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Abstract

A hamiltonian virus is a local configuration that, if present in a
digraph, forbids this digraph to have a hamiltonian circuit. Unfortu-
nately, there are non-hamiltonian digraphs that are hamiltonian virus-
free. Some families of these digraphs will be described here. Moreover,
problems and conjectures related to hamiltonian virus-free digraphs are
given.
Keywords and phrases: digraph, hamiltonian digraph, hamiltonian
virus.

Resumen

Un virus hamiltoniano es una estructura local que, estando pre-
sente en un digrafo, impide que éste tenga un circuito hamiltoniano.
Desafortunadamente, existen digrafos no hamiltonianos sin virus ha-
miltonianos. Algunas familias de estos digrafos son descritas aqui. Més
ain, se plantean problemas y conjeturas relativas a digrafos sin virus
hamiltonianos.
Palabras y frases clave: digrafos, digrafos hamiltonianos, virus ha-
miltonianos.
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1 Introduction and terminology

The importance of hamiltonian viruses [1, 8] is their relation with the “certi-
fication” of non-hamiