour
λ ∈ {±1}, on a les données pour le support cuspidal des fonctions de Green qui
sont | ˜cusp| c’est-à-dire: |r′ǫ| := (I+ + ǫδI−)/2, où δ = + ou − de façon à ce que
|r′+| soit impair et |r′′ǫ | := |

(
(−1)(I+−1)/2ζ+P+ + ǫ(−1)(I−−1)/2ζ−P−

)
/2|. Ainsi

δ = (−1)1+(I++I−)/2 et |r′′ǫ | = |(P+ + ǫδζ+ζ−P−)|.
Pour que les intégrales ne soient pas nulles, il faut que M ′(λ) := m′(λ)− (r′λ)2

soit un entier pair (≥ 0) et la même propriété pour M ′′(λ) := m′′(λ) − (r′′λ)2.
Pour ǫ = ±, le terme correspondant à λ = ǫ est instable si et seulement si soit
||r′ǫ| − |r′′ǫ || > 1 soit r′ǫr

′′
ǫ M ′′(ǫ) ou soit M ′(ǫ)M ′′(ǫ) = 0. On remarque que

|r′ǫ| − |r′′ǫ | = |I+ + ǫδI−| − |P+ + ǫδζ+ζ−P−|. (∗)

On a donc instabilité si l’une des conditions I+ + I− − |P+ + ζ+ζ−P−| ∈
{−2, 0, 2}, |I−−I−|−|P+−ζ+ζ−P−| ∈ {−2, 0, 2} n’est pas satisfaite. On remar-
que que I++I−−|I+−I−| ≥ 2 et que si P+P− 6= 0, P++P−−|P+−P−| ≥ 4 pour
des questions de parité. Ainsi si ζ+ζ− 6= +, c’est-à-dire vaut - et si P+P− 6= 0
la différence entre I+ + I−−|P+−P−| et |I+− I−|− (P+ +P−) est au moins 6.
On ne peut donc avoir les deux conditions satisfaites en même temps. Ainsi,
on a instabilité si P+P− 6= 0 mais ζ+ζ− = −. Si P+P− = 0, en reprenant les
notations, ǫI et ǫP de 4.1, on a donc P−ǫP

= 0 et on vérifie que nécessairement
I−ǫI

= 1.

On a donc déjà démontré que l’on a instabilité sauf si soit ζ+ζ− = + soit
P−ǫP

= 0 et I−ǫI
= 1.

Récrivons les conditions (*) ci-dessus sous la forme plus simple (IǫI
− PǫP

) ±
(I−ǫI

− P−ǫP
) ∈ {−2, 0, 2} et encore

(IǫI
− PǫP

) ∈ {−1, 1}; (I−ǫI
− P−ǫP

) ∈ {−1, 1}. (∗)cusp

On rappelle la convention que ǫI = ǫP si (I+ − I−)(P+ − P−) = 0 et que
ǫI = ǫP = + si I+ = I− et P+ = P−.

On a donc instabilité au moins s’il existe [λ] ∈ [V P (Cst)] tel que
m′([λ])m′′([λ]) 6= 0 (en remplaçant m′ par M ′ et m′′ par M ′′ si λ = ±1
ou si (*)cusp n’est pas satisfaite ou encore s’il existe ǫ = ± tel que M ′([ǫ]) = 0,
M ′′(ǫ) 6= 0 et r′ǫr

′′
ǫ 6= 0.

Par les références déjà données, on sait aussi quand ces sommes partielles ne
dépendent que de l’invariant ♯[λ] de < , >[λ] ou sont indépendantes du choix de
[C] dans Cgs

. Il faut simplement faire attention que locgs[C] dépend de [C] dans
Cst par ce qui est noté ccusp(gs) en 4.1 et donc (en supprimant ce qui est encore
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indépendant) par le signe:

(η′
+η′

−)(IǫI
−1)/2(η′′

+η′′
−)(IǫP

−1)/2×
{

1 si ζǫP
= +

η′′
+η′′

− si ζǫP
= −×





1 si ǫI = ǫP = +

η′
−η′′

− si ǫI = ǫP = −
η′
− si ǫI = −, ǫP = +

η′′
− si ǫI = +, ǫP = −.

Il est temps d’utiliser les propriétés des formes < , >ǫ pour ǫ = ± et de leur
“réduction” (rappelées en [8] 3.11): η′

ǫη
′′
ǫ est calculé par le discriminant de la

forme < , >ǫ et η′
ǫ comme η′′

ǫ sont soit l’invariant de Hasse soit son opposé (le
choix dépend du discriminant). Ainsi, dans la formule ci-dessus, si ǫI 6= ǫP ,
ccusp(gs([C])) dépend de l’invariant de Hasse de l’une des formes < , >ǫ et pas de
l’autre: en effet le premier terme dépend du produit des 2 invariants de Hasse,
le deuxième terme dépend soit du produit soit vaut 1 et le troisième terme
dépend de l’un des invariants de Hasse exactement. Par contre si ǫI = ǫP

alors ccusp(C) dépend du produit des invariants de Hasse quand ζǫP
= − et est

constant si ζǫP
= +.

Comme la seule chose qui est fixée pour les classes de conjugaison dans la classe
de conjugaison stable de gs à l’intérieur d’un groupe SO(2n + 1, F )♯ où ♯ est
fixé est le produit sur tous les [λ] des invariants ♯[λ] (qui sont les invariants de
Hasse pour λ = ±1), on voit aisément que l’on a encore instabilité s’il existe
[λ] ∈ [V P (Cst)] tel que le terme correspondant dépend de l’invariant ♯[λ] de la
forme < , >[λ] et qu’il existe λ′ ∈ [V P (Cst] tel que le terme correspondant ne
dépend pas de l’invariant de la forme < , >[λ′]. Et on aura stabilité si aucun
des termes n’en dépend et semi-stabilité si tous les termes en dépendent. Ainsi
la stabilité se produit quand m′′([λ]) = 0 pour tout [λ] ∈ [V P (Cst)]−{−1,+1}
et si le produit des termes correspondant à +1 et −1 est aussi indépendant
des invariants de Hasse. Comme on l’a vu ci-dessus, il faut distinguer le cas
ǫI 6= ǫP du cas où l’on a égalité. Supposons d’abord que ǫI = ǫP ; dans ce cas,
si ζǫP

= +, ccusp(C) est indépendant des invariants de Hasse, il faut donc aussi
que les intégrales en soient indépendantes et donc que M ′′(+1) = M ′′(−1) = 0.

Par contre si ζǫP
= −, toujours sous l’hypothèse ǫI = ǫP , il faut |r′ǫ||r′′ǫ | =

0 et M ′(ǫ) = 0 pour ǫ = ±. Pour avoir stabilité, on a déjà vu qu’il faut
P−ǫP

= 0 et I−ǫI
= 1. La condition |r′ǫ||r′′ǫ | = 0 écrite pour ǫ = δ, donne

(I+ + I−)|(P+ −−P−)| = 0. D’où P+ = P− = 0 et on retrouve aussi IǫI
= 1 en

utilisant (∗)cusp. D’où par convention ζ+ = ζ− = + ce qui contredit ζǫP
= −.

Terminons le cas de la stabilité quand ǫI = ǫP ; la stabilité est alors équivalente
à m′′([λ]) = 0 pour tout [λ] 6= ±1 et pour λ = ±1, il faut M ′′(λ) = 0,
ζ+ = ζ− = + et (*)cusp. On remarque que la condition ǫI = ǫP couplée avec
(*)cusp est équivalente à |I+ − P+| = 1 et |I− − P−| = 1. Il faut encore utiliser
le fait que la localisation est non nulle si l’ensemble D(χ, gs) n’est pas vide;
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c’est-à-dire qu’il existe donc une collection ν′([u], [λ]), ν′′([u], [λ]) satisfaisant à:

m′([λ]) =
∑

[u]∈[V P (χ)]

ν′([u], [λ])ℓ[u]/(ℓ[u], ℓ[λ]),

m′′([λ]) =
∑

[u]∈[V P (χ)]

ν′′([u], [λ])ℓ[u]/(ℓ[u], ℓ[λ]),

pour tout [λ] 6= [±1] et une formule analogue quand λ ∈ {±1}. On a aussi,
avec les mêmes notations, pour tout [u] ∈ [V P (χ)] 6= ±1:

n′([u]) =
∑

[λ]∈[V P ([C])]

ν′([u], [λ])ℓ[λ]/(ℓ[u], ℓ[λ]),

ν′′([u]) =
∑

[λ]∈[V P ([C])]

ν′′([u], [λ])ℓ[λ]/(ℓ[u], ℓ[λ]);

et une formule analogue pour u ∈ {±1}. On en déduit que les conditions
n′′([u]) = 0 (si u 6= ±1) et N ′′(±1) = 0 sont équivalentes à leurs analogues
pour m′,m′′ et [λ].
Pour la stabilité, reste à voir le cas où ǫI 6= ǫP . On a vu que ccusp(gs(C)) dépend
de l’un des invariants de Hasse; il faut donc que les intégrales dépendent elles
aussi de l’un des invariants de Hasse exactement. Mais on doit donc avoir l’une
des conditions r′ǫr

′′
ǫ = 0 qui nécessairement entrâıne soit I+ = I− soit P+ = P−.

Et on a donc immédiatement une impossibilité avec les conventions sur ǫI et
ǫP .
Cela termine la preuve en ce qui concerne la stabilité.
Pour la semi-stabilité: le raisonnement est du même type, il faut pour tout
λ 6= ±1, m′(λ) = 0. Pour λ = ±1, on vérifie qu’il faut ǫI = ǫP (c’est comme
ci-dessus), puis M ′′(λ) = 0 et ζ+ = ζ− = −. Ensuite, on se rappelle des
échanges induits par Xcusp; on doit échanger ν′([u], ǫ′) et ν′′([u], ǫ′) pour tout
[u] ∈ [V P (χ)] et tout ǫ′ = ±1 (cf. 4.1). On en déduit que la semi-stabilité est
équivalente à ce que n′([u]) = 0 pour tout [u] 6= ±1 dans [V P (χ)], n′(±1) = 0
ainsi que les conditions déjà écrites sur la partie cuspidale. Cela termine la
preuve.

5.3 Traduction en termes de paramètres

La remarque ci-dessous vient d’idées de Lusztig avec des compléments pour
les groupes non connexes de [13]. On considère l’ensemble des quadruplets
d’entiers positifs ou nuls introduit dans 3.3, pour u = ± et ǫ′ = ±, ku,ǫ′ et on
pose Iǫ l’entier impair du couple (ku,+ + ku,− + 1, |ku,+ − ku,−|) et Pǫ l’entier
pair. On pose aussi ζu le signe de ku,+ − ku,− avec la convention que si ce
nombre est nul ζu = (−1)ku,+ ce qui est compatible avec la convention de 4.1
car (Iu − 1)/2 = ku,+ dans ce cas.
Remarque. Avec les notations précédentes, on a l’équivalence des conditions:

∀u ∈ {±}; |Iu − Pu| = 1 et ζu = + ⇔ ∀u ∈ {±} ku,− = 0;
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∀u ∈ {±}; |Iu − Pu| = 1 et ζu = − ⇔ ∀u ∈ {±} ku,+ = 0.

On a pour u = ±, |Iu − Pu| = 1 + ku,−ζǫ
et la remarque en découle.

La remarque précédente motive la définition:
Définition. Soit ψ, ǫ un paramètre discret de niveau 0. On reprend les
notations de 2.1 et 3.3. On dit qu’il est stable si pour tout [u] ∈ [V P (χ)]
l’orbite U ′

[u] = 0; il est semi-stable si pour tout [u] ∈ [V P (χ) l’orbite U ′′
[u] = 0

et il est instable sinon.
Corollaire. L’espace des fonctions associées via la représentation de
Springer-Lusztig et les faisceaux caractères à un paramètre discret de niveau
zéro est formé de fonctions stables, semi-stables ou instables si et seulement si
le paramètre est stable, semi-stable ou instable.
Avec la remarque, cela résulte de 5.2 et de la définition ci-dessus.

6 Interprétation

6.1 Transformation de Fourier

Dans les conjectures de Langlands, les propriétés de stabilité ne s’expriment
pas comme dans le corollaire ci-dessus. Ce ne sont pas certains paramètres qui
sont stables mais au contraire ce sont des combinaisons linéaires. Les 2 façons
d’exprimer le résultat se déduisent l’une de l’autre par une transformation
style transformation de Fourier. Plus précisément, on fixe χ et on fixe des
orbites U[u] pour tout [u] ∈ [V P (χ)] vérifiant les conditions de 2.1 et on note
U := {U[u]; [u] ∈ [V P (χ)]}. On note Pχ,U l’espace vectoriel complexe de base
l’ensemble des paramètres discrets de niveau 0 tels que la restriction de ψ à
IF × SL(2, C) (cf. 2.1) soit déterminée par χ et U . Le principe est de définir
un produit scalaire sur cet espace, < , > et de définir la transformation F , en
posant:

∀p ∈ Pχ,U ;F(p) :=
∑

p′∈Pχ,U

< p, p′ > p′

Et si on a donné les bonnes définitions, on doit obtenir que l’application F
transforme les paramètres stables au sens de 5.3 en des combinaisons linéaires
stables à la Langlands; on renvoie aux paragraphes suivants pour expliquer
cette dernière notion. Cela a déjà été fait dans [8] par. 6 dans ce qui est, en
fait, le cas le plus difficile; en effet la difficulté vient de ce qu’il faut travailler
avec des paramètres elliptiques et non pas des paramètres discrets et cette
difficulté n’apparâıt vraiment que quand [V P (χ)] contient +1 et/ou −1.
On dit qu’une orbite unipotente d’un groupe linéaire complexe est elliptique
symplectique (resp. orthogonale) si ses blocs de Jordan sont tous pairs (resp.
impairs) intervenant avec multiplicité au plus 2; pour le calcul du commutant,
il n’y a pas de changement majeur au lieu d’avoir des groupes O(1), on a
un groupe O(2) chaque fois qu’il y a multiplicité 2 (cf. 2.1). Disons qu’un
paramètre ψ, ǫ est elliptique de niveau 0 si ψ|WF

est modérément ramifié comme
en 2.1 et avec les notations de loc.cite, pour tout [u] ∈ [V P (χ)] et pour tout

Documenta Mathematica 9 (2004) 527–564



560 Colette Moeglin

ζ = ±1, l’orbite U[u],ζ est elliptique symplectique ou orthogonale (la différence
entre symplectique et orthogonale étant comme en 2.1). On remarque qu’il y a
une différence pour [u] 6= [±1] et pour [u] = [±1]. En effet dans le premier cas,
il revient au même de dire que U[u] est discrète (resp. elliptique) que de dire
que chaque U[u],ζ , pour ζ = ±1 est discrète ou elliptique et de plus, ce qui est
le plus intéressant est que U[u] détermine chaque U[u],ζ . Ce n’est plus le cas si
[u] = [±1]; dans ce deuxième cas la multiplicité d’un bloc de Jordan dans U[u]

a comme seule obligation d’être inférieure ou égale à 4 et le point le plus grave
est que U[u] ne détermine pas chaque U[u],±.
Ici u = ±1. On considère l’espace vectoriel complexe de base les quadruplets
(U[u],±, ǫ[u],±) et on note C[Ell[u]] son sous-espace vectoriel engendré par les
éléments

∑

ǫ[u],+,ǫ[u],−

( ∏

α+ ∈ Jord(U[u],+); mult+(α+) = 2,
α− ∈ Jord(U[u],−); mult−(α−) = 2

ǫ[u],+(α+)ǫ[u],−(α−)

)
(U[u],±, ǫ[u],±)

où U[u],± est fixé et la somme ne porte que sur les ǫ[u],± fixés sur l’ensemble
des α± dans Jord(U[u],±) dont la multiplicité mult[u],±(α) est 1.
On a défini en [8] 6.11 une involution de C[Ell[u]]; il faut transporter le F du (i)
de loc.cit par la bijection rea du (ii) de loc. cit.. C’était même une isométrie,
mais on n’insiste pas la-dessus ici. C’est trop technique pour qu’on redonne la
définition. On note F[u] cette involution.
Considérons maintenant le cas de [u] 6= ±1; on pose ici C[Disc[u]], l’espace
vectoriel complexe de base les éléments U[u], ǫ[u] où est U[u] est discrète (c’est-
à-dire que tous ses blocs de Jordan ont multiplicité 1). Pour définir l’application
F[u], on définit le produit scalaire:

< (U[u], ǫ[u]), (U
′
[u], ǫ

′
[u]) >[u]:=

0, si U[u] 6= U ′
[u],

σ(U[u])σ(ǫ[u])σ[u](ǫ
′
[u])

∏
α∈Jord(U[u])

ǫ[u](α)=−1

ǫ′[u](α) sinon,

où tous les σ sont des signes dépendant de l’objet dans la parenthèse; ici on
n’a besoin que de σ[u](ǫ

′
[u]). On le prend égal à ×α∈Jord(U[u]),α≡1[2]ǫ

′
[u](α).

On pose alors F[u](U[u], ǫ[u]) :=
∑

ǫ′
[u]

< (U[u], ǫ[u]), (U[u], ǫ
′
[u]) >[u] (U[u], ǫ

′
[u]).

On remarque aisément que F2
[u] = 2|Jord(U[u])|F[u].

Pour homogénéiser, on définit aussi C[Ell[u]]; c’est l’espace vectoriel engendré
par les éléments:

∑

ǫ[u]

( ∏

α∈Jord(U[u]);mult(α)=2

ǫ[u](α)

)
(U[u], ǫ[u])

où U[u],± est fixé et la somme ne porte que sur les ǫ[u],± fixés sur l’ensemble
des α± dans Jord(U[u],±) dont la multiplicité mult[u],±(α) est 1. On étend F[u]
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à C[Ell[u]] en étendant la formule déjà donnée en précisant simplement que le
produit ne porte que sur les α dont la multiplicité comme bloc de Jordan est
1.

On pose C[Ellχ] := ⊗[u]∈[V P (χ)];[u]C[Ell[u]]. Et on définit F := ⊗[u]∈[V P (χ)]F[u]

6.2 Restriction aux parahoriques des représentations

On a défini la représentation de Springer-Lusztig en 3.3; suivant [7] 6.5, on
modifie légèrement cette définition dans le cas des groupes unitaires, on la note
alors SpLell; cela induit alors un changement dans 3.3 que l’on marque par
le changement de notation de SpLell. Soit (ψ, ǫ) un paramètre discret (ou
elliptique) de niveau 0; on note ǫZ la restriction de ǫ à l’élément non trivial du
centre de Sp(2n, C). Pour ♯ = iso ou an, on dit que ǫZ = ♯ si ǫZ = 1 quand
♯ = iso et −1 sinon. On note |D| l’involution de [2] et [10] qui envoie une
représentation irréductible sur une représentation irréductible.

Conjecture: Il existe une bijection entre les paramètres discrets de niveau
0 ayant χ comme restriction à IF et vérifiant ǫZ = ♯ et les séries discrètes de
niveau zéro du groupe SO(2n + 1, F )♯ ayant χ comme élément semi-simple de
leur support cuspidal: (ψ, ǫ) 7→ πψ,ǫ qui s’étend en une bijection, notée rea,
entre C[Ellχ] et l’espace vectoriel complexe engendré par les représentations el-
liptiques au sens d’Arthur ayant χ comme élément semi-simple de leur support
cuspidal avec la propriété: pour tout paramètre discret de niveau zéro, (ψ, ǫ),
kχ(ρ ◦ ι)SpLell(ψ, ǫ) est un pseudo-coefficient de |D|reaF(ψ, ǫ) (ou plus ex-
actement a les mêmes intégrales orbitales qu’un pseudo-coefficient en les points
semi-simples réguliers elliptiques de SO(2n + 1, F )♯).

Cette conjecture est démontrée dans [12] pour les représentations de réduction
unipotente.

Cette conjecture est motivée par ([7] 7.) bien qu’il y ait une différence entre
les signes; cette différence doit traduire un signe provenant de la traduction en
terme d’algèbre de Hecke de l’induction de Lusztig (ce qui devrait être l’objet de
[2]). En [7], le signe qui s’introduit est

∏
u6=±1

∏
α∈Jord(U[u]);α≡m([u])+1[2] ǫ

′(α)

alors qu’ici on a fait le produit sur les blocs de Jordan impair.

6.3 Interprétation des résultats de stabilité

On a vu en [8] 4.6 (à la suite d’Arthur) que la stabilité des représentations ellip-
tiques se lit sur les intégrales orbitales des pseudo-coefficients, en admettant la
conjecture de 6.2 on peut décrire les combinaisons linéaires de représentations
discrètes qui sont stables. Soit ψ, ǫ un paramètre discret de niveau 0 de re-
striction le caractère χ à IF . On note encore ǫZ la restriction de ǫ au centre
de SO(2n + 1, F )♯ (où ♯ = iso ou an) et on dit que ǫZ = ♯ si ǫZ = + quand
♯ = iso et − quand ♯ = an.
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Théorème. Ici on admet la conjecture de 6.2. Soient ♯ = iso ou an et ψ un
paramètre discret de niveau 0.
(i) La combinaison linéaire: ∑

ǫ;ǫZ=♯

πψ,ǫ

est stable pour le groupe SO(2n + 1, F )♯. De plus dans le transfert entre
SO(2n+1, F )an et SO(2n+1, F )iso, les combinaisons linéaires ǫZ

∑
ǫ;ǫZ=♯ πψ,ǫ

se correspondent (ici ♯ est vu comme un élément de ±1).
(ii) toute combinaison linéaire des représentations πψ,ǫ pour ǫ variant avec
ǫZ = ♯ est instable si elle n’est pas proportionnelle à la combinaison écrite en
(i).
On fixe ♯ = iso ou an et on note C[Ellχ]stable,♯ le sous-espace de C[Ellχ]
formé de l’image par rea des combinaisons linéaires stables de représentations
elliptiques pour SO(2n + 1, F )♯. Et on note C[Ellχ]st,sst le sous-espace de
C[Ellχ] engendré par les paramètres elliptiques de niveau 0, stables ou semi-
stables. On reprend les notations U ′([u]) et U ′′([u]) de 3.3, l’espace ci-dessus
est donc naturellement la somme directe des 2 sous-espaces, l’un (resp. l’autre)
engendré par les paramètres (ψ, ǫ) tels que U ′′

[u] = 0 (resp. U ′
[u] = 0) pour

tout [u] ∈ [V P (χ)]. Avec la conjecture et le théorème de 5.2 (complété
par la remarque de 5.1), on sait que rea ◦ F induit entre C[Ellχ]st,sst et
C[Ellχ]stable,iso ⊕C[Ellχ]stable,an. Il suffit donc de calculer l’image par F d’un
paramètre (ψ, ǫ) elliptique de niveau 0 qui soit stable ou semi-stable et de
reprojeter sur l’espace vectoriel engendré par les paramètres (ψ, ǫ) vérifiant
ǫZ = ♯ quand ♯ est fixé. Fixons donc ζ = ± et calculons l’image F(ψ, ǫ) en
supposant que pour tout [u] ∈ [V P (χ)] l’orbite U δ

[u] = 0, où δ =′ si ζ = +

et δ =′′ si ζ = −. On espère que le lecteur comprendra une décomposition
F(ψ, ǫ) = ×[u]∈[V P (χ)]F[u](ψ[u], ǫ[u]). Et on calcule F[u](ψ[u], ǫ[u]) en supposant
d’abord que [u] 6= [±1]; d’après la définition, on a

F[u](ψ[u], ǫ[u]) = σ(U[u])σ[u](ǫ[u])
∑

ǫ′
[u]

σ[u](ǫ
′
[u])

( ∏

α∈Jord(U[u])

ǫ[u](α)=−1

ǫ′[u](α)

)
(ψ[u], ǫ

′
[u]).

Or ǫ[u](α) = ζ par hypothèse pour tout α; la formule ci-dessus se simplifie donc
si ζ = + en

F[u](ψ[u], ǫ[u]) = σ[u](ǫ[u])
∑

ǫ′
[u]

σ[u](ǫ
′
[u])(ψ[u], ǫ

′
[u]).

Par contre si ζ = −, elle se simplifie en:

F[u](ψ[u], ǫ[u]) = σ[u](ǫ[u])
∑

ǫ′
[u]

σ[u](ǫ
′
[u])

( ∏

α∈Jord(U[u])

ǫ′[u](α)

)
(ψ[u], ǫ

′
[u]).

Le cas de [u] = [±1] est exactement celui traité en [8] 6.12, et le résultat est
analogue à ci-dessus.
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En revenant au produit, on obtient dans le cas ζ = +, avec σ un signe qui
dépend de ψ, ǫ:

F(ψ, ǫ) = σ
∑

ǫ′

(ψ, ǫ′).

Dans le cas ζ = −, dans la formule s’ajoute
∏

α∈∪[u]Jord(U[u])
ǫ′(α) qui n’est

autre que ǫ′Z . Quand on sépare les 2 morceaux, celui correspondant à ♯ = iso
et ♯ = an, ǫ′Z est constant dans chaque morceau.

Pour pouvoir en déduire le résultat de stabilité cherchée, il faut utiliser la
conjecture 6.2 qui permet de calculer les intégrales orbitales des caractères
des représentations pour les éléments elliptiques. Mais il faut d’abord en-
lever |D|. Or pour toute représentation π irréductible et pour tout élément
elliptique γ de G le caractère de π et de |D|π cöıncident en γ au signe
(−1)rgG−rgPcusp,π , où Pcusp,π est le sous-groupe parabolique de G minimal
pour la propriété que resP (π) est non nulle. Pour π de la forme π(ψ, ǫ),
(−1)rgG−rgPcusp,π =

∏
α∈∪[u]Jord(U[u]);α≡0[2] ǫ(α). On a ainsi démontré que la

distribution
∑

ǫ′

( ∏

α∈∪[u]Jord(U[u])

ǫ′(α)

)
π(ψ, ǫ′)

est stable et que pour ♯ = iso ou an les seules distributions stables sont les
sous-sommes de la somme ci-dessus où l’on ne somme que sur les ǫ′ tels que
ǫ′Z = ♯. Cela donne le résultat annoncé.
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unipotente: le cas des groupes unitaires, prépublication Février 2003
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[11] Waldspurger J.-L. : Intégrales orbitales unipotentes et endoscopie pour
les groupes classiques non ramifiés Astérisque 269, 2001
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Introduction

Very often, groupoids that appear in geometry, such as holonomy groupoids of
foliations, groupoids of inverse semigroups [15, 6] and the indicial algebra of
a manifold with corners [10] are not Hausdorff. It is thus necessary to extend
various basic notions to this broader setting, such as proper action and Morita
equivalence. We also show that a generalized morphism from G2 to G1 satisfy-
ing certain properness conditions induces an element of KK(C∗

r (G2), C
∗
r (G1)).

In Section 2, we introduce the notion of proper groupoids and show that it is
invariant under Morita-equivalence.
Section 3 is a technical part of the paper in which from every locally compact
topological space X is canonically constructed a locally compact Hausdorff
space HX in which X is (not continuously) embedded. When G is a groupoid
(locally compact, with Haar system, such that G(0) is Hausdorff), the closure
X ′ of G(0) in HG is endowed with a continuous action of G and plays an
important technical rôle.
In Section 4 we review basic properties of locally compact groupoids with Haar
system and technical tools that are used later.
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In Section 5 we construct, using tools of Section 3, a canonical C∗
r (G)-Hilbert

module E(G) for every (locally compact...) proper groupoid G. If G(0)/G is
compact, then there exists a projection p ∈ C∗

r (G) such that E(G) is isomorphic
to pC∗

r (G). The projection p is given by p(g) = (c(s(g))c(r(g)))1/2, where
c : G(0) → R+ is a “cutoff” function (Section 6). Contrary to the Hausdorff
case, the function c is not continuous, but it is the restriction to G(0) of a
continuous map X ′ → R+ (see above for the definition of X ′).
In Section 7, we examine the question of naturality G 7→ C∗

r (G). Recall that
if f : X → Y is a continuous map between two locally compact spaces, then f
induces a map from C0(Y ) to C0(X) if and only if f is proper. When G1 and
G2 are groups, a morphism f : G1 → G2 does not induce a map C∗

r (G2) →
C∗

r (G1) (when G1 ⊂ G2 is an inclusion of discrete groups there is a map in
the other direction). When f : G1 → G2 is a groupoid morphism, we cannot
expect to get more than a C∗-correspondence from C∗

r (G2) to C∗
r (G1) when

f satisfies certain properness assumptions: this was done in the Hausdorff
situation by Macho-Stadler and O’Uchi ([11, Theorem 2.1], see also [7, 13, 17]),
but the formulation of their theorem is somewhat complicated. In this paper,
as a corollary of Theorem 7.8, we get that (in the Hausdorff situation), if the
restriction of f to (G1)

K
K is proper for each compact set K ⊂ (G1)

(0) then f
induces a correspondence Ef from C∗

r (G2) to C∗
r (G1). In fact we construct a

C∗-correspondence out of any groupoid generalized morphism ([5, 9]) which
satisfies some properness conditions. As a corollary, if G1 and G2 are Morita
equivalent then C∗

r (G1) and C∗
r (G2) are Morita-equivalent C∗-algebras.

Finally, let us add that our original motivation was to extend Baum, Connes
and Higson’s construction of the assembly map µ to non-Hausdorff groupoids;
however, we couldn’t prove µ to be an isomorphism in any non-trivial case.

1. Preliminaries

1.1. Groupoids. Throughout, we will assume that the reader is familiar with
basic definitions about groupoids (see [16, 15]). If G is a groupoid, we denote by
G(0) its set of units and by r : G → G(0) and s : G → G(0) its range and source
maps respectively. We will use notations such as Gx = s−1(x), Gy = r−1(y),
Gy

x = Gx ∩ Gy. Recall that a topological groupoid is said to be étale if r (and
s) are local homeomorphisms.

For all sets X, Y , T and all maps f : X → T and g : Y → T , we denote by
X×f,g Y , or by X×T Y if there is no ambiguity, the set {(x, y) ∈ X×Y | f(x) =
g(y)}.
Recall that a (right) action of G on a set Z is given by

(a) a (“momentum”) map p : Z → G(0);
(b) a map Z ×p,r G → Z, denoted by (z, g) 7→ zg

with the following properties:

(i) p(zg) = s(g) for all (z, g) ∈ Z ×p,r G;
(ii) z(gh) = (zg)h whenever p(z) = r(g) and s(g) = r(h);
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(iii) zp(z) = z for all z ∈ Z.

Then the crossed-product Z ⋊ G is the subgroupoid of (Z ×Z)×G consisting
of elements (z, z′, g) such that z′ = zg. Since the map Z ⋊ G → Z × G given
by (z, z′, g) 7→ (z, g) is injective, the groupoid Z ⋊ G can also be considered as
a subspace of Z × G, and this is what we will do most of the time.

1.2. Locally compact spaces. A topological space X is said to be quasi-
compact if every open cover of X admits a finite sub-cover. A space is compact
if it is quasi-compact and Hausdorff. Let us recall a few basic facts about
locally compact spaces.

Definition 1.1. A topological space X is said to be locally compact if every
point x ∈ X has a compact neighborhood.

In particular, X is locally Hausdorff, thus every singleton subset of X is closed.
Moreover, the diagonal in X × X is locally closed.

Proposition 1.2. Let X be a locally compact space. Then every locally closed
subspace of X is locally compact.

Recall that A ⊂ X is locally closed if for every a ∈ A, there exists a neighbor-
hood V of a in X such that V ∩ A is closed in V . Then A is locally closed if
and only if it is of the form U ∩ F , with U open and F closed.

Proposition 1.3. Let X be a locally compact space. The following are equiv-
alent:

(i) there exists a sequence (Kn) of compact subspaces such that X =
∪n∈NKn;

(ii) there exists a sequence (Kn) of quasi-compact subspaces such that X =
∪n∈NKn;

(iii) there exists a sequence (Kn) of quasi-compact subspaces such that X =

∪n∈NKn and Kn ⊂ K̊n+1 for all n ∈ N.

Such a space will be called σ-compact.

Proof. (i) =⇒ (ii) is obvious. The implications (ii) =⇒ (iii) =⇒ (i) follow
easily from the fact that for every quasi-compact subspace K, there exists a
finite family (Ki)i∈I of compact sets such that K ⊂ ∪i∈IK̊i. ¤

1.3. Proper maps.

Proposition 1.4. [2, Théorème I.10.2.1] Let X and Y be two topological
spaces, and f : X → Y a continuous map. The following are equivalent:

(i) For every topological space Z, f × IdZ : X × Z → Y × Z is closed;
(ii) f is closed and for every y ∈ Y , f−1(y) is quasi-compact.

A map which satisfies the equivalent properties of Proposition 1.4 is said to be
proper.
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Proposition 1.5. [2, Proposition I.10.2.6] Let X and Y be two topological
spaces and let f : X → Y be a proper map. Then for every quasi-compact
subspace K of Y , f−1(K) is quasi-compact.

Proposition 1.6. Let X and Y be two topological spaces and let f : X → Y
be a continuous map. Suppose Y is locally compact, then the following are
equivalent:

(i) f is proper;
(ii) for every quasi-compact subspace K of Y , f−1(K) is quasi-compact;
(iii) for every compact subspace K of Y , f−1(K) is quasi-compact;
(iv) for every y ∈ Y , there exists a compact neighborhood Ky of y such that

f−1(Ky) is quasi-compact.

Proof. (i) =⇒ (ii) follows from Proposition 1.5. (ii) =⇒ (iii) =⇒ (iv) are
obvious. Let us show (iv) =⇒ (i).
Since f−1(y) is closed, it is clear that f−1(y) is quasi-compact for all y ∈ Y .
It remains to prove that for every closed subspace F ⊂ X, f(F ) is closed. Let

y ∈ f(F ). Let A = f−1(Ky). Then A ∩ F is quasi-compact, so f(A ∩ F ) is

quasi-compact. As f(A ∩ F ) ⊂ Ky, it is closed in Ky, i.e. Ky ∩ f(A ∩ F ) =

Ky ∩ f(A ∩ F ). We thus have y ∈ Ky ∩ f(A ∩ F ) = Ky ∩ f(A ∩ F ) ⊂ f(F ). It
follows that f(F ) is closed. ¤

2. Proper groupoids and proper actions

2.1. Locally compact groupoids.

Definition 2.1. A topological groupoid G is said to be locally compact (resp.
σ-compact) if it is locally compact (resp. σ-compact) as a topological space.

Remark 2.2. The definition of a locally compact groupoid in [15] corresponds
to our definition of a locally compact, σ-compact groupoid with Haar system
whose unit space is Hausdorff, thanks to Propositions 2.5 and 2.8.

Example 2.3. Let Γ be a discrete group, H a closed normal subgroup and let
G be the bundle of groups over [0, 1] such that G0 = Γ and Gt = Γ/H for
all t > 0. We endow G with the quotient topology of ([0, 1] × Γ) / ((0, 1] × H).
Then G is a non-Hausdorff locally compact groupoid such that (t, γ̄) converges
to (0, γh) as t → 0, for all γ ∈ Γ and h ∈ H.

Example 2.4. Let Γ be a discrete group acting on a locally compact Hausdorff
space X, and let G = (X×Γ)/ ∼, where (x, γ) and (x, γ′) are identified if their
germs are equal, i.e. there exists a neighborhood V of x such that yγ = yγ′ for
all y ∈ V . Then G is locally compact, since the open sets Vγ = {[(x, γ)]| x ∈ X}
are homeomorphic to X and cover G.
Suppose that X is a manifold, M is a manifold such that π1(M) = Γ, M̃ is the

universal cover of M and V = (X × M̃)/Γ, then V is foliated by {[x, m̃]| m̃ ∈
M̃} and G is the restriction to a transversal of the holonomy groupoid of the
above foliation.
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Proposition 2.5. If G is a locally compact groupoid, then G(0) is locally closed
in G, hence locally compact. If furthermore G is σ-compact, then G(0) is σ-
compact.

Proof. Let ∆ be the diagonal in G × G. Since G is locally Hausdorff, ∆ is
locally closed. Then G(0) = (Id, r)−1(∆) is locally closed in G.
Suppose that G = ∪n∈NKn with Kn quasi-compact, then s(Kn) is quasi-
compact and G(0) = ∪n∈Ns(Kn). ¤

Proposition 2.6. Let Z a locally compact space and G be a locally compact
groupoid acting on Z. Then the crossed-product Z ⋊ G is locally compact.

Proof. Let p : Z → G(0) be the momentum map of the action of G. From
Proposition 2.5, the diagonal ∆ ⊂ G(0) × G(0) is locally closed in G(0) × G(0),
hence Z ⋊ G = (p, r)−1(∆) is locally closed in Z × G. ¤

Let T be a space. Recall that there is a groupoid T ×T with unit space T , and
product (x, y)(y, z) = (x, z).
Let G be a groupoid and T be a space. Let f : T → G(0), and let G[T ] =

{(t′, t, g) ∈ (T ×T )×G| g ∈ G
f(t′)
f(t) }. Then G[T ] is a subgroupoid of (T ×T )×G.

Proposition 2.7. Let G be a topological groupoid with G(0) locally Hausdorff,
T a topological space and f : T → G(0) a continuous map. Then G[T ] is a
locally closed subgroupoid of (T × T )×G. In particular, if T and G are locally
compact, then G[T ] is locally compact.

Proof. Let F ⊂ T×G(0) be the graph of f . Then F = (f×Id)−1(∆), where ∆ is
the diagonal in G(0) ×G(0), thus it is locally closed. Let ρ : (t′, t, g) 7→ (t′, r(g))
and σ : (t′, t, g) 7→ (t, s(g)) be the range and source maps of (T × T )×G, then
G[T ] = (ρ, σ)−1(F × F ) is locally closed. ¤

Proposition 2.8. Let G be a locally compact groupoid such that G(0) is Haus-
dorff. Then for every x ∈ G(0), Gx is Hausdorff.

Proof. Let Z = {(g, h) ∈ Gx × Gx| r(g) = r(h)}. Let ϕ : Z → G defined by
ϕ(g, h) = g−1h. Since {x} is closed in G, ϕ−1(x) is closed in Z, and since
G(0) is Hausdorff, Z is closed in Gx × Gx. It follows that ϕ−1(x), which is the
diagonal of Gx × Gx, is closed in Gx × Gx. ¤

2.2. Proper groupoids.

Definition 2.9. A topological groupoid G is said to be proper if (r, s) : G →
G(0) × G(0) is proper.

Proposition 2.10. Let G be a topological groupoid such that G(0) is locally
compact. Consider the following assertions:

(i) G is proper;
(ii) (r, s) is closed and for every x ∈ G(0), Gx

x is quasi-compact;
(iii) for all quasi-compact subspaces K and L of G(0), GL

K is quasi-compact;

(iii)’ for all compact subspaces K and L of G(0), GL
K is quasi-compact;
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(iv) for every quasi-compact subspace K of G(0), GK
K is quasi-compact;

(v) ∀x, y ∈ G(0), ∃Kx, Ly compact neighborhoods of x and y such that

G
Ly

Kx
is quasi-compact.

Then (i) ⇐⇒ (ii) ⇐⇒ (iii) ⇐⇒ (iii)’ ⇐⇒ (v) =⇒ (iv). If G(0) is Hausdorff,
then (i)–(v) are equivalent.

Proof. (i) ⇐⇒ (ii) follows from Proposition 1.4, and from the fact that Gx
x is

homeomorphic to Gy
x if Gy

x 6= ∅. (i) =⇒ (iii) and (v) =⇒ (i) follow Proposi-
tion 1.6 and the formula GL

K = (r, s)−1(L × K). (iii) =⇒ (iii)’ =⇒ (v) and

(iii) =⇒ (iv) are obvious. If G(0) is Hausdorff, then (iv) =⇒ (v) is obvious. ¤

Note that if G = G(0) is a non-Hausdorff topological space, then G is not proper
(since (r, s) is not closed), but satisfies property (iv).

Proposition 2.11. Let G be a topological groupoid. If r : G → G(0) is open
then the canonical mapping π : G(0) → G(0)/G is open.

Proof. Let V ⊂ G(0) be an open subspace. If r is open, then r(s−1(V )) =
π−1(π(V )) is open. Therefore, π(V ) is open. ¤

Proposition 2.12. Let G be a topological groupoid such that G(0) is locally
compact and r : G → G(0) is open. Suppose that (r, s)(G) is locally closed in
G(0) × G(0), then G(0)/G is locally compact. Furthermore,

(a) if G(0) is σ-compact, then G(0)/G is σ-compact;
(b) if (r, s)(G) is closed (for instance if G is proper), then G(0)/G is Haus-

dorff.

Proof. Let R = (r, s)(G). Let π : G(0) → G(0)/G be the canonical mapping. By
Proposition 2.11, π is open, therefore G(0)/G is locally quasi-compact. Let us
show that it is locally Hausdorff. Let V be an open subspace of G(0) such that
(V × V ) ∩ R is closed in V × V . Let ∆ be the diagonal in π(V ) × π(V ). Then
(π×π)−1(∆) = (V ×V )∩R is closed in V ×V . Since π×π : V ×V → π(V )×π(V )
is continuous open surjective, it follows that ∆ is closed in π(V )×π(V ), hence
π(V ) is Hausdorff. This completes the proof that G(0)/G is locally compact
and of assertion (b).
Assertion (a) follows from the fact that for every x ∈ G(0) and every compact
neighborhood K of x, π(K) is a quasi-compact neighborhood of π(x). ¤

2.3. Proper actions.

Definition 2.13. Let G be a topological groupoid. Let Z be a topological space
endowed with an action of G. Then the action is said to be proper if Z ⋊ G is
a proper groupoid. (We will also say that Z is a proper G-space.)

A subspace A of a topological space X is said to be relatively compact (resp.
relatively quasi-compact) if it is included in a compact (resp. quasi-compact)
subspace of X. This does not imply that A is compact (resp. quasi-compact).
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Proposition 2.14. Let G be a topological groupoid. Let Z be a topological
space endowed with an action of G. Consider the following assertions:

(i) G acts properly on Z;
(ii) (r, s) : Z ⋊ G → Z × Z is closed and ∀z ∈ Z, the stabilizer of z is

quasi-compact;
(iii) for all quasi-compact subspaces K and L of Z, {g ∈ G| Lg ∩K 6= ∅} is

quasi-compact;
(iii)’ for all compact subspaces K and L of Z, {g ∈ G| Lg ∩ K 6= ∅} is

quasi-compact;
(iv) for every quasi-compact subspace K of Z, {g ∈ G| Kg ∩ K 6= ∅} is

quasi-compact;
(v) there exists a family (Ai)i∈I of subspaces of Z such that Z = ∪i∈IÅi

and {g ∈ G| Aig ∩ Aj 6= ∅} is relatively quasi-compact for all i, j ∈ I.

Then (i) ⇐⇒ (ii) =⇒ (iii) =⇒ (iii)’ and (iii) =⇒ (iv). If Z is locally compact,
then (iii)’ =⇒ (v) and (iv) =⇒ (v). If G(0) is Hausdorff and Z is locally
compact Hausdorff, then (i)–(v) are equivalent.

Proof. (i) ⇐⇒ (ii) follows from Proposition 2.10[(i) ⇐⇒ (ii)]. Implication
(i) =⇒ (iii) follows from the fact that if (Z ⋊ G)L

K is quasi-compact, then its
image by the second projection Z ⋊ G → G is quasi-compact. (iii) =⇒ (iii)’
and (iii) =⇒ (iv) are obvious.
Suppose that Z is locally compact. Take Ai ⊂ Z compact such that Z =
∪i∈IÅi. If (iii)’ is true, then {g ∈ G| Aig ∩ Aj 6= ∅} is quasi-compact, hence
(v). If (iv) is true, then {g ∈ G| Aig∩Aj 6= ∅} is a subset of the quasi-compact
set {g ∈ G| Kg ∩ K 6= ∅}, where K = Ai ∪ Aj , hence (v).

Suppose that Z is locally compact Hausdorff and that G(0) is Hausdorff. Let us
show (v) =⇒ (ii). Let Cij be a quasi-compact set such that {g ∈ G| Aig∩Aj 6=
∅} ⊂ Cij .

Let z ∈ Z. Choose i ∈ I such that z ∈ Ai. Since Z and G(0) are Hausdorff,
stab(z) is a closed subspace of Cii, therefore it is quasi-compact.
It remains to prove that the map Φ: Z ×G(0) G → Z × Z given by
Φ(z, g) = (z, zg) is closed. Let F ⊂ Z ×G(0) G be a closed subspace, and

(z, z′) ∈ Φ(F ). Choose i and j such that z ∈ Åi and z′ ∈ Åj . Then

(z, z′) ∈ Φ(F ) ∩ (Ai × Aj) ⊂ Φ(F ∩ (Ai ×G(0) Cij)) ⊂ Φ(F ∩ (Z ×G(0) Cij)).
There exists a net (zλ, gλ) ∈ F ∩ (Z ×G(0) Cij) such that (z, z′) is a limit
point of (zλ, zλgλ). Since Cij is quasi-compact, after passing to a universal

subnet we may assume that gλ converges to an element g ∈ Cij . Since G(0)

is Hausdorff, F ∩ (Z ×G(0) Cij) is closed in Z × Cij , so (z, g) is an element of
F ∩ (Z ×G(0) Cij). Using the fact that Z is Hausdorff and Φ is continuous, we
obtain (z, z′) = Φ(z, g) ∈ Φ(F ). ¤

Remark 2.15. It is possible to define a notion of slice-proper action which
implies properness in the above sense. The two notions are equivalent in many
cases [1, 3].
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Proposition 2.16. Let G be a locally compact groupoid. Then G acts properly
on itself if and only if G(0) is Hausdorff. In particular, a locally compact space
is proper if and only if it is Hausdorff.

Proof. It is clear from Proposition 2.10(ii) that G acts properly on itself if and
only if the product ϕ : G(2) → G × G is closed. Since ϕ factors through the
homeomorphism G(2) → G×r,r G, (g, h) 7→ (g, gh), G acts properly on itself if
and only if G ×r,r G is a closed subset of G × G.

If G(0) is Hausdorff, then clearly G ×r,r G is closed in G × G. Conversely, if

G(0) is not Hausdorff, then there exists (x, y) ∈ G(0) × G(0) such that x 6= y
and (x, y) is in the closure of the diagonal of G(0) ×G(0). It follows that (x, y)
is in the closure of G ×r,r G, but (x, y) /∈ G ×r,r G, therefore G ×r,r G is not
closed. ¤

2.4. Permanence properties.

Proposition 2.17. If G1 and G2 are proper topological groupoids, then G1×G2

is proper.

Proof. Follows from the fact that the product of two proper maps is proper [2,
Corollaire I.10.2.3]. ¤

Proposition 2.18. Let G1 and G2 be two topological groupoids such that G
(0)
1

is Hausdorff and G2 is proper. Suppose that f : G1 → G2 is a proper morphism.
Then G1 is proper.

Proof. Denote by ri and si the range and source maps of Gi (i = 1, 2). Let f̄ be

the map G
(0)
1 ×G

(0)
1 → G

(0)
2 ×G

(0)
2 induced from f . Since f̄◦(r1, s1) = (r2, s2)◦f

is proper and G
(0)
1 is Hausdorff, it follows from [2, Proposition I.10.1.5] that

(r1, s1) is proper. ¤

Proposition 2.19. Let G1 and G2 be two topological groupoids such that G1

is proper. Suppose that f : G1 → G2 is a surjective morphism such that the

induced map f ′ : G
(0)
1 → G

(0)
2 is proper. Then G2 is proper.

Proof. Denote by ri and si the range and source maps of Gi (i = 1, 2). Let F2 ⊂
G2 be a closed subspace, and F1 = f−1(F2). Since G1 is proper, (r1, s1)(F1)
is closed, and since f ′ × f ′ is proper, (f ′ × f ′) ◦ (r1, s1)(F1) is closed. By
surjectivity of f , we have (r2, s2)(F2) = (f ′ × f ′) ◦ (r1, s1)(F1). This proves
that (r2, s2) is closed. Since for every topological space T , the assumptions of
the proposition are also true for the morphism f × 1: G1 × T → G2 × T , the
above shows that (r2, s2) × 1T is closed. Therefore, (r2, s2) is proper. ¤

Proposition 2.20. Let G be a topological groupoid with G(0) Hausdorff, acting
on two spaces Y and Z. Suppose that the action of G on Z is proper, and that
Y is Hausdorff. Then G acts properly on Y ×G(0) Z.

Proof. The groupoid (Y ×G(0) Z) ⋊ G is isomorphic to the subgroupoid Γ =
{(y, y′, z, g) ∈ (Y ×Y )× (Z ⋊G)| p(y) = r(g), y′ = yg} of the proper groupoid
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(Y × Y ) × (Z ⋊ G). Since Y and G(0) are Hausdorff, Γ is closed in (Y × Y ) ×
(Z ⋊ G), hence by Proposition 2.10(ii), (Y ×G(0) Z) ⋊ G is proper. ¤

Corollary 2.21. Let G be a proper topological groupoid with G(0) Hausdorff.
Then any action of G on a Hausdorff space is proper.

Proof. Follows from Proposition 2.20 with Z = G(0). ¤

Proposition 2.22. Let G be a topological groupoid and f : T → G(0) be a
continuous map.

(a) If G is proper, then G[T ] is proper.
(ii) If G[T ] is proper and f is open surjective, then G is proper.

Proof. Let us prove (a). Suppose first that T is a subspace of G(0) and that
f is the inclusion. Then G[T ] = GT

T . Since (rT , sT ) is the restriction to
(r, s)−1(T × T ) of (r, s), and (r, s) is proper, it follows that (rT , sT ) is proper.
In the general case, let Γ = (T ×T )×G and let T ′ ⊂ T ×G(0) be the graph of f .
Then Γ is a proper groupoid (since it is the product of two proper groupoids),
and G[T ] = Γ[T ′].

Let us prove (b). The only difficulty is to show that (r, s) is closed. Let F ⊂ G

be a closed subspace and (y, x) ∈ (r, s)(F ). Let F̃ = G[T ] ∩ (T × T ) × F .
Choose (t′, t) ∈ T ×T such that f(t′) = y and f(t) = x. Denote by r̃ and s̃ the

range and source maps of G[T ]. Then (t′, t) ∈ (r̃, s̃)(F̃ ). Indeed, let Ω ∋ (t′, t)
be an open set, and Ω′ = (f × f)(Ω). Then Ω′ is an open neighborhood of

(y, x), so Ω′ ∩ (r, s)(F ) 6= ∅. It follows that Ω ∩ (r̃, s̃)(F̃ ) 6= ∅.
We have proved that (t′, t) ∈ (r̃, s̃)(F̃ ) = (r̃, s̃)(F̃ ), so (y, x) ∈ (r, s)(F ). ¤

Corollary 2.23. Let G be a groupoid acting properly on a topological space
Z, and let Z1 be a saturated subspace. Then G acts properly on Z1.

Proof. Use the fact that Z1 ⋊ G = (Z ⋊ G)[Z1]. ¤

2.5. Invariance by Morita-equivalence. In this section, we will only con-
sider groupoids whose range maps are open. We thus need a stability lemma:

Lemma 2.24. Let G be a topological groupoid whose range map is open. Let
Z be a G space and f : T → G(0) be a continuous open map. Then the range
maps for Z ⋊ G and G[T ] are open.

To prove Lemma 2.24 we need a preliminary result:

Lemma 2.25. Let X, Y , T be topological spaces, g : Y → T an open map
and f : X → T continuous. Let Z = X ×T Y . Then the first projection
pr1 : X ×T Y → X is open.

Proof. Let Ω ⊂ Z open. There exists an open subspace Ω′ of X × Y such
that Ω = Ω′ ∩ Z. Let ∆ be the diagonal in X × X. One easily checks that
(pr1,pr1)(Ω) = (1 × f)−1(1 × g)(Ω′) ∩ ∆, therefore (pr1,pr1)(Ω) is open in ∆.
This implies that pr1(Ω) is open in X. ¤
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Proof of Lemma 2.24. This is clear for Z ⋊ G = Z ×G(0) G using Lemma 2.25.

For G[T ], first use Lemma 2.25 to prove that T ×f,s G
pr2−−→ G is open. Since

the range map is open by assumption, the composition T ×f,s G
pr2−−→ G

r−→ G(0)

is open. Using again Lemma 2.25, G[T ] ≃ T ×f,r◦pr2
(T ×f,s G)

pr1−−→ T is
open. ¤

In order to define the notion of Morita-equivalence for topological groupoids,
we introduce some terminology:

Definition 2.26. Let G be a topological groupoid. Let T be a topological space
and ρ : G(0) → T be a G-invariant map. Then G is said to be ρ-proper if the
map (r, s) : G → G(0) ×T G(0) is proper. If G acts on a space Z and ρ : Z → T
is G-invariant, then the action is said to be ρ-proper if Z ⋊ G is ρ-proper.

It is clear that properness implies ρ-properness. There is a partial converse:

Proposition 2.27. Let G be a topological groupoid, T a topological space,
ρ : G(0) → T a G-invariant map. If G is ρ-proper and T is Hausdorff, then G
is proper.

Proof. Since T is Hausdorff, G(0) ×T G(0) is a closed subspace of G(0) × G(0),
therefore (r, s), being the composition of the two proper maps G → G(0) ×T

G(0) → G(0) × G(0), is proper. ¤

Remark 2.28. When T is locally Hausdorff, one easily shows that G is ρ-proper

iff for every Hausdorff open subspace V of T , G
ρ−1(V )
ρ−1(V ) is proper.

Proposition 2.29. [14] Let G1 and G2 be two topological (resp. locally com-
pact) groupoids. Let ri, si (i = 1, 2) be the range and source maps of Gi, and
suppose that ri are open. The following are equivalent:

(i) there exist a topological (resp. locally compact) space T and fi : T →
G

(0)
i open surjective such that G1[T ] and G2[T ] are isomorphic;

(ii) there exists a topological (resp. locally compact) space Z, two continu-

ous maps ρ : Z → G
(0)
1 and σ : Z → G

(0)
2 , a left action of G1 on Z with

momentum map ρ and a right action of G2 on Z with momentum map
σ such that
(a) the actions commute and are free, the action of G2 is ρ-proper and

the action of G1 is σ-proper;

(b) the natural maps Z/G2 → G
(0)
1 and G1\Z → G

(0)
2 induced from ρ

and σ are homeomorphisms.

Moreover, one may replace (b) by

(b)’ ρ and σ are open and induce bijections Z/G2 → G
(0)
1 and G1\Z →

G
(0)
2 .

In (i), if T is locally compact then it may be assumed Hausdorff.
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If G1 and G2 satisfy the equivalent conditions in Proposition 2.29, then they

are said to be Morita-equivalent. Note that if G
(0)
i are Hausdorff, then by

Proposition 2.27, one may replace “ρ-proper” and “σ-proper” by “proper”.
To prove Proposition 2.29, we need preliminary lemmas:

Lemma 2.30. Let G be a topological groupoid. The following are equivalent:

(i) r : G → G(0) is open;
(ii) for every G-space Z, the canonical mapping π : Z → Z/G is open.

Proof. To show (ii) =⇒ (i), take Z = G: the canonical mapping π : G → G/G
is open. Therefore, for every open subspace U of G, r(U) = G(0) ∩ π−1(π(U))
is open.
Let us show (i) =⇒ (ii). By Lemma 2.24, the range map r : Z ⋊G → Z is open.
The conclusion follows from Proposition 2.11. ¤

Lemma 2.31. Let G be a topological groupoid such that the range map r : G →
G(0) is open. Let X be a topological space endowed with an action of G and T
a topological space. Then the canonical map

f : (X × T )/G → (X/G) × T

is an isomorphism.

Proof. Let π : X → X/G and π′ : X × T → (X × T )/G be the canonical
mappings. Since π is open (Lemma 2.30), f ◦ π′ = π × 1 is open. Since π′ is
continuous surjective, it follows that f is open. ¤

Lemma 2.32. Let G be a topological groupoid whose range map is open and
f : Y → Z a proper, G-equivariant map between two G-spaces. Then the in-
duced map f̄ : Y/G → Z/G is proper.

Proof. We first show that f̄ is closed. Let π : Y → Y/G and π′ : Z → Z/G be
the canonical mappings. Let A ⊂ Y/G be a closed subspace. Since f is closed
and π is continuous, (π′)−1(f̄(A)) = f(π−1(A)) is closed. Therefore, f̄(A) is
closed.
Applying this to f ×1, we see that for every topological space T , (Y ×T )/G →
(Z × T )/G is closed. By Lemma 2.31, f̄ × 1T is closed. ¤

Lemma 2.33. Let G2 and G3 be topological groupoids whose range maps are
open. Let Z1, Z2 and X be topological spaces. Suppose there are maps

X
ρ1←− Z1

σ1−→ G
(0)
2

ρ2←− Z2
σ2−→ G

(0)
3 ,

a right action of G2 on Z1 with momentum map σ1, such that ρ1 is G2-invariant
and the action of G2 is ρ1-proper, a left action of G2 on Z2 with momentum
map ρ2 and a right ρ2-proper action of G3 on Z2 with momentum map σ2 which
commutes with the G2-action.
Then the action of G3 on Z = Z1 ×G2

Z2 is ρ1-proper.
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Proof. Let ϕ : Z2 ⋊ G3 → Z2 ×
G

(0)
2

Z2 be the map (z2, γ) 7→ (z2, z2γ). By

assumption, ϕ is proper, therefore 1Z1
× ϕ is proper. Let F = {(z1, z2, z

′
2) ∈

Z1 × Z2 × Z2| σ1(z1) = ρ2(z2) = ρ2(z
′
2)}. Then 1Z1

× ϕ : (1 × ϕ)−1(F ) → F
is proper, i.e. Z1 ×

G
(0)
2

(Z2 ⋊ G3) → Z1 ×
G

(0)
2

(Z2 ×
G

(0)
2

Z2) is proper. By

Lemma 2.32, taking the quotient by G2, we get that the map

α : Z ⋊ G3 → Z1 ×G2
(Z2 ×G

(0)
2

Z2)

defined by (z1, z2, γ) 7→ (z1, z2, z2γ) is proper.
By assumption, the map Z1 ⋊ G2 → Z1 ×X Z1 given by (z1, g) 7→ (z1, z1g) is
proper. Endow Z1 ⋊ G2 with the following right action of G2 × G2: (z1, g) ·
(g′, g′′) = (z1g

′, (g′)−1gg′′). Using again Lemma 2.32, the map

β : Z1 ×G2
(Z2 ×G

(0)
2

Z2) = (Z1 ⋊ G2) ×G2×G2
(Z2 × Z2)

→ (Z1 ×X Z1) ×G2×G2
(Z2 × Z2) ≃ Z ×X Z

is proper. By composition, β ◦ α : Z ⋊ G3 → Z ×X Z is proper. ¤

Proof of Proposition 2.29. Let us treat the case of topological groupoids. As-
sertion (b’) follows from the fact that the canonical mappings Z → Z/G2 and
Z → G1\Z are open (Lemma 2.30).
Let us first show that (ii) is an equivalence relation. Reflexivity is clear (taking
Z = G, ρ = r, σ = s), and symmetry is obvious. Suppose that (Z1, ρ1, σ2) and
(Z2, ρ2, σ2) are equivalences between G1 and G2, and G2 and G3 respectively.
Let Z = Z1 ×G2

Z2 be the quotient of Z1 ×G
(0)
2

Z2 by the action (z1, z2) · γ =

(z1γ, γ−1z2) of G2. Denote by ρ : Z → G
(0)
1 and σ : Z → G

(0)
3 the maps induced

from ρ1×1 and 1×σ2. By Lemma 2.25, the first projection pr1 : Z1×G
(0)
2

Z2 →
Z1 is open, therefore ρ = ρ1 ◦ pr1 is open. Similarly, σ is open. It remains to
show that the actions of G3 and G1 are ρ-proper and σ-proper respectively.
For G3, this follows from Lemma 2.33 and the proof for G1 is similar.
This proves that (ii) is an equivalence relation. Now, let us prove that (i) and
(ii) are equivalent.

Suppose (ii). Let Γ = G1 ⋉ Z ⋊ G2 and T = Z. The maps ρ : T → G
(0)
1 and

σ : T → G
(0)
2 are open surjective by assumption. Since G1 ⋉Z ≃ Z×

G
(0)
2

Z and

Z⋊G2 ≃ Z×
G

(0)
1

Z, we have G2[T ] = (T ×T )×
G

(0)
2 ×G

(0)
2

G2 ≃ (Z⋊G2)×s◦pr2,σ

Z ≃ (Z ×
G

(0)
1

Z) ×σ◦pr2,σ Z = Z ×
G

(0)
1

(Z ×
G

(0)
2

Z) ≃ Z ×
G

(0)
1

(G1 ⋉ Z) ≃
G1 ⋉ (Z ×

G
(0)
1

Z) ≃ G1 ⋉ (Z ⋊ G2) = Γ. Similarly, Γ ≃ G1[T ], hence (i).

Conversely, to prove (i) =⇒ (ii) it suffices to show that if f : T → G(0) is
open surjective, then G and G[T ] are equivalent in the sense (ii), since we know
that (ii) is an equivalence relation. Let Z = T ×r,f G.
Let us check that the action of G is pr1-proper. Write Z ⋊ G = {(t, g, h) ∈
T × G × G| f(t) = r(g) and s(g) = r(h)}. One needs to check that the map
Z ⋊G → (T ×f,r G)2 defined by (t, g, h) 7→ (t, g, t, h) is a homeomorphism onto
its image. This follows easily from the facts that the diagonal map T → T ×T
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and the map G(2) → G × G, (g, h) 7→ (g, gh) are homeomorphisms onto their
images.
Let us check that the action of G[T ] is s◦pr2-proper. One easily checks that the
groupoid G′ = G[T ] ⋉ (T ×f,r G) is isomorphic to a subgroupoid of the trivial
groupoid (T × T ) × (G × G). It follows that if r′ and s′ denote the range and
source maps of G′, the map (r′, s′) is a homeomorphism of G′ onto its image.

Let us now treat the case of locally compact groupoids. In the proof that (ii)
is a transitive relation, it just remains to show that Z is locally compact.

Let U3 be a Hausdorff open subspace of G
(0)
3 . We show that σ−1(U3) is locally

compact. Replacing G3 by (G3)
U3

U3
, we may assume that G2 acts freely and

properly on Z2. Let Γ be the groupoid (Z1 ×G
(0)
2

Z2)⋊G2, and R = (r, s)(Γ) ⊂
(Z1 ×

G
(0)
2

Z2)
2. Since the action of G2 on Z2 is free and proper, there exists

a continuous map ϕ : Z2 ×
G

(0)
3

Z2 → G2 such that z2 = ϕ(z2, z
′
2)z

′
2. Then

R = {(z1, z2, z
′
1, z

′
2) ∈ (Z1 ×

G
(0)
2

Z2)
2; z′1 = z1ϕ(z2, z

′
2)} is locally closed. By

Proposition 2.12, Z = (Z1 ×G
(0)
2

Z2)/G is locally compact.

Finally, if (i) holds with T = ∪iVi with Vi open Hausdorff, let T ′ = ∐Vi. It is
clear that G1[T

′] ≃ G2[T
′]. ¤

Let us examine standard examples of Morita-equivalences:

Example 2.34. Let G be a topological groupoid whose range map is open. Let
(Ui)i∈I be an open cover of G(0) and U = ∐i∈IUi. Then G[U ] is Morita-
equivalent to G.

Example 2.35. Let G be a topological groupoid, and let H1, H2 be subgroupoids

such that the range maps ri : Hi → H
(0)
i are open. Then (H1\Gs(H1)

s(H2)
)⋊H2 and

H1 ⋉ (G
s(H1)
s(H2)

/H2) are Morita-equivalent.

Proof. Take Z = G
s(H1)
s(H2)

and let ρ : Z → Z/H2 and σ : H1\Z be the canonical

mappings. The fact that these maps are open follows from Lemma 2.30. ¤

The following proposition is an immediate consequence of Proposition 2.22.

Proposition 2.36. Let G and G′ be two topological groupoids such that the
range maps of G and G′ are open. Suppose that G and G′ are Morita-equivalent.
Then G is proper if and only if G′ is proper.

Corollary 2.37. With the notations of Example 2.34, G is proper if and only
if G[U ] is proper.

3. A topological construction

Let X be a locally compact space. Since X is not necessarily Hausdorff, a
filter1 F on X may have more than one limit. Let S be the set of limits of a
convergent filter F . The goal of this section is to construct a Hausdorff space

1or a net; we will use indifferently the two equivalent approaches

Documenta Mathematica 9 (2004) 565–597



578 Jean-Louis Tu

HX in which X is (not continuously) embedded, and such that F converges to
S in HX.

3.1. The space HX.

Lemma 3.1. Let X be a topological space, and S ⊂ X. The following are
equivalent:

(i) for every family (Vs)s∈S of open sets such that s ∈ Vs, and Vs = X
except perhaps for finitely many s’s, one has ∩s∈SVs 6= ∅;

(ii) for every finite family (Vi)i∈I of open sets such that S ∩ Vi 6= ∅ for all
i, one has ∩i∈IVi 6= ∅.

Proof. (i) =⇒ (ii): let (Vi)i∈I as in (ii). For all i, choose s(i) ∈ S ∩ Vi. Put
Ws = ∩s=s(i)Vi, with the convention that an empty intersection is X. Then by
(i), ∅ 6= ∩s∈SWs = ∩i∈IVi.
(ii) =⇒ (i): let (Vs)s∈S as in (i), and let I = {s ∈ S| Vs 6= X}. Then
∩s∈SVs = ∩i∈IVi 6= ∅. ¤

We shall denote by HX the set of non-empty subspaces S of X which satisfy
the equivalent conditions of Lemma 3.1, and ĤX = HX ∪ {∅}.
Lemma 3.2. Let X be a locally Hausdorff space. Then every S ∈ HX is locally
finite. More precisely, if V is a Hausdorff open subspace of X, then V ∩ S has
at most one element.

Proof. Suppose a 6= b and {a, b} ⊂ V ∩S. Then there exist Va, Vb open disjoint
neighborhoods of a and b respectively; this contradicts Lemma 3.1(ii). ¤

Suppose that X is locally compact. We endow ĤX with a topology. Let
us introduce the notations ΩV = {S ∈ HX| V ∩ S 6= ∅} and ΩQ = {S ∈
HX| Q ∩ S = ∅}. The topology on ĤX is generated by the ΩV ’s and ΩQ’s (V
open and Q quasi-compact). More explicitly, a set is open if and only if it is

a union of sets of the form ΩQ
(Vi)i∈I

= ΩQ ∩ (∩i∈IΩVi
) where (Vi)i∈I is a finite

family of open Hausdorff sets and Q is quasi-compact.

Proposition 3.3. For every locally compact space X, the space ĤX is Haus-
dorff.

Proof. Suppose S 6⊂ S′ and S, S′ ∈ ĤX. Let s ∈ S − S′. Since S′ is locally
finite and since every singleton subspace of X is closed, there exist V open and
K compact such that s ∈ V ⊂ K and K ∩ S′ = ∅. Then ΩV and ΩK are
disjoint neighborhoods of S and S′ respectively. ¤

For every filter F on ĤX, let

(1) L(F) = {a ∈ X| ∀V ∋ a open,ΩV ∈ F}.
Lemma 3.4. Let X be a locally compact space. Let F be a filter on ĤX. Then
F converges to S ∈ ĤX if and only if properties (a) and (b) below hold:

(a) ∀V open, V ∩ S 6= ∅ =⇒ ΩV ∈ F ;
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(b) ∀Q quasi-compact, Q ∩ S = ∅ =⇒ ΩQ ∈ F .

If F is convergent, then L(F) is its limit.

Proof. The first statement is obvious, since every open set in ĤX is a union of
finite intersections of ΩV ’s and ΩQ’s.
Let us prove the second statement. It is clear from (a) that S ⊂ L(F). Con-
versely, suppose there exists a ∈ L(F) − S. Since S is locally finite and every
singleton subspace of X is closed, there exists a compact neighborhood K of
a such that K ∩ S = ∅. Then a ∈ L(F) implies ΩK ∈ F , and condition (b)
implies ΩK ∈ F , thus ∅ = ΩK ∩ ΩK ∈ F , which is impossible: we have proved
the reverse inclusion L(F) ⊂ S. ¤

Remark 3.5. This means that if Sλ → S, then a ∈ S if and only if ∀λ there
exists sλ ∈ Sλ such that sλ → a.

Example 3.6. Consider Example 2.3 with Γ = Z2 and H = {0}. Then HG =
G ∪ {S} where S = {(0, 0), (0, 1)}. The sequence (1/n, 0) ∈ G converges to S
in HG, and (0, 0) and (0, 1) are two isolated points in HG.

Proposition 3.7. Let X be a locally compact space and K ⊂ X quasi-compact.
Then L = {S ∈ HX| S∩K 6= ∅} is compact. The space HX is locally compact,
and it is σ-compact if X is σ-compact.

Proof. We show that L is compact, and the two remaining assertions follow
easily. Let F be a ultrafilter on L. Let S0 = L(F). Let us show that S0∩K 6= ∅:
for every S ∈ L, choose a point ϕ(S) ∈ K ∩ S. By quasi-compactness, ϕ(F)
converges to a point a ∈ K, and it is not hard to see that a ∈ S0.
Let us show S0 ∈ HX: let (Vs) (s ∈ S0) be a family of open subspaces of X
such that s ∈ Vs for all s ∈ S0, and Vs = X for every s /∈ S1 (S1 ⊂ S0 finite).
By definition of S0, Ω(Vs)s∈S1

= ∩s∈S1
ΩVs

belongs to F , hence it is non-empty.

