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Abstract

In this work we study some first order nonlinear ordinary differential
equations describing the time evolution (or “motion”) of those hamilto-
nian systems provided with a first integral linking implicitly both vari-
ables to a motion constant. An application has been performed on the
Lotka-Volterra predator-prey system, turning to a strongly nonlinear
differential equation in the phase variables.

Our method grasps all the capabilities of modern computer algebra
in order to solve (algebraic approximation) some equations of third and
fourth degree with intricate forcing terms, obtaining symbolic explicit
expressions osculating the solution in a neighborhood of the initial con-
ditions.

Another approach is also developed managing a Taylor truncated
series and inverting it (asymptotic approximation). After having eval-
uated how both approximations differ from the traditional numerical
techniques, finally we accomplish the much more probatory control of
the approximants’ accuracy referred, through the motion constant, to
the first integral of the equation itself.
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Resumen

En este trabajo se consideran algunas ecuaciones diferenciales de
primer orden que describen la evolución temporal (o “movimiento”) de
algunos sistemas hamiltonianos dotados de una preintegral que rela-
ciona impĺıcitamente ambas variables a una constante de movimiento.
Se realiza una aplicación al sistema predador-presa de Lotka-Volterra,
que conduce a una ecuación diferencial fuertemente no lineal en las
variables de fase. Nuestro método aprovecha todas las capacidades de
la moderna álgebra computacional para resolver (aproximación alge-
braica) ecuaciones algebraicas de tercer y cuarto grado con términos
complicados, obteniendo expresiones simbólicas expĺıcitas de funciones
que osculan la solución en un entorno de las condiciones iniciales.

Tambi’en se desarrolla otro enfoque basado en la inversión una serie
de Taylor truncada (aproximación asintótica). After having evaluated
how both approximations differ from the traditional numerical tech-
niques, finally we accomplish the much more probatory control of the
approximants’ accuracy referred, through the motion constant, to the
first integral of the equation itself.

Después de evaluar el modo como nuestras soluciones difieren de
aquellas obtenidas con las técnicas numéricas tradicionales, finalmente
se realiza, hecho de mayor evidencia probatoria, un control cuidadoso
de la aproximación obtenida referrida, a través de la constante de mo-
vimiento, a una preintegral de la misma ecuación.
Palabras y frases clave: Ecuaciones de Lotka-Volterra, reversión de
Lagrange, integración expĺıcita, teorema de la función impĺıcita.

1 Introduction

This paper is devoted to some novel application of the scalar form of the
Theorem of implicit functions (see [3] for a historical outline of this theorem)
in order to obtain a new treatment for systems of coupled nonlinear ordinary
differential equations. Let us recall the theorem’s statement:

Theorem (Ulisse Dini, 1878). Let Ω an open set in R
2 and f : Ω → R a

C1 function. Suppose there exists (x̄, ȳ) ∈ Ω such that:

f(x̄, ȳ) = 0,
∂f

∂y
(x̄, ȳ) > 0,

then there must be a real interval B centered around x, a real interval I

centered around ȳ and a function ϕ : I → R such that:
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• B × I ⊂ Ω,

• for any (x, y) ∈ B × I:
∂f

∂y
(x, y) 6= 0,

• if (x, y) ∈ B × I then:

f(x, y) = 0,

if and only if y = ϕ(x),

• ȳ = ϕ(x̄) ,

• ϕ ∈ C1(B) and for any x ∈ B:

ϕ′(x) = −

∂f

∂x
(x, ϕ(x))

∂f

∂y
(x, ϕ(x))

.

A careful observation of this theorem’s proof reveals that the most im-
portant fact is determining the radius of the interval B. Indeed if we choose
a, b ∈ R, a, b > 0 such that if B1 = [x̄ − a, x̄ + a] and I1 = [ȳ − a, ȳ + a] then
Ωa,b = B1 × I1 ⊂ Ω, we define:

m = min
Ωa,b

∂f

∂y
,

and:

M = 1 + max
Ωa,b

∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

.

