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Abstract
Besides a well known example of Davenport and Heilbronn, there

exist other Dirichlet series satisfying a functional equation, similar to
the one satisfied by the Riemann zeta function. As in the case of the
former, some of them also have zeros off the critical line.
Key words and phrases: Dirichlet series, Riemann zeta function,
Functional equations.

Resumen
Además de un ejemplo bien conocido debido a Davenport y Heil-

bronn, existen otras series de Dirichlet que satisfacen una ecuación fun-
cional. Como en el caso de la primera, algunas de estas series también
tienen ceros fuera de la linea cŕıtica.
Palabras y frases clave: Series de Dirichlet, función zeta de Riemann,
ecuaciones funcionales.

1 Introduction

It is a well known fact that the Riemann zeta function ζ(s) is an analytic
function in the entire complex plane, save for the point s = 1, where it has
a simple pole with residue 1. Moreover, ζ(s) satisfies the following functional
equation (see [6], page 13)

ζ(s) = χ(s) ζ(1− s), χ(s) = 2 (2π)s−1 Γ(1− s) sin
(πs

2
)
. (FE)
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Let s = σ + it. Dirichlet series (with σ0 as abscissa of absolute convergence)

f(s) =
∞∑
n=1

fn
ns
, σ > σ0

whose meromorphic continuation to the complex plane satisfy a functional
equation are not scarce. The next theorem is attributed to H. Davenport and
H. Heilbronn ([3], page 212).

Theorem 1. Let ξ =

√
10− 2

√
5− 2√

5− 1
. For s, a complex number with real

part greater than one, let

f1(s) = 1 +
ξ

2s
− ξ

3s
− 1

4s
+

0
5s

+ · · ·

be a periodic Dirichlet series with period 5. Then f1(s) defines an entire
function satisfying the functional equation

f1(s) = 5−s+ 1
2 χ1(s) f1(1− s), χ1(s) = 2 (2π)s−1 Γ(1− s) cos

(πs
2
)
.

Moreover, f1(s) has zeros off the critical line σ = 1/2.

This example of Dirichlet series is interesting in view of the hitherto un-
proved Riemann hypothesis to the effect that ζ(s) has non-trivial complex
zeros only on the line σ = 1/2 and nowhere else. The Davenport-Heilbronn
example has received due attention (see [4], for example). By a theorem of H.
Hamburger (see [6], page 31) the zeta function of Riemann is determined by its
functional equation (FE). Hence, if we want to produce other Dirichlet series
satisfying a functional equation, then it is necessary to change (FE) somehow.
In the above theorem the functional equation (FE) has been altered in two
ways; first by introducing an extra factor 5−s+ 1

2 , and also by replacing the
sine with a cosine function. This last change to (FE) is unnecessary. Indeed,
the examples to follow provide us with Dirichlet series satisfying functional
equations which closer resembles (FE) than the Davenport-Heilbronn example
does.

2 Dirichlet polynomials

It is easy to see that if f(s) and g(s) are two Dirichlet series, each satisfying
a functional equation, then the product f(s) · g(s) defines a third Dirichlet
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series also satisfying a given functional equation. In this section we exhibit
Dirichlet polynomials satisfying a simple functional equation.

Proposition 2. Let s = σ+ it. If d is natural number greater than one, then

1±
√
d

ds
= ± d−s+ 1

2 ·
(
1±

√
d

d1−s
)
.

This proposition provides us with simple Dirichlet polynomials satisfying:
f(s) = ± d−s+ 1

2 ·f(1−s). It is clear how to produce more complex examples.

Proposition 3. Let A be a positive integer. Let A = a1a2 · · · ar be a decom-
position of A into a product of integers aj > 1. For s = σ + it, define the
Dirichlet polynomial

p(s) =
r∏
j=1

(
1 +
√
aj
asj

)
. (1)

Then p(s) satisfies: p(s) = ε · A−s+ 1
2 · p(1 − s). The sign of each

√
aj can

be taken to be, either positive or negative. The term ε equals −1 if an odd
number of signs in

√
aj have taken to be negative, otherwise ε = 1.

Proposition 4. Let p(s) be as in Proposition 3. If p(s) = 0 then σ = 1/2.
Thus, all zeros of p(s) lie in the critical line σ = 1/2.

Proof. Assume that 1 = ∓
√
d · d−s. Now we can take absolute values: 1 =√

d/dσ. Solving for σ we get: σ = 1/2.

3 Dirichlet Series

In this section we will use Proposition 3 to produce Dirichlet series satisfying
a functional equation. In section 5 we will look at a concrete example and
obtain finite dimensional vector spaces of Dirichlet series, all whose elements
satisfy a functional equation.

Theorem 5. Let A be a positive integer. Let A = a1a2 · · · ar be a decompo-
sition of A into a product of integers aj > 1. Let f(s) be a Dirichlet series
defining a meromorphic function on the whole complex plane. Assume f(s)
satisfies the functional equation

f(s) = X (s) · f(1− s). (2)
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Define a new Dirichlet series g(s) = p(s) · f(s), where p(s) is as in (1). Then
g(s) satisfies the following functional equation:

g(s) = ±A−s+ 1
2 · X (s) · g(1− s). (3)

Moreover, if we take f(s) to be the Riemann zeta function, then g(s) =
p(s) · ζ(s) is a periodic Dirichlet series of period A.