Choose S ∈ Ω(Vs)s∈S1
, then S ∩ Vs 6= ∅ for all s ∈ S1. By Lemma 3.1(ii),

∩s∈S1
Vs 6= ∅. This shows that S0 ∈ HX.

Now, let us show that F converges to S0.

• If V is open Hausdorff such that S0 ∈ ΩV , then by definition ΩV ∈ F .
• If Q is quasi-compact and S0 ∈ ΩQ, then ΩQ ∈ F , otherwise one would

have {S ∈ HX| S ∩ Q 6= ∅} ∈ F , which would imply as above that
S0 ∩ Q 6= ∅, a contradiction.

From Lemma 3.4, F converges to S0. ¤

Proposition 3.8. Let X be a locally compact space. Then ĤX is the one-point
compactification of HX.

Proof. It suffices to prove that ĤX is compact. The proof is almost the same
as in Proposition 3.7. ¤

Remark 3.9. If f : X → Y is a continuous map from a locally compact space
X to any Hausdorff space Y , then f induces a continuous map Hf : HX → Y .
Indeed, for every open subspace V of Y , (Hf)−1(V ) = Ωf−1(V ) is open.
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Proposition 3.10. Let G be a topological groupoid such that G(0) is Hausdorff,
and r : G → G(0) is open. Let Z be a locally compact space endowed with a
continuous action of G. Then HZ is endowed with a continuous action of G
which extends the one on Z.

Proof. Let p : Z → G(0) such that G acts on Z with momentum map p. Since
p has a continuous extension Hp : HZ → G(0), for all S ∈ HZ, there exists
x ∈ G(0) such that S ⊂ p−1(x). For all g ∈ Gx, write Sg = {sg| s ∈ S}.
Let us show that Sg ∈ HZ. Let Vs (s ∈ S) be open sets such that sg ∈ Vs.
By continuity, there exist open sets Ws ∋ s and Wg ∋ g such that for all
(z, h) ∈ Ws ×G(0) Wg, zh ∈ Vs. Let V ′

s = Ws ∩ p−1(r(Wg)). Then V ′
s is an

open neighborhood of s, so there exists z ∈ ∩s∈SV ′
s . Since p(z) ∈ r(Wg), there

exists h ∈ Wg such that p(z) = r(h). It follows that zh ∈ ∩s∈SVs. This shows
that Sg ∈ HZ.
Let us show that the action defined above is continuous. Let Φ: HZ ×G(0)

G → HZ be the action of G on HZ. Suppose that (Sλ, gλ) → (S, g) and let
S′ = L((Sλ, gλ)). Then for all a ∈ S there exists sλ ∈ Sλ such that sλ → a.
This implies sλgλ → ag, thus ag ∈ S′. The converse may be proved in a similar
fashion, hence Sg = S′.
Applying this to any universal net (Sλ, gλ) converging to (S, g) and knowing

from Proposition 3.8 that Φ(Sλ, gλ) is convergent in ĤZ, we find that Φ(Sλ, gλ)
converges to Φ(S, g). This shows that Φ is continuous in (S, g).

¤

3.2. The space H′X. Let X be a locally compact space. Let Ω′
V = {S ∈

HX| S ⊂ V }. Let H′X be HX as a set, with the coarsest topology such that
the identity map H′X → HX is continuous, and Ω′

V is open for every relatively
quasi-compact open set V . The space H′X is Hausdorff since HX is Hausdorff,
but it is usually not locally compact.

Lemma 3.11. Let X be a locally compact space. Then the map

H′X → N∗ ∪ {∞}, S 7→ #S

is upper semi-continuous.

Proof. Let S ∈ H′X such that #S < ∞. Let Vs (s ∈ S) be open relatively
compact Hausdorff sets such that s ∈ Vs, and let W = ∪s∈SVs. Then S′ ∈ H′X
implies #(S′ ∩ Vs) ≤ 1, therefore S′ ∈ Ω′

W implies #S′ ≤ #S. ¤

Proposition 3.12. Let X be a locally compact space such that the closure of
every quasi-compact subspace is quasi-compact. Then

(a) the natural map H′X → HX is a homeomorphism,
(b) for every compact subspace K ⊂ X, there exists CK > 0 such that

∀S ∈ HX, S ∩ K 6= ∅ =⇒ #S ≤ CK ,

(c) If G is a locally compact proper groupoid with G(0) Hausdorff then G
satisfies the above properties.
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Proof. To prove (b), let K1 be a quasi-compact neighborhood of K and let

K ′ = K1. Let a ∈ K ∩ S and suppose there exists b ∈ S − K ′. Then K̊1 and
X −K ′ are disjoint neighborhoods of a and b respectively, which is impossible.
We deduce that S ⊂ K ′.
Now, let (Vi)i∈I be a finite cover of K ′ by open Hausdorff sets. For all b ∈ S,
let Ib = {i ∈ I| b ∈ Vi}. By Lemma 3.2, the Ib’s (b ∈ S) are disjoint, whence
one may take CK = #I.

To prove (a), denote by ∆ ⊂ X × X the diagonal. Let us first show that
pr1 : ∆ → X × X is proper.
Let K ⊂ X compact. Let L ⊂ X quasi-compact such that K ⊂ L̊. If (a, b) ∈
∆∩ (K ×X), then b ∈ L: otherwise, L×Lc would be a neighborhood of (a, b)
whose intersection with ∆ is empty. Therefore, pr−1

1 (K) = ∆ ∩ (K × L) is
quasi-compact, which shows that pr1 is proper.
It remains to prove that Ω′

V is open in HX for every relatively quasi-compact
open set V ⊂ X. Let S ∈ Ω′

V , a ∈ S and K a compact neighborhood of a. Let

L = pr2(∆∩ (K ×X)). Then Q = L−V is quasi-compact, and S ∈ ΩQ

K̊
⊂ Ω′

V ,

therefore Ω′
V is a neighborhood of each of its points.

To prove (c), let K ⊂ G be a quasi-compact subspace. Then L = r(K) ∪ s(K)
is quasi-compact, thus GL

L is also quasi-compact. But K is closed and K ⊂ GL
L,

therefore K is quasi-compact. ¤

4. Haar systems

4.1. The space Cc(X). For every locally compact space X, Cc(X)0 will denote
the set of functions f ∈ Cc(V ) (V open Hausdorff), extended by 0 outside V .
Let Cc(X) be the linear span of Cc(X)0. Note that functions in Cc(X) are not
necessarily continuous.

Proposition 4.1. Let X be a locally compact space, and let f : X → C. The
following are equivalent:

(i) f ∈ Cc(X);
(ii) f−1(C∗) is relatively quasi-compact, and for every filter F on X, let

F̃ = i(F), where i : X → HX is the canonical inclusion; if F̃ converges
to S ∈ HX, then limF f =

∑
s∈S f(s).

Proof. Let us show (i) =⇒ (ii). By linearity, it is enough to consider the case
f ∈ Cc(V ), where V ⊂ X is open Hausdorff. Let K be the compact set

f−1(C∗) ∩ V . Then f−1(C∗) ⊂ K. Let F and S as in (ii). If S ∩ V = ∅, then

S ∈ ΩK , hence ΩK ∈ F̃ , i.e. X − K ∈ F . Therefore, limF f = 0 =
∑

s∈S f(s).
If S ∩ V = {a}, then a is a limit point of F , therefore limF f = f(a) =∑

s∈S f(s).
Let us show (ii) =⇒ (i) by induction on n ∈ N∗ such that there exist V1, . . . Vn

open Hausdorff and K quasi-compact satisfying f−1(C∗) ⊂ K ⊂ V1 ∪ · · · ∪ Vn.
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For n = 1, for every x ∈ V1, let F be a ultrafilter convergent to x. By
Proposition 3.8, F̃ is convergent; let S be its limit, then limF f =

∑
s∈S f(s) =

f(x), thus f|V1
is continuous.

Now assume the implication is true for n− 1 (n ≥ 2) and let us prove it for n.
Since K is quasi-compact, there exist V ′

1 , . . . , V ′
n open sets, K1 . . . ,Kn compact

such that K ⊂ V ′
1 ∪ · · · ∪ V ′

n and V ′
i ⊂ Ki ⊂ Vi. Let F = (V ′

1 ∪ · · · ∪ V ′
n) −

(V ′
1 ∪ · · · ∪ V ′

n−1). Then F is closed in V ′
n and f|F is continuous. Moreover,

f|F = 0 outside K ′ = K − (V ′
1 ∪ · · · ∪ V ′

n−1) which is closed in K, hence quasi-
compact, and Hausdorff, since K ′ ⊂ V ′

n. Therefore, f|F ∈ Cc(F ). It follows
that there exists an extension h ∈ Cc(V

′
n) of f|F . By considering f − h, we

may assume that f = 0 on F , so f = 0 outside K ′ = K1 ∪ · · · ∪ Kn−1. But
K ′ ⊂ V1 ∪ · · · ∪ Vn−1, hence by induction hypothesis, f ∈ Cc(X). ¤

Corollary 4.2. Let X be a locally compact space, f : X → C, fn ∈ Cc(X).
Suppose that there exists fixed quasi-compact set Q ⊂ X such that f−1

n (C∗) ⊂ Q
for all n, and fn converges uniformly to f . Then f ∈ Cc(X).

Lemma 4.3. Let X be a locally compact space. Let (Ui)i∈I be an open cover of
X by Hausdorff subspaces. Then every f ∈ Cc(X) is a finite sum f =

∑
fi,

where fi ∈ Cc(Ui).

Proof. See [6, Lemma 1.3]. ¤

Lemma 4.4. Let X and Y be locally compact spaces. Let f ∈ Cc(X × Y ). Let
V and W be open subspaces of X and Y such that f−1(C∗) ⊂ Q ⊂ V × W for
some quasi-compact set Q. Then there exists a sequence fn ∈ Cc(V ) ⊗ Cc(W )
such that limn→∞ ‖f − fn‖∞ = 0.

Proof. We may assume that X = V and Y = W . Let (Ui) (resp. (Vj)) be
an open cover of X (resp. Y ) by Hausdorff subspaces. Then every element of
Cc(X×Y ) is a linear combination of elements of Cc(Ui×Vj) (Lemma 4.3). The
conclusion follows from the fact that the image of Cc(Ui)⊗Cc(Vj) → Cc(Ui×Vj)
is dense. ¤

Lemma 4.5. Let X be a locally compact space and Y ⊂ X a closed subspace.
Then the restriction map Cc(X) → Cc(Y ) is well-defined and surjective.

Proof. Let (Ui)i∈I be a cover of X by Hausdorff open subspaces. The map
Cc(Ui) → Cc(Ui ∩ Y ) is surjective (since Y is closed), and ⊕i∈ICc(Ui ∩ Y ) →
Cc(Y ) is surjective (Lemma 4.3). Therefore, the map ⊕i∈ICc(Ui) → Cc(Y ) is
surjective. Since it is also the composition of the surjective map ⊕i∈ICc(Ui) →
Cc(X) and of the restriction map Cc(X) → Cc(Y ), the conclusion follows. ¤

4.2. Haar systems. Let G be a locally compact proper groupoid with Haar
system (see definition below) such that G(0) is Hausdorff. If G is Hausdorff,
then Cc(G

(0)) is endowed with the C∗
r (G)-valued scalar product 〈ξ, η〉(g) =

ξ(r(g))η(s(g)). Its completion is a C∗
r (G)-Hilbert module. However, if G is

not Hausdorff, the function g 7→ ξ(r(g))η(s(g)) does not necessarily belong to
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Cc(G), therefore we need a different construction in order to obtain a C∗
r (G)-

module.

Definition 4.6. [16, pp. 16-17] Let G be a locally compact groupoid such that
Gx is Hausdorff for every x ∈ G(0). A Haar system is a family of positive
measures λ = {λx| x ∈ G(0)} such that ∀x, y ∈ G(0), ∀ϕ ∈ Cc(G),

(i) supp(λx) = Gx;
(ii) λ(ϕ) : x 7→

∫
g∈Gx ϕ(g)λx(dg) ∈ Cc(G

(0));

(iii)
∫

h∈Gx ϕ(gh)λx(dh) =
∫

h∈Gy ϕ(h)λy(dh).

Note that Gx is automatically Hausdorff if G(0) is Hausdorff (Prop. 2.8). Recall
also [15, p. 36] that the range map for G is open.

Lemma 4.7. Let G be a locally compact groupoid with Haar system. Then for
every quasi-compact subspace K of G, supx∈G(0) λx(K ∩ Gx) < ∞.

Proof. It is easy to show that there exists f ∈ Cc(G) such that 1K ≤ f . Since
supx∈G(0) λ(f)(x) < ∞, the conclusion follows. ¤

Lemma 4.8. Let G be a locally compact groupoid with Haar system such
that G(0) is Hausdorff. Suppose that Z is a locally compact space and that
p : Z → G(0) is continuous. Then for every f ∈ Cc(Z ×p,r G), λ(f) : z 7→∫

g∈Gp(z) f(z, g)λp(z)(dg) belongs to Cc(Z).

Proof. By Lemma 4.5, f is the restriction of an element of Cc(Z × G).
If f(z, g) = f1(z)f2(g), then ψ(x) =

∫
g∈Gx f2(g)λx(dg) belongs to Cc(G

(0)),

therefore ψ ◦ p ∈ Cb(Z). It follows that λ(f) = f1(ψ ◦ p) belongs to Cc(Z).
By linearity, if f ∈ Cc(Z) ⊗ Cc(G), then λ(f) ∈ Cc(Z).
Now, for every f ∈ Cc(Z × G), there exist relatively quasi-compact open sub-
spaces V and W of Z and G and a sequence fn ∈ Cc(V ) ⊗ Cc(W ) such that
fn converges uniformly to f . From Lemma 4.7, λ(fn) converges uniformly to
λ(f), and λ(fn) ∈ Cc(Z). From Corollary 4.2, λ(f) ∈ Cc(Z). ¤

Proposition 4.9. Let G be a locally compact groupoid with Haar system such
that G(0) is Hausdorff. If G acts on a locally compact space Z with momentum
map p : Z → G(0), then (λp(z))z∈Z is a Haar system on Z ⋊ G.

Proof. Results immediately from Lemma 4.8. ¤

5. The Hilbert module of a proper groupoid

5.1. The space X ′. Before we construct a Hilbert module associated to a
proper groupoid, we need some preliminaries. Let G be a locally compact
groupoid such that G(0) is Hausdorff. Denote by X ′ the closure of G(0) in HG.

Lemma 5.1. Let G be a locally compact groupoid such that G(0) is Hausdorff.
Then for all S ∈ X ′, S is a subgroup of G.
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Proof. Since r and s : G → G(0) extend continuously to maps HG → G(0), and
since r = s on G(0), one has Hr = Hs on X ′, i.e. ∃x0 ∈ G(0), S ⊂ Gx0

x0
.

Let F be a filter on G(0) whose limit is S. Then a ∈ S if and only if a is a
limit point of F . Since for every x ∈ G(0) we have x−1x = x, it follows that
for every a, b ∈ S one has a−1b ∈ S, whence S is a subgroup of Gx0

x0
. ¤

Denote by q : X ′ → G(0) the map such that S ⊂ G
q(S)
q(S). The map q is continuous

since it is the restriction to X ′ of Hr.

Lemma 5.2. Let G be a locally compact proper groupoid such that G(0) is
Hausdorff. Let F be a filter on X ′, convergent to S. Suppose that q(F)
converges to S0 ∈ X ′. Then S0 is a normal subgroup of S, and there ex-
ists Ω ∈ F such that ∀S′ ∈ Ω, S′ is group-isomorphic to S/S0. In particular,
{S′ ∈ X ′| #S = #S0#S′} ∈ F .

Proof. Using Proposition 3.12, we see that S is finite.
We shall use the notation Ω̃(Vi)i∈I

= Ω(Vi)i∈I
∩ Ω′

∪i∈IVi
. Let V ′

s ⊂ Vs (s ∈ S)
be Hausdorff, open neighborhoods of s, chosen small enough so that for some
Ω ∈ F ,

(a) Ω ⊂ Ω̃(V ′
s )s∈S

;
(b) V ′

s1
V ′

s2
⊂ Vs1s2

, ∀s1, s2 ∈ S.
(c) ∀s ∈ S − S0, ∀S′ ∈ Ω, q(S′) /∈ Vs;

(d) q(Ω) ⊂ Ω̃(Vs)s∈S0
;

Let S′ ∈ Ω. Let ϕ : S → S′ such that {ϕ(s)} = S′ ∩ V ′
s . Then ϕ is well-defined

since S′ ∩ V ′
s 6= ∅ (see (a)) and V ′

s is Hausdorff.
If s1, s2 ∈ S then ϕ(si) ∈ S′ ∩V ′

si
. By (b), ϕ(s1)ϕ(s2) ∈ S′ ∩Vs1s2

. Since Vs1s2

is Hausdorff and also contains ϕ(s1s2) ∈ S′, we have ϕ(s1s2) = ϕ(s1)ϕ(s2).
This shows that ϕ is a group morphism.
The map ϕ is surjective, since S′ ⊂ ∪s∈SV ′

s (see (a)).
By (c), ker(ϕ) ⊂ S0 and by (d), S0 ⊂ ker(ϕ). ¤

Suppose now that the range map r : G → G(0) is open. Then X ′ is endowed
with an action of G (Prop. 3.10) defined by S · g = g−1Sg = {g−1sg| s ∈ S}.

5.2. Construction of the Hilbert module. Now, let G be a locally com-
pact, proper groupoid. Assume that G is endowed with a Haar system, and
that G(0) is Hausdorff. Let

E0 = {f ∈ Cc(X
′)| f(S) =

√
#Sf(q(S)) ∀S ∈ X ′}.

(q(S) ∈ G(0) is identified to {q(S)} ∈ X ′.)
Define, for all ξ, η ∈ E0 and f ∈ Cc(G): 〈ξ, η〉(g) = ξ(r(g))η(s(g)) and

(ξf)(S) =

∫

g∈Gq(S)

ξ(g−1Sg)f(g−1)λx(dg).

Proposition 5.3. With the above assumptions, the completion E(G) of E0 with
respect to the norm ‖ξ‖ = ‖〈ξ, ξ〉‖1/2 is a C∗

r (G)-Hilbert module.
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We won’t give the direct proof here since this is a particular case of Theorem 7.8
(see Example 7.7(c)).

6. Cutoff functions

If G is a locally compact Hausdorff proper groupoid with Haar system. Assume
for simplicity that G(0)/G is compact. Then there exists a so-called “cutoff”
function c ∈ Cc(G

(0))+ such that for every x ∈ G(0),
∫

g∈Gx c(s(g))λx(dg) = 1,

and the function g 7→
√

c(r(g))c(s(g)) defines projection in C∗
r (G). However,

if G is not Hausdorff, then the above function does not belong to Cc(G) is
general, thus we need another definition of a cutoff function.

Let X ′
≥k = {S ∈ X ′| #S ≥ k}. By Lemma 3.11, X ′

≥k is closed.

Lemma 6.1. Let G be a locally compact, proper groupoid with G(0) Hausdorff.
Let X≥k = q(X ′

≥k). Then X≥k is closed in G(0).

Proof. It suffices to show that for every compact subspace K of G(0), X≥k ∩K
is closed. Let K ′ = GK

K . Then K ′ is quasi-compact, and from Proposition 3.7,
K ′′ = {S ∈ HG| S ∩ K ′ 6= ∅} is compact. The set q−1(K) ∩ X ′

≥k = K ′′ ∩ X ′
≥k

is closed in K ′′, hence compact; its image by q is X≥k ∩ K. ¤

Lemma 6.2. Let G be a locally compact, proper groupoid, with G(0) Hausdorff.
Let α ∈ R. For every compact set K ⊂ G(0), there exists f : X ′

K → R∗
+

continuous, where X ′
K = q−1(K) ⊂ X ′, such that

∀S ∈ X ′
K , f(S) = f(q(S))(#S)α.

Proof. Let K ′ = GK
K . It is closed and quasi-compact. From Proposition 3.7,

X ′
K is quasi-compact. For every S ∈ X ′

K , we have S ⊂ K ′. By Proposition 3.12,
there exists n ∈ N∗ such that X ′

≥n+1∩X ′
K = ∅. We can thus proceed by reverse

induction: suppose constructed fk+1 : X ′
K∩q−1(X≥k+1) → R∗

+ continuous such
that fk+1(S) = fk+1(q(S))(#S)α for all S ∈ X ′

K ∩ q−1(X≥k+1).
Since X ′

K ∩ q−1(X≥k+1) is closed in the compact set X ′
K ∩ q−1(X≥k), there

exists a continuous extension h : X ′
K ∩ q−1(X≥k) → R of fk+1. Replacing h(x)

by sup(h(x), inf fk+1), we may assume that h(X ′
K ∩ q−1(X≥k)) ⊂ R∗

+. Put
fk(S) = h(q(S))(#S)α. Let us show that fk is continuous.
Let F be a ultrafilter on X ′

K ∩ q−1(X≥k), and let S be its limit. Since q(F) is
a ultrafilter on K, it has a limit S0 ∈ X ′

K .
For every S1 ∈ q−1(X≥k), choose ψ(S1) ∈ X ′

≥k such that q(S1) = q(ψ(S1)).

Let S′ ∈ X ′
K ∩ X ′

≥k be the limit of ψ(F).

From Lemma 5.2, Ω1 = {S1 ∈ X ′
K ∩ q−1(X≥k)| #S = #S0#S1} is an element

of F , and Ω2 = {S2 ∈ X ′
≥k| #S′ = #S0#S2} is an element of ψ(F).
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• If #S0 > 1, then S′ ∈ X≥k+1, so S and S0 belong to q−1(X≥k+1).
Therefore, fk(S1) = (#S1)

αh(q(S1)) converges with respect to F to

(#S)α

(#S0)α
h(S0) =

(#S)α

(#S0)α
fk+1(S0) = fk+1(S)

= fk+1(q(S))(#S)α = h(q(S))(#S)α = fk(S).

• If S0 = {q(S)}, then fk(S1) = (#S1)
αh(q(S1)) converges with respect

to F to (#S)αh(q(S)) = fk(S).

Therefore, fk is a continuous extension of fk+1. ¤

Theorem 6.3. Let G be a locally compact, proper groupoid such that G(0) is
Hausdorff and G(0)/G is σ-compact. Let π : G(0) → G(0)/G be the canonical
mapping. Then there exists c : X ′ → R+ continuous such that

(a) c(S) = c(q(S))#S for all S ∈ X ′;
(b) ∀α ∈ G(0)/G, ∃x ∈ π−1(α), c(x) 6= 0;
(c) ∀K ⊂ G(0) compact, supp(c) ∩ q−1(F ) is compact, where F = s(GK).

If moreover G admits a Haar system, then there exists c : X ′ → R+ continuous
satisfying (a), (b), (c) and

(d) ∀x ∈ G(0),

∫

g∈Gx

c(s(g))λx(dg) = 1.

Proof. There exists a locally finite cover (Vi) of G(0)/G by relatively compact
open subspaces. Since π is open and G(0) is locally compact, there exists Ki ⊂
G(0) compact such that π(Ki) ⊃ Vi. Let (ϕi) be a partition of unity associated
to the cover (Vi). For every i, from Lemma 6.2, there exists ci : X ′

Ki
→ R∗

+

continuous such that ci(S) = ci(q(S))#S for all S ∈ X ′
Ki

. Let

c(S) =
∑

i

ci(S)ϕi(π(q(S))).

It is clear that c is continuous from X ′ to R+, and that c(S) = c(q(S))#S.
Let us prove (b): let x0 ∈ G(0). There exists i such that ϕi(π(x0)) 6= 0. Choose
x ∈ Ki such that π(x) = π(x0), then c(x) ≥ ci(x)ϕi(π(x0)) > 0.
Let us show (c). Note that F = π−1(π(K)) is closed, so q−1(F ) is closed.
Let K1 be a compact neighborhood of K and F1 = π−1(π(K1)). Let J =
{i| Vi ∩ π(K1) 6= ∅}. Then for all i /∈ J , ci(ϕi ◦ π ◦ q) = 0 on q−1(F1),
therefore c =

∑
j∈J cj(ϕj ◦ π ◦ q) in a neighborhood of q−1(F ). Since for all

i, supp(ci(ϕi ◦ π ◦ q)) is compact and since J is finite, supp(c) ∩ q−1(F ) ⊂
∪i∈Jsupp(ci(ϕi ◦ π ◦ q)) is compact.
Let us show the last assertion. Let ϕ(g) = c(s(g)). Let F be a filter on G
convergent in HG to A ⊂ G. Choose a ∈ A and let S = a−1A. Then s(F)
converges to S in HG, hence

lim
F

ϕ = #Sc(s(a)) =
∑

g∈S

c(s(g)) =
∑

g∈S

ϕ(g).
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For every compact set K ⊂ G(0),

{g ∈ G| r(g) ∈ K and ϕ(g) 6= 0}
⊂ {g ∈ G| r(g) ∈ K and s(g) ∈ supp(c)}
⊂ GK

q(supp(c)∩q−1(F )),

so GK ∩ {g ∈ G| ϕ(g) 6= 0} is included in a quasi-compact set. Therefore, for
every l ∈ Cc(G

(0)), g 7→ l(r(g))ϕ(g) belongs to Cc(G). It follows that h(x) =∫
g∈Gx ϕ(g)λx(dg) is a continuous function. Moreover, for every x ∈ G(0) there

exists g ∈ Gx such that ϕ(g) 6= 0, so h(x) > 0 ∀x ∈ G(0). It thus suffices to
replace c(x) by c(x)/h(x). ¤

Example 6.4. In Example 2.3 with Γ = Zn and H = {0}, the cutoff function
is the unique continuous extension to X ′ of the function c(x) = 1 for x ∈ (0, 1],
and c(0) = 1/n.

Proposition 6.5. Let G be a locally compact, proper groupoid with Haar sys-
tem such that G(0) is Hausdorff and G(0)/G is compact. Let c be a cutoff

function. Then the function p(g) =
√

c(r(g))c(s(g)) defines a selfadjoint pro-
jection p ∈ C∗

r (G), and E(G) is isomorphic to pC∗
r (G).

Proof. Let ξ0(x) =
√

c(x). Then one easily checks that ξ0 ∈ E0, 〈ξ0, ξ0〉 = p
and ξ0〈ξ0, ξ0〉 = ξ0, therefore p is a selfadjoint projection in C∗

r (G). The maps

E(G) → pC∗
r (G), ξ 7→ 〈ξ0, ξ〉 = p〈ξ0, ξ〉

pC∗
r (G) → E(G), a 7→ ξ0a = ξ0pa

are inverses from each other. ¤

7. Generalized morphisms and C∗-algebra correspondences

Until the end of the paper, all groupoids are assumed locally
compact, with open range map. In this section, we introduce a notion of
generalized morphism for locally compact groupoids which are not necessarily
Hausdorff, and a notion of locally proper generalized morphism.
Then, we show that a locally proper generalized morphism from G1 to G2 which
satisfies an additional condition induces a C∗

r (G1)-module E and a ∗-morphism
C∗

r (G2) → K(E), hence an element of KK(C∗
r (G2), C

∗
r (G1)).

7.1. Generalized morphisms.

Definition 7.1. [4, 5, 8, 9, 12, 14] Let G1 and G2 be two groupoids. A gener-
alized morphism from G1 to G2 is a triple (Z, ρ, σ) where

G
(0)
1

ρ←− Z
σ−→ G

(0)
2 ,

Z is endowed with a left action of G1 with momentum map ρ and a right action
of G2 with momentum map σ which commute, such that

(a) the action of G2 is free and ρ-proper,

(b) ρ induces a homeomorphism Z/G2 ≃ G
(0)
1 .
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In Definition 7.1, one may replace (b) by (b)’ or (b)” below:

(b)’ ρ is open and induces a bijection Z/G2 → G
(0)
1 .

(b)” the map Z ⋊ G2 → Z ×
G

(0)
1

Z defined by (z, γ) 7→ (z, zγ) is a homeo-

morphism.

Example 7.2. Let G1 and G2 be two groupoids.If f : G1 → G2 is a groupoid

morphism, let Z = G
(0)
1 ×f,r G2, ρ(x, γ) = x and σ(x, γ) = s(γ). Define the

actions of G1 and G2 by g · (x, γ) · γ′ = (r(g), f(g)γγ′). Then (Z, ρ, σ) is a
generalized morphism from G1 to G2.

That ρ is open follows from the fact that the range map G2 → G
(0)
2 is open and

from Lemma 2.25. The other properties in Definition 7.1 are easy to check.

7.2. Locally proper generalized morphisms.

Definition 7.3. Let G1 and G2 be two groupoidsA generalized morphism from
G1 to G2 is said to be locally proper if the action of G1 on Z is σ-proper.

Our terminology is justified by the following proposition:

Proposition 7.4. Let G1 and G2 be two groupoids such that G
(0)
2 is Hausdorff.

Let f : G1 → G2 be a groupoid morphism. Then the associated generalized
groupoid morphism is locally proper if and only if the map (f, r, s) : G1 →
G2 × G

(0)
1 × G

(0)
1 is proper.

Proof. Let ϕ : G1 ×f◦s,r G2 → (G2 ×s,s G2) ×r×r,f×f (G
(0)
1 × G

(0)
1 ) defined by

ϕ(g1, g2) = (f(g1)g2, g2, r(g1), s(g1)). By definition, the action of G1 on Z is

proper if and only if ϕ is a proper map. Consider θ : G2 ×s,s G2 → G
(2)
2 given

by (γ, γ′) = (γ(γ′)−1, γ′). Let ψ = (θ × 1) ◦ ϕ. Since θ is a homeomorphism,
the action of G1 on Z is proper if and only if ψ is proper.

Suppose that (f, r, s) is proper. Let f ′ = (f, r, s) × 1: G1 × G2 → G2 × G
(0)
1 ×

G
(0)
1 × G2. Then f ′ is proper. Let F = {(γ, x, x′, γ′) ∈ G2 × G

(0)
1 × G

(0)
1 ×

G2| s(γ) = r(γ′) = f(x′), r(γ) = f(x)}. Then f ′ : (f ′)−1(F ) → F is proper,
i.e. ψ is proper.

Conversely, suppose that ψ is proper. Let F ′ = {(γ, y, x, x′) ∈ G2 × G
(0)
2 ×

G
(0)
1 × G

(0)
1 | s(γ) = y}. Then ψ : ψ−1(F ′) → F ′ is proper, therefore (f, r, s) is

proper. ¤

Our objective is now to show the

Proposition 7.5. Let G1, G2, G3 be groupoidsLet (Z1, ρ1, σ1) and (Z2, ρ2, σ2)
be two generalized groupoid morphisms from G1 to G2 and from G2 to G3

respectively. Then (Z, ρ, σ) = (Z1×G2
Z2, ρ1×1, 1×σ2) is a generalized groupoid

morphism. If (Z1, ρ1, σ1) and (Z2, ρ2, σ2) are locally proper, then (Z, ρ, σ) is
locally proper.

Proposition 7.5 shows that groupoids form a category whose arrows are gen-
eralized morphisms, and that two groupoids are isomorphic in that category if
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and only if they are Morita-equivalent. Moreover, the same conclusions hold for
the category whose arrows are locally proper generalized morphisms. In par-
ticular, local properness of generalized morphisms is invariant under Morita-
equivalence.
All the assertions of Proposition 7.5 follow from Lemma 2.33.

7.3. Proper generalized morphisms.

Definition 7.6. Let G1 and G2 be groupoids. A generalized morphism (Z, ρ, σ)
from G1 to G2 is said to be proper if it is locally proper, and if for every quasi-

compact subspace K of G
(0)
2 , σ−1(K) is G1-compact.

Examples 7.7. (a) Let X and Y be locally compact spaces and f : X → Y
a continuous map. Then the generalized morphism (X, Id, f) is proper
if and only if f is proper.

(b) Let f : G1 → G2 be a continuous morphism between two locally compact
groups. Let p : G2 → {∗}. Then (G2, p, p) is proper if and only if f is
proper and f(G1) is co-compact in G2.

(c) Let G be a locally compact proper groupoid with Haar system such that
G(0) is Hausdorff, and let π : G(0) → G(0)/G be the canonical mapping.
Then (G(0), Id, π) is a proper generalized morphism from G to G(0)/G.

7.4. Construction of a C∗-correspondence. Until the end of the section,
our goal is to prove:

Theorem 7.8. Let G1 and G2 be locally compact groupoids with Haar system

such that G
(0)
1 and G

(0)
2 are Hausdorff, and (Z, ρ, σ) a locally proper generalized

morphism from G1 to G2. Then one can construct a C∗
r (G1)-Hilbert module

EZ and a map π : C∗
r (G2) → L(EZ). Moreover, if (Z, ρ, σ) is proper, then π

maps to K(EZ). Therefore, it gives an element of KK(C∗
r (G2), C

∗
r (G1)).

Corollary 7.9. (see [14]) Let G1 and G2 be locally compact groupoids with

Haar system such that G
(0)
1 and G

(0)
2 are Hausdorff. If G1 and G2 are Morita-

equivalent, then C∗
r (G1) and C∗

r (G2) are Morita-equivalent.

Corollary 7.10. Let f : G1 → G2 be morphism between two locally compact

groupoids with Haar system such that G
(0)
1 and G

(0)
2 are Hausdorff. If the

restriction of f to (G1)
K
K is proper for each compact set K ⊂ (G1)

(0) then f
induces a correspondence Ef from C∗

r (G2) to C∗
r (G1). If in addition for every

compact set K ⊂ G
(0)
2 the quotient of G

(0)
1 ×f,r (G2)K by the diagonal action of

G1 is compact, then C∗
r (G2) maps to K(Ef ) and thus f defines a KK-element

[f ] ∈ KK(C∗
r (G2), C

∗
r (G1)).

Proof. See Proposition 7.4 and Definition 7.6 applied to the generalized mor-

phism Zf = G
(0)
1 ×f,r G2 as in Example 7.2 ¤

The rest of the section is devoted to proving Theorem 7.8.
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Let us first recall the construction of the correspondence when the groupoids
are Hausdorff [11]. It is the closure of Cc(Z) with the C∗

r (G1)-valued scalar
product

(2) 〈ξ, η〉(g) =

∫

γ∈(G2)σ(z)

ξ(zγ)η(g−1zγ)λσ(z)(dγ),

where z is an arbitrary element of Z such that ρ(z) = r(g). The right C∗
r (G1)-

module structure is defined ∀ξ ∈ Cc(Z), ∀a ∈ Cc(G1) by

(3) (ξa)(z) =

∫

g∈(G1)ρ(z)

ξ(g−1z)a(g−1)λρ(z)(dg),

and the left action of C∗
r (G2) is

(4) (bξ)(z) =

∫

γ∈(G2)σ(z)

b(γ)ξ(zγ)λσ(z)(dγ)

for all b ∈ Cc(G2).

We now come back to non-Hausdorff groupoids. For every open Hausdorff set
V ⊂ Z, denote by V ′ its closure in H((G1 ⋉ Z)V

V ), where z ∈ V is identified
to (ρ(z), z) ∈ H((G1 ⋉ Z)V

V ). Let E0
V be the set of ξ ∈ Cc(V

′) such that

ξ(z) =
ξ(S × {z})√

#S
for all S × {z} ∈ V ′.

Lemma 7.11. The space E0
Z =

∑
i∈I E0

Vi
is independent of the choice of the

cover (Vi) of Z by Hausdorff open subspaces.

Proof. It suffices to show that for every open Hausdorff subspace V of Z, one
has E0

V ⊂ ∑
i∈I E0

Vi
. Let ξ ∈ E0

V . Denote by qV : V ′ → V the canonical map

defined by qV (S ×{z}) = z. Let K ⊂ V compact such that supp(ξ) ⊂ q−1
V (K).

There exists J ⊂ I finite such that K ⊂ ∪j∈JVj . Let (ϕj)j∈J be a partition
of unity associated to that cover, and ξj = ξ.(ϕj ◦ qV ). One easily checks that
ξj ∈ E0

Vj
and that ξ =

∑
j∈J ξj . ¤

We now define a C∗
r (G1)-valued scalar product on E0

Z by Eqn. (2) where z is
an arbitrary element of Z such that ρ(z) = r(g). Our definition is independent
of the choice of z, since if z′ is another element, there exists γ′ ∈ G2 such that
z′ = zγ′, and the Haar system on G2 is left-invariant.
Moreover, the integral is convergent for all g ∈ G1 because the action of G2 on
Z is proper.
Let us show that 〈ξ, η〉 ∈ Cc(G1) for all ξ, η ∈ E0

Z . We need a preliminary
lemma:

Lemma 7.12. Let X and Y be two topological spaces such that X is locally
compact and f : X → Y proper. Let F be a ultrafilter such that f converges to
y ∈ Y with respect to F . Then there exists x ∈ X such that f(x) = y and F
converges to x.
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Proof. Let Q = f−1(y). Since f is proper, Q is quasi-compact. Suppose that for
all x ∈ Q, F does not converge to x. Then there exists an open neighborhood
Vx of x such that V c

x ∈ F . Extracting a finite cover (V1, . . . , Vn) of Q, there
exists an open neighborhood V of Q such that V c ∈ F . Since f is closed,
f(V c)c is a neighborhood of y. By assumption, f(V c)c ∈ f(F), i.e. ∃A ∈ F ,
f(A) ⊂ f(V c)c. This implies that A ⊂ V , therefore V ∈ F : this contradicts
V c ∈ F .
Consequently, there exists x ∈ Q such that F converges to x. ¤

To show that 〈ξ, η〉 ∈ Cc(G1), we can suppose that ξ ∈ E0
U and η ∈ E0

V ,

where U and V are open Hausdorff. Let F (g, z) = ξ(z)η(g−1z), defined on
Γ = G1 ×r,ρ Z. Since the action of G1 on Z is proper, F is quasi-compactly
supported. Let us show that F ∈ Cc(Γ).

Let F be a ultrafilter on Γ, convergent in HΓ. Since G
(0)
1 is Hausdorff, its limit

has the form S = S′g0 × S′′ where S′ ⊂ (G1)
r(g0)
r(g0)

, S′′ ⊂ ρ−1(r(g0)). Moreover,

S′ is a subgroup of (G1)
r(g)
r(g) by the proof of Lemma 5.1.

Suppose that there exist z0, z1 ∈ S′′ and g1 ∈ S′g0 such that z0 ∈ U and
g−1
1 z1 ∈ V . By Lemma 7.12 applied to the proper map G1 ⋊Z → Z ×Z, there

exists s0 ∈ S′ such that z0 = s0z1. We may assume that g0 = s0g1. Then∑
s∈S F (s) =

∑
s′∈S′ ξ(z0)η(g−1

0 (s′)−1z0). If s′ /∈ stab(z0), then g−1
0 (s′)−1z0 /∈

V since g−1
0 z0 and g−1

0 (s′)−1z0 are distinct limits of (g, z) 7→ g−1z with respect
to F and V is Hausdorff. Therefore,

∑

s∈S

F (s) = #(stab(z0) ∩ S′)ξ(z0)η(g−1
0 z0)

=
√

#(stab(z0) ∩ S′)ξ(z0)

√
#(stab(g−1

0 z0) ∩ (g−1
0 S′g0))η(z0)

= lim
F

ξ(z)η(g−1z) = lim
F

F (g, z).

If for all z0, z1 ∈ S′′ and all g1 ∈ S′g0, (z0, g
−1
1 z1) /∈ U×V , then

∑
s∈S F (g, z) =

0 = limF F (g, z).
By Proposition 4.1, F ∈ Cc(Γ).
Since 〈ξ, η〉(g) =

∫
γ∈(G2)σ(z) F (g, zγ)λσ(z)(dγ), to prove that 〈ξ, η〉 ∈ Cc(G1) it

suffices to show:

Lemma 7.13. Let G1 and G2 be two locally compact groupoids with Haar system

such that G
(0)
i are Hausdorff. Let (Z, ρ, σ) be a generalized morphism from G1

to G2. Let Γ = G1 ×r,ρ Z. Then for every F ∈ Cc(Γ), the function

g 7→
∫

γ∈(G2)σ(z)

F (g, zγ)λσ(z)(dγ),

where z ∈ Z is an arbitrary element such that ρ(z) = r(g), belongs to Cc(G1).

Proof. Suppose first that F (g, z) = f(g)h(z), where f ∈ Cc(G1) and h ∈ Cc(Z).
Let H(z) =

∫
γ∈(G2)σ(z) h(zγ)λσ(z)(dγ). By Lemma 7.14 below (applied to the

Documenta Mathematica 9 (2004) 565–597



592 Jean-Louis Tu

groupoid Z ⋊ G2), H is continuous. It is obviously G2-invariant, therefore

H ∈ Cc(Z/G2). Let H̃ ∈ Cc(G
(0)
1 ) ≃ Cc(Z/G2) correspond to H. The map

g 7→
∫

γ∈(G2)σ(z)

F (g, zγ)λσ(z)(dγ) = f(g)H̃(s(g))

thus belongs to Cc(G1).
By linearity, the lemma is true for F ∈ Cc(G1) ⊗ Cc(Z). By Lemma 4.4 and
Lemma 4.5, F is the uniform limit of functions Fn ∈ Cc(G1) ⊗ Cc(Z) which
are supported in a fixed quasi-compact set Q = Q1 × Q2 ⊂ G1 × Z. Let
Q′ ⊂ Z quasi-compact such that ρ(Q′) ⊃ r(Q1). Since the action of G2 on Z
is proper, K = {γ ∈ G2| Q′γ ∩ Q2 6= ∅} is quasi-compact. Using the fact that

G
(0)
1 ≃ Z/G2, it is easy to see that

sup
(g,z)∈Γ

∫

γ∈(G2)σ(z)

1Q(g, zγ)λσ(z)(dγ) ≤ sup
z∈Q′

∫

γ∈G
σ(z)
2

1Q2
(zγ)λσ(z)(dγ)

≤ sup
x∈G

(0)
2

∫

γ∈Gx
2

1K(γ)λx(dγ) < ∞

by Lemma 4.7. Therefore,

lim
n→∞

sup
g∈G1

∣∣∣∣∣

∫

γ∈G
σ(z)
2

F (g, zγ) − Fn(g, zγ)λσ(z)(dγ)

∣∣∣∣∣ = 0.

The conclusion follows from Corollary 4.2. ¤

In the proof of Lemma 7.13 we used the

Lemma 7.14. Let G be a locally compact, proper groupoid with Haar system,
such that Gx is Hausdorff for all x ∈ G(0), and Gx

x = {x} for all x ∈ G(0). We
do not assume G(0) to be Hausdorff. Then ∀f ∈ Cc(G

(0)),

ϕ : G(0) → C, x 7→
∫

g∈Gx

f(s(g))λx(dg)

is continuous.

Proof. Let V be an open, Hausdorff subspace of G(0). Let h ∈ Cc(V ). Since
(r, s) : G → G(0) × G(0) is a homeomorphism from G onto a closed subspace
of G(0) × G(0), and (x, y) 7→ h(x)f(y) belongs to Cc(G

(0) × G(0)), the map
g 7→ h(r(g))f(s(g)) belongs to Cc(G), therefore by definition of a Haar system,
x 7→

∫
g∈Gx h(r(g))f(s(g))λx(dg) = h(x)ϕ(x) belongs to Cc(G

(0)).

Since h ∈ Cc(V ) is arbitrary, this shows that ϕ|V is continuous, hence ϕ is

continuous on G(0). ¤

Now, let us show the positivity of the scalar product. Recall that for all x ∈
G

(0)
1 there is a representation πG1,x : C∗(G1) → L(L2(Gx

1)) such that for all
a ∈ Cc(G1) and all η ∈ Cc(G

x
1),

(πG1,x(a)η)(g) =

∫

h∈G
s(g)
1

a(h)η(gh)λs(g)(dh).
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By definition, ‖a‖C∗
r (G1) = sup

x∈G
(0)
1

‖πG1,x(a)‖.

〈η, πG1,x(a)η〉 =

∫

g∈Gx
1 , h∈G

s(g)
1

η(g)a(h)η(gh)λs(g)(dh)λx(dg)

=

∫

g∈Gx
1 , h∈Gs(g)

η(g)a(g−1h)η(h)λx(dg)λx(dh).

Fix z ∈ Z such that ρ(z) = x. Replacing a(g−1h) by

〈ξ, ξ〉(g−1h) =

∫

γ∈G
σ(z)
2

ξ(g−1zγ)ξ(h−1zγ)λσ(z)(dγ),

we get

(5) 〈η, πG1,x(〈ξ, ξ〉)η〉 =

∫

γ∈G
σ(z)
2

λσ(z)(dγ)

∣∣∣∣
∫

g∈Gx

η(g)ξ(g−1zγ)λx(dg)

∣∣∣∣
2

.

It follows that πG1,x(〈ξ, ξ〉) ≥ 0 for all x ∈ G
(0)
1 , so 〈ξ, ξ〉 ≥ 0 in C∗

r (G1).

Now, let us define a C∗
r (G1)-module structure on E0

Z by Eqn.(3) for all ξ ∈ E0
Z

and a ∈ Cc(G1).
Let us show that ξa ∈ E0

Z . We need a preliminary lemma:

Lemma 7.15. Let X and Y be quasi-compact spaces, (Ωk) an open cover of
X×Y . Then there exist finite open covers (Xi) and (Yj) of X and Y such that
∀i, j ∃k, Xi × Yj ⊂ Ωk.

Proof. For all (x, y) ∈ X×Y choose open neighborhoods Ux,y and Vx,y of x and
y such that Ux,y×Vx,y ⊂ Ωk for some k. For y fixed, there exist x1, . . . , xn such
that (Uxi,y)1≤i≤n covers X. Let Vy = ∩n

i=1Uxi,y. Then for all (x, y) ∈ X × Y ,
there exists an open neighborhood U ′

x,y of x and k such that U ′
x,y × Vy ⊂ Ωk.

Let (V1, . . . , Vm) = (Vy1
, . . . , Vym

) such that ∪1≤j≤mVj = Y . For all x ∈ X, let
U ′

x = ∩m
j=1U

′
x,yj

. Let (U1, . . . , Up) be a finite sub-cover of (U ′
x)x∈X . Then for

all i and for all j, there exists k such that Ui × Vj ⊂ Ωk. ¤

Let Q1 and Q2 be quasi-compact subspaces of G1 of Z respectively such that
a−1(C∗) ⊂ Q1 and ξ−1(C∗) ⊂ Q2. Let Q be a quasi-compact subspace of Z
such that ∀g ∈ Q1, ∀z ∈ Q2, g−1z ∈ Q. Let (Uk) be a finite cover of Q by
Hausdorff open subspaces of Z. Let Q′ = Q1 ×r,ρ Q2. Then Q′ is a closed
subspace of Q1 × Q2. Let Ω′

k = {(g, z) ∈ Q′| g−1z ∈ Uk}. Then (Ω′
k) is a

finite open cover of Q′. Let Ωk be an open subspace of Q1 × Q2 such that
Ω′

k = Ωk ∩Q′. Then {Q1×Q2−Q′}∪{Ωk} is an open cover of Q1×Q2. Using
Lemma 7.15, there exist finite families of Hausdorff open sets (Wi) and (Vj)
which cover Q1 and Q2, such that for all i, j and for all (g, z) ∈ Wi ×G

(0)
1

Vj ,

there exists k such that g−1z ∈ Uk.
Thus, we can assume by linearity and by Lemmas 4.3 and 7.11 that ξ ∈ E0

V ,
a ∈ Cc(W ), U = W−1V , and U , V and W are open and Hausdorff.
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Let Ω = {(g, S) ∈ W−1 × U ′| g−1qU (S) ∈ V }. Then the map (g, S) 7→
(g−1, g−1S) is a homeomorphism from Ω onto W×r,ρ◦qV

V ′. Therefore, the map
(g, z) 7→ ξ(g−1z)a(g−1) belongs to Cc(Ω) ⊂ Cc(G1 ×r,ρ◦qV

U ′). By Lemma 4.8,

S 7→ (ξa)(S) =

∫

g∈G
ρ◦qV (S)

1

ξ(g−1S)a(g−1)λρ◦qV (S)(dg)

belongs to Cc(U
′). It is immediate that (ξa)(S) =

√
#S(ξa)(q(S)) for all

S ∈ U ′, therefore ξa ∈ E0
U . This completes the proof that ξa ∈ E0

Z .

Finally, it is not hard to check that 〈ξ, ηa〉 = 〈ξ, η〉∗a. Therefore, the completion
EZ of E0

Z with respect to the norm ‖ξ‖ = ‖〈ξ, ξ〉‖1/2 is a C∗
r (G1)-Hilbert module.

Let us now construct a morphism π : C∗
r (G2) → L(EZ). For every ξ ∈ E0

Z and
every b ∈ Cc(G2), define bξ by Eqn.(4). Let us check that bξ ∈ E0

Z . As above,
by linearity we may assume that ξ ∈ E0

V , b ∈ Cc(W ) and V W−1 ⊂ U , where
V ⊂ Z, U ⊂ Z and W ⊂ G2 are open and Hausdorff.
Let Φ(S, γ) = (Sγ, γ). Then Φ is a homeomorphism from Ω = {(S, γ) ∈
U ′×σ◦qU ,r W | qU (S)γ ∈ V } onto V ′×σ◦qV ,s W . Let F (z, γ) = b(γ)ξ(zγ). Since
F = (ξ⊗ b) ◦Φ, F is an element of Cc(Ω) ⊂ Cc(U

′×σ◦qU ,r W ). By Lemma 4.8,
bξ ∈ Cc(U

′).
It is immediate that (bξ)(S) =

√
#S(bξ)(q(S)). Therefore, bξ ∈ E0

U ⊂ E0
Z .

Let us prove that ‖bξ‖ ≤ ‖b‖ ‖ξ‖. Let

ζ(γ) =

∫

g∈Gx
1

η(g)ξ(g−1zγ)λx(dg),

where z ∈ Z such that ρ(z) = r(g) is arbitrary. From (5),

〈η, πG1,x(〈ξ, ξ〉)η〉 = ‖ζ‖2

L2(G
σ(z)
2 )

.

A similar calculation shows that

〈η, πG1,x(〈bξ, bξ〉)η〉 =

∫

γ∈G
σ(z)
2

λσ(z)(dγ)

∣∣∣∣∣

∫

g∈Gx
1

η(g)ξ(g−1zγγ′)b(γ′)λs(γ)(dγ′)

∣∣∣∣∣

2

= 〈bζ, bζ〉 ≤ ‖b‖2‖ζ‖2.

By density of Cc(G
x
2) in L2(Gx

2), ‖πG1,x(〈bξ, bξ〉)‖ ≤ ‖b‖2‖πG1,x(〈ξ, ξ〉)‖. Tak-

ing the supremum over x ∈ G
(0)
1 , we get ‖bξ‖ ≤ ‖b‖ ‖ξ‖. It follows that

b 7→ (ξ 7→ bξ) extends to a ∗-morphism π : C∗
r (G2) → L(EZ).

Finally, suppose now that (Z, ρ, σ) is proper, and let us show that C∗
r (G2) maps

to K(EZ).
For every η, ζ ∈ E0

Z , denote by Tη,ζ the operator Tη,ζ(ξ) = η〈ζ, ξ〉. Compact
operators are elements of the closed linear span of Tη,ζ ’s. Let us write an
explicit formula for Tη,ζ :

Tη,ζ(ξ)(z) =

∫

g∈G
ρ(z)
1

η(g−1z)〈ζ, ξ〉(g−1)λρ(z)(dg)

=

∫

g∈G
ρ(z)
1

η(g−1z)

∫

γ∈G
σ(z)
2

ζ(g−1zγ)ξ(zγ)λσ(z)(dγ)λρ(z)(dg).
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Let b ∈ Cc(G2), let us show that π(b) ∈ K(EZ). Let K be a quasi-compact
subspace of G2 such that b−1(C∗) ⊂ K. Since (Z, ρ, σ) is a proper generalized
morphism, there exists a quasi-compact subspace Q of Z such that σ−1(r(K)) ⊂
G1Q̊. Before we proceed, we need a lemma:

Lemma 7.16. Let G2 be a locally compact groupoid acting freely and properly

on a locally compact space Z with momentum map σ : Z → G
(0)
2 . Then for

every (z0, γ0) ∈ Z ⋊ G2, there exists a Hausdorff open neighborhood Ωz0,γ0
of

(z0, γ0) such that

• U = {z1γ1| (z1, γ1) ∈ Ωz0,γ0
} is Hausdorff;

• there exists a Hausdorff open neighborhood W of γ0 such that ∀γ ∈ G2,
∀z ∈ pr1(Ωz0,γ0

), ∀z′ ∈ U , z′ = zγ =⇒ γ ∈ W .

Proof. Let R = {(z, z′) ∈ Z × Z| ∃γ ∈ G2, z′ = zγ}. Since the G2-action
is free and proper, there exists a continuous function φ : R → G2 such that
φ(z, zγ) = γ. Let W be an open Hausdorff neighborhood of γ0. By continuity
of φ, there exist open Hausdorff neighborhoods V and U0 of z0 and z0γ0 such
that for all (z, z′) ∈ R ∩ (V × U0), φ(z, z′) ∈ W . By continuity of the action,
there exists an open neighborhood Ωz0,γ0

of (z0, γ0) such that ∀(z1, γ1) ∈ Ωz0,γ0
,

z1γ1 ∈ U0 and z1 ∈ V . ¤

By Lemma 7.15, there exist finite covers (Vi) of Q and (Wj) of K such that for
every i, j, (Z ×

G
(0)
2

G2) ∩ (Vi × Wj) ⊂ Ωz0,γ0
for some (z0, γ0).

By Lemma 6.2 applied to the groupoid (G1 ⋉ Z)Vi

Vi
, for all i there exists c′i ∈

Cc(V
′
i )+ such that c′i(S) = (#S)c′i(qVi

(S)) for all S ∈ V ′
i , and such that

∑
i c′i ≥

1 on Q. Let

fi(z) =

∫

g∈G
ρ(z)
1

c′i(g
−1z)λρ(z)(dg)

and let f =
∑

i fi. As in the proof of Theorem 6.3, one can show that for every
Hausdorff open subspace V of Z and every h ∈ Cc(V ), (g, z) 7→ h(z)c′i(g

−1z) be-
longs to Cc(G⋉Z), therefore hfi is continuous on V . Since h is arbitrary, it fol-
lows that fi is continuous, thus f is continuous. Moreover, f is G1-equivariant,
nonnegative, and infQ f > 0. Therefore, there exists f1 ∈ Cc(G1\Z) such that
f1(z) = 1/f(z) for all z ∈ Q. Let ci(z) = f1(z)c′i(z). Let

Ti(ξ)(z) =

∫

g∈G
ρ(z)
1

∫

γ∈G
σ(z)
2

ci(g
−1z)b(γ)ξ(zγ)λρ(z)(dg)λσ(z)(dγ).

Then π(b) =
∑

i Ti, therefore it suffices to show that Ti is a compact operator
for all i.
By linearity and by Lemma 4.3, one may assume that b ∈ Cc(Wj) for some j.
Then, by construction of Vi (see Lemma 7.16), there exist open Hausdorff sets
U ⊂ Z and W ⊂ G2 such that {γ ∈ G2| ∃(z, z′) ∈ Vi × U, z′ = zγ} ⊂ W , and
{zγ| (z, γ) ∈ Vi ×σ,r W} ⊂ U .
The map (z, zγ) 7→ c(z)b(γ) defines an element of Cc(V

′
i × U). Let L1 × L2 ⊂

Vi × U compact such that (z, zγ) 7→ c(z)b(γ) is supported on q−1
Vi

(L1) × L2.
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By Lemma 6.2 applied to the groupoids (G1 ⋉Z)Vi

Vi
and (G1 ⋉Z)U

U , there exist
d1 ∈ Cc(V

′
i )+ and d2 ∈ Cc(U

′)+ such that d1 > 0 on L1 and d2 > 0 on L2,
d1(S) =

√
#Sd1(qVi

(S)) for all S ∈ V ′
i , and d2(S) =

√
#Sd2(qU (S)) for all

S ∈ U ′. Let

f(z, zγ) =
c(z)b(γ)

d1(z)d2(zγ)
.

Then f ∈ Cc(Vi ×G
(0)
1

U). Therefore, f is the uniform limit of a sequence

fn =
∑

αn,k ⊗ βn,k in Cc(Vi) ⊗ Cc(U) such that all the fn are supported in a
fixed compact set. Then Ti is the norm-limit of

∑
k Td1αn,k,d2βn,k

, therefore it
is compact.

Remark 7.17. The construction in Theorem 7.8 is functorial with respect to
the composition of generalized morphisms and of correspondences. We don’t
include a proof of this fact, as it is tedious but elementary. It is an easy
exercise when G1 and G2 are Hausdorff.
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Connes). Ann. Sci. École Norm. Sup. (4) 20(1987), no. 3, 325–390.
[6] Khoshkam, M.; Skandalis, G. Regular representation of groupoid C∗-

algebras and applications to inverse semigroups. J. Reine Angew. Math.
546 (2002), 47–72.

[7] Landsman, N. P. Operator algebras and Poisson manifolds associated to
groupoids. Comm. Math. Phys. 222 (2001), no. 1, 97–116.

[8] Landsman, N. P. Quantized reduction as a tensor product. Quantization
of singular symplectic quotients, 137–180, Progr. Math., 198, Birkhäuser,
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1 Introduction

Let G be a pro-p group. In this paper we investigate some rings
related to the completed group algebra of G over Fp, which we
denote by ΩG:

ΩG = Fp[[G]] := lim
←−

N⊳oGFp[G/N ].

When G is analytic in the sense of [3], ΩG and its p-adic analogue
ΛG defined by

ΛG = Zp[[G]] := lim
←−

N⊳oGZp[G/N ]

are right and left Noetherian rings, which are in general noncom-
mutative. If in addition G is torsion free, the results of Brumer,
Neumann and others show that ΩG and ΛG have finite global dimen-
sion and have no zero-divisors; for an overview, see [1]. Moreover,
under the name of Iwasawa algebras, these rings are frequently of
interest to number theorists (see [2] for more details).
Our main result is
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Theorem A. Let G be a countably based pro-p group. Then the

centre of ΩG is equal to the closure of the centre of Fp[G]:

Z(ΩG) = Z(Fp[G]).

Similarly, the centre of ΛG is equal to the closure of the centre of

Zp[G]:

Z(ΛG) = Z(Zp[G]).

When G is p-valued in the sense of Lazard [5, III.2.1.2], we obtain
a cleaner result.

Corollary A. Let G be a countably based p-valued pro-p group with

centre Z. Then

Z(ΩG) = ΩZ and Z(ΛG) = ΛZ .

The class of p-valued pro-p groups is rather large; for example, every
closed subgroup of a uniform pro-p group [3, 4,1] is p-valued. Also,
any pro-p subgroup of GLn(Zp) is p-valued when p > n + 1 [5, p.
101].

We remark that when G is an open pro-p subgroup of GL2(Zp),
a version of the above result was proved by Howson [4, 4.2] using
similar techniques.

We also use the method used in the proof of Theorem A to compute
endomorphism rings of certain induced modules for ΩG, when G is
an analytic pro-p group.

Theorem B. Let H be a closed subgroup of an analytic pro-p group

G. Let M = Fp ⊗ΩH
ΩG and write R = EndΩG

(M). Then R is

finite-dimensional over Fp if and only if Ng(h) = h, where h and g

denote the Qp-Lie algebras of H and G, respectively.

The author would like to thank Chris Brookes and Simon Wad-
sley for many valuable discussions. This research was financially
supported by EPSRC grant number 00802002.
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2 Fixed Points

Let X be a group. For any (right) X-space S, let SX = {s ∈ S :
s.X = s} denote the set of fixed points of X in S. Also, let O(S)
denote the collection of all finite X-orbits on S, and for any orbit
C ∈ O(S), let Ĉ denote the orbit sum

Ĉ =
∑

s∈C

s,

viewed as an element of the permutation module Fp[S]. Thus,

Fp[S]X is spanned by all the Ĉ as C ranges over O(S): Fp[S]X =

Fp[ ˆO(S)].
Now let X be a pro-p group. Assume we are given an inverse system

. . .
πn+1

։ An

πn

։ An−1

πn−1

։ . . .
π2

։ A1

of finite X-spaces. We can consider the natural inverse system of
permutation modules associated with the Ai:

. . .
πn+1

։ Fp[An]
πn

։ Fp[An−1]
πn−1

։ . . .
π2

։ Fp[A1]

where we keep the same notation for the connecting maps πn. Now,
form the inverse limit

Y = lim
←−

An,

this is clearly an X-space. We can also form the inverse limit

ΩY = lim
←−

Fp[An],

which is easily seen to be an ΩX-module.
Note that ΩY is a compact metric space, with metric given by
d(α, β) = ‖α − β‖, where ‖.‖ is a norm on ΩY given by

‖(αn)n‖ = sup{p−n : αn 6= 0} and ‖0‖ = 0.

We are interested in the fixed points of ΩY , viewed as an X-space.
It is straightforward to see that there is a natural embedding of
Fp[Y ] into ΩY and that Fp[Y ]X ⊆ ΩX

Y .

Documenta Mathematica 9 (2004) 599–606



602 Konstantin Ardakov

Proposition 2.1. With the notations above, ΩX
Y = Fp[Y ]

X
= Fp[Y ]X .

Proof. Because the action of X on ΩY is continuous, it is clear that
ΩX

Y is a closed subset of ΩY , so by the above remarks Fp[Y ]X ⊆ ΩX
Y .

Let α = (αn)n ∈ ΩX
Y . Since the natural maps ΩY ։ Fp[An] are

maps of X-spaces, we see that each αn lies in Fp[An]X .
Let the integer r be least such that αr 6= 0. Consider αr ∈ Fp[Ar]

X ;

thus αr =
∑

C∈O(Ar) λCĈ and not all the λC are zero.

Pick a C ∈ O(Ar) with λC 6= 0. Since πr+1 is a map of X-spaces,
π−1

r+1(C) = D1∪D2∪ . . .∪Dk is a union of X-orbits, with πr+1(Dj) =
C for j = 1, . . . , k and πr+1(Dj) ∩ C = ∅ for j > k, if we let
Dk+1, . . . ,Dm denote the remaining elements of O(Ar+1).
We claim we can find a Dj with 1 ≤ j ≤ k such that |Dj| = |C|.
For, suppose not. Then |Dj| > |C| for each j = 1, . . . , k. As πr+1 :
Dj ։ C is a surjective map of finite transitive X-spaces, and be-
cause X is a pro-p group, we deduce that each fibre (πr+1|Dj)

−1(s)
for s ∈ C has size a power of p greater than 1. But then, be-
cause we are working over Fp, we must have πr+1(D̂j) = 0, for each
1 ≤ j ≤ k.
Now, since αr+1 ∈ Fp[Ar+1]

X , we can write αr+1 =
∑m

j=1 µjD̂j

for some µj ∈ Fp. So, αr = πr+1(αr+1) =
∑m

j=k+1 µjπr+1(D̂j).
But πr+1(Dj) ∩ C = ∅ for all j > k, contradicting the fact that
C ⊆ supp(αr).
Hence, we can find Cr+1 ∈ O(Ar+1) with |Cr+1| = |Cr| and
πr+1(Cr+1) = Cr, where we set Cr to be C. It is clear that we
can continue this process of “lifting” the X-orbits, without ever
increasing the sizes. Thus, we get a sequence

· · ·
πn+2

։ Cn+1

πn+1

։ Cn

πn

։ . . .
πr+1

։ Cr

of X-orbits, each having the same size as Cr.
Now, pick some sr ∈ Cr and inductively choose lifts sn ∈ Cn for
each n ≥ r. Let s be the element of Y determined by these lifts.
It is then straightforward to see that the X-orbit of s in Y is finite
and that the image of this orbit in Ar equals C. Let FC denote this
element of O(Y ).
Finally, we can consider the element β =

∑
C∈O(Ar) λCF̂C. Obvi-

ously β lies in Fp[Y ]X , and the image of β in Fp[Ar] coincides with
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αr. Hence, α− β has norm strictly smaller than that of α and also
lies in ΩX

Y . Applying the argument above to α−β instead of α and
iterating, we see that α can be approximated arbitrarily closely by
elements of Fp[Y ]X .

Next we turn to the analogous proposition over the p-adics. Let

ΛY = lim
←−

Zp[An].

This is naturally a ΛX-module and there is a natural isomor-
phism ΛY /pΛY

∼= ΩY of ΛX-modules. Moreover, since ΛY
∼=

lim
←−

(Z/pnZ)[An] is a countably based pro-p group, it is a compact

metric space.

Proposition 2.2. With the notations above, ΛX
Y = Zp[Y ]X .

Proof. As in the proof of Proposition 2.1, the inclusion Zp[Y ]X ⊆
ΛX

Y is clear. Let¯: ΛY → ΩY denote reduction mod p.
Let α ∈ ΛX

Y so that α ∈ ΩX
Y . By Proposition 2.1, α = limn→∞ un

for some un ∈ Fp[Y ]X . Since Fp[Y ]X = Fp[ ˆO(Y )] and Zp[Y ]X =

Zp[ ˆO(Y )], we can choose vn ∈ Zp[Y ]X such that vn = un for all n.
Since ΛY is compact, by passing to a convergent subsequence
we may assume that vn converges to β0 ∈ Zp[Y ]X . Now α =
limn→∞ vn = β0, so α − β0 ∈ pΛY ∩ ΛX

Y = pΛX
Y , since ΛY is p-

torsion free.
Hence we can write α = β0 + pα1 where α1 ∈ ΛX

Y . Iterating
the above argument, we obtain elements β1, β2, . . . ∈ Zp[Y ]X and
α1, α2, . . . ∈ ΛX

Y such that αn = βn + pαn+1 for all n ≥ 1. So
α =

∑∞
n=0 βnpn ∈ Zp[Y ]X .

3 Main Results

We immediately make use of the above Propositions.

Proof of Theorem A. Since G is countably based, we can write G
as an inverse limit of the countable system An = G/Gn, for some
suitable open normal subgroups G1 ⊃ G2 ⊃ . . . ⊃ Gn ⊃ . . . of G.
Each An is a finite G-space, where G acts by conjugation. Now
apply Propositions 2.1 and 2.2.
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Proof of Corollary A. Z(Fp[G]) is spanned over Fp by all conjugacy

class sums Ĉ, where C is a finite conjugacy class of G. Let C be
such a conjugacy class and let x ∈ C. Then the centralizer CG(x)
of x in G is a closed subgroup of G of finite index.
Let y ∈ G; then ypn ∈ CG(x) for some n, so (x−1yx)pn

= ypn
. Since

G is p-valued, the map g 7→ gp is injective on G by [5, Chapter III,
Proposition 2.1.4], so x−1yx = y and C ⊆ Z.
Hence Z(Fp[G]) = Fp[Z], and similarly Z(Zp[G]) = Zp[Z]. The
result follows from Theorem A.

We remark that Corollary A does not extend to arbitrary torsion
free analytic pro-p groups. This can be easily checked for the group
given in [5, Chapter III, Example 3.2.5].
We now turn to the proof of Theorem B. Let G = lim

←−
G/Gn be

a pro-p group, H a closed subgroup. Let M = Fp ⊗ΩH
ΩG be

the induced module from the trivial module for ΩH . G acts on
the coset space Y = H\G by right translation and we can write
Y = lim

←−
HGn\G as an inverse limit of finite G-spaces. It is easy to

see that ΩY is then naturally isomorphic to M .
Let R denote the endomorphism ring EndΩG

M of M . Each element
f ∈ R gives rise to a trivial ΩH−submodule of M generated by
f(1 ⊗ 1), when we view M as an ΩH−module by restriction. This
gives an isomorphism of Fp−vector spaces

R = HomΩG
(Fp ⊗ΩH

ΩG,M) ∼= HomΩH
(Fp,M),

expressing the fact “induction is left adjoint to restriction”.
Now HomΩH

(Fp,M) can be thought of as the sum of all trivial
ΩH−submodules of M , which is precisely the set MH = ΩH

Y , where
H acts on Y by right translation. In view of Proposition 2.1, we
are interested in the finite H−orbits on Y ; these are given by those
double cosets of H in G which are finite unions of left cosets of H.
Suppose HxH is such a double coset; then StabH(Hx) = {h ∈
H : Hxh = Hx} = H ∩ Hx has finite index in H, so the set
NG(H) = {x ∈ G : H ∩ Hx ≤o H} is of interest; we observe that
it contains the usual normalizer NG(H) of H in G. This set is
sometimes called the commensurator of H in G.
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Proof of Theorem B. Recall [3, 9.5] that G contains an open nor-
mal uniform subgroup K and that the Qp-Lie algebra of G can be
defined by

L(G) = K ⊗Zp Qp

where K is viewed as a Zp-module of finite rank [3, 4.17]. The
conjugation action of G on K is Zp-linear and therefore extends to
an action of G on L(G), which is easily checked to be independent
of the choice of K. This is just the adjoint action of G on L(G).
Next, we observe that when x ∈ G,

H ∩ Hx ≤o H ⇔ L(H ∩ Hx) = L(H) ∩ L(H)x = L(H)
⇔ L(H)x = L(H),

so N := NG(H) = StabGh is a (closed) subgroup of G.
By [3, Exercise 9.10], we see that the Lie algebra of N is equal to the
normalizer Ng(h) of h in g. We remark in passing that this implies
that NG(H) has finite index in N when dealing with analytic pro-p
groups; this is not true in general.
Now, by Proposition 2.1 and the above remarks, R is finite di-
mensional over Fp if and only if the number of finite H-orbits on
Y = H\G is finite.
Clearly {Hx : HxH is a finite H-orbit} = H\N , so the number
of finite H-orbits on Y is finite if and only if H has finite index in
N . This happens if and only if h = L(H) = L(N) = Ng(h), as
required.
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some multilinear operators related to certain integral operators.
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1. Introduction

Let T be a singular integral operator. In[1][2][3], Cohen and Gosselin studied
the Lp(p > 1) boundedness of the multilinear singular integral operator TA

defined by

TA(f)(x) =

∫

Rn

Rm+1(A;x, y)

|x − y|m K(x, y)f(y)dy.

In[6], Hu and Yang obtain a variant sharp estimate for the multilinear singular
integral operators. The main purpose of this paper is to prove a sharp inequality
for some multilinear operators related to certain non-convolution type integral
operators. In fact, we shall establish the sharp inequality for the multilinear
operators only under certain conditions on the size of the integral operators.
The integral operators include Calderón-Zygmund singular integral operator,

1Supported by the NNSF (Grant: 10271071)
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Littlewood-Paley operator, Marcinkiewicz operator and Bochner-Riesz opera-
tor. As applications, we obtain weighted norm inequalities and L log L type
estimates for these multilinear operators.

2. Notations and Results

First, let us introduce some notations(see[6][12-14]). Throughout this paper,
Q will denote a cube of Rn with side parallel to the axes. For any locally
integrable function f , the sharp function of f is defined by

f#(x) = sup
x∈Q

1

|Q|

∫

Q

|f(y) − fQ|dy,

where, and in what follows, fQ = |Q|−1
∫

Q
f(x)dx. It is well-known that(see[6])

f#(x) = sup
x∈Q

inf
c∈C

1

|Q|

∫

Q

|f(y) − c|dy.

We say that f belongs to BMO(Rn) if f# belongs to L∞(Rn) and ||f ||BMO =
||f#||L∞ . For 0 < r < ∞, we denote f#

r by

f#
r (x) = [(|f |r)#(x)]1/r.

Let M be the Hardy-Littlewood maximal operator defined by M(f)(x) =
supx∈Q |Q|−1

∫
Q
|f(y)|dy, we write Mp(f) = (M(fp))1/p for 0 < p < ∞; For

k ∈ N , we denote by Mk the operator M iterated k times, i.e., M1(f)(x) =
M(f)(x) and Mk(f)(x) = M(Mk−1(f))(x) for k ≥ 2. Let B be a Young
function and B̃ be the complementary associated to B, we denote that, for a
function f

||f ||B, Q = inf

{
λ > 0 :

1

|Q|

∫

Q

B

( |f(y)|
λ

)
dy ≤ 1

}

and the maximal function by

MB(f)(x) = sup
x∈Q

||f ||B, Q;

The main Young function to be using in this paper is B(t) = t(1 + log+t) and
its complementary B̃(t) = expt, the corresponding maximal denoted by MLlogL

and MexpL. We have the generalized Hölder’s inequality(see[12])

1

|Q|

∫

Q

|f(y)g(y)|dy ≤ ||f ||B, Q||g||B, Q

and the following inequality (in fact they are equivalent), for any x ∈ Rn,

MLlogL(f)(x) ≤ CM2(f)(x)
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and the following inequalities, for all cubes Q any b ∈ BMO(Rn),

||b − bQ||exp L, Q ≤ C||b||BMO, |b2k+1Q − b2Q| ≤ 2k||b||BMO.

We denote the Muckenhoupt weights by Ap for 1 ≤ p < ∞(see[6]).
We are going to consider some integral operators as following.
Let m be a positive integer and A be a function on Rn. We denote that

Rm+1(A;x, y) = A(x) −
∑

|α|≤m

1

α!
DαA(y)(x − y)α.

Definition 1. Let S and S′ be Schwartz space and its dual and T : S → S′

be a linear operator. Suppose there exists a locally integrable function K(x, y)
on Rn × Rn such that

T (f)(x) =

∫

Rn

K(x, y)f(y)dy

for every bounded and compactly supported function f . The multilinear oper-
ator related to the integral operator T is defined by

TA(f)(x) =

∫

Rn

Rm+1(A;x, y)

|x − y|m K(x, y)f(y)dy.

Definition 2. Let F (x, y, t) defined on Rn × Rn × [0,+∞). Set

Ft(f)(x) =

∫

Rn

F (x, y, t)f(y)dy

for every bounded and compactly supported function f and

FA
t (f)(x) =

∫

Rn

Rm+1(A;x, y)

|x − y|m F (x, y, t)f(y)dy.

Let H be a Banach space of functions h : [0,+∞) → R. For each fixed x ∈ Rn,
we view Ft(f)(x) and FA

t (f)(x) as a mapping from [0,+∞) to H. Then, the
multilinear operators related to Ft is defined by

SA(f)(x) = ||FA
t (f)(x)||;

We also define that S(f)(x) = ||Ft(f)(x)||.
Note that when m = 0, TA and SA are just the commutators of T , S and A.
While when m > 0, it is non-trivial generalizations of the commutators. It is
well known that multilinear operators are of great interest in harmonic analysis
and have been widely studied by many authors (see [1-5][7]). The main purpose
of this paper is to prove a sharp inequality for the multilinear operators TA

and SA. We shall prove the following theorems in Section 3.
Theorem 1. Let DαA ∈ BMO(Rn) for all α with |α| = m. Suppose that T
is the same as in Definition 1 such that T is bounded on Lp(w) for all w ∈ Ap
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with 1 < p < ∞ and weak bounded of (L1(w), L1(w)) for all w ∈ A1. If TA

satisfies the following size condition:

|TA(f)(x) − TA(f)(x0)| ≤ C
∑

|α|=m

||DαA||BMOM2(f)(x)

for any cube Q = Q(x0, d) with suppf ⊂ (2Q)c, x ∈ Q = Q(x0, d). Then for
any 0 < r < 1, there exists a constant C > 0 such that for any f ∈ C∞

0 (Rn)
and any x ∈ Rn,

(TA(f))#r (x) ≤ C
∑

|α|=m

||DαA||BMOM2(f)(x).

Theorem 2. Let DαA ∈ BMO(Rn) for all α with |α| = m. Suppose that S
is the same as in Definition 2 such that S is bounded on Lp(w) for all w ∈ Ap,
1 < p < ∞ and weak bounded of (L1(w), L1(w)) for all w ∈ A1. If SA satisfies
the following size condition:

||FA
t (f)(x) − FA

t (f)(x0)|| ≤ C
∑

|α|=m

||DαA||BMOM2(f)(x)

for any cube Q = Q(x0, d) with suppf ⊂ (2Q)c, x ∈ Q = Q(x0, d). Then for
any 0 < r < 1, there exists a constant C > 0 such that for any f ∈ C∞

0 (Rn)
and any x ∈ Rn,

(SA(f))#r (x) ≤ C
∑

|α|=m

||DαA||BMOM2(f)(x).

From the theorems, we get the following

Corollary. Let DαA ∈ BMO(Rn) for all α with |α| = m. Suppose that
TA, T and SA, S satisfy the conditions of Theorem 1 and Theorem 2.

(a). If w ∈ Ap for 1 < p < ∞. Then TA and SA are all bounded on Lp(w),
that is

||TA(f)||Lp(w) ≤ C
∑

|α|=m

||DαA||BMO||f ||Lp(w)

and

||SA(f)||Lp(w) ≤ C
∑

|α|=m

||DαA||BMO||f ||Lp(w).

(b). If w ∈ A1. Then there exists a constant C > 0 such that for each λ > 0,

w({x ∈ Rn : |TA(f)(x)| > λ})

≤ C
∑

|α|=m

||DαA||BMO

∫

Rn

|f(x)|
λ

(
1 + log+

( |f(x)|
λ

))
w(x)dx
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and

w({x ∈ Rn : |SA(f)(x)| > λ})

≤ C
∑

|α|=m

||DαA||BMO

∫

Rn

|f(x)|
λ

(
1 + log+

( |f(x)|
λ

))
w(x)dx.

3. Proof of Theorem

To prove the theorems, we need the following lemmas.
Lemma 1 (Kolmogorov, [6, p.485]). Let 0 < p < q < ∞ and for any function
f ≥ 0. We define that, for 1/r = 1/p − 1/q

||f ||WLq = sup
λ>0

λ|{x ∈ Rn : f(x) > λ}|1/q, Np,q(f) = sup
E

||fχE ||Lp/||χE ||Lr ,

where the sup is taken for all measurable sets E with 0 < |E| < ∞. Then

||f ||WLq ≤ Np,q(f) ≤ (q/(q − p))1/p||f ||WLq .

Lemma 2([12, p.165]) Let w ∈ A1. Then there exists a constant C > 0 such
that for any function f and for all λ > 0,

w({y ∈ Rn : M2f(y) > λ}) ≤ Cλ−1

∫

Rn

|f(y)|(1 + log+(λ−1|f(y)|))w(y)dy.

Lemma 3.([3, p.448]) Let A be a function on Rn and DαA ∈ Lq(Rn) for all
α with |α| = m and some q > n. Then

|Rm(A;x, y)| ≤ C|x − y|m
∑

|α|=m

(
1

|Q̃(x, y)|

∫

Q̃(x,y)

|DαA(z)|qdz

)1/q

,

where Q̃ is the cube centered at x and having side length 5
√

n|x − y|.
Proof of Theorem 1. It suffices to prove for f ∈ C∞

0 (Rn) and some
constant C0, the following inequality holds:

(
1

|Q|

∫

Q

|TA(f)(x) − C0|rdx

)1/r

≤ CM2(f).

Fix a cube Q = Q(x0, d) and x̃ ∈ Q. Let Q̃ = 5
√

nQ and Ã(x) =
A(x) − ∑

|α|=m

1
α! (D

αA)Q̃xα, then Rm(A;x, y) = Rm(Ã;x, y) and DαÃ =

DαA − (DαA)Q̃ for |α| = m. We write, for f1 = fχQ̃ and f2 = fχRn\Q̃,

TA(f)(x) =

∫

Rn

Rm+1(A;x, y)

|x − y|m K(x, y)f(y)dy

=

∫

Rn

Rm+1(A;x, y)

|x − y|m K(x, y)f2(y)dy
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+

∫

Rn

Rm(Ã;x, y)

|x − y|m K(x, y)f1(y)dy

−
∑

|α|=m

1

α!

∫

Rn

K(x, y)(x − y)α

|x − y|m DαÃ(y)f1(y)dy

then
∣∣TA(f)(x) − TA(f2)(x0)

∣∣

≤
∣∣∣∣∣T

(
Rm(Ã;x, ·)
|x − ·|m f1

)
(x)

∣∣∣∣∣ +
∑

|α|=m

1

α!

∣∣∣∣T
(

(x − ·)α

|x − ·|m DαÃf1

)
(x)

∣∣∣∣

+
∣∣TA(f2)(x) − TA(f2)(x0)

∣∣
:= I(x) + II(x) + III(x),

thus,
(

1

|Q|

∫

Q

∣∣TA(f)(x) − TA(f2)(x0)
∣∣r dx

)1/r

≤
(

C

|Q|

∫

Q

I(x)rdx

)1/r

+

(
C

|Q|

∫

Q

II(x)rdx

)1/r

+

(
C

|Q|

∫

Q

III(x)rdx

)1/r

:= I + II + III.

Now, let us estimate I, II and III, respectively. First, for x ∈ Q and y ∈ Q̃,
using Lemma 3, we get

Rm(Ã;x, y) ≤ C|x − y|m
∑

|α|=m

||DαA||BMO,

thus, by Lemma 1 and the weak type (1,1) of T , we get

I ≤ C
∑

|α|=m

||DαA||BMO|Q|−1 ||T (f1)χQ||Lr

||χQ||Lr/(1−r)

≤ C
∑

|α|=m

||DαA||BMO|Q|−1||T (f1)||WL1

≤ C
∑

|α|=m

||DαA||BMO|Q̃|−1

∫

Q̃

|f(y)|dy ≤ C
∑

|α|=m

||DαA||BMOM(f)(x̃);

For II, similar to the proof of I, we get

II ≤ C
∑

|α|=m

|Q|−1 ||T (DαÃf1)χQ||Lr

||χQ||Lr/(1−r)

≤ C
∑

|α|=m

|Q|−1||T (DαÃf1)||WL1

≤ C
∑

|α|=m

|Q̃|−1

∫

Q̃

|DαÃ(y)||f(y)|dy ≤ C
∑

|α|=m

||DαA||exp L,Q̃||f ||LlogL,Q̃

≤ C
∑

|α|=m

||DαA||BMOML log L(f)(x̃) ≤ C
∑

|α|=m

||DαA||BMOM2(f)(x̃);
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For III, using Hölder’ inequality and the size condition of T , we have

III ≤ C
∑

|α|=m

||DαA||BMOM2(f)(x̃).

This completes the proof of Theorem 1.
Proof of Theorem 2. It is only to prove for f ∈ C∞

0 (Rn) and some
constant C0, the following inequality holds:

(
1

|Q|

∫

Q

|SA(f)(x) − C0|rdx

)1/r

≤ CM2(f).

Fix a cube Q = Q(x0, d) and x̃ ∈ Q. Let Q̃ and Ã(x) be the same as the proof
of Theorem 1. We write, for f1 = fχQ̃ and f2 = fχRn\Q̃,

FA
t (f)(x) =

∫

Rn

Rm(Ã;x, y)

|x − y|m F (x, y, t)f1(y)dy

−
∑

|α|=m

1

α!

∫

Rn

F (x, y, t)(x − y)α

|x − y|m DαÃ(y)f1(y)dy

+

∫

Rn

Rm+1(A;x, y)

|x − y|m F (x, y, t)f2(y)dy,

then

|SA(f)(x) − SA(f2)(x0)| =
∣∣||FA

t (f)(x)|| − ||FA
t (f2)(x0)||

∣∣

≤ ||FA
t (f)(x) − FA

t (f2)(x0)||

≤
∣∣∣∣∣

∣∣∣∣∣Ft

(
Rm(Ã;x, ·)
|x − ·|m f1

)
(x)

∣∣∣∣∣

∣∣∣∣∣ +
∑

|α|=m

1

α!

∣∣∣∣
∣∣∣∣Ft

(
(x − ·)α

|x − ·|m DαÃf1

)
(x)

∣∣∣∣
∣∣∣∣

+||FA
t (f2)(x) − FA

t (f2)(x0)||
:= J(x) + JJ(x) + JJJ(x),

thus,

(
1

|Q|

∫

Q

|SA(f)(x) − SA(f2)(x0)|rdx

)1/r

≤
(

C

|Q|

∫

Q

J(x)rdx

)1/r

+

(
C

|Q|

∫

Q

JJ(x)rdx

)1/r

+

(
C

|Q|

∫

Q

JJJ(x)rdx

)1/r

:= J + JJ + JJJ.

Now, similar to the proof of Theorem 1, we have

J ≤ C
∑

|α|=m

||DαA||BMO
1

|Q̃|

∫

Q̃

|f(x)|dx ≤ C
∑

|α|=m

||DαA||BMOM(f)(x̃)
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and

JJ ≤ C
∑

|α|=m

|Q|−1 ||S(DαÃf1)χQ||Lr

||χQ||Lr/(1−r)

≤ C
∑

|α|=m

|Q|−1||S(DαÃf1)||WL1

≤ C
∑

|α|=m

|Q̃|−1

∫

Q̃

|DαÃ(y)||f(y)|dy ≤ C
∑

|α|=m

||DαA||BMOM2(f)(x̃);

For JJJ , using the size condition of S, we have

JJJ ≤ C
∑

|α|=m

||DαA||BMOM2(f)(x̃).

This completes the proof of Theorem 2.
From Theorem 1, 2 and the weighted boundedness of T and S, we may obtain
the conclusion of Corollary(a).
From Theorem 1, 2 and Lemma 2, we may obtain the conclusion of Corollary(b).

4. Applications

In this section we shall apply the Theorem 1, 2 and Corollary of the paper to
some particular operators such as the Calderón-Zygmund singular integral op-
erator, Littlewood-Paley operator, Marcinkiewicz operator and Bochner-Riesz
operator.
Application 1. Calderón-Zygmund singular integral operator.
Let T be the Calderón-Zygmund operator(see[6][14][15]), the multilinear oper-
ator related to T is defined by

TA(f)(x) =

∫
Rm+1(A;x, y)

|x − y|m K(x, y)f(y)dy.

Then it is easily to see that T satisfies the conditions in Theorem 1 and Corol-
lary. In fact, it is only to verify that TA satisfies the size condition in Theorem
1, which has done in [6](see also [12][13]). Thus the conclusions of Theorem 1
and Corollary hold for TA.
Application 2. Littlewood-Paley operator.
Let ε > 0 and ψ be a fixed function which satisfies the following properties:
(1)

∫
Rn ψ(x)dx = 0,

(2) |ψ(x)| ≤ C(1 + |x|)−(n+1),
(3) |ψ(x + y) − ψ(x)| ≤ C|y|ε(1 + |x|)−(n+1+ε) when 2|y| < |x|;
The multilinear Littlewood-Paley operator is defined by(see[8])

gA
ψ (f)(x) =

(∫ ∞

0

|FA
t (f)(x)|2 dt

t

)1/2

,

where

FA
t (f)(x) =

∫

Rn

Rm+1(A;x, y)

|x − y|m ψt(x − y)f(y)dy
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and ψt(x) = t−nψ(x/t) for t > 0. We write Ft(f) = ψt ∗ f . We also define that

gψ(f)(x) =

(∫ ∞

0

|Ft(f)(x)|2 dt

t

)1/2

,

which is the Littlewood-Paley operator(see [15]);
Let H be a space of functions h : [0,+∞) → R, normed by ||h|| =(∫ ∞

0
|h(t)|2dt/t

)1/2
< ∞. Then, for each fixed x ∈ Rn, FA

t (f)(x) may be
viewed as a mapping from [0,+∞) to H, and it is clear that

gψ(f)(x) = ||Ft(f)(x)|| and gA
ψ (f)(x) = ||FA

t (f)(x)||.

It is known that gψ is bounded on Lp(w) for all w ∈ Ap, 1 < p < ∞ and

weak (L1(w), L1(w)) bounded for all w ∈ A1. Thus it is only to verify that

gA
ψ satisfies the size condition in Theorem 2. In fact, we write, for a cube

Q = Q(x0, d) with suppf ⊂ (Q̃)c, x ∈ Q = Q(x0, d),

F A
t (f)(x) − F A

t (f)(x0)

=

∫

Rn

(
ψt(x − y)

|x − y|m
−

ψt(x0 − y)

|x0 − y|m

)
Rm(Ã; x, y)f(y)dy

+

∫

Rn

ψt(x0 − y)

|x0 − y|m
(Rm(Ã; x, y) − Rm(Ã; x0, y))f(y)dy

−
∑

|α|=m

1

α!

∫

Rn

(
(x − y)αψt(x − y)

|x − y|m
−

(x0 − y)αψt(x0 − y)

|x0 − y|m

)
DαÃ(y)f(y)dy

:= I1 + I2 + I3.

By Lemma 3 and the following inequality(see[14])

|bQ1
− bQ2

| ≤ C log(|Q2|/|Q1|)||b||BMO, forQ1 ⊂ Q2,

we know that, for x ∈ Q and y ∈ 2k+1Q \ 2kQ with k ≥ 1,

|Rm(Ã;x, y)| ≤ C|x − y|m
∑

|α|=m

(||DαA||BMO + |(DαA)Q̃(x,y) − (DαA)Q̃|)

≤ Ck|x − y|m
∑

|α|=m

||DαA||BMO.

Note that |x − y| ∼ |x0 − y| for x ∈ Q and y ∈ Rn \ Q. By the condition on ψ

and Minkowski’ inequality , we obtain

||I1|| ≤ C

∫

Rn

|Rm(Ã; x, y)||f(y)|

|x0 − y|m

[∫ ∞

0

(
t|x − x0|

|x0 − y|(t + |x0 − y|)n+1
+

t|x − x0|
ε

(t + |x0 − y|)n+1+ε

)2
dt

t

]1/2

dy
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≤ C

∫

(2Q)c

(
|x − x0|

|x0 − y|m+n+1
+

|x − x0|
ε

|x0 − y|m+n+ε

)
|Rm(Ã; x, y)||f(y)|dy

≤ C
∑

|α|=m

||DαA||BMO

∞∑

k=1

∫

2k+1Q\2kQ

k

(
|x − x0|

|x0 − y|n+1
+

|x − x0|
ε

|x0 − y|n+ε

)
|f(y)|dy

≤ C
∑

|α|=m

||DαA||BMO

∞∑

k=1

k(2−k + 2−εk)|2k+1Q|−1

∫

2k+1Q

|f(y)|dy

≤ C
∑

|α|=m

||DαA||BMOM(f)(x);

For I2, by the formula (see [3]):

Rm(Ã;x, y) − Rm(Ã;x0, y) =
∑

|β|<m

1

β!
Rm−|β|(D

βÃ;x, x0)(x − y)β

and Lemma 3, we have

|Rm(Ã;x, y)−Rm(Ã;x0, y)| ≤ C
∑

|β|<m

∑

|α|=m

|x−x0|m−|β||x−y||β|||DαA||BMO,

similar to the estimates of I1, we get

||I2|| ≤ C
∑

|α|=m

||DαA||BMO

∞∑

k=1

∫

2k+1\2kQ

k|x − x0|
|x0 − y|n+1

|f(y)|dy

≤ C||DαA||BMO

∞∑

k=1

k2−k|2k+1Q|−1

∫

2k+1Q

|f(y)|dy

≤ C||DαA||BMOM(f)(x);

For I3, similar to the proof of I1, we obtain

||I3|| ≤ C
∑

|α|=m

∞∑

k=1

∫

2k+1\2kQ

(
|x − x0|

|x0 − y|n+1
+

|x − x0|
ε

|x0 − y|n+ε

)
|DαÃ(y)||f(y)|dy

≤ C
∑

|α|=m

∞∑

k=1

k(2−k + 2−εk)
1

|2k+1Q|

∫

2k+1Q

|DαÃ(y)||f(y)|dy

≤ C
∑

|α|=m

∞∑

k=1

k(2−k + 2−εk)

(
||DαA||exp L,2k+1Q||f ||LlogL,2k+1Q + ||DαA||BMOM(f)(x)

)

≤ C
∑

|α|=m

||DαA||BMO(ML log L(f)(x) + M(f)(x))

≤ C
∑

|α|=m

||DαA||BMOM2(f)(x).

Documenta Mathematica 9 (2004) 607–622



Weighted Estimates for Multilinear Operators 617

From the above estimates, we know that Theorem 2 and Corollary hold for gA
ψ .

Application 3. Marcinkiewicz operator.
Let Ω be homogeneous of degree zero on Rn and

∫
Sn−1 Ω(x′)dσ(x′) = 0. As-

sume that Ω ∈ Lipγ(Sn−1) for 0 < γ ≤ 1, that is there exists a constant M > 0
such that for any x, y ∈ Sn−1, |Ω(x) − Ω(y)| ≤ M |x − y|γ . The multilinear
Marcinkiewicz operator is defined by(see[9])

µA
Ω(f)(x) =

(∫ ∞

0

|FA
t (f)(x)|2 dt

t3

)1/2

,

where

FA
t (f)(x) =

∫

|x−y|≤t

Ω(x − y)

|x − y|n−1

Rm+1(A;x, y)

|x − y|m f(y)dy,

we write that

Ft(f)(x) =

∫

|x−y|≤t

Ω(x − y)

|x − y|n−1
f(y)dy.

We also define that

µΩ(f)(x) =

(∫ ∞

0

|Ft(f)(x)|2 dt

t3

)1/2

,

which is the Marcinkiewicz operator(see [16]);
Let H be a space of functions h : [0,+∞) → R, normed by ||h|| =(∫ ∞

0
|h(t)|2dt/t3

)1/2
< ∞. Then, it is clear that

µΩ(f)(x) = ||Ft(f)(x)|| and µA
Ω(f)(x) = ||FA

t (f)(x)||.

Now, we will verify that µA
Ω satisfies the size condition in Theorem 2. In fact,

for a cube Q = Q(x0, d) with suppf ⊂ (2Q)c, x ∈ Q = Q(x0, d), we have

||FA
t (f)(x) − FA

t (f)(x0)||

≤
(∫ ∞

0

∣∣∣∣∣

∫

|x−y|≤t

Ω(x − y)Rm(Ã;x, y)

|x − y|m+n−1
f(y)dy

−
∫

|x0−y|≤t

Ω(x0 − y)Rm(Ã;x0, y)

|x0 − y|m+n−1
f(y)dy

∣∣∣∣∣

2
dt

t3




1/2

+
∑

|α|=m

(∫ ∞

0

∣∣∣∣∣

∫

|x−y|≤t

(
Ω(x − y)(x − y)α

|x − y|m+n−1

−
∫

|x0−y|≤t

Ω(x0 − y)(x0 − y)α

|x0 − y|m+n−1

)
DαÃ(y)f(y)dy

∣∣∣∣∣

2
dt

t3




1/2
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≤




∫ ∞

0

[∫

|x−y|≤t, |x0−y|>t

|Ω(x − y)||Rm(Ã;x, y)|
|x − y|m+n−1

|f(y)|dy

]2
dt

t3




1/2

+




∫ ∞

0

[∫

|x−y|>t, |x0−y|≤t

|Ω(x0 − y)||Rm(Ã;x0, y)|
|x0 − y|m+n−1

|f(y)|dy

]2
dt

t3




1/2

+

(∫ ∞

0

[∫

|x−y|≤t,|x0−y|≤t

∣∣∣∣∣
Ω(x − y)Rm(Ã;x, y)

|x − y|m+n−1

−Ω(x0 − y)Rm(Ã;x0, y)

|x0 − y|m+n−1

∣∣∣∣∣ |f(y)|dy

]2
dt

t3




1/2

+
∑

|α|=m

(∫ ∞

0

∣∣∣∣∣

∫

|x−y|≤t

(
Ω(x − y)(x − y)α

|x − y|m+n−1

−
∫

|x0−y|≤t

Ω(x0 − y)(x0 − y)α

|x0 − y|m+n−1

)
DαÃ(y)f(y)dy

∣∣∣∣∣

2
dt

t3




1/2

:= J1 + J2 + J3 + J4

and

J1 ≤ C

∫

Rn

|f(y)||Rm(Ã;x, y)|
|x − y|m+n−1

(∫

|x−y|≤t<|x0−y|

dt

t3

)1/2

dy

≤ C

∫

Rn

|f(y)||Rm(Ã;x, y)|
|x − y|m+n−1

(
1

|x − y|2 − 1

|x0 − y|2
)1/2

dy

≤ C

∫

(2Q)c

|f(y)||Rm(Ã;x, y)|
|x − y|m+n−1

|x0 − x|1/2

|x − y|3/2
dy

≤ C
∑

|α|=m

||DαA||BMO

∞∑

k=1

k2−k/2|2k+1Q|−1

∫

2k+1Q

|f(y)|dy

≤ C
∑

|α|=m

||DαA||BMOM(f)(x),

similarly, we have J2 ≤ C
∑

|α|=m ||DαA||BMOM(f)(x);

For J3, by the following inequality (see [16]):

∣∣∣∣
Ω(x − y)

|x − y|n−1
− Ω(x0 − y)

|x0 − y|n−1

∣∣∣∣ ≤ C

( |x − x0|
|x0 − y|n +

|x − x0|γ
|x0 − y|n−1+γ

)
,

we gain
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J3 ≤ C
∑

|α|=m

||DαA||BMO

∫

(2Q)c

( |x − x0|
|x0 − y|n +

|x − x0|γ
|x0 − y|n−1+γ

)

(∫

|x0−y|≤t,|x−y|≤t

dt

t3

)1/2

|f(y)|dy

≤ C
∑

|α|=m

||DαA||BMO

∞∑

k=1

k(2−k + 2−γk)M(f)(x)

≤ C
∑

|α|=m

||DαA||BMOM(f)(x);

For J4, similar to the proof of J1, J2 and J3, we obtain

||J4|| ≤ C
∑

|α|=m

∞∑

k=1

∫

2k+1Q\2kQ

( |x − x0|
|x0 − y|n+1

+
|x − x0|1/2

|x0 − y|n+1/2
+

|x − x0|γ
|x0 − y|n+γ

)
|DαÃ(y)||f(y)|dy

≤ C
∑

|α|=m

∞∑

k=1

k(2−k + 2−k/2 + 2−γk)
1

|2k+1Q|

∫

2k+1Q

|DαÃ(y)||f(y)|dy

≤ C
∑

|α|=m

||DαA||BMOM2(f)(x).

Thus, Theorem 2 and Corollary hold for µA
Ω.

Application 4. Bochner-Riesz operator.

Let Bδ
t (f )̂(ξ) = (1 − t2|ξ|2)δ

+f̂(ξ). Denote

BA
δ, t(f)(x) =

∫

Rn

Rm+1(A;x, y)

|x − y|m Bδ
t (x − y)f(y)dy,

where Bδ
t (z) = t−nBδ(z/t) for t > 0. The maximal multilinear Bochner-Riesz

operator is defined by(see[9])

BA
δ,∗(f)(x) = sup

t>0
|BA

δ, t(f)(x)|.

We also define
Bδ

∗(f)(x) = sup
t>0

|Bδ
t (f)(x)|,

which is the maximal Bochner-Riesz operator (see [10][11]).
Let H be the space of functions h(t) such that ||h|| = sup

t>0
|h(t)| < ∞, where

h(t) maps [0,+∞) to H. Then it is clear that

Bδ
∗(f)(x) = ||Bδ

t (f)(x)|| and BA
δ,∗(f)(x) = ||BA

δ, t(f)(x)||.
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Now, we will verify that BA
δ,∗ satisfies the size condition in Theorem 2. In fact,

for a cube Q = Q(x0, d) with suppf ⊂ (2Q)c, x ∈ Q = Q(x0, d), we have

BÃ
t,δ(f)(x) − BÃ

t,δ(f)(x0) =
∫

Rn

[
Bδ

t (x−y)
|x−y|m − Bδ

t (x0−y)
|x0−y|m

]
Rm(Ã;x, y)f(y)dy

+
∫

Rn

Bδ
t (x0−y)
|x0−y|m [Rm(Ã;x, y) − Rm(Ã;x0, y)]f(y)dy

−∑
|α|=m

1
α!

∫
Rn

(
Bδ

t (x−y)(x−y)α

|x−y|m − Bδ
t (x0−y)(x0−y)α

|x0−y|m
)

DαÃ(y)f(y)dy

= L1 + L2 + L3.

Consider the following two cases:
Case 1. 0 < t ≤ d. In this case, notice that (see [11])

|Bδ(z)| ≤ c(1 + |z|)−(δ+(n+1)/2),

we obtain

|L1| ≤ Ct−n

∫

Rn\Q̃

|f(y)||Rm(Ã; x, y)|

|x0 − y|m
(1 + |x − y|/t)−(δ+(n+1)/2)dy

≤ C
∑

|α|=m

||DαA||BMOt−n

∞∑

k=0

k

∫

2k+1Q̃\2kQ̃

|f(y)||(1 + |x − y|/t)−(δ+(n+1)/2)dy

≤ C
∑

|α|=m

||DαA||BMO(t/d)δ−(n−1)/2

∞∑

k=1

k2k((n−1)/2−δ)M(f)(x)

≤ C
∑

|α|=m

||DαA||BMOM(f)(x),

|L2| ≤ Ct−n

∫

Rn\Q̃

|f(y)||Rm(Ã; x, y) − Rm(Ã; x0, y)|

|x0 − y|m
(1 + |x − y|/t)−(δ+(n+1)/2)dy

≤ C
∑

|α|=m

||DαA||BMOt−n

∞∑

k=0

∫

2k+1Q̃\2kQ̃

|x − x0||f(y)|

|x0 − y|
(1 + |x − y|/t)−(δ+(n+1)/2)dy

≤ C
∑

|α|=m

||DαA||BMOM(f)(x),

|L3| ≤ C
∑

|α|=m

t−n

∞∑

k=0

∫

2k+1Q̃\2kQ̃

|f(y)||DαÃ(y)|(1 + |x0 − y|/t)−(δ+(n+1)/2)dy

≤ C
∑

|α|=m

(t/d)δ− n−1
2

∞∑

k=0

2k( n−1
2

−δ) 1

|2k+1Q̃|

∫

2k+1Q̃

|f(y)||DαA(y) − (DαA)Q̃|dy

≤ C
∑

|α|=m

||DαA||BMOM2(f)(x).
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Case 2. t > d. In this case, we choose δ0 such that (n − 1)/2 < δ0 <
min(δ, (n + 1)/2), notice that (see [11])

|Bδ(x − y) − Bδ(x0 − y)| ≤ C|x − x0|(1 + |x − y|)−(δ+(n+1)/2),

similar to the proof of Case 1, we obtain

|L1| ≤ Ct−n

∫

Rn\Q̃

|f(y)||Rm(Ã; x, y)|

|x0 − y|m+1
|x0 − x|(1 + |x0 − y|/t)−(δ0+(n+1)/2)dy

+Ct−n−1

∫

Rn\Q̃

|f(y)||Rm(Ã; x, y)|

|x0 − y|m
|x0 − x|(1 + |x0 − y|/t)−(δ0+(n+1)/2)dy

≤ C
∑

|α|=m

||DαA||BMO(d/t)(n+1)/2−δ0

∞∑

k=1

k2k((n−1)/2−δ0)M(f)(x)

≤ C
∑

|α|=m

||DαA||BMOM(f)(x),

|L2| ≤ Ct−n

∫

Rn\Q̃

|f(y)||Rm(Ã; x, y) − Rm(Ã; x0, y)|

|x0 − y|m
(1 + |x0 − y|/t)−(δ0+(n+1)/2)dy

≤ C
∑

|α|=m

||DαA||BMO(d/t)(n+1)/2−δ0

∞∑

k=1

2k((n−1)/2−δ0)M(f)(x)

≤ C
∑

|α|=m

||DαA||BMOM(f)(x),

|L3| ≤ C
∑

|α|=m

(d/t)(n+1)/2−δ0

∞∑

k=0

2k((n−1)/2−δ0) 1

|2k+1Q̃|

∫

2k+1Q̃

|f(y)||DαÃ(y)|dy

≤ C
∑

|α|=m

∞∑

k=1

k2k((n−1)/2−δ0) 1

|2k+1Q̃|

∫

2k+1Q̃

|f(y)||DαA(y) − (DαA)Q̃|dy

≤ C
∑

|α|=m

||DαA||BMOM2(f)(x).

Thus, Theorem 2 and Corollary hold for BA
δ,∗.

Acknowledgement. The author would like to express his deep gratitude to
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Abstract. A homogeneous cone X is the cone over a homogeneous
variety G/P embedded thanks to an ample line bundle L. In this
article, we describe the irreducible components of the scheme of mor-
phisms of class α ∈ A1(X) from a rational curve to X.

The situation depends on the line bundle L : if the projectivised tan-
gent space to the vertex contains lines then the irreducible components
are described by the difference between Cartier and Weil divisors. On
the contrary if there is no line in the projectivised tangent space to
the vertex then there are new irreducible components corresponding
to the multiplicity of the curve through the vertex.