We observe that m > 0, M > 0. Therefore the interval B in the statement of
the theorem of implicit functions is any interval of the form:

B = [x̄ − δ, x̄ + δ] (1.1)

with δ ∈]0, a[ and δ ≤ mb
2M

. This leads to the conclusion that the solution for
y of (1.6) will be defined in the neighborhood (1.1) of (x̄, ȳ).
We need the implicit functions theorem for integrating separable nonlinear
differential equations. For instance, we could consider the nonlinear problem:

{

ẏ(t) = a(t)b (y(t)) ,

y (t0) = y0,
(1.2)
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where a : B → R, b : I → R are real continuous functions on the open
intervals B and I with t0 ∈ B, y0 ∈ I and with b (y0) 6= 0. The unique
solution of the problem is implicitly defined by:

∫ y

y0

1

b(ξ)
dξ =

∫ t

t0

a(η)dη, (1.3)

in such a way the function of two variables:

f(t, y) =

∫ y

y0

1

b(ξ)
dξ −

∫ t

t0

a(η)dη, (1.4)

supplies the implicit solution of (1.2) .
Therefore, we see that the Cauchy problem (1.2) supplies an implicit func-

tion problem of the special form:

g(x) = h(y), (1.5)

where g : B → R, h : I → R are two smooth real functions defined in the
open real intervals B, I and where x0 ∈ B, y0 ∈ I and g (x0) = h (y0).
Moreover h′ (y0) 6= 0. The particular form of (1.5) in order to solve for y

the transcendental equation (1.5), suggests the approach of replacing h(y)
by its nth order Taylor polynomial evaluated at y0. Of course this requires
h ∈ Cn (I) , n ∈ N, which covers the most occurrences. Thus, if pn (y, y0) is
the nth order Taylor polynomial of h(y) at y0, instead of (1.5), we will consider
the integration of (1.2) as mapped by solving the nth order algebraic equation
in y :

g(x) = pn (y, y0) . (1.6)

Please note that the degree zero coefficient (the forcing term) of (1.6) depends
on the parameter x ∈ B. We can then state:

Theorem 1. The following facts hold:

1. equation (1.6) meets all the hypotheses of the theorem of implicit func-

tions and thus (1.6) will be satisfied by one and only one function yn =
yn (x, x0);

2. if h is real analytic, then:

lim
n→∞

yn (x, x0) = h−1 (g(x)) = ϕ(x),

where ϕ(x) is the unique function, defined in a suitable subinterval of B

which satisfies the implicit function problem (1.5).
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Proof. The first statement follows immediately because h(y) and the nth order
Taylor polynomial pn(y, y0) have the same derivative at y = y0. The second
property comes down from the following argument. We suppose h(y) real
analytic with radius of convergence ρ > 0, i.e.:

h(y) =

∞
∑

n=0

h(n)(y0)

n!
(y − y0)

n
, |y − y0| < ρ.

It is known (see [2] page 184 chap V. §21 n. 107) that, by means of the
Lagrange’s power series reversion theorem, the inverse function, h−1(z) is
analytic too, i.e. his Taylor series converges. Moreover the series’ coefficients
are uniquely determined by the Lagrange recursion formula. Of course the
same holds for pn(y, y0) thought as a function of y, and if p−1

n (z, y0) is the
relevant inverse function, the reversion algorithm ensures that:

lim
n→∞

p−1
n (z, y0) = h−1(z).

Finally, we prove that yn → ϕ(x). In fact:

|yn − y| =
∣

∣p−1
n (g(x), y0) − h−1(g(x))

∣

∣→ 0

as n → ∞.

Our strategy of finding closed form solutions of (1.2), deals therefore with
the classical problem of solving algebraic equations of degree greater than two.
In this framework we used Mathematica r© with its routines for the symbolic
solution of third and fourth degree equations.1 In the next section we shall
apply our method to the the Lotka-Volterra predator-prey planar system (sans

overcrowding).

2 Algebraic approximations

The Lotka-Volterra predator-prey system of nonlinear differential equations
is:

{

u̇(t) = u(t)
(

− c + dv(t)
)

,

v̇(t) = v(t)
(

a − bu(t)
)

,
(2.1)

v(t) and u(t) being the populations of the preys and the predators respectively
at the moment t; while a, b, c and d are positive constants of units t−1, where:

1We will compare the solutions given by our method with the highly accurate numerical
solutions obtained by Mathematica r© internal algorithms and specifically those suggested
by Knapp and Wagon in [1].
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• a is the birth rate of the preys,

• b is the proportion of preys actually eaten by the predators,

• c is the rate at which predators die if not nourished,

• d is the biomass conversion constant of the predators.

The main properties of the planar system (2.1) solutions are:

• the first quadrant is an invariant set for all the solutions of (2.1) with
positive initial conditions,

• (2.1) has two equilibria: the origin and E = (a
b
, c

d
),

• any solution of (2.1) shall be greater than zero, periodic in the first
quadrant and their orbits shall wander around E.