Proof. Only the assertion about the periodicity of g(s) = p(s) · ζ(s) needs to
be verified. Let σ > σ0. Let A =

{
a1, . . . , ar

}
be the set of integers in the

above decomposition of A. Let

p(s) =
∑
n≤A

pn
ns
, and g(s) =

∞∑
n=1

gn
ns
.

Notice that pn = 0 unless n is a product of the elements of some subset of A.
Assume n ≡ m (mod A). Then (see [1], Theorem 11.5, page 283)

gn =
∑
jk=n
j≤A

pj =
∑
jk=m
j≤A

pj = gm

because if j|n and p(j) 6= 0 (so that also j|A) then j|m = n+Aq.

4 Zeros off σ = 1/2

From Theorem 1 we know that the Davenport-Heilbronn example has zeros
off the critical line σ = 1/2. If we have two linearly independent Dirichlet
series, both satisfying the same functional equation, then it is easy to produce
a third Dirichlet series satisfying the same functional equation and having
zeros at preassigned places.

Theorem 6. Let f1(s) and f2(s) be two periodic, linearly independent Dirich-
let series. Assume that both f1(s) and f2(s) satisfy the functional equation
(2). Let s0 be any complex number. Then there exists a Dirichlet series f(s)
satisfying (2) and such that f(s0) = 0.

Proof. A sufficient condition for f(s) := αf1(s)− βf2(s) = 0 is that

α

β
=

f2(s)
f1(s)

.
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Thus for example, the functional equation

f(s) = 5−s+ 1
2 · χ(s) · f(1− s), (4)

with χ(s) as in (FE), is satisfied by both (see [1], Teorema 12.11, page 326 for
the case of the L-function L(s, χ(5)

2 ))(
1 +
√

5
5s
)
· ζ(s) = 1 + 1

2s + 1
3s + 1

4s + 1+
√

5
5s + · · · ,

L(s, χ(5)
2 ) = 1− 1

2s −
1

3s + 1
4s + 0

5s + · · ·

Since these are linearly independent Dirichlet series, then we have examples
of 5-periodic Dirichlet series satisfying (4) and having zeros off the critical line
σ = 1/2.

5 Case A = 6
Now we produce as many as we can, essentially distinct (i.e., linearly indepen-
dent) periodic Dirichlet series of period 6. These will arise from the distinct
factorizations of the period A = 6, via producing a Dirichlet polynomial p(s)
and then forming the product p(s) · ζ(s). Since we are dealing with periodic
Dirichlet series, we have only to specify the first A = 6 coefficients. We write
these as 6 dimensional vectors.

Thus, corresponding to the factorizations 6 = 2 · 3 and 6 = (−2) · (−3), we
obtain (

1 1 +
√

2 1 +
√

3 1 +
√

2 1 1 +
√

2 +
√

3 +
√

6
1 1−

√
2 1−

√
3 1−

√
2 1 1−

√
2−
√

3 +
√

6

)
(5)

where we use each row in the above matrix as the first coefficients of a periodic
Dirichlet series. Each of these series satisfies:

f(s) = 6−s+ 1
2 · χ(s) · f(1− s), (6)

where χ(s) is as in (FE). Any linear combination of these two series also
satisfies (6). We notice from (5) that (1 1 1 1 1 1 +

√
6) defines a Dirichlet

series satisfying (6). This corresponds to the trivial factorization 6 = 6.
Also, corresponding to the factorizations −6 = (−2) · 3 and −6 = 2 · (−3),

we obtain that each Dirichlet series in the two dimensional space generated
by the rows of(

1 1−
√

2 1 +
√

3 1−
√

2 1 1−
√

2 +
√

3−
√

6
1 1 +

√
2 1−

√
3 1 +

√
2 1 1 +

√
2−
√

3−
√

6

)
(7)
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satisfies:
f(s) = −6−s+ 1

2 · χ(s) · f(1− s). (8)

From (7) it follows that (1 1 1 1 1 1−
√

6) defines a Dirichlet series satisfying
(8). This corresponds to −6 = −6.

6 Pairs of Dirichlet Series

Let us say that two Dirichlet series f(s) and f∗(s) are the one dual of the
other, if there exists a function X (s) such that

f(s) = X (s) · f∗(1− s). (9)

As a continuation of the example in §5, we now produce a pair of such
Dirichlet series. Let f1(s), f2(s) and f3(s) be three linearly independent
Dirichlet series such that the first two satisfy (6) while the third satisfies (8).
Let

f(s) = α1f1(s) + α2f2(s) + α3f3(s).

Then we have

f(s) = 6−s+ 1
2 · χ(s) ·

{
α1f1(1− s) + α2f2(1− s)− α3f3(1− s)

}
.

Notice the change of sign in the third term. By considering s = σ+it such that
1−σ > σ0, one can determine the Dirichlet series which equals the last linear
combination. Thus for example, let f1(s) and f2(s) be the two Dirichlet series
obtained from matrix (5) and let f3(s) be the Dirichlet series obtained from
(1 1 1 1 1 1−

√
6). Now put α1 = α2 = (6−

√
6)/24 and α3 = (6 +

√
6)/24.

Then we have that

f(s) = 1 + 1
2s + 1

3s + 1
4s + 1

5s + 0
6s + · · ·

f∗(s) = −η − η

2s −
η

3s −
η

4s −
η

5s + 5η
6s + · · ·

where η = 1/6
1
2 , is a dual pair of 6 -periodic Dirichlet series.

7 Final Remark

The examples presented here can also be obtained from a theorem in [5],
by solving some elementary eigenvalue problems. The Davenport-Heilbronn
example can also be obtained in this manner.
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