2000 Mathematics Subject Classification: 14C05, 14M17.
Keywords and Phrases: homogeneous cone, scheme of morphisms,
rational curves.

In this text we study the scheme of morphisms from P1 to any homogeneous
cone that is to say a cone X over a homogeneous variety G/P .

This study is motivated by the more general problem of describing the irre-
ducible components of the scheme of morphisms from P1 to a variety X en-
dowed with the action of a solvable group with finitely many orbits (for example
homogeneous varieties, Schubert varieties or spherical varieties). For homoge-
neous varieties, this is already known (see [Th], [KP] or [P1]). For Schubert
varieties it is not known. We describe in [P2] the irreducible components of
this scheme of morphisms when X is a minuscule Schubert variety. The sin-
gularities of minuscule Schubert varities are locally isomorphic to cones over
homogeneous varieties (see [BP]) so it is natural to address this problem on a
general cone over a homogeneous variety. Moreover some non minuscule Schu-
bert varieties are cones over homogeneous varieties. We prove (theorem 0.1)
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624 Nicolas Perrin

that the situation is more complicated than in the minuscule case but still has
a nice description in terms of the combinatorial data of G.

More precisely, let G/P be a homogeneous variety and let L be a very ample
divisor on G/P . We may embed G/P in P(H0L). If V is a n-dimensional
vector space, it defines a linear subspace P(V ) in P(H0L ⊕ V ). Let us denote
by X = CL,n(G/P ) the cone above G/P whose vertex is P(V ). Now let U
be the open subset of X complementary to Y = P(V ). We have a surjective
morphism (see paragraph 1):

s : Pic(U)∨ → A1(X).

For any class α ∈ A1(X), we can consider the following morphism:

i :
∐

s(β)=α

Homβ(P1, U) → Homα(P1,X)

where Homα(P1,X) is the scheme of morhisms f : P1 → X with f∗[P1] = α
and Homβ(P1, U) is the scheme of morhisms g : P1 → U such that [g] = β
where [g] is the linear function L 7→ deg(g∗L) on Pic(U). As Y = X \U lies in
codimension 2, we expect the image of this morphism to be dense. For example
we prove in [P2] that it is true for X a minuscule Schubert variety and U the
smooth locus.

In our case the situation will be more complicated. Let us first describe the
“expected” components in the case where i is dominant. In this case we may
apply the results of [P1] to prove that Homβ(P1, U) is irreducible as soon as
it is non empty and the images of the irreducible varieties Homβ(P1, U) will
give the irreducible components of Homα(P1,X). The expected components
are thus indexed by the subset ne(α) of Pic(U)∨ given by elements β such that
s(β) = α and Homβ(P1, U) is non empty.

This set can be discribed in terms of roots: the ample divisor L is a dominant
weight in the facet of the parabolic P . An element α ∈ A1(X) is completely
determined by α ·L = d ∈ Z. Denote by neB(α) the set of all elements β in the
cone generated by the positive roots such that 〈β∨, L〉 = d. This is a subset
of A1(G/B). Then ne(α) is its image in A1(G/P ) (see paragraph 1 for a more
details). We prove the

THEOREM 0.1. — Let R be the root lattice.

(ı) If L(R) = Z, then the irreducible components of the scheme of morphisms

Homα(P1,X) are indexed by ne(α).

(ıı) If L(R) 6= Z (i.e. if we have L > c1(TG/P )), then the irreducible components

of the scheme Homα(P1,C(G/P )) are indexed by
∐

α′≤α

ne(α′).

We will see (paragraph 1) that A1(X) ≃ Z so that α′ ≤ α in A1(X) means
that the same inequality holds in Z. In the second case, a general curve can
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Rational Curves on Homogeneous Cones 625

meet the vertex of the cone. The integer α − α′ is then the multiplicity of the
curve at the vertex.

Remark 0.2. — (ı) The condition L(R) = Z is exactly equivalent to the fact

that there exists lines on G/P embedded with L. In other words there exists

lines in the projectivized tangent cone to the singularity.

We studied in [P2] the same problem for minuscule Schubert varieties where

the multiplicity in the singularity did not appear. If one consider more gen-

eraly quasi-minuscule Schubert varieties of non minuscule type (see [LMS] for

a definition, the case of quasi-minuscule Schubert varieties of minuscule type

should be very similar to the case of minuscule Scubert varieties) we recover

this condition of the existence of lines in the projectivised tangent cone to the

singularity.

(ıı) If P = B is a Borel subgroup and if we choose for L the Plücker embedding

(or equivalently L = ρ as a weight where ρ is half the sum of the positive roots)

then L(R) = Z and the set ne(α) is in bijection with the set of irreducible

integrable representations of level exactly α · L of the affine Lie algebra ĝ (see

paragraph 1 for the general case).

Here is an outline of the paper. In the first paragraph we define the surjective
map s of the introduction and the set ne(α) for a homogeneous cone X. In the
second paragraph we study the scheme of morphisms from P1 to the blowing-up
X̃ of the cone X and prove a smoothing result. In the last paragraph we prove
our main result.

The key point as indicated above is to study the surjectivity of the map i
that is to say to study the following problem: can any morphism f : P1 → X
be factorised in U (modulo deformation). We do this by lifting f in f̃ on X̃

and the problem becomes: does the lifted curve f̃ of a general curve f meet
the exceptional divisor E. If it is the case then we add a “line” Γ ⊂ E (this is

possible only when L(R) = Z) with Γ ·E = −1 and smooth the union f̃(P1)∪Γ.
The intersection with E is lowered by one in the operation. We conclude by
induction on the number of intersection of f̃ with E.

We end with a discussion on the dimensions of the components, in particular
the variety Homα(P1,X) is equidimensional if and only if L = 1

2c1(G/P ) or
L = c1(G/P ).

1 Preliminary

In this paragraph we explain the results on cycles used in the introduction. We
describe the surjective morphism s : Pic(U)∨ → A1(X) and define the set of
classes ne(α) for α ∈ A1(X).
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If X is a scheme of dimension n, we denote by Z∗(X) the group of 1-cycles on X
and by Z≡

∗ (X) and Zr
∗(X) the subgroups of cycles trivial for the numerical and

rational equivalence. Let us denote by N∗(X) and A∗(X) the corresponding
quotients. The Picard group is the image in An−1(X) of the subgroup of Cartier
divisors in Zn−1(X).

LEMMA 1.1. — Let X = CL,n(G/P ) be a cone over a homogeneous variety

G/P then

(ı) Pic(X) ≃ N1(X),

(ıı) A1(X) ≃ N1(X).

In particular we have A1(X) ≃ Pic(X)∨ and they are isomorphic to Z.

Proof. Consider the decomposition V ⊕ H0L. The following group

G′ =

(
GL(V ) Hom(H0L, V )

0 G

)

acts on X and the unipotent part U(G′) acts on X with finitely many orbits.
Remark that it is not the case if we only take the unipotent part U of GL(V )×G.
Indeed, take for example V = C and G = GL(V ) = GL1(C). Then G/P is a
point and X is a projective line but U is the trivial group and has infinitely
many orbits in X. The same problem appears in the general case.
(ı) Thanks to the results of [FMcPSS] the groups A∗(X) are free generated by
invariant subvarieties. The Picard group is contained in An−1(X) and is in
particular free. Thanks to [Fu] Example 19.3.3. this implies that Pic(X) ≃
N1(X).
(ıı) The results of [FMcPSS] also imply that A1(X) is generated by the one-
dimensional invariant subvarieties. The only such subvariety is

• the fibre of the cone over the 0-dimensional orbit in G/P if dim V = 1;

• the 1 dimensional orbit in P(V ) if dimV ≥ 2.

We get the isomorphism A1(X) ≃ Z with this variety as generator. This
generator is clearly numerically free (for example its degree is 1) so we get the
result.
The duality comes from general duality between N1(X) and N1(X). ¤

Let U be the smooth locus of X, it is also the dense orbit under G′ in X. Let
Y be the complementary of U in X, it is of codimension at least 2 (at least
when dim(G/P ) > 0). This in particular implies that Pic(U) = An−1(U) ≃
An−1(X). We now have the following inclusion:

Pic(X) ⊂ An−1(X) ≃ Pic(U)

giving the surjection
s : Pic(U)∨ → A1(X).

With these notations we make the following:
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DEFINITION 1.2. — Let α ∈ A1(X). We define the set ne(α) ⊂ An−1(X)∨.

Let us make the identification An−1(X) ≃ Pic(U). The elements of ne(α) are

the elements β ∈ Pic(U)∨ such that s(β) = α and there exists a complete curve

C ⊂ U with [C] = β as a linear form on Pic(U) (β is effective).

Let us describe ne(α) explicitly: the smooth part U is a vector bundle over
G/P . In particular we have Pic(U) ≃ Pic(G/P ).
Let us fix T a maximal Torus in G, fix B a Borel subgroup containing T and
suppose that B ⊂ P . Let us denote by ∆ the set of all roots, by ∆+ (resp.
∆−) the set of positive (resp. negative) roots and by S the set of simple roots
associated to the data (G,T,B).
Denote by g, t and p the Lie algebras of G, T and P and define

α(p) =
{

α ∈ S / gα ⊂ p and g−α 6⊂ p
}

.

Now set t(p)∗ as the subvector space of t∗ generated by the roots in α(p), we
have

Pic(G/P ) ≃ t(p) ∩ Q

where t(p) is the dual of t(p)∗ in t and Q is the weight lattice. The Picard
group of X in Pic(U) ≃ Pic(G/P ) ≃ t(p)∩Q is given by the the line generated
by λ (the weight associated to L). We have

Pic(U)∨ ≃ t∗/t(p)∗ ∩ R

where R is the root lattice. Furthermore, an element β ∈ Pic(U)∨ gives an
effective element if and only if it is in the image of the cone generated by
positive roots i.e. in the cone t∗/t(p)∗ ∩ R+ (see [P1]). Then we have

ne(α) =
{
β ∈ t∗/t(p)∗ ∩ R+ / 〈β∨, λ〉 = α · L

}

where the integer 〈β∨, λ〉 is well defined because λ ∈ t(p) ∩ Q.

Example 1.3. — Choose for L (or for λ) the smallest ample sheave on X.

This is possible: the picard group Pic(U) = t(p) ∩ Q is a direct sum of weight

lattices of semi-simple Lie algebras (gi)i∈[1,r]. We just have to take

λ =
∑

i∈[1,r]

ρi

where ρi is half the sum of positive roots in gi.

Let us denote by irĝi
(ℓ) the set of isomorphism classes of irreductible integrable

representations of level exactely ℓ of the affine Lie algebra ĝi. Then we have

ne(α) =
∏

ℓ1+···+ℓr=α·L
irĝi

(ℓi).
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In particular if P = B is a Borel subgroup of G then r = 1 and G1 = G and

we recover the example of the introduction:

ne(α) = irĝ(α · L).

Remark 1.4. — (ı) The scheme Homα(P1,X) is the scheme of morphisms

from P1 to X of class α (for more details see [Gr] and [Mo]).

In general, this will just mean that α ∈ A1(X) and that f∗[P1] = α but

sometimes (in particular in the introduction for the open part U) we consider

α ∈ Pic(X)∨ and the class of a morphism f : P1 → X will be the linear form

Pic(X) → Z given by L 7→ deg(f∗L). In the case of a homogeneous cone X

the two notion coincide because of the previous lemma.

(ıı) If X is a variety, α ∈ A1(X) and F a vector bundle on X we will denote

α · F =

∫

α

c1(F ) by abuse of notation.

2 Resolution

Recall that we denote by X the cone CL,n(G/P ). Let X̃ be the blowing-up of
X in P(V ). It is smooth and isomorphic to

PG/P ((V ⊗OG/P ) ⊕ L).

Let us denote by p the projection from X̃ to G/P and by π : X̃ → X the
blowing-up. The morphism p has natural sections given by points of P(V ) or
equivalently by surjective morphisms L ⊕ (V ⊗OG/P ) → V ⊗OG/P → OG/P .

2.1 Cycles on X̃

LEMMA 2.1. — (ı) Rational and numerical equivalences coincide on X̃. In

particular we have A1(X̃) ≃ Pic(X̃)∨ ≃ An−1(X̃)∨.

(ıı) We have Pic(X̃) ≃ Pic(G/P )⊕Z with the factor Z generated by a p-relative

ample class.

Proof. (ı) Rational and numerical equivalence coincide on G/P . Moreover

the fibration in projetive spaces X̃ → G/P has sections so that rational and

numerical equivalences coincide on X̃. This in particular implies that Pic(X̃) =

An−1(X̃) = N1(X̃) and A1(X̃) = N1(X̃) and the duality follows.

(ıı) The variety X̃ is a Pn-bundle over G/P with sections so we get that

Pic(X̃) ≃ Pic(G/P ) ⊕ Z
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with the factor Z generated by a p-relative ample class, the relative tangent
sheaf Tp of p is n + 1 times this class on the factor Z. ¤

Any element α̃ ∈ A1(X̃) ≃ Pic(X̃)∨ is given by the class β = p∗α̃ ∈ A1(G/P )
and the relative degree d = α̃ ·Tp. We will use the notation ℓ = β ·L = α̃ · p∗L.

Let us denote by E the exceptional divisor on X̃, it is a trivial Pn−1 bundle
over G/P given by the surjection L⊕ (V ⊗OG/P ) → V ⊗OG/P . Then we have:

α̃ · E =
d − nℓ

n + 1
,

it has to be an integer so that d ≡ nℓ mod n + 1.

Let us consider the following morphism still denoted by p:

p : Homα̃(P1, X̃) → Homβ(P1, G/P ).

PROPOSITION 2.2. — Thanks to the morphism p, the scheme Homα̃(P1, X̃)

is an open subset of a projective bundle over Homβ(P1, G/P ).

Proof. This generalises proposition 4 of [P1] in the case where the relative
degree α̃ · Tp is negative. This is possible because the vector bundle associated
to the Pn fibration has a decomposition L⊕ (V ⊗OG/P ). We only describe the
fibers, for the structure of projective bundle see [P1] proposition 4.
Let f : P1 → G/P , we have to calculate the fiber of p above f . The fiber is
given by sections of the Pn-bundle f∗(p) : PP1((V ⊗OP1)⊕OP1(ℓ)) → P1 whose
relative degree is d. In other words the fiber is given by surjections (V ⊗OP1)⊕
OP1(ℓ) → OP1(x) modulo scalar multiplication where d = (n+1)x−ℓ. The fiber
is therefore isomorphic to an open subset of P(Hom((V ⊗OP1)⊕OP1(ℓ),OP1(x)).
Let us remark that if Homβ(P1, G/P ) is not empty then we have ℓ ≥ 0 and

in this case Homα̃(P1, X̃) is not empty if and only if x ≥ 0 when n ≥ 2 and if
and only if x = 0 or x ≥ ℓ when n = 1. In terms of d this means that d = −ℓ
or d ≥ nℓ if n = 1 and d ≥ −ℓ if n ≥ 2. In any cases, if Homα̃(P1, X̃) is not
empty then x ≥ 0.
There are two cases:

• If x < ℓ then any section is included in the exceptional divisor and the
dimension of the fiber is:

n

n + 1
(ℓ + d) + n − 1.

• If x ≥ ℓ then the fiber is of dimension d + n. ¤

Let α̃ ∈ A1(X̃) such that Homα̃(P1, X̃) is not empty. This is equivalent to
the fact that β ∈ A1(G/P ) is positive (see [P1], it is equivalent to the fact
that Homβ(P1, G/P ) is non empty) and such that d = −ℓ or d ≥ nℓ if n = 1,
d ≥ −ℓ if n ≥ 2 (recall that ℓ = β · L).
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COROLLARY 2.3. — The scheme Homα̃(P1, X̃) is irreducible of dimension

•
∫

α̃

c1(TX̃) + dim(X̃) if d ≥ nℓ

•
∫

α̃

c1(TX̃) + dim(X̃) − α̃ · E − 1 if d < nℓ.

Proof. We just use the preceding proposition and the fact proved in [P1]
that the scheme Homβ(P1, G/P ) is irreductible of dimension

∫
β

c1(TG/P ) +

dim(G/P ). Remark that in the last case we have nℓ > d so that the

dimension of Homα̃(P1, X̃) is still greater than the expected dimension∫

α̃

c1(TX̃) + dim(X̃). ¤

2.2 Smoothing curves on X̃

In this paragraph we will prove some results on curves on X̃.

PROPOSITION 2.4. — Assume that L(R) = Z.

Let α̃ ∈ A1(X̃), f̃ ∈ Homα̃(P1, X̃) such that f̃(P1) 6⊂ E and α̃ ·E > 0. Assume

that the image of p ◦ f̃ : P1 → G/P is not a line in the embedding given by L.

Then there exists a deformation f̃ ′ of f̃ and a curve Γ ⊂ X̃ contracted by π

with Γ ·E = −1 such that the curve f̃ ′(P1)∪Γ can be smoothed. The smoothed

curve is the image of a morphism f̂ : P1 → X̃.

Proof. Let (x, v) ∈ E ≃ G/P ×P(V ) be a point in the intersection f̃(P1)∩E.

Let us first remark that we may assume (after deformation) that f̃(P1) is a

nodal curve. Indeed, because p ◦ f̃ : P1 → G/P is not a line, this implies in
particular that G/P is not P1 so it is of dimension at least 2. The results of

[P1] prove that a general curve in G/P is nodal and so is f̃(P1) if f̃ is general.

LEMMA 2.5. — There exists a deformation f̃ ′ of f̃ and a rational curve Γ in

X̃ such that [Γ] · E = −1, [Γ] · L = 1 and meeting f̃ ′(P1) in exactly one point.

Proof. Let us consider the lines in G/P that is to say the rational curves Γ′

in G/P such that [Γ′] ·L = 1. Such curves exist because we have L(R) = Z. Let
Γ′ be such a line passing through p(x, v) = x ∈ G/P and let Γ be the section
of Γ′ in E given by the point v ∈ P(V ). This curve is contracted by π to the
point v ∈ P(V ), its intersection with E is given by −[Γ′] · L = −1.

As we assumed that p ◦ f̃(P1) is not a line then Γ′ meets p ◦ f̃(P1) in a finite

number of points: x and other points (xi). The morphism f̃ is given by a

section of the projective bundle over p ◦ f̃ that is to say by a surjection

s : (V ⊗OP1) ⊕OP1(ℓ) → OP1

(
d + ℓ

n + 1

)
.
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To deform f̃ we can deform this surjection s in s′ such that at x, we have s′x = sx

and at xi we have s′xi
6= sxi

for all i. This gives the required deformation. ¤

LEMMA 2.6. — The curve f̃ ′(P1) ∪ Γ can be smoothed. The smoothed curve

is the image of a morphism f̂ : P1 → X̃ of class α̂ with

α̂ · (p∗L + E) = α̃ · (p∗L + E) and α̂ · E < α̃ · E.

Proof. If the smoothing exists then we have α̂ = α̃ + [Γ] so α̂ ·E = α̃ ·E − 1.
Furthermore we have p∗L + E = π∗L so that

α̂ · (p∗L + E) = α̂ · π∗L = π∗α̂ · L = π∗α̃ · L = α̃ · π∗L = α̃ · (p∗L + E).

This simply comes from the fact that π∗[Γ] = 0. Let us note that the curves

f ′ = π ◦ f̃ and f ′′ = π ◦ f̂ have the same degrees but the curve f ′′ meets the
vertex in one point less than f ′.

To smooth f̃ ′(P1) ∪ Γ we use the following result proved in [HH] for P3 but
valid for any smooth projective variety:

THEOREM 2.7. — Let Z be a smooth projective variety and let C be a nodal

curve in Z. Assume that the cohomology group H1TZ |C is trivial then C can

be smoothed.

As f̃(P1) is nodal and thanks to the previous lemma we know that f̃ ′(P1) ∪ Γ
is nodal. We just have to prove that the cohomology group H1(TX̃ |f̃ ′(P1)∪Γ) is

trivial. We have the exact sequences

0 → Tp → TX̃ → p∗TG/P → 0 and 0 → Of̃ ′(P1)(−Q) → Of̃ ′(P1)∪Γ → OΓ → 0

where Q is the intersection point of f̃ ′(P1) and Γ. We just have to prove the
vanishing of the following cohomology groups:

H1(p∗TG/P |Γ) ; H1(p∗TG/P |f̃ ′(P1)(−Q)) ; H1(Tp|Γ) and H1(Tp|f̃ ′(P1)(−Q)).

The first two groups are respectively equal to H1(TG/P |Γ′) and
H1(TG/P |p(f̃ ′(P1))(−Q)) where we denoted Γ′ = p(Γ). They are trivial

because TG/P is globally generated and Γ′ and p(f̃ ′(P1)) are rational curves.
Let us denote by Op(1) the tautological quotient of the projective bundle asso-
ciated to (V ⊗OX)⊕L, the relative tangent sheaf is given by Tp = Coker(OX̃ →
((V ∨ ⊗OX̃) ⊕ L∨) ⊗Op(1)). In particular we have:

Tp|Γ = Coker(OP1 → (V ∨ ⊗OP1) ⊕OP1(−1)) and

Tp|f̃ ′(P1) = Coker

(
OP1 →

(
V ∨ ⊗OP1

(
d + ℓ

n + 1

))
⊕OP1

(
d − nℓ

n + 1

))
.

This proves that the group H1(Tπ|Γ) vanishes. Furthermore, since f̃ exists
we must have d+ℓ

n+1 ≥ 0 (see proposition 2.2) and d−nℓ
n+1 = α̃ · E > 0 so that

H1(Tp|f̃ ′(P1)(−Q)) also vanishes. ¤
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3 Homogeneous cones

Recall that we denote by X the cone CL,n(G/P ). In this paragraph we study
the irreducible components of the scheme Homα(P1,X) where α ∈ A1(X).
Recall that A1(X) ≃ Z and under this identification α is just the degree of the
corresponding curve.

3.1 The case L(R) = Z

THEOREM 3.1. — Assume that L(R) = Z, let α ∈ A1(X) and f ∈
Homβ(P1,X). Then there exists a deformation f ′ of f such that f ′ does not

meet the vertex P(V ) of the cone X.

Proof. Let us begin with the following:

LEMMA 3.2. — Let f ∈ Homα(P1,X) such that f factors through the vertex

P(V ) of the cone. Then there exists a deformation f ′ of f in Homα(P1,X)

such that f ′(P1) does not factor through the vertex.

Proof. Let x ∈ G/P and consider the linear subspace generated by x and
P(V ). It is a projective space contained in X containing P(V ) as a hyperplane
and containing f(P1). In this projective space we can deform the morphism f
so that it does not factor through P(V ) any more. ¤

A general morphism f ∈ Homα(P1,X) does not factor through the vertex

P(V ) of the cone so it can be lifted in a morphism f̃ : P1 → X̃. Let α̃ ∈ A1(X̃)

the class of f̃ , we have π∗α̃ = α. Because f does not factor through the vertex,
the morphism f̃ does not factor through the exceptional divisor E so we have:
α̃ · E ≥ 0. If α̃ · E = 0, then f̃(P1) does not meet E thus f does not meet
the vertex and we are done. Let us assume that α̃ · E > 0. We proceed by
induction on α̃ · E. Consider the morphism p ◦ f̃ : P1 → G/P .

LEMMA 3.3. — If the image of p◦ f̃ is a line in the projective embedding given

by L then there exists a deformation f ′ ∈ Homα(P1,X) of f not meeting the

vertex.

Proof. Indeed, if the image of p ◦ f̃ is a line then f factors through the linear
subspace generated by the vertex and this line. It is a Pn+1 and the vertex is
a linear subspace of codimension 2. There exists a deformation f ′ of f in this
projective space not meeting the vertex. ¤

Let us now assume that the image of p◦f̃ is not a line, we may apply proposition
2.4 so that there exists a deformation f̃ ′ of f̃ and a curve Γ ⊂ X̃ contracted
by π with Γ · E = −1 such that the curve f̃ ′(P1) ∪ Γ can be smoothed. The
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smoothed curve is the image of a morphism f̂ : P1 → X̃ of class α̂. Let us
consider f ′ = π ◦ f̃ ′ and f ′′ = π ◦ f̂ . Then f ′ is a deformation of f and because
Γ is contracted by π the map f ′′ is a deformation of f ′ and a fortiori of f .
We have to prove the result on f ′′ whose lifting is f̂ of class α̂. But we have
α̂ · E = α̃ · E − 1 so the result is true by induction. ¤

THEOREM 3.4. — Assume L(R) = Z and let α ∈ A1(X) then the irreducible

components of the scheme Homα(P1,X) are indexed by ne(α). For α̃ ∈ ne(α)

the dimension of the corresponding component is
∫

α̃

c1(TX̃) + dim(X).

Proof. Theorem 3.1 proves that the set of morphisms f : P1 → X whose
image does not meet the vertex P(V ) is a dense open subset of Homα(P1,X).
It is enough to study this open set. Any curve is this open set comes from a
unique lifting f̃ : P1 → X̃ whose image does not meet E. Let α̃ ∈ A1(X̃) the

class of f̃ , since α̃ · E = 0 we have α̃ ∈ Pic(U)∨ and in fact α̃ ∈ ne(α). The
morphism

π∗ :
∐

α̃∈ne(α)

Homα̃(P1, X̃) → Homα(P1,X)

is thus dominant and birational (the inverse is given by lifting mor-
phisms). What is left to prove is that for each α̃ ∈ ne(α) the image of

Homα̃(P1, X̃) (which is an irreducible scheme) forms an irreducible compo-
nent of Homα(P1,X). To prove this it is enough to prove that for any

α̃ and α̃′ in ne(α) the image of Homα̃(P1, X̃) is not contained in the clo-

sure of Homα̃′(P1, X̃) in Homα(P1,X). This would be trivial if the scheme∐
α̃∈ne(α) Homα̃(P1, X̃) was equidimensional (it is the case if L = 1

2c1(G/P )).

In general, suppose there exist f ∈ Homα̃(P1, X̃) such that f does not
meet the vertex and such that f is the limit of a familly f ′

t of morphisms in

Homα̃′(P1, X̃). Because the condition of meeting the vertex is closed me may
assume that the elements f ′

t do not meet the vertex. In particular projecting
on G/P gives a deformation from p(f ′

t) to p(f). This implies that p∗α̃ = p∗α̃′

but as α̃ ·E = 0 = α̃′ ·E we have α̃ = α̃′. The dimension comes from corollary
2.3. ¤

3.2 The case L(R) 6= Z

We begin with the following lemma on root systems:

LEMMA 3.5. — Let G be a semi-simple Lie group, P ⊂ G a parabolic subgroup,

L a dominant weight in the facet defined by P and R the root lattice, then we

have the equivalence

L(R) 6= Z ⇐⇒ L ≥ c1(G/P )
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where c1(G/P ) ∈ Pic(G/P ) is considered as a weight and the order is given by

the positivity on simple roots.

Proof. Let us first describe c1(G/P ) as a weight. Consider the set α(p) of
simple root and the lattice t(p)∩Q (which is isomorphic to Pic(G/P )) defined in
paragraph 1. The lattice t(p)∩Q decomposes into a direct sum of root lattices
Ri. Let ρi be half the sum of positive roots of the root system corresponding
to Ri. Then we have

c1(G/P ) = 2
∑

i

ρi.

If L ≥ c1(G/P ) then for any simple root α we have

〈α∨, L〉 ≥ 〈α∨, c1(G/P )〉 =
∑

i

〈α∨, ρi〉 =

{
0 if α 6∈ α(p)
2 if α ∈ α(p)

and in particular 1 6∈ L(R).
Conversely, suppose that L(R) 6= Z. Because L is in the facet of P we have
〈α∨, L〉 = 0 for any simple root α 6∈ α(p). If α is a simple root in α(p)
then 〈α∨, L〉 ≥ 2 (otherwise L(R) = Z). We see that for any simple root
〈α∨, L〉 ≥ 〈α∨, c1(G/P )〉 thus L ≥ c1(G/P ). ¤

Remark 3.6. — Let α̃ ∈ A1(X̃) such that α̃ · E ≥ 0. Recall the notations

β = p∗α̃, d = α̃ · Tp is the relative degree and ℓ = α̃ · p∗L = β · L. Let α = π∗α̃

considered as an integer. Then the dimension of Homα̃(P1, X̃) is given by

∫

α̃

c1(TX̃) + dim(X̃) =

∫

β

c1(TG/P ) + d + dim(X̃)

=

∫

β

c1(TG/P ) + (n + 1)α̃ · E + nℓ + dim(X̃)

= β · (c1(TG/P ) − L) + (n + 1)α̃ · (E + p∗L) + dim(X̃)

= β · (c1(TG/P ) − L) + (n + 1)α + dim(X̃).

So we have the formula

dim(Homα̃(P1, X̃)) =

∫

α̃

p∗(c1(TG/P ) − L) + (n + 1)α + dim(X̃).

THEOREM 3.7. — Assume L(R) 6= Z and let α ∈ A1(X). Then the irreducible

components of Homα(P1,X) are indexed by
∐

α′≤α

ne(α′).

Proof. Thanks to lemma 3.2 (this lemma works without the hypothesis
L(R) = Z) there exists a dense open subset of Homα(P1,X) given by mor-
phisms f that do not factor through the vertex of the cone. It is enough to
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study this open set. In particular we know that the morphism

π∗ :
∐

α̃∈A1(X̃), π∗α̃=α

Homα̃(P1, X̃) → Homα(P1,X)

is dominant. The classes α̃ can even be choosen such that Homα̃(P1, X̃) is
not empty. However the intersection α̃ · E need not to be 0. In particular the
classes α̃ can be choosen in

A(α) =
∐

α′≤α

ne(α′)

where α′ = p∗α̃ · L and α − α′ = α̃ · E. Indeed let α̃ ∈ A1(X̃) and set as

usual β = p∗α̃. Then there exists a unique element α̃′ ∈ A1(X̃) such that
p∗α̃′ = β and α̃′ · E = 0 (take nβ · L for the relative degree). If α̃ is such

that Homα̃(P1, X̃) is not empty then β is effective and because of the value

of the relative degree we have that Homα̃′(P1, X̃) is not empty. In particular
α̃′ ∈ ne(α′) for α′ = π∗α̃′ = p∗α̃ · L and we have α̃ · E = π∗α̃ − π∗α̃′. The
element α̃ is uniquely determined by α̃′ and α̃ · E.
It is enough to prove that the images by π∗ of the irreducible schemes
Homα̃(P1, X̃) for α̃ ∈ A(α) are the irreducible components. In other words we

have to prove that for any α̃ and α̂ in A(α) the image of Homα̃(P1, X̃) is not

contained in the closure of the image of Homα̂(P1, X̃) in Homα(P1,X).

Let f̃ ∈ Homα̃(P1, X̃) a generic point and f̂t a familly of morphisms in

Homα̂(P1, X̃) such that π ◦ f̂t converges to π ◦ f̃ . In the compactification

of Homα̂(P1, X̃) by stable maps (see for example [FP]), the familly f̂t has a

limit say f̂ which is a morphism from a tree ∪iDi of rational curves to X̃. Then
we must have π ◦ f̂ = π ◦ f̃ as stable maps. In particular all but one of the
images by f̂ of the irreducible components of the tree are contracted by π. To
fix notation say that Di is contracted by π for i ≥ 2 and π ◦ f̂ |D1

= π ◦ f̃ .

Because f̃ is generic, it is not contained in the exceptional divisor so that the
equality π ◦ f̂ |D1

= π ◦ f̃ implies that f̂ |D1
= f̃ . We see that f̂∗[D1] = α̃ so

that
α̂ = f̂∗[D1] +

∑

i≥2

f̂∗[Di] = α̃ +
∑

i≥2

f̂∗[Di].

In particular we have β̂ = p∗α̂ ≥ p∗α̃ = β̃ and because L(R) 6= Z we know
thanks to lemma 3.5 that L ≥ c1(G/P ) and we get

β̂ · (c1(TG/P ) − L) ≤ β̃ · (c1(TG/P ) − L).

As α = π∗α̂ = π∗α̃ we see that

dim(Homα̂(P1, X̃)) ≤ dim(Homα̃(P1, X̃)).

But the morphism π∗ is generically injective on Homα̂(P1, X̃) and

Homα̃(P1, X̃) so that the scheme π∗(Homα̃(P1, X̃)) cannot be in the closure

of π∗(Homα̂(P1, X̃)). ¤
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Remark 3.8. — Let us end with a discussion on the dimensions of the irre-

ducible components of Homα(P1,X) for α ∈ A1(X).

(ı) In the first case: L(R) = Z, these irreducible components are indexed by

elements α̃ in ne(α). For such an element we have α̃ ·E = 0 and the dimension

of the component is given by

dim(Homα̃(P1, X̃)) =

∫

α̃

p∗(c1(TG/P ) − L) + (n + 1)α + dim(X̃).

The “variable” part in this dimension is the first one and it is given by

β · (c1(TG/P ) − L)

with β = p∗α̃ and we have α = β ·L so that the “variable” part is β · c1(TG/P ).

The element β ranges in the subset of the positive cone in the root lattice R (in

the projection of R in Pic(G/P )) given by the condition β ·L = α. In particular

if L is not collinear to c1(G/P ) the dimensions of the irreducible components

are not equal. In this case the variety Homα(P1,X) is equidimensional if and

only if L =
1

2
c1(G/P ).

(ıı) In the second case: L(R) 6= Z, these irreducible components are indexed

by elements α̃ ∈
∐

α′≤α

ne(α′). For such an element we have α̃ · E ≥ 0 and the

dimension of the component is given by

dim(Homα̃(P1, X̃)) =

∫

α̃

p∗(c1(TG/P ) − L) + (n + 1)α + dim(X̃).

The “variable” part in this dimension is the first one and it is given by

β · (c1(TG/P ) − L)

with β = p∗α̃. In this case we have β · L = α′ ≤ α. The element β ranges

in the subset of the positive cone in the root lattice R (in the projection of

R in Pic(G/P )) given by the condition β · L ≤ α. In particular if L is not

collinear to c1(G/P ) the dimensions of the irreducible components are not equal

(look at the β such that β · L = α). Furthermore even if L is collinear to

c1(G/P ) the dimensions of the irreducible components are not equal unless

L = c1(G/P ). In this case the variety Homα(P1,X) is equidimensional if and

only if L = c1(G/P ).
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Abstract. In [24] Matsumoto associated to each shift space (also
called a subshift) an Abelian group which is now known as Mat-
sumoto’s K0-group. It is defined as the cokernel of a certain map
and resembles the first cohomology group of the dynamical system
which has been studied in for example [2], [28], [13], [16] and [11]
(where it is called the dimension group).

In this paper, we will for shift spaces having a certain property (∗),
show that the first cohomology group is a factor group of Matsumoto’s
K0-group. We will also for shift spaces having an additional property
(∗∗), describe Matsumoto’s K0-group in terms of the first cohomol-
ogy group and some extra information determined by the left special
elements of the shift space.

We determine for a broad range of different classes of shift spaces if
they have property (∗) and property (∗∗) and use this to show that
Matsumoto’s K0-group and the first cohomology group are isomorphic
for example for finite shift spaces and for Sturmian shift spaces.