In spite of its simple formulation, no closed form solution of (2.1) is known.
However, writing (2.1) as:











d

dt

(

lnu(t)
)

= −c + dv(t),

d

dt

(

ln v(t)
)

= a − bu(t),

and making the change of variables:











x = ln
(d

c
v
)

,

y = ln
( b

a
u
)

.

which will move E to the origin, now the system depends on two parameters
alone, namely a and c:

{

ẋ(t) = a
(

1 − exp y(t)
)

,

ẏ(t) = −c
(

1 − exp x(t)
)

,
(2.2)

where the x variable can be termed logarithmic prey and y the logarithmic

predator, and, of course, even negative solutions have physical meaning.
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The initial conditions x(0) = x0, y(0) = y0 are no longer necessarily positive
and one can immediately obtain the orbit differential equation in the (x, y)
plane:



















dy

dx
= k

(1 − exp x

1 − exp y

)

,

y(x0) = y0,

k = −
c

a
< 0,

(2.3)

which is of the type (1.2). Therefore due to (1.3), the solution of (2.3) can be
found to be:

y − exp y = k (x − exp x) + C, (2.4)

where:

C = y0 − exp y0 − k (x0 − exp x0) ,

is the constant of integration (or motion constant for people mechanically in-
clined), with x0 = x(0) and y0 = y (x(0)) . If (2.4) could be solved explicitly
for y, the orbit of the Lotka-Volterra system would be known: but unfortu-
nately the transcendental nonlinearity of (2.4) prevents this. Note that (2.4)
is an implicit equation like (1.5): therefore the Dini theorem comes into play.
We are going to replace the left hand side of (2.4) with its Taylor expansion:
of course this bounds us to work in a neighborhood of the initial value y0 in
order to achieve a reasonably good approximation for y. The solution’s peri-
odicity allows us to take the initial data: y(0) = y0 > 0 and x(0) = x0 = 0
without loss of generality, the latter being the motion coordinates around the
origin of the new logarithmic system.

2.1 Numerical reference solutions of Lotka-Volterra

equations

In order to test the accuracy of the approximate explicit solution we are going
to compute, and compare it with the numerical ones, we consider a sample case
by fixing the coefficients a and c and the initial values x0 and y0. This does
not affect the generality of our method, because the procedure can be easily
implemented in different situations; moreover we can so test our accuracy.
Let us display the Mathematica r© solution first. Let a = 2, c = 1, x0 = 0
(the prey’s population is at the equilibrium value) and y0 = 1 (predators are

Divulgaciones Matemáticas Vol. 11 No. 1(2003), pp. 1–17



8 Giovanni Mingari Scarpello, Daniele Ritelli

e times their equilibrium value). Then (2.2) and (2.4) can be written as















ẋ(t) = 2
(

1 − exp y(t)
)

,

ẏ(t) = −
(

1 − exp x(t)
)

,

x(0) = 0, y(0) = 1,

(2.5)

y − ey +
1

2
(x − ex) −

1

2
+ e = 0. (2.6)

Making use of the package VisualDSolve.m, by D. Schwalbe and S. Wagon
[4], the system’s orbit on the (x, y) plane will be found, and we will be able to
store the numerical solution for a later comparison. The orbit 2, which runs
counterclockwise, is shown at Figure 3.
Moreover, as suggested in [1], the numerical computation’s accuracy can be
checked by the conservation law (2.6). First of all, let us observe that the
period of system (2.5) can be numerically computed as τ ' 5.27. Therefore
let us introduce the finite subset of the interval I = [0, 5.27]:

∆ =

{

527n

5000000
: 0 ≤ n ≤ 50000

}

.

Thus making the time span discrete, each time interval will be 1
50000 of the

overall interval I. Let (x(t), y(t)) denote the solution found by Mathematica r©.
Eeplacing the left hand side of (2.6), one finds that

sup
t∈∆

∣

∣

∣

∣

y(t) − ey(t) +
1

2

(

x(t) − ex(t)
)

+ e −
1

2

∣

∣

∣

∣

= 1.43783× 10−5 (2.7)

instead of zero. The time span has been also divided into 10000 steps find-
ing the error substantially unchanged. This means that Mathematica r©’s
predictor-corrector technique provides solutions which differ from the motion

constant by less than 10−4, and therefore are surely correct to four decimal
digits.

2Much computational work has gone into the case where a = c; in this case the orbit’s
shape is rather similar to an oblate circle.
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Figure 3: The Lotka-Volterra orbit.

2.2 Algebraic approximations at work

And what about our approach? First we approximate y − ey by means of its
Taylor expansion around y0 = 1; note that Dini’s theorem does not allow the
Maclaurin approximation of y − ey, because its derivative vanishes for y = 0.

Therefore the second, third and fourth order algebraic approximations to
equation (2.6) around y0 = 1 will generate the following equations for y:

e y2 − 2y + ex − x − e + 1 = 0, (2.8)

e y3 + 3 (e − 2) y + 3 ex − 3 x − 4 e + 3 = 0, (2.9)

e y4 + 6 e y2 + 8 (e − 3) y + 3 (4 ex − 4 x − 5 e + 4) = 0. (2.10)

Once again let us denote the solutions of (2.8), (2.9), (2.10) as s2(x), s3(x)
and s4(x), respectively, such that the initial conditions sk(0) = y(0) = 1 for
k = 2, 3, 4 are satisfied. The existence and uniqueness of such solutions are
guaranteed by Dini’s theorem. For instance

s2(x) =
1 +

√

1 − e (1 − e + ex − x)

e
,
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whilst s3(x) is more complicated:

s3(x) =
36 e − 18 e2 + 2

1

3

(

27 e
3

2

√

δ(x) + 27 e2 (−3 + 4 e − 3 ex + 3 x)
)

2

3

3 2
2

3 e
(

27 e
3

2

√

δ(x) + 27 e2 (−3 + 4 e − 3 ex + 3 x)
)

1

3

where

δ(x) = 4 (e − 2)
3

+ e (3 − 4e + 3ex − 3x)
2
.

We shall not bother our readers by writing the full expression for s4(x):
it can be obtained by the formulas of L. Ferrari (1522–1565) through some
computer algebra system. The essential point is that we are indeed able to
evaluate s4(x) and, later, check its accuracy.

We deem meaningful to verify how the explicit approximations are related
to the invariant (2.6). For that purpose the interval

[

− 1
2 , 1

2

]

, which includes
the origin, is discretized into 1000 subintervals. Hence we obtain the finite
set:

Λ =

{

−
1

2
+

n

1000
: 0 ≤ n ≤ 1000

}

for which we then compute:

ζk = sup
x∈Λ

∣

∣

∣

∣

sk(x) − esk(x) +
1

2
(x − ex) + e −

1

2

∣

∣

∣

∣

, k = 1, 2, 3, (2.11)

-2 -1.5 -1 -0.5 0.5 1

-0.25

0.25

0.5

0.75

1

1.25

Figure 4: The second and fourth order approximations
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obtaining: 3

ζ2 = 4.04683× 10−5, ζ3 = 4.53918× 10−7, ζ4 = 4.0769× 10−9,

and this estimation is better than (2.7) concerning the solution (x(t), y(t))
obtained by means of the usual numerical methods. Figure 4 gives a pictorial
view of this, showing the explicit approximation s2(x) (dotted line) and s4(x)
(continuous line).

A fair objection that could be raised is that, when testing (2.7), one must
sample the whole orbit, whilst our computation of ζk took place on a strictly
local basis. Accordingly, let us perform a new computation defining ∆1 and
∆2 as:

∆1 =

{

3n

10000
: 0 ≤ n ≤ 500

}

, ∆2 =

{

128

25
+

3n

10000
: 0 ≤ n ≤ 500

}

.

We introduce

ρ1 = sup
t∈∆1

∣

∣

∣

∣

y(t) − ey(t) +
1

2

(

x(t) − ex(t)
)

+ e −
1

2

∣

∣

∣

∣

,

ρ2 = sup
t∈∆2

∣

∣

∣

∣

y(t) − ey(t) +
1

2

(

x(t) − ex(t)
)

+ e −
1

2

∣

∣

∣

∣

,

obtaining:

ρ1 = 1.68752× 10−6, ρ2 = 1.54722× 10−6.

Note that the comparison is significant because the simulation shows that
x(t) ∈

[

− 1
2 , 1

2

]

for t ∈ ∆1 and t ∈ ∆2.

All this means that our symbolic approximate solutions s3(x) and s4(x) fit

the first integral better than the numerical solutions do. The final figure gives
the complete Mathematica r© solution (x(t), y(t)) as a dotted line versus the
s4(x) plotted with a continuous line for x ∈ [−2.30, 1.309].