Furthermore, the ground is laid for a description of the Matsumoto
K0-group as an ordered group in a forthcoming paper.
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1 Introduction

Invariants for symbolic dynamical systems in the form of Abelian groups have
a fruitful history. Important examples are the dimension group defined by
Krieger in [19] and [20], and the Bowen-Franks group defined in [1] by Bowen
and Franks.

In [24] Matsumoto generalized the definition of dimension groups and Bowen-
Franks groups to the whole class of shift spaces and introduced what is now
known as Matsumoto’s K-groups.

In another direction, Putnam [29], Herman, Putnam and Skau [16], Giordano,
Putnam and Skau [15], Durand, Host and Skau [11] and Forrest [13] studied
what they called the dimension group (it is not the same as Krieger’s or Mat-
sumoto’s dimension group) for Cantor minimal systems. The same group has
for a broader class of topological dynamical systems been studied in [2], [28]
and [27] where it is shown that it is the first cohomology group of the standard
suspension of the dynamical system in question.

It turns out that Matsumoto’s K0-group and the first cohomology group are
closely related. We will for shift spaces having a certain property (∗), show
that the first cohomology group is a factor group of Matsumoto’s K0-group,
and we will also for shift spaces having an additional property (∗∗), describe
Matsumoto’s K0-group in terms of the first cohomology group and some extra
information determined by the left special elements of the shift space.

We will for a broad range of different classes of shift spaces, which includes
shift of finite types, finite shift spaces, Sturmian shift spaces, substitution shift
spaces and Toeplitz shift spaces, determine if they have property (∗) and prop-
erty (∗∗). This will allow us to show that Matsumoto’s K0-group and the first
cohomology group are isomorphic for example for finite shift spaces and for
Sturmian shift spaces and to describe Matsumoto’s K0-group for substitution
shift spaces in such a way that we in [8] can for every shift space associated
with a aperiodic and primitive substitution present Matsumoto’s K0-group as
a stationary inductive limit of a system associated to an integer matrix defined
from combinatorial data which can be computed in an algorithmic way (cf. [6],
[7]).

Since both Matsumoto’s K0-group and the first cohomology group are K0-
groups of certain C∗-algebras they come with a natural (pre)order structure.
All the results presented in this paper hold not just in the category of Abelian
groups, but also in the category of preordered groups. Since we do not know
how to prove this without involving C∗-algebras we have decided to defer this
to [9], where we also show that Matsumoto’s K0-group with order is a finer
invariant than Matsumoto’s K0-group without order.

We wish to thank Yves Lacroix for helping us understand Toeplitz sequences
and the referee for constructive criticism.
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2 Preliminaries and notation

Throughout this paper Z will denote the set of integers, N0 will denote the set
of non-negative integers and −N will denote the negative integers.
The symbol Id will always denote the identity map. For a map φ between two
sets X and Y , we will by φ⋆ denote the map which maps a function f on Y to
the function f ◦ φ on X.
Let a be a finite set of symbols, and let a♯ denote the set of finite, nonempty
words with letters from a. Thus with ǫ denoting the empty word, ǫ 6∈ a♯. By
|µ| we denote the length of a finite word µ (i.e. the number of letters in µ).
The length of ǫ is 0.

2.1 Shift spaces

We equip
aZ, aN0 , a−N

with the product topology from the discrete topology on a. We will strive to
denote elements of aZ by z, elements of aN0 by x and elements of a−N by y. If
x ∈ aN0 and y ∈ a−N, then we will by y.x denote the element z of aZ where

zn =

{
yn if n < 0,

xn if n ≥ 0.

We define σ : aZ → aZ, σ+ : aN0 → aN0 , and σ− : a−N → a−N by

(σ(z))n = zn+1 (σ+(x))n = xn+1 (σ−(y))n = yn−1.

Such maps we will refer to as shift maps.
A shift space is a closed subset of aZ which is mapped into itself by σ. We shall
refer to such spaces by “X”.
With the obvious restriction maps

π+ : X → aN0 π− : X → a−N

we get
σ+ ◦ π+ = π+ ◦ σ σ− ◦ π− = π− ◦ σ−1.

We denote π+(X), respectively π−(X), by X+, respectively X−, and notice that
σ+(X+) = X+ and σ−(X−) = X−. For z ∈ aZ and n ∈ Z, we write

z[n,∞[ = π+(σn(z)) and z]−∞,n[ = π−(σn(z)).

The language of a shift space is the subset of a♯ ∪ {ǫ} given by

L(X) = {z[n,m] | z ∈ X, n ≤ m ∈ Z}

where the interval subscript notation should be self-explanatory. A compact-
ness argument shows that an element z ∈ aZ (respectively z ∈ aN0 , z ∈ a−N)
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is in X (respectively X+, X−) if and only if z[n,m] ∈ L(X) for all n < m ∈ Z
(respectively n < m ∈ N0, n < m ∈ −N) (cf. [21, Corollary 1.3.5 and Theorem
6.1.21]).
We say that shift spaces are conjugate, denoted by “≃”, when they are home-
omorphic via a map which intertwines the relevant shift maps. The concept of
conjugacy also makes sense for the “one-sided” shift spaces X+. If X+ ≃ Y+,
then we say that X and Y are one-sided conjugate. It is not difficult to see that
X+ ≃ Y+ ⇒ X ≃ Y (cf. [21, §13.8]).
Finally we want to draw attention to a third kind of equivalence between shift
spaces, called flow equivalence, which we denote by ∼=f . We will not define it
here (see [26], [14], [2] or [21, §13.6] for the definition), but just notice that
X ≃ Y ⇒ X ∼=f Y.
A flow invariant of a shift space X is a mapping associating to each shift
space another mathematical object, called the invariant, in such a way that
flow equivalent shift spaces give isomorphic invariants. In the same way, a
conjugacy invariant of X, respectively X+, is a mapping associating to each
shift space an invariant in such a way that conjugate, respectively one-sided
conjugate, shift spaces give isomorphic invariants.
Since X ≃ Y ⇒ X ∼=f Y, a flow invariant of X is also a conjugacy invariant of
X, and since X+ ≃ Y+ ⇒ X ≃ Y, a conjugacy invariant of X is also a conjugacy
invariant of X+.

2.2 Special elements

We say (cf. [17]) that z ∈ X is left special if there exists z′ ∈ X such that

z−1 6= z′−1 π+(z) = π+(z′).

It follows from [4, Proposition 2.4.1] (cf. [3, Theorem 3.9]) that a sufficient
condition for a shift space X to have a left special element is that X is infinite.
Conversely, the following proposition shows that this condition is necessary.

Proposition 2.1. Let X be a finite shift space. Then X contains no left special
element.

Proof: Since X is finite, every z ∈ X is periodic. Hence if π+(z) = π+(z′), then
z = z′. ¤

We say that the left special word z is adjusted if σ−n(z) is not left special for
any n ∈ N, and that z is cofinal if σn(z) is not left special for any n ∈ N.
Thinking of left special words as those which are not deterministic from the
right at index −1, the adjusted and cofinal left special words are those where
this is the leftmost and rightmost occurrence of nondeterminacy, respectively.
Let z, z′ ∈ X. If there exist an n and an M such that zm = z′n+m for all m > M
then we say that z and z′ are right shift tail equivalent and write z ∼r z′. We
will denote the right shift tail equivalence class of z by z.
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2.3 The first cohomology group

The first cohomology group (cf. [2]) of a shift space X is the group

C(X, Z)/(Id−(σ−1)⋆)(C(X, Z)).

Notice that usually σ is used instead of σ−1, but for our purpose it is
more natural to use σ−1, and we of course get the same group. The group
C(X, Z)/(Id−(σ−1)⋆)(C(X, Z)) is the first Čech cohomology group of the stan-
dard suspension of (X, σ) (cf. [27, IV.15. Theorem]). It is also isomorphic
to the homotopy classes of continuous maps from the standard suspension of
(X, σ) into the circle (cf. [27, page 60]).

It is proved in [2, Theorem 1.5] that C(X, Z)/(Id−(σ−1)⋆)(C(X, Z)) is a flow
invariant of X and thus also a conjugacy invariant of X and X+.

2.4 Past equivalence and Matsumoto’s K0-group

Let X be a shift space. For every x ∈ X+ and every k ∈ N we set

Pk(x) = {µ ∈ L(X) | µx ∈ X+, |µ| = k},

and define for every l ∈ N an equivalence relation ∼l on X+ by

x ∼l x′ ⇐⇒ Pl(x) = Pl(x
′).

Likewise we let for every x ∈ X+

P∞(x) = {y ∈ X− | y.x ∈ X},

and define an equivalence relation ∼∞ on X+ by

x ∼∞ x′ ⇐⇒ P∞(x) = P∞(x′).

The set

ND∞(X+) = {x ∈ X+ | ∃k ∈ N : #Pk(x) > 1}

then consists exactly of all words on the form z[n,∞[ where z is left special and
n ∈ N0.

Following Matsumoto ([23]), we denote by [x]l the equivalence class of x and
refer to the relation as l-past equivalence.

Obviously the set of equivalence classes of the l-past equivalence relation ∼l is
finite. We will denote the number of such classes m(l) and enumerate them E l

s

with s ∈ {1, . . . ,m(l)}. For each l ∈ N, we define an m(l + 1) × m(l)-matrix IIIl

by

(IIIl)rs =

{
1 if E l+1

r ⊆ E l
s

0 otherwise,
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and note that IIIl induces a group homomorphism from Zm(l) to Zm(l+1). We
denote by ZX the group given by the inductive limit

lim
−→

(Zm(l), IIIl).

For a subset E of X+ and a finite word µ we let µE = {µx ∈ X+ | x ∈ E}. For
each l ∈ N and a ∈ a we define an m(l + 1) × m(l)-matrix

(LLLl
a)rs =

{
1 if ∅ 6= aE l+1

r ⊆ E l
s

0 otherwise,

and letting LLLl =
∑

a∈a LLLl
a we get a matrix inducing a group homeomorphism

from Zm(l) to Zm(l+1). Since one can prove that LLLl+1 ◦ IIIl = IIIl+1 ◦ LLLl, a group
endomorphism λ on ZX is induced.

Theorem 2.2 (Cf. [24], [25, Theorem]). Let X be a shift space. The group

K0(X) = ZX/(Id−λ)ZX ,

called Matsumoto’s K0-group, is a conjugacy invariant of X and X+, and a
flow invariant of X.

2.5 The space ΩX

We will now give an alternative description of K0(X). The group K0(X) is
defined by taking a inductive limits of Zm(l), where Zm(l) could be thought of
as C(X+/∼l, Z).
We will now do things in different order. First we will take the projective limit
of X+/∼l and then look at the continuous functions from the projective limit
to Z.
Since ∼l is coarser than ∼l+1, there is a projection πl of X+/∼l+1 onto X+/∼l.

Definition 2.3 (Cf. [23, page 682]). Let X be a shift space. We then define
ΩX to be the compact topological space given by the projective limit

lim
←−

(X+/∼l, πl).

We will identify ΩX with the closed subspace

{([xn]n)n∈N0
| ∀n ∈ N0 : xn+1 ∼n xn}

of
∏∞

l=0 X+/∼l, where
∏∞

l=0 X+/∼l is endowed with the product of the discrete
topologies.
Notice that if we identify C(X+/∼l, Z) with Zm(l), then IIIl is the map induced
by πl, so C(ΩX , Z) can be identified with ZX .
If ([xn]n)n∈N0

∈ ΩX , then

{([x′
n]n)n∈N0

∈ ΩX | x′
1 ∼1 x1}
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is a clopen subset of ΩX , and if a ∈ P1(x1), then ([ax′
n]n)n∈N0

∈ ΩX for every
([x′

n]n)n∈N0
∈ ΩX with x′

1 ∼1 x1, and the map

([x′
n]n)n∈N0

7→ ([ax′
n]n)n∈N0

is a continuous map on {([x′
n]n)n∈N0

∈ ΩX | x′
1 ∼1 x1}. This allows us to define

a map λX : C(ΩX , Z) → C(ΩX , Z) in the following way:

Definition 2.4. Let X be a shift space, h ∈ C(ΩX , Z) and ([xn]n)n∈N0
∈ ΩX .

Then we let

λX(h)(([xn]n)n∈N0
) =

∑

a∈P1(x1)

h([axn]n∈N0
).

Under the identification of C(ΩX , Z) and ZX , λX is equal to λ, thus we have
the following proposition:

Proposition 2.5. Let X be a shift space. Then K0(X) and

C(ΩX , Z)/(Id−λX)(C(ΩX , Z))

are isomorphic as groups.

3 Property (*) and (**)

We will introduce the properties (∗) and (∗∗) and show that they are invariant
under flow equivalence and thus under conjugacy. At the end of the section,
we will for various examples of shift spaces determine if they have property (∗)
and (∗∗).

Definition 3.1. We say that a shift space X has property (∗) if for every
µ ∈ L(X) there exists an x ∈ X+ such that P|µ|(x) = {µ}.

Definition 3.2. We say that a shift space X has property (∗∗) if it has property
(∗) and if the number of left special words of X is finite, and no such left special
word is periodic.

Since flow equivalence is generated by conjugacy and symbolic expansion (cf.
[25, Lemma 2.1] and [26]), it is, in order to prove the following proposition,
enough to check that (∗) and (∗∗) are invariant under symbolic expansion and
conjugacy.

Proposition 3.3. The properties (∗) and (∗∗) are invariant under flow equiv-
alence.

Example 3.4. It follows from Proposition 2.1 that if a shift space X is finite,
then it contains no left special element, and thus has property (∗∗).

Example 3.5. An infinite shift of finite type does not have property (∗).
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Proof: Let X be a shift of finite type. This means (cf. [21, Chapter 2]) that
there is a k ∈ N0 such that

X = {z ∈ aZ | ∀n ∈ Z : z[n,n+k] ∈ L(X)}.

Suppose that X has property (∗). Let L(X)k = {µ ∈ L(X) | |µ| = k}, and
notice that if µ, ν, ω ∈ L(X)k and µν, νω ∈ L(X), then µνω ∈ L(X).
Let µ ∈ L(X)k. Then there is a x ∈ X+ such that P|µ|(x) = {µ}. Let µ′ = x[0,k[,

and suppose that ν ∈ L(X)k and νµ′ ∈ L(X). Then νx ∈ X+, so ν must be
equal to µ. Thus there is for every µ ∈ L(X)k a µ′ ∈ L(X)k such that

ν ∈ L(X)k ∧ νµ′ ∈ L(X) ⇐⇒ ν = µ.

Since L(X)k is finite and the map µ 7→ µ′ is injective, there is for every ν ∈
L(X)k a µ ∈ L(X)k such that ν = µ′. Hence there is for every µ ∈ L(X)k a
unique µ′ ∈ L(X)k such that µµ′ ∈ L(X) and a unique µ′′ ∈ L(X)k such that
µ′′µ ∈ L(X). Thus every z ∈ X is determined by z[0,k[, but since L(X)k is finite,
this implies that X is finite. ¤

Example 3.6. An infinite minimal shift space (cf. [21, §13.7]) X has property
(∗∗) precisely when the number of left special words of X is finite.

Proof: Since no elements in such a shift space is periodic, we only need to prove
that property (∗) follows from finiteness of the number of left special elements.
Let µ ∈ L(X) and pick any x ∈ X+. Since X+ is infinite and minimal, x is not
periodic, and since the set of left special words is finite there exists N ∈ N such
that σn(x) is not left special for any n ≥ N . Since X+ is minimal there exists
a k ≥ N such that x[k+1,k+|µ|] = µ. Hence P|µ|(σk+|µ|+1(x)) = {µ}. ¤

Example 3.7. If z is a non-periodic, non-regular Toeplitz sequence (cf. [32,
pp. 97 and 99]), then the shift space

O(z) = {σn(z) | n ∈ Z},

where X denotes the closure of X, has property (∗).
Proof: Let µ ∈ L(O(z)). Since O(z) is minimal (cf. [32, page 97]), there is an
m ∈ N such that z[−m−|µ|,−m[ = µ. We claim that P|µ|(z[−m,∞[) = {µ}.
Assume that z′ ∈ O(z) and z′[−m,∞[ = z[−m,∞[. Then π(z′) = π(z), where π is

the factor map of O(z) onto its maximal equicontinuous factor (G, 1̂) (cf. [32,
Theorem 2.2]), because since z′[−m,∞[ = z[−m,∞[, the distance between σn(z′)

and σn(z), and thus the distance between 1̂n(π(z′)) and 1̂n(π(z)), goes to 0 as
n goes to infinity, but since 1̂ is equicontinuous, this implies that π(z′) = π(z).
Since z is a Toeplitz sequence, it follows from [32, Corollary 2.4]) that z′ = z.
Thus P|µ|(z[−m,∞[) = {µ}. ¤

The following example shows that property (∗∗) does not follow from property
(∗).
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Example 3.8. We will construct a non-regular Toeplitz sequence z ∈ {0, 1}Z

such that the shift space

O(z) = {σn(z) | n ∈ Z}

has infinitely many left special elements and thus does not have property (∗∗).
We will construct z by using the technique introduced by Susan Williams in
[32, Section 4]. We will use the same notation as in [32, Section 4]. We let Y
be the full 2-shift {0, 1}Z and defined (pi)i∈N recursively by setting p1 = 3 and
pi+1 = 3ri+ipi for i ∈ N, where ri is as defined in [32, Section 4]. We then have
that

piβri

pi+1
=

2ri

3ri+i
< 3−i,

so ∞∑

i=1

piβri

pi+1

converges, and z is non-regular by [32, Proposition 4.1].

Claim. The shift space O(z) has infinitely many left special elements.

Proof: Let D be as defined on [32, page 103]. If

g ∈ π({z′ ∈ D | −1 ∈ Aper(z′)}),

y, y′ ∈ Y , y[0,∞[ = y′
[0,∞[ and y−1 6= y′

−1, then φ(g, y)[0,∞[ = φ(g, y′)[0,∞[ and

φ(g, y)−1 6= φ(g, y′)−1, where φ is the map define on [32, page 103]. Thus
φ(g, y) and φ(g, y′) are left special elements, and since

π({z′ ∈ D | −1 ∈ Aper(z′)}) × {y ∈ Y | y is left special}

is infinite and contained in π(D) × Y , on which φ is 1 − 1, O(z) has infinitely
many left special elements. ¤

4 The first cohomology group is a factor of K0(X)

We will now show that if a shift space X has property (∗), then the first coho-
mology group is a factor group of K0(X).
Suppose that a shift space X has property (∗). We can then define a map ιX
from X− into ΩX in the following way: For each y ∈ X− and each n ∈ N0 we

choose an xn ∈ X+ such that Pn(xn) = {y[−n,−1]}. Then ([xn]n)n∈N0
∈ ΩX ,

and we denote this element by ιX(y). The map ιX is obviously injective and
continuous.
We denote the map

(ιX ◦ π−)⋆ : C(ΩX , Z) → C(X, Z)

by κ.
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Proposition 4.1. Let X be a shift space which has property (∗). Then there
is a surjective group homomorphism κ̄ from C(ΩX , Z)/(Id−λX)(C(ΩX , Z)) to
C(X, Z)/(Id−(σ−1)⋆)(C(X, Z)) which makes the following diagram commute:

C(ΩX , Z) κ //

²²²²

C(X, Z)

²²²²
C(ΩX , Z)/(Id−λX)(C(ΩX , Z)) κ̄ // C(X, Z)/(Id−(σ−1)⋆)(C(X, Z))

Proof: Let q be the quotient map from C(X, Z) to

C(X, Z)/(Id−(σ−1)⋆)(C(X, Z)).

We will show that 1) q ◦κ is surjective and 2) (Id−λX)(C(ΩX , Z)) ⊆ ker(q ◦κ).
This will prove the existence and surjectivity of κ̄.

1) q ◦ κ is surjective: Given f ∈ C(X, Z). Our goal is to find a function
g ∈ C(ΩX , Z) which is mapped to q(f) by q ◦ κ.

Since f is continuous, there are k,m ∈ N such that

z[−k,m] = z′[−k,m] ⇒ f(z) = f(z′).

Thus

z[−k−m−1,−1] = z′[−k−m−1,−1] ⇒ f ◦ σ−(m+1)(z) = f ◦ σ−(m+1)(z′).

Define a function g from ΩX to Z by

g(([xn]n)n∈N0
) =

{
f ◦ σ−(m+1)(z) if Pk+m+1(xk+m+1) = {z[−k−m−1,−1]},
0 if #Pk+m+1(xk+m+1) > 1.

Then g ∈ C(ΩX , Z), and g ◦ ιX ◦ π− = f ◦ σ−(m+1), so q ◦ κ(g) = q(f).

2) (Id−λX)(C(ΩX , Z)) ⊆ ker(q ◦ κ): Let g ∈ C(ΩX , Z) and y ∈ X−. Then
λX(g)(ιX(y)) = g(ιX(σ−(y)), so

κ(λX(g)) = g ◦ ιX ◦ π− ◦ σ−1,

which shows that (Id−λX)(g) ∈ ker(q ◦ κ). ¤

The following corollary now follows from Proposition 2.5:

Corollary 4.2. Let X be a shift space which has property (∗). Then
C(X, Z)/(Id−(σ−1)⋆)(C(X, Z)) is a factor group of K0(X).
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5 K0 of shift spaces having property (∗∗)

We saw in the last section that if a shift space X has property (∗), then the
first cohomology group is a factor group of K0(X). This stems from the fact
that property (∗) causes an inclusion of X− into ΩX , and thus a surjection of

C(ΩX , Z) onto C(X−, Z). We will now for shift spaces having property (∗∗)
describe K0 in terms of the first cohomology group and some extra information
determined by the left special elements of the shift space.
We will first define the group GX which is a subgroup of the external direct

product of C(X−, Z) and an infinite product of copies of Z, and isomorphic
to C(ΩX , Z). Next, we will define the group GX which is the external direct
product of C(X, Z) and an infinite sum of copies of Z, and has a factor group
which is isomorphic to K0(X). We will round off by relating this with the fact
that the first cohomology group is a factor group of K0(X) and look at some
examples.

Lemma 5.1. Let X be a shift space which has property (∗). Then

ιX(X−) = {([xn]n)n∈N0
∈ ΩX | ∀n ∈ N0 : #Pn(xn) = 1}.

Proof: Clearly

ιX(X−) ⊆ {([xn]n)n∈N0
∈ ΩX | ∀n ∈ N0 : #Pn(xn) = 1}.

Suppose ([xn]n)n∈N0
∈ ΩX and Pn(xn) = {µn} for every n ∈ N0. Let for every

n ∈ N, y−n be the first letter of µn. Since y[−n,−1] = µn for every n ∈ N,

y ∈ X−, and clearly ιX(y) = ([xn]n)n∈N0
. ¤

Denote by IX the set ND∞(X+)/∼∞ (cf. Section 2.4). We will now define a

map φX from IX to ΩX . We see that for x ∈ ND∞(X+), ([x]n)n∈N0
∈ ΩX , and

we notice that x ∼∞ x̃, if and only if ([x]n)n∈N0
= ([x̃]n)n∈N0

. So if we let

φX([x]∞) = ([x]n)n∈N0
,

then φX is a well-defined and injective map from IX to ΩX .

Lemma 5.2. Let X be a shift space which has property (∗). Then ιX(X−) ∩
φX(IX) = ∅, and if X has property (∗∗), then ιX(X−) ∪ φX(IX) = ΩX .

Proof: If ([xn]n)n∈N0
∈ ιX(X−), then according to Lemma 5.1, #Pn(xn) = 1

for every n ∈ N0, and if ([xn]n)n∈N0
∈ φX(IX), then #Pn(xn) > 1 for some

n ∈ N0. Hence ιX(X−) ∩ φX(IX) = ∅.
Suppose that X has property (∗∗). If ([xn]n)n∈N0

∈ ΩX \ιX(X−), then according
to Lemma 5.1, there is an n ∈ N0 such that #Pn(xn) > 1, and since there only
are finitely many left special words, [xn]n must be finite. Since [xk]k 6= ∅ and
[xk+1]k+1 ⊆ [xk]k for every k ∈ N0, this implies that

⋂
k∈N0

[xk]k is not empty.

Let x ∈ ⋂
k∈N0

[xk]k. Since #Pn(x) = #Pn(xn) > 1, x ∈ ND∞(X+), and since
([xn]n)n∈N0

= φX([x]∞), we have that ([xn]n)n∈N0
∈ φX(IX). ¤
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5.1 The group GX

We will from now on assume that X has property (∗∗). Let for every
function h : ΩX → Z,

γX(h) = (h ◦ ιX , (h(φX(i)))i∈IX
).

It follows from Lemma 5.2 that γX is a bijective correspondence between func-

tions from ΩX to Z and pairs (g, (αi)i∈IX
), where g is a function from X− to Z

and each αi is an integer.

Lemma 5.3. Let g be a function from X− to Z and let for every i ∈ IX , αi be
an integer. Then (g, (αi)i∈IX

) ∈ γX(C(ΩX , Z)) if and only if there is an N ∈ N0

such that

1. ∀y, y′ ∈ X− : y[−N,−1] = y′
[−N,−1] ⇒ g(y) = g(y′),

2. ∀x, x′ ∈ ND∞(X+) : [x]N = [x′]N ⇒ α[x]∞ = α[x′]∞ ,

3. ∀x ∈ ND∞(X+), y ∈ X− : PN (x) = {y[−N,−1]} ⇒ α[x]∞ = g(y).

Proof: A function from ΩX to Z is continuous if and only if there is an N ∈ N0

such that

[xN ]N = [x′
N ]N ⇒ h(([xn]n)n∈N0

) = h(([x′
n]n)n∈N0

),

for ([xn]n)n∈N0
, ([x′

n]n)n∈N0
∈ ΩX , and since we have that if y, y′ ∈ X−, and

([xn]n)n∈N0
= ιX(y) and ([x′

n]n)n∈N0
= ιX(y′), then

[xN ]N = [x′
N ]N ⇐⇒ y[−N,−1] = y′

[−N,−1],

and if x ∈ ND∞(X+), y ∈ X− and ([x′
n]n)n∈N0

= ιX(y), then

[x]N = [x′
N ]N ⇐⇒ PN (x) = {y[−N,−1]},

the conclusion follows. ¤

Definition 5.4. Let X be a shift space which has property (∗∗). We denote
γX(C(ΩX , Z)) by GX , and we let for every function g : X− → Z and (αi)i∈IX

∈
ZIX ,

AX(g, (αi)i∈IX
) = (g ◦ σ−, (α̃i)i∈IX

),

where

α̃[x]∞ =
∑

x′∈ND∞(X+)

σ+(x′)=x

α[x′]∞ +
∑

z∈X

z[0,∞[ /∈ND∞(X+)
z[1,∞[=x

g(π−(z)).
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Lemma 5.5. The map AX maps GX into GX , and the following diagram com-
mutes:

C(ΩX , Z)
γX //

λX

²²

GX

AX

²²
C(ΩX , Z)

γX // GX

Proof: Let h ∈ C(ΩX , Z) and ([xn]n)n∈N0
∈ ΩX . Then

λX(h)(([xn]n)n∈N0
) =

∑

a∈P1(x1)

h([axn]n∈N0
).

We will show that λX(h)(([xn]n)n∈N0
) = γ−1

X
◦AX ◦ γX(h)(([xn]n)n∈N0

). It will

then follow that AX = γX ◦ λX ◦ γ−1
X

, and thus that AX maps GX into GX , and

the diagram commutes.

Assume first that ([xn]n)n∈N0
∈ ιX(X−). Then #P1(x1) = 1 and

ιX(σ−(ι−1
X

(([xn]n)n∈N0
))) = [axn]n∈N0

,

where a ∈ P1(x1). Thus

λX(h)(([xn]n)n∈N0
) = h(([axn]n)n∈N0

) = γ−1
X

◦ AX ◦ γX(h)(([xn]n)n∈N0
).

Now assume that ([xn]n)n∈N0
∈ φX(IX) and choose x ∈ ND∞(X+) such that

φX([x]∞) = ([xn]n)n∈N0
. We claim that

∑

a∈P1(x1)

h([axn]n∈N0
) =

∑

x′∈ND∞(X+)

σ+(x′)=x

h(φX([x′]∞)) +
∑

z∈X

z[0,∞[ /∈ND∞(X+)
z[1,∞[=x

h(ιX(z[−∞,−1])). (1)

To see this let a ∈ P1(x1). Assume first that ([axn]n)n∈N0
∈ ιX(X−), and

let z be the element of aZ satisfying z]−∞,0[ = ι−1
X

(([axn]n)n∈N0
), z0 = a,

and z[1,∞[ = x. Then z ∈ X, z[0,∞[ /∈ ND∞(X+), z[1,∞[ = x, and
ιX(z]−∞,−1]) = [axn]n∈N0

. Let us then assume that ([axn]n)n∈N0
∈ φX(IX).

Then ax ∈ ND∞(X+), σ+(ax) = x, and φX([ax]∞) = [axn]n∈N0
.

If on the other hand z is an element of X which satisfies z[0,∞[ /∈ ND∞(X+),
and z[1,∞[ = x, then z0 ∈ P1(x1), and ιX(z]−∞,−1]) = ([z0xn]n)n∈N0

, and if x′ ∈
ND∞(X+) and σ+(x′) = x, then x′

0 ∈ P1(x1), and φX([x′]∞) = [x′
0xn]n∈N0

.
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Thus (1) holds, and

λX(h)(([xn]n)n∈N0
) =

∑

a∈P1(x1)

h([axn]n∈N0
)

=
∑

x′∈ND∞(X+)

σ+(x′)=x

h(φX([x′]∞)) +
∑

z∈X

z[0,∞[ /∈ND∞(X+)
z[1,∞[=x

h(ιX(z[−∞,−1]))

= γ−1
X

◦ AX ◦ γX(h)(([xn]n)n∈N0
).

¤

The following corollary now follows from Proposition 2.5:

Corollary 5.6. Let X be a shift space which has property (∗∗). Then K0(X)
and

GX/(Id−AX)GX

are isomorphic as groups.

5.2 The space IX

In order to get a better understanding of the group GX and the map AX , we
will now try to describe IX in the case where X has properties (∗∗). For that
we will need the concept of right shift tail equivalence (cf. section 2.2).
Denote the set of those right shift tail equivalence classes of X which contains
a left special element by JX . Notice that it is finite. Let for every j ∈ JX , Mj

be the set of adjusted left special elements belonging to j. Notice that there
only is a finite – but positive – number of elements in Mj.
Let us take a closer look at π+(j). It is clear that

π+(j) = {z[n,∞[ | z ∈ Mj, n ∈ Z},

and it follows from the definition of adjusted left special elements that z[n,∞[ ∈
ND∞(X+) if and only if n ≥ 0. It follows from the definition of adjusted left
special elements and the fact that X contains no periodic left special elements
that if z, z′ ∈ Mj and n, n′ < 0, then

z[n,∞[ = z′[n′,∞[ ⇐⇒ z = z′ ∧ n = n′.

Contrary to this, it might happen that z[n,∞[ = z′[n′,∞[ for z 6= z′ if n, n′ ≥ 0.
In fact, it turns out that j has a “common tail”.

Definition 5.7. Let j ∈ JX . An x ∈ X+ such that there for every z ∈ j is an
n ∈ Z such that z[n,∞[ = x is called a common tail of j.

Lemma 5.8. Let z be a left special element and n ∈ Z. Then z[n,∞[ is a common
tail of z if and only if σm(z) is not left special for any m > n.
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Proof: Assume that σm(z) is not left special for any m > n, and let z′ ∈ z.
Then there are k, k′ ∈ Z such that z[k,∞[ = z′[k′,∞[, and since σm(z) is not left

special for any m > n, z[n,∞[ = z′[n−k+k′,∞[ if k > n. If k ≤ n, then obviously

z[n,∞[ = z′[n−k+k′,∞[. Thus z[n,∞[ is a common tail of z.

Assume now that there is an m > n such that σm(z) is left special. Then
there is a z′ ∈ X such that z[m,∞[ = z′[m,∞[, but zm−1 6= z′m−1. This implies

that z′ ∈ z, so if z[n,∞[ is a common tail of z, then there is a k ∈ Z such that
z′[k,∞[ = z[n,∞[, and since zm−1 6= z′m−1, k 6= n. But we then have for all i ≥ m
that

zi = z′i+k−n = zi+k−n,

which cannot be true, since there are no periodic left special words in X. ¤

The reason for introducing the concept of common tails is illustrated by the
following lemma.

Lemma 5.9. If x is a common tail of a j ∈ JX , then in the notation of Definition
5.4,

α̃[σn+1
+ (x)]∞

= α[σn
+(x)]∞

for every n ∈ N0.

Proof: It follows from Lemma 5.8 that P1(σ
n+1
+ (x)) = {xn}. Thus there is

no z ∈ X such that z[0,∞[ /∈ ND∞(X+) and z[1,∞[ = σn+1
+ (x), and the only

x′ ∈ ND∞(X+) such that σ+(x′) = σn+1
+ (x) is σn

+(x). Hence α̃[σn+1
+ (x)]∞

=

α[σn
+(x)]∞ . ¤

Definition 5.10. An x ∈ X+ is called isolated if there is a k ∈ N0 such that
[x]k = {x}.
Lemma 5.11. Every j ∈ JX has an isolated common tail.

Proof: Let z be the cofinal left special element of j. Then z[0,∞[, and thus
z[n,∞[ for every n ∈ N0, is a common tail by Lemma 5.8. Since there only are
finitely many left special words, [z[0,∞[]1 is finite. Hence there is an n ∈ N such
that

x ∈ [z[0,∞[]1 ∧ x[0,n] = z[0,n] ⇒ x = z[0,∞[.

Thus [z[n,∞[]n+1 = {z[n,∞[} and therefore z[n,∞[ is an isolated common tail. ¤

Remark 5.12. In [22] Matsumoto introduced the condition (I) for shift spaces,
which is a generalization of the condition (I) for topological Markov shifts in
the sense of Cuntz and Krieger (cf. [10]).
A shift space X satisfies condition (I) if and only if X+ has no isolated elements
(cf. [22, Lemma 5.1]). Thus, it follows from Lemma 5.11 that a shift space
which has property (∗∗) does not satisfy condition (I).

Let X be a shift space which has property (∗∗). Choose once and for all, for
each j ∈ JX an isolated common tail xj and a zj ∈ X such that π+(zj) = xj.
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Remark 5.13. Notice that σn
+(xj) is isolated for every j ∈ JX and every n ∈ N0,

because if [xj]k = {xj}, then [σn
+(xj)]k+n = {σn

+(xj)}.

Let z be an adjusted left special element of X. Since xz is a common tail of z,
there exists an nz ∈ N0 such that z[nz,∞[ = xz. We let

KX = {[z[n,∞[]∞ | z is an adjusted left special element of X, 0 ≤ n < nz},

and we let for each j ∈ JX ,

Kj = {[z[n,∞[]∞ | z ∈ Mj, 0 ≤ n ≤ nz}.