3It should be taken into account that the maximum could be evaluated setting to zero
the derivative of the function inside the absolute value in (2.11), and searching the relevant
solution. Of course this will allow, for k = 2, to solve a quite difficult equation, becoming
prohibitive for growing k. Then this sup has been searched computing (2.11), and so
detecting its highest values displayed as ζ2, ζ3, ζ4.
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1

Figure 5: s4 versus the Mathematica r© numerical solution.

3 Asymptotic approximations

It should be clear up to now that, even if the theoretical ground for ap-
proximating the explicit solution of the Lotka-Volterra (or other hamiltonian)
equations is the Dini theorem, nevertheless only the algebraic track has been
led for doing the explicitation. Beyond its remarkable outsets, it has a severe
boundary in its own nature, being possible to write it only till the fourth
order.

In this section we present a meaningful improvement to obtain once again a
closed form, but more accurate approximations of the Lotka-Volterra problem
on the phase plane. Following closely the proof of Theorem 1, we will obtain
the explicit solution of the equation h(y) = g(x) through the series reversion
method applied to a Taylor polynomial of the function h(y).

The loss of accuracy due to the fact we cannot write for n ≥ 5 the exact
solution of the approximate equation:

pn (y, y0) =

n
∑

k=0

h(n)(y0)

n!
(y − y0)

k
= g(x),

is balanced by the better accuracy for h(y) that one can achieve increasing the
Taylor’s polynomial degree. E.g. in the test case previously seen h(y) = y−ey

with y ∈ [0, 1] , putting:

Θ =
{ n

2000
: 0 ≤ n ≤ 2000

}

,
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we have:

m4 = max
y∈Θ

|h(y) − p4(y, y0)| =
3

8
e − 1 ' 0.0193557.

m8 = max
y∈Θ

|h(y) − p8(y, y0)| =
2119

5760
e − 1 ' 6.8046× 10−6.

Of course the reversion doesn’t settle the function that, according to the pre-
vious sections, we call sn(x)—which, generally speaking, will be a transcen-
dental function of x—but the nth order Taylor polynomial relevant to such a
function, and we note it as rn(x). The reverse series shall then be computed
for g(x), which, in the test case is g(x) = 1

2 − e − 1
2 (x − ex) .

E.g., for n = 8 the elapsed time for inverting by Mathematica r© p8 (y, y0)
by a computer Macintosh G4 with clock rated at 733 MHz, bus of 133 MHz
and 640 MB RAM, has been of 0.7 seconds:

r8(x) = 1 −
ex − x − 1

2 (e − 1)
−

e (ex − x − 1)2

8 (e − 1)
3 −

e (1 + 2 e) (ex − x − 1)3

48 (e − 1)
5

−
e
(

1 + 8 e + 6 e2
)

(ex − x − 1)
4

384 (e − 1)7

−
e
(

1 + 22 e + 58 e2 + 24 e3
)

(ex − x − 1)5

3840 (e − 1)
9

−
e
(

1 + 52 e + 328 e2 + 444 e3 + 120 e4
)

(ex − x − 1)
6

46080 (e − 1)
11

−
e
(

1 + 114 e + 1452 e2 + 4400 e3 + 3708 e4 + 720 e5
)

645120 (e − 1)13
× (ex − x − 1)7

−
e
(

1 + 240 e + 5610 e2 + 32120 e3 + 58140 e4 + 33984 e5 + 5040 e6
)

10321920 (e − 1)
15

× (ex − x − 1)
8
.

Up to this point we can compute ζ8, see (2.11), namely the figure appre-
ciating the accuracy of the asymptotic solution versus the first integral:

ζ8 = max
x∈Λ

∣

∣

∣

∣

r8(x) − er8(x) +
1

2
(x − ex) + e −

1

2

∣

∣

∣

∣

,
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where the discrete set Λ has the same meaning of the previous section. With
a time machine of 0,05 seconds we will appreciate an accuracy improvement:

ζ8 = 3.10769× 10−11.

We put our reversion till to r22(x), even if in such a case the elapsed time was
14617 seconds, but the accuracy is:

ζ22 = 8.88178× 10−16,

the same even doubling the discretization step.
Last, the range of x by

[

− 1
2 , 1

2

]

has been broadened to [−1, 1] (for the test
case we have −2, 35 < x < 1, 33). Then the finite sets have been introduced:

Ωa =
{

−1 +
n

500
: 0 ≤ n ≤ 1000

}

, Ωb =
{

−1 +
n

1000
: 0 ≤ n ≤ 2000

}

,

in which it has been checked that

max
x∈Ωa

∣

∣

∣

∣

r22(x) − er22(x) +
1

2
(x − ex) + e −

1

2

∣

∣

∣

∣

= max
x∈Ωb

∣

∣

∣

∣

r22(x) − er22(x) +
1

2
(x − ex) + e −

1

2

∣

∣

∣

∣

= 7.70113× 10−10.