We notice that
KX =

⋃

j∈JX

(
Kj \ {xj}

)
.

The following lemma shows that

KX ∪
⋃

j∈JX

⋃

n∈N0

{[σn
+(xj)]∞}

is a partition of IX .

Lemma 5.14.

1. KX ∪ {[σn
+(xj)]∞ | j ∈ JX , n ∈ N0} = IX ,

2. KX ∩ {[σn
+(xj)]∞ | j ∈ JX , n ∈ N0} = ∅,

3. the map (j, n) 7→ [σn
+(xj)]∞, from JX × N0 to IX is injective.

Proof: Let x ∈ ND∞(X+). Then there is an adjusted left special word z and
an n ∈ N0 such that x = z[n,∞[. If n ≥ nz, then

x = z[n,∞[ = zz
[n−nz,∞[,

and if n < nz, then [x]∞ = [z[n,∞[]∞ ∈ KX . Thus

KX ∪ {[σn
+(xj)]∞ | j ∈ JX , n ∈ N0} = IX .

Assume that j ∈ JX , n ∈ N0 and [σn
+(xj)]∞ ∈ KX . Since σn

+(xj) is isolated,
this implies that there exist an adjusted left special element z and 0 ≤ m < nz

such that σn
+(xj) = z[m,∞[. But then

z[m,∞[ = σn
+(xj) = z[nz+n,∞[

which cannot be true since there are no periodic left special words in X. Thus

KX ∩ {[σn
+(xj)]∞ | j ∈ JX , n ∈ N0} = ∅.
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Assume that [σn1
+ (xj1)]∞ = [σ+(xj2)]∞. Since σn1

+ (xj1) is isolated, σn1
+ (xj1)

must be equal to σn2
+ (xj2). This implies that zj1 and zj2 are right shift tail

equivalent, so j1 = j2, and since there are no periodic left special words in X,
n1 and n2 must be equal. ¤

Remark 5.13 shows that if [x]∞ ∈ {[σn
+(xj)]∞ | j ∈ JX , n ∈ N0}, then x is

isolated. Although it can happen that x is not isolated if [x]∞ ∈ KX , the

following lemma shows that we anyway can separate KX from {[σn
+(xj)]∞ | j ∈

JX , n ∈ N0}.
Lemma 5.15. There exists an NKX

∈ N0 such that if [x]∞ ∈ KX , then
#PNK

X
(x) > 1 and

[x]NK
X

= [x′]NK
X
⇒ [x]∞ = [x′]∞

for every x′ ∈ X+.

Proof: Since KX is a finite set, it is enough to find for each adjusted left special
word z ∈ X and each 0 ≤ n < nz, an m ∈ N0 such that #Pm(z[n,∞[) > 1 and

[z[n,∞[]m = [x]m ⇒ [z[n,∞[]∞ = [x]∞ for every x ∈ X+.
If z is an adjusted left special element and 0 ≤ n < nz, then #Pn+1(z[n,∞[) > 1,
and since there only is a finite number of left special element in X, [z[n,∞[]n+1

is finite, so there exists an m ∈ N0 such that #Pm(z[n,∞[) > 1 and

[z[n,∞[]m = [x]m ⇒ [z[n,∞[]∞ = [x]∞ for every x ∈ X+. ¤

We have now described the space IX is such great detail that we are able to
rephrase the condition of Lemma 5.3 for when a pair (g, (αi)i∈IX

) belongs to
GX into a condition which is more readily checkable.

Lemma 5.16. Let g be a function from X− to Z and let for every i ∈ IX , αi be an
integer. Then (g, (αi)i∈IX

) ∈ GX if and only if g is continuous and there exists

an N ∈ N0 such that α[σn
+(xj)]∞ = g(zj

]−∞,n[) for all j ∈ JX and all n > N .

Proof: Assume that (g, (αi)i∈IX
) ∈ GX . Then there exists by Lemma 5.3 an

N ∈ N0 such that

1. ∀y, y′ ∈ X− : y[−N,−1] = y′
[−N,−1] ⇒ g(y) = g(y′),

2. ∀x, x′ ∈ ND∞(X+) : [x]N = [x′]N ⇒ α[x]∞ = α[x′]∞ ,

3. ∀x ∈ ND∞(X+), y ∈ X− : PN (x) = {y[−N,−1]} ⇒ α[x]∞ = g(y).

It follows from 1. that g is continuous, and since PN (σn
+(xj)) = {zj

[n−N,n−1]}
for every j ∈ JX and all n > N , it follows from 3. that α[σn

+(xj)]∞ = g(zj

]−∞,n[).

Assume now that g is continuous and there exists an N ∈ N0 such that
α[σn

+(xj)]∞ = g(zj

]−∞,n[) for all j ∈ JX and all n > N . Since g is continu-

ous there is an M ∈ N0 such that y[−M,−1] = y′
[−M,−1] ⇒ g(y) = g(y′) for all
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y, y′ ∈ X−, and since σn
+(xj) is isolated for every j ∈ JX and every n ∈ N0

(cf. Remark 5.13), there is for each 0 ≤ n ≤ max{M,N} a kj
n ∈ N such that

[σn
+(xj)]kj

n
= {σ+(xj)}, and by increasing kj

n if necessary, we may (and will)

assume that #Pkj
n
(σ+(xj)) > 1. Let

N ′ = max
(
{kj

n | j ∈ JX , 0 ≤ n ≤ max{M,N}} ∪ {NKX
,M,N}

)
,

where NKX
is as in Lemma 5.15. We claim that

1. ∀y, y′ ∈ X− : y[−N ′,−1] = y′
[−N ′,−1] ⇒ g(y) = g(y′),

2. ∀x, x′ ∈ ND∞(X+) : [x]N ′ = [x′]N ′ ⇒ α[x]∞ = α[x′]∞,

3. ∀x ∈ ND∞(X+), y ∈ X− : PN ′(x) = {y[−N ′,−1]} ⇒ α[x]∞ = g(y),

which implies that (g, (αi)i∈IX
) ∈ GX . 1. follows from the fact that N ′ ≥ M .

Notice that if

[x]∞ ∈ KX ∪ {[σn
+(xj)]∞ | j ∈ JX , 0 ≤ n ≤ max{M,N}},

then [x]N ′ = [x′]N ′ ⇒ [x]∞ = [x′]∞. This takes care of 2. in the case where

[x]∞ ∈ KX ∪ {[zj

[n,∞[]∞ | j ∈ JX , 0 ≤ n ≤ max{M,N}}.
Since

[σn
+(xj)]N ′ = [σn′

+ (xj′)]N ′ ⇒ zj

[n−M,n−1] = zj′

[n′−M,n′−1]

⇒ α[σn
+(xj)]∞ = g(zj

]−∞,n[) = g(zj′

]−∞,n′[) = α[σn′
+ (xj′ )]∞

,

for j, j′ ∈ JX and n, n′ > max{M,N}, 2. and 3. hold, and (g, (αi)i∈IX
) ∈ GX . ¤

We will now look at IX for three examples. First let X be the shift space
associated with the Morse substitution (see for example [12])

0 7→ 01, 1 7→ 10.

The shift space X is minimal and has 4 left special elements:

y0.x0 y0.x1 y1.x0 y1.x1

where y0, y1 are the fixpoints in X− of the substitution ending with 0 respec-
tively 1, and x0, x1 are the fixpoints in X+ of the substitution beginning with
0 respectively 1. Thus it follows from Example 3.6 that X has property (∗∗).
We see that JX consists of 2 elements: y0.x0 and y1.x1. Notice that although
all of the 4 left special elements are cofinal (and adjusted) neither x0 nor x1

are isolated, because [x0]∞ = [x1]∞, but σ+(x0) and σ+(x1) are, so we can
choose σ(y0.x0) and σ(y1.x1) as zy0.x0 and zy1.x1 respectively. We then have
that KX = {[x0]∞}, and that the whole of IX looks like this:
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[σ3
+(x0)]∞

[σ2
+(x1)]∞

Ky1.x1
Ky0.x0

[σ3
+(x1)]∞

[σ+(x0)]∞
[σ+(x1)]∞

[x0]∞

[σ2
+(x0)]∞

where an arrow from a to b means that in Definition 5.4, α̃b = αa. We notice
further that α̃[x0]∞ = g(σ−(y0)) + g(σ−(y1)).
Our second example is the shift space associated to the substitution

1 7→ 123514, 2 7→ 124, 3 7→ 13214, 4 7→ 14124, 5 7→ 15214.

The shift space X is minimal and has 8 left special elements (4 adjusted and 4
cofinal) as illustrated on this figure:

5

2

4
2

3

x
y1

y2

where x ∈ X+ and y1, y2 ∈ X−. Thus it follows from 3.6 that X has property
(∗∗). The set JX consists of one element y152.x, and since x is isolated, we
can choose y152.x as zy152.x. We then have that KX = {[2x]∞, [4x]∞}, and
that the whole of IX looks like this:

[4x]∞

[2x]∞

[σ+(x)]∞

[σ2
+(x)]∞

Ky152.x

[x]∞

where an arrow from a to b means that in Definition 5.4, α̃b = αa. We notice
further that α̃[x]∞ = α[2x]∞ + α[4x]∞ , α̃[2x]∞ = 2g(y1) and α̃[4x]∞ = g(y1) +
g(σ−(y2)).
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The third example is the shift space associated to the substitution

a 7→ adbac, b 7→ aedbbc, c 7→ ac, d 7→ adac, e 7→ aecadbac.

The shift space X is minimal and has 9 left special elements (1 which is both
adjusted and cofinal, 3 which are adjusted but not cofinal, 3 which are cofinal
but not adjusted, and 2 which are neither adjusted nor cofinal) as illustrated
on this figure:

y1 e

d

a

c

y4

y2

y3

x

where x ∈ X+ and y1, y2, y3, y4 ∈ X−. Thus it follows from 3.6 that X has
property (∗∗). The set JX consists of one element y1e.x, and since x is isolated,
we can choose y1e.x as zy1e.x. We then have that KX = {[cax]∞, [ax]∞}, and
that the whole of IX looks like this:

[ax]∞

[cax]∞

[σ+(x)]∞

[σ2
+(x)]∞

Ky1e.x

[x]∞

where an arrow from a to b means that in Definition 5.4, α̃b = αa. We notice
further that α̃[x]∞ = α[ax]∞ + g(y1), α̃[ax]∞ = α[cax]∞ + g(y2) and α̃[cax]∞ =
g(σ−(y3)) + g(σ−(y4)).

5.3 K0(X) is a factor of GX

We are now ready to define the group GX which has a factor which is isomorphic
to GX/(Id−AX)(GX).
Loosely speaking, the idea is to simplify GX in three ways. First we collapse
for each j ∈ JX , Kj to one point, which makes it possible to replace IX by
JX × N0, secondly we replace the condition of Lemma 5.16 for when a pair
belongs to GX , by the condition that the corresponding sequence in JX × N0

is eventually 0, and thirdly, we replace X− by X. The resulting group GX is
of course not necessarily isomorphic to GX , but it turns out that we can still

define a map AX : GX → GX such that GX/(Id−AX)
(
GX

)
is isomorphic to

GX/(Id−AX)(GX).
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Definition 5.17. Let X be a shift space which has property (∗∗). Denote by
GX the group C(X, Z)⊕∑

n∈N0
ZJX , let AX be the map from GX to itself defined

by

(f, (aj
n)j∈JX ,n∈N0

) 7→ (f ◦ σ−1, (ãj
n)j∈JX ,n∈N0

),

where ãj
0 =

∑
z∈Mj

f(σ−1(z)) − f(σ−1(zj)), and ãj
n = aj

n−1 for n > 0, and let
ψ be the map from GX to GX defined by

(g, (αi)i∈IX
) 7→ (g ◦ π−, (aj

n)j∈JX ,n∈N0
),

where for each j ∈ j, aj
0 =

∑
i∈Kj

αi−g(π−(zj)) and aj
n = α[σn

+(xj)]∞−g(zj

]−∞,n[)

for n > 0.

Remark 5.18. It directly follows from Lemma 5.16 that ψ in fact maps GX

into GX .

Proposition 5.19. Let X be a shift space which has property (∗∗). Then there
is an isomorphism

ψ̄ : GX/(Id−AX)(GX) → GX/(Id−AX)
(
GX

)

which makes the following diagram commute:

GX

ψ //

²²²²

GX

²²²²
GX/(Id−AX)(GX)

ψ̄ // GX/(Id−AX)
(
GX

)

We will postpone the proof of proposition 5.19 to section 5.5, and instead
state our main theorem which immediately follows from Proposition 5.19 and
Corollary 5.6.

Theorem 5.20. Let X be a shift space which has property (∗∗). Then K0(X)
and

GX/(Id−AX)
(
GX

)

are isomorphic as groups.

5.4 Examples

Example 5.21. Let X be a finite shift space. Then K0(X) and

C(X, Z)/(Id−(σ−1)⋆)(C(X, Z))

are isomorphic as groups.
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Proof: We saw in Example 3.4, that a finite shift space has property (∗∗) and
has no left special elements. Thus JX = ∅, so GX = C(X, Z) and AX = (σ−1)⋆

and it follows from Theorem 5.20, that K0(X) and

C(X, Z)/(Id−(σ−1)⋆)(C(X, Z))

are isomorphic as groups. ¤

Let η be the canonical projection from GX to C(X, Z). We tie things up with
the following proposition:

Proposition 5.22. Let X be a shift space which has property (∗∗). Then there
is a surjective group homomorphism

η̄ : GX/(Id−AX)
(
GX

)
→ C(X, Z)/(Id−(σ−1)⋆)(C(X, Z))

which makes the following diagram commute:

C(ΩX , Z)

²²²²

κ //

ψ◦γX

''PPPPPPPPPPPPP
C(X, Z)

²²²²

GX

²²²²

η
66nnnnnnnnnnnnnn

GX/(Id−AX)
(
GX

)

η̄

''OOOOOOOOOOOO

C(ΩX ,Z)

(Id−λX )(C(ΩX ,Z))

κ̄ //

ψ̄◦γ̄X

77ppppppppppp

C(X,Z)

(Id−(σ−1)⋆)(C(X,Z))

where γ̄X is the map from C(ΩX , Z)/(Id−λX)(C(ΩX , Z)) to GX/(Id−AX)GX

induced by γX .

Proof: Since

η ◦ AX = (σ−1)⋆ ◦ η,

η induces a map from GX/(Id−AX)
(
GX

)
to C(X, Z)/(Id−(σ−1)⋆)(C(X, Z)).

It is easy to check that this map makes the diagram commute. ¤

Corollary 5.23. Let X be a shift space which has property (∗∗) and only has
two left special words. Then η̄ is an isomorphism from GX/(Id−AX)

(
GX

)
to

C(X, Z)/(Id−(σ−1)⋆)(C(X, Z)). Thus K0(X) and

C(X, Z)/(Id−(σ−1)⋆)(C(X, Z))

are isomorphic as groups.
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Proof: If X only has two left special words, z1 and z2, then they must necessarily
be right shift tail equivalent, so JX = {j}, where j = z1 = z2. We also have
that z1[0,∞[ = z2[0,∞[ is an isolated common tail of j, so we can choose z2 to be

zj. The set Mj is equal to {z1, z2}, so for any (h, (bjn)n∈N0
) ∈ GX is

AX((h, (bjn)n∈N0
)) = (h ◦ σ−1, (b̃jn)n∈N0

),

where b̃j0 = h(σ−1(z1)), and b̃jn = bjn−1 for n > 0.
Suppose that (f, (aj

n)n∈N0
) ∈ GX and that

η((f, (aj
n)n∈N0

)) ∈ (Id−(σ−1)⋆)(C(X, Z)).

Then there is a f̃ ∈ C(X, Z) such that f = f̃ − f̃ ◦ σ−1. Since (aj
n)n∈N0

∈∑
n∈N0

Z, there is an N ∈ N0 such that aj
n = 0 for n > N . Let

c = −f̃(σ−1(z1)) −
N∑

n=0

aj
n

and h ∈ C(X, Z) the function f̃ plus the constant c, and let bjn =
∑n

i=0 aj
i +

h(σ−1(z1)) for n ∈ N0. Then bjn = 0 for n > N , so (h, (bjn)n∈N0
) ∈ GX , and

(f, (aj
n)n∈N0

) = (Id−AX)((h, (bjn)n∈N0
)) ∈ (Id−AX)

(
GX

)
,

which prove that η̄ is injective and thus an isomorphism. ¤

Example 5.24. As noted in [12], a Sturmian shift space Xα, α ∈ [0, 1]\Q is
minimal and has two special words. Thus it follows from Example 3.6 and
Corollary 5.23 that K0(Xα) and

C(Xα, Z)/(Id−(σ−1)⋆)(C(Xα, Z))

are isomorphic as groups.
In [31] it is shown that

C(Xα, Z)/(Id−(σ−1)⋆)(C(Xα, Z))

is isomorphic to Z + Zα as an ordered group. Thus it follows that K0(Xα) and
Z + Zα are isomorphic as groups.
In [9, Corollary 5.2] we prove that K0(Xα) with the order structure mentioned
in the Introduction is isomorphic to Z + Zα.

Example 5.25. It is proved in [30, pp. 90 and 107] that if τ is an aperiodic and
primitive substitution, then the associated shift space Xτ is minimal and only
has a finite number of left special words. Thus by Example 3.6, Xτ has property
(∗∗). It follows from [6, Proposition 3.5] that if τ furthermore is proper and

Documenta Mathematica 9 (2004) 639–671



662 Carlsen and Eilers

elementary, then π+(z) is isolated for every left special word z. Thus K0(Xτ )
is isomorphic to the cokernel of the map

Aτ (f, [(aj
0)j∈JXτ

, (aj
1)j∈JXτ

, . . . ]) =

f ◦ σ−1,







 ∑

z∈Mj

f(σ−1(z))


 − f(σ−1(zj))




j∈JXτ

, (aj
0)j∈JXτ

, (aj
1)j∈JXτ

, . . .







defined on

Gτ = C(Xτ , Z) ⊕
∞∑

i=0

ZJXτ ,

where JXτ
and Mj are as defined in section 5.2, and zj is a cofinal special

element belonging to the right shift tail equivalence class j.
In the notation of [8],

JXτ
= {ỹ1, ỹ2, . . . , ỹnτ }, Mỹj = {yj

1, y
j
2, . . . , y

j
pj+1} and zỹj

= ỹ
j .

In [8], this is used for every aperiodic and primitive (but not necessarily proper
or elementary) substitution τ , to present K0(Xτ ) as a stationary inductive limit
of a system associated to an integer matrix defined from combinatorial data
which can be computed in an algorithmic way (cf. [6] and [7]).

5.5 The proof of Proposition 5.19

In order to prove Proposition 5.19, we will define maps and groups as indicated
on the diagram:

GX

ψ1

²²

// // GX/(Id−AX)(GX)

ψ1

²²
ψ1(GX)

ψ2

²²

// // ψ1(GX)/(Id−A1)(ψ1(GX))

ψ2

²²

C(X−, Z) ⊕ ∑
n∈N0

ZJX

ψ3

²²

// // C(X−,Z)⊕∑
n∈N0

Z
J

X

(Id−A2)
(

C(X−,Z)⊕∑
n∈N0

Z
J

X

)

ψ3

²²
GX

// // GX/(Id−AX)
(
GX

)
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such that the diagram commutes, ψ3 ◦ ψ2 ◦ ψ1 = ψ, and ψ1, ψ2 and ψ3 are
isomorphisms.
Let ψ1 : GX → C(X−, Z) ⊕ ∏

n∈N0
ZJX be the map defined by

(g, (αi)i∈IX
) 7→ (g, (aj

n)j∈JX ,n∈N0
),

where for each j ∈ JX , aj
0 =

∑
i∈Kj

αi, and aj
n = α[σn

+(xj)]∞ for n ∈ N.

Lemma 5.26. Let (g, (aj
n)j∈JX ,n∈N0

) ∈ C(X−, Z) ⊕ ∏
n∈N0

ZJX . Then

(g, (aj
n)j∈JX ,n∈N0

) ∈ ψ1(GX) if and only if

∃N ∈ N0∀j ∈ JX∀n > N : aj
n = g(zj

]−∞,n[).

Proof: The forward implication directly follows from Lemma 5.16.
Assume that (g, (aj

n)j∈JX ,n∈N0
) ∈ C(X−, Z) ⊕ ∏

n∈N0
ZJX and there exists an

N ∈ N0 such that aj
n = g(zj

]−∞,n[) for all n > N . We let αi = 0 for each

i ∈ KX , and we let for each j ∈ JX and each n ∈ N0, α[zj

[n,∞[
]∞

= aj
n. It then

follows from Lemma 5.16 that (g, (αi)i∈IX
) ∈ GX , and since ψ1(g, (αi)i∈IX

) =

(g, (aj
n)j∈JX ,n∈N0

), we have that (g, (aj
n)j∈JX ,n∈N0

) ∈ ψ1(GX).
¤

Let A1 : C(X−, Z) ⊕ ∏
n∈N0

ZJX → C(X−, Z) ⊕ ∏
n∈N0

ZJX be the map defined
by

(g, (aj
n)j∈JX ,n∈N0

) 7→ (g ◦ σ−, (ãj
n)j∈JX ,n∈N0

),

where for each j ∈ JX , ãj
0 =

∑
z∈Mj

g(σ−(π−(z))), and ãj
n = aj

n−1 for n ∈ N.

It follows from Lemma 5.26 that A1 maps ψ1(GX) into itself. Thus
(Id−A1)ψ1(GX) is a subgroup of ψ1(GX), and we can form the quotient
ψ1(GX)/(Id−A1)ψ1(GX). Let

q : ψ1(GX) 7→ ψ1(GX)/(Id−A1)ψ1(GX)

be the quotient map. We then have:

Lemma 5.27. ker(q ◦ ψ1) = (Id−AX)(GX).

Proof: Assume (g, (αi)i∈IX
) ∈ ker(q ◦ ψ1). That means that

(g, (aj
n)j∈JX ,n∈N0

) = ψ1(g, (αi)i∈IX
) ∈ (Id−A1)ψ1(GX).

Thus there exists (g̃, (ãj
n)j∈JX ,n∈N0

) ∈ ψ1(GX) such that g = g̃ − g̃ ◦ σ−, and
such that for every j ∈ JX ,

aj
0 =

∑

i∈Kj

αi = ãj
0 −

∑

z∈Mj

g̃(σ−(π−(z))),
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and aj
n = α[σn

+(xj)]∞ = ãj
n − ãj

n−1 for all n ∈ N.

Now let i ∈ ⋃
j∈JX

Kj. Choose xi ∈ ND∞(X+) such that [xi]∞ = i. Then there

is, for each z ∈ X which satisfies π+(z) = xi, a unique mz ∈ N0 such that
σ−mz (z) is an adjusted left special word. We let

Li = {[z[−m,∞[]∞ | π+(z) = xi, 0 ≤ m ≤ mz} ⊆ IX ,

Bi = {σ−mz (z) | π+(z) = xi} ⊆ X,

and

α̃i =
∑

i′∈Li

αi′ +
∑

z∈Bi

g̃(σ−(π−(z))),

and we let for j ∈ JX and n ∈ N, α̃[σn
+(xj)]∞ = ãj

n.

Since (g̃, (ãj
n)j∈JX ,n∈N0

) ∈ ψ1(GX), g̃ is continuous and there exists by Lemma

5.26, an N ∈ N0 such that for all j ∈ JX and all n > N , α̃[σn
+(xj)]∞ = ãj

n =

g̃(zj

]−∞,n[), so (g̃, (α̃i)i∈IX
) ∈ GX by Lemma 5.16.

Let (˜̃g, ( ˜̃αi)i∈IX
) = AX(g̃, (α̃i)i∈IX

). Then ˜̃g = g̃ ◦ σ−, and by lemma 5.9,

˜̃α[σn+1
+ (xj)]∞

= α̃[σn
+(xj)]∞ = ãj

n,

for j ∈ JX and n ∈ N.

Now let j ∈ JX . Then L[xj]∞ = Kj and B[xj]∞ = Mj, so

˜̃α[σ+(xj)]∞ = α̃[xj]∞

=
∑

i∈Kj

αi +
∑

z∈Mj

g̃(σ−(π−(z)))

= aj
0 +

∑

z∈Mj

g̃(σ−(π−(z)))

= ãj
0.

If [x]∞ ∈ Kj, then L[x]∞ is the disjoint union of L[x′]∞ , where [x′]∞ ∈ IX

and σ+(x′) = x, and {[x]∞}, and B[x]∞ is the disjoint union of B[x′]∞ , where

[x′]∞ ∈ IX and σ+(x′) = x, and {σ(z) | z ∈ X, z[0,∞[ /∈ ND∞(X+), z[1,∞[ = x}.
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Hence

˜̃α[x]∞ =
∑

[x′]∞∈IX

σ+(x′)=x

α̃[x′]∞ +
∑

z∈X

z[0,∞[ /∈ND∞(X+)
z[1,∞[=x

g̃(z]−∞,−1])

=
∑

[x′]∞∈IX

σ+(x′)=x


 ∑

i∈L[x′]∞

αi +
∑

z∈B[x′]∞

g̃(σ−(π−(z)))


 +

∑

z∈X

z[0,∞[ /∈ND∞(X+)
z[1,∞[=x

g̃(z]−∞,−1])

=
∑

i∈L[x]∞

αi − α[x]∞ +
∑

z∈B[x]∞

g̃(σ−(π−(z)))

= α̃[x]∞ − α[x]∞ .

So
g̃ − ˜̃g = g̃ − g̃ ◦ σ− = g,

and for i ∈ ⋃
j∈JX

Kj,

α̃i − ˜̃αi = α̃i − α̃i + αi = αi,

and for j ∈ JX and n ∈ N

α̃[σn
+(xj)]∞− ˜̃α[σn

+(xj)]∞ = ãj
n − ãj

n−1 = aj
n = α[σn

+(xj)]∞.

Thus

(g, (αi)i∈IX
) = (g̃, (α̃i)i∈IX

) − (˜̃g, ( ˜̃αi)i∈IX
)

= (Id−AX)(g̃, (α̃i)i∈IX
) ∈ (Id−AX)(GX),

which shows that ker(q ◦ ψ1) ⊆ (Id−AX)(GX).

Now let (g, (αi)i∈IX
) ∈ GX . We will find an element (g, (aj

n)j∈JX ,n∈N0
) ∈ ψ1(GX)

such that

ψ1((Id−AX)(g, (αi)i∈IX
)) = (Id−A1)(g, (aj

n)j∈JX ,n∈N0
).

This will show that (Id−AX)(GX) ⊆ ker(ρ ◦ ψ1).

Let for each j ∈ JX and every n ∈ N0, aj
n = α[σn

+(xj)]∞ . It then follows from

Lemma 5.16 and 5.26 that (g, (aj
n)j∈JX ,n∈N0

) ∈ ψ1(GX).
Now,

(Id−A1)(g, (aj
n)j∈JX ,n∈N0

) = (g − g ◦ σ−, (aj
n − ãj

n)j∈JX ,n∈N0
),

where for each j ∈ JX , ãj
0 =

∑
z∈Mj

g(σ−(π−(z))), and ãj
n = aj

n−1 for n ∈ N,
and

ψ1((Id−AX)(g, (αi)i∈IX
)) = (g − g ◦ σ−, (bjn)j∈JX ,n∈N0

),
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where by Lemma 5.9

bjn = α[σn
+(xj)]∞− α[σn−1

+ (xj)]∞
= aj

n − aj
n−1 = aj

n − ãj
n

for each j ∈ JX and every n ∈ N, and

bj0 =
∑

i∈Kj

αi −
∑

[x]∞∈Kj




∑

x′∈ND∞(X+)

σ+(x′)=x

α[x′]∞ +
∑

z∈X

z[0,∞[ /∈ND∞(X+)
z[1,∞[=x

g(π−(z))




=αxj −
∑

z∈Mj

g(σ−(π−(z)))

=aj
0 − ãj

0

for each j ∈ JX . Thus ψ1((Id−AX)(g, (αi)i∈IX
)) = (Id−A1)(g, (aj

n)j∈JX ,n∈N0
).
¤

It follows from the previous lemma, that ψ1 : GX → ψ1(GX) induces an isomor-

phism ψ1 from GX/(Id−AX)(GX) to ψ1(GX)/(Id−A1)(ψ1(GX)) such that the
diagram

GX

ψ1

²²

// // GX/(Id−AX)(GX)

ψ1

²²
ψ1(GX) // // ψ1(GX)/(Id−A1)(ψ1(GX))

commutes.
Let for every (g, (aj

n)j∈JX ,n∈N0
) ∈ ψ1(GX),

ψ2(g, (aj
n)j∈JX ,n∈N0

) = (g, (aj
n − g(zj

]−∞,n[))j∈JX ,n∈N0
).

It follows from Lemma 5.26 that ψ2 is an isomorphism from ψ1(GX) to

C(X−, Z) ⊕ ∑
n∈N0

ZJX .

Let A2 : C(X−, Z)⊕∑
n∈N0

ZJX → C(X−, Z)⊕∑
n∈N0

ZJX be the map given by

(g, (aj
n)j∈JX ,n∈N0

) 7→ (g ◦ σ−, (âj
n)j∈JX ,n∈N0

),

where for each j ∈ JX ,

âj
0 =

∑

z∈Mj

g(π−(σ−1(z))) − g(π−(σ−1(zj))),

and âj
n = aj

n−1 for n ∈ N.
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Then ψ2 ◦ A1 = A2 ◦ ψ2, so ψ2 induces an isomorphism

ψ2 : ψ1(GX)/(Id−A1)(ψ1(GX)) →
C(X−, Z) ⊕ ∑

n∈N0
ZJX

(Id−A2)
(
C(X−, Z) ⊕ ∑

n∈N0
ZJX

)

such that the diagram

ψ1(GX)

ψ2

²²

// // ψ1(GX)/(Id−A1)(ψ1(GX))

ψ2

²²

C(X−, Z) ⊕ ∑
n∈N0

ZJX // // C(X−,Z)⊕∑
n∈N0

Z
J

X

(Id−A2)
(

C(X−,Z)⊕∑
n∈N0

Z
J

X

)

commutes.
Let ψ3 : C(X−, Z) ⊕ ∑

n∈N0
ZJX → GX be the map defined by

(g, (aj
n)j∈JX ,n∈N0

) 7→ (g ◦ π−, (aj
n)j∈JX ,n∈N0

).

We then have:

Lemma 5.28. ψ3 ◦ A2 = A ◦ ψ3.

Proof: Let (g, (aj
n)j∈JX ,n∈N0

) ∈ C(X−, Z) ⊕ ∑
n∈N0

ZJX . Then

A ◦ ψ3(g, (aj
n)j∈JX ,n∈N0

) = A(g ◦ π−, (aj
n)j∈JX ,n∈N0

)

= (g ◦ π− ◦ σ−1, (ãj
n)j∈JX ,n∈N0

),

where for each j ∈ JX ,

ãj
0 =

∑

z∈Mj

g ◦ π−(σ−1(z)) − g ◦ π−(σ−1(zj)),

and ãj
n = aj

n−1 for n ∈ N, and

ψ3 ◦ A2(g, (aj
n)j∈JX ,n∈N0

) = ψ3(g ◦ σ−, (âj
n)j∈JX ,n∈N0

)

= (g ◦ σ− ◦ π−, (âj
n)j∈JX ,n∈N0

),

where for each j ∈ JX ,

âj
0 =

∑

z∈Mj

g(π−(σ−1(z))) − g(π−(σ−1(zj))) = ãj
0,

and âj
n = aj

n−1 = ãj
n for n ∈ N, and since π− ◦ σ−1 = σ− ◦ π−, we have that

ψ3 ◦ A2(g, (aj
n)j∈JX ,n∈N0

) = A ◦ ψ3(g, (aj
n)j∈JX ,n∈N0

). ¤
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It follows from the previous lemma that ψ3 : C(X−, Z) ⊕ ∑
n∈N0

ZJX → GX

induces an injective map

ψ3 :
C(X−, Z) ⊕ ∑

n∈N0
ZJX

(Id−A2)
(
C(X−, Z) ⊕ ∑

n∈N0
ZJX

) → GX/(Id−AX)
(
GX

)

such that the diagram

C(X−, Z) ⊕ ∑
n∈N0

ZJX

ψ3

²²

// // C(X−,Z)⊕∑
n∈N0

Z
J

X

(Id−A2)
(

C(X−,Z)⊕∑
n∈N0

Z
J

X

)

ψ3

²²
GX

// // GX/(Id−AX)
(
GX

)

commutes. We will now show that ψ3 in fact is an isomorphism.

Lemma 5.29. The map ψ3 is surjective.

Proof: In order to prove that ψ3 is surjective, it is enough to show that for every
(f, (aj

n)j∈JX ,n∈N0
) ∈ GX , there is a (g, (ãj

n)j∈JX ,n∈N0
) ∈ C(X−, Z) ⊕ ∑

n∈N0
ZJX

such that

(f, (aj
n)j∈JX ,n∈N0

) − ψ3(g, (ãj
n)j∈JX ,n∈N0

) ∈ (Id−AX)
(
GX

)
.

Since f is continuous, there are k,m ∈ N such that z[−k,m] = z′[−k,m] ⇒ f(z) =

f(z′). Thus

z[−k−m−1,−1] = z′[−k−m−1,−1] ⇒ f ◦ σ−(m+1)(z) = f ◦ σ−(m+1)(z′).

Hence there is an g ∈ C(X−, Z) such that g ◦π− = f ◦σ−(m+1). We let for each
j ∈ JX ,

ãj
n =

∑

z∈Mj

f ◦ σn−m−1(z) − f ◦ σn−m−1(zj)

for 0 ≤ n ≤ m, and ãj
n = aj

n−(m+1) for n > m. Since (f, (aj
n)j∈JX ,n∈N0

) ∈ GX ,

(g, (ãj
n)j∈JX ,n∈N0

) ∈ C(X−, Z) ⊕ ∑
n∈N0

ZJX , and it is easy to check that

ψ3(g, (ãj
n)j∈JX ,n∈N0

) = Am+1
X

(f, (aj
n)j∈JX ,n∈N0

).

Thus

(f, (aj
n)j∈JX ,n∈N0

) − ψ3(g, (ãj
n)j∈JX ,n∈N0

) =

(f, (aj
n)j∈JX ,n∈N0

) − Am+1
X

(f, (aj
n)j∈JX ,n∈N0

) =

m∑

k=0

(Id−AX)(Ak
X
(f, (aj

n)j∈JX ,n∈N0
)) ∈ (Id−AX)

(
GX

)
.
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¤

We now have that ψ̄ = ψ3◦ψ2◦ψ1 is an isomorphism and since ψ = ψ3◦ψ2◦ψ1,
the diagram

GX

ψ //

²²²²

GX

²²²²
GX/(Id−AX)(GX)

ψ̄ // GX/(Id−AX)
(
GX

)

commutes, and we are done with the proof of Proposition 5.19.
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