Then, even if the broadening of the sample range makes worse the accuracy,
such an approximation keeps its validity till to the tenth digit for the 54% of
the solution existence range.

Last we compare the highest algebraic approximation s4(x) with the asymp-
totic approximation r4(x). The asymptotic solution’s accuracy is obviously
less, but not immensely less:

max
x∈Λ

∣

∣

∣

∣

r4(x) − er4(x) +
1

2
(x − ex) + e −

1

2

∣

∣

∣

∣

= 6.64716× 10−7,

while

max
x∈Λ

∣

∣

∣

∣

s4(x) − es4(x) +
1

2
(x − ex) + e −

1

2

∣

∣

∣

∣

= 4.08 × 10−9

and the distance beween them will be not greater than:

max
x∈Λ

|s4(x) − r4(x)| = 4.18236× 10−7.
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4 Conclusions

We obtained an explicit solution of Lotka-Volterra equations founded upon
the existence of its first integral holding a couple of phase variables (x, y)
inextricably tied.

We started with a Taylor’s power expansion in the variable y. Truncating
the expansion to the fourth term, we can use the machinery of classical algebra
in order to solve for y. This algebraic approximation has been proved to
be better than the highly accurate predictor/corrector numerical procedures.
Our benchmark is in any case based on the approximate solutions capability
to satisfy the first integral.

The above approximation can be improved (asymptotic approximation)
taking more terms beyond the fourth in the Taylor expansion, and inverting
for y. This approximation is by far more accurate than the algebraic one.

Nothing has been told hitherto about the approximate solution’s domain.
This problem is too involved for being solvable in its generality: therefore we
will provide an overview of it treating some concrete cases. In order to do this
the hamiltonian of the original system, depending on y, is replaced by some
Taylor approximation. Doing so, we succeed in calculating the (approximate)
explicit equation of its integral curve. Its range of existence is then determined
by the crossings of the relevant orbit with the horizontal axis. E. g. the closed
curve of equation (2.6) has been pictured by the line of equation

1

2
+

x − ex

2
+ (1 − e) (y − 1) −

e (y − 1)2

2
−

e (y − 1)3

6
−

e (y − 1)4

24
= 0,

which we use for calculating s4(x), and then capable of approximating the
solution for y > 0.

In such a way, with a numerical approach, we can see that putting y = 0,

(2.6) gives x ' −2.34026 and x ' 1.32477, while the approximate hamiltonian
cuts the x axis at x ' −2.29732 and x ' 1.31062.

It should be observed that the highest absolute difference between the
hamiltonians: the exact one, and the approximate, referred to the positive
half-orbit only (y > 0), can be numerically appreciated as ∆ ' 0.0193557.
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Figure 6: The exact (outer) and the approximate (inner) orbits.

Of course, increasing the nth-approximation order, the approximant orbit
becomes closer and closer to the original one: in such a way for n = 8 the ap-
proximate curve crosses at x ' −2.34025 and x ' 1.32477, almost the same as
the original orbit. The highest absolute difference between the hamiltonians,
the exact one and the 8th order approximation, for y > 0 is 6.8046×10−6.

Both approaches to simulate the first integrals by means of Taylor polyno-
mials seem quite viable but, as far as we know, they have not been attempted
before, probably due to prohibitive computations. In any case, our method’s
effectiveness is by large extent due to the computer algebra systems.

The algebraic approximations, by which we succeeded in calculating long
arcs of the orbit on the population plane (x, y) for the Lotka-Volterra system,
leads to very complicated integrals, as a right hand side of the so called time

equation. Let us take, for example, the first equation from system (2.5):

ẋ(t) = 2 (1 − exp y(t)) ,

and set the initial condition x(0) = 0. Replacing y(t) with one of the approx-
imation sk(x), in the easiest case k = 2 we obtain:

t =
1

2

∫ x

0

dξ

1 − exp

(

1 +
√

1 − e (1 − e + exp ξ − ξ)

e

) .

All told, it isn’t even worth investing any effort in such endeavour: even an
exact solution of the above integral would lead only to a very poor approxi-
mation of time versus x, which would then have to be inverted, of course.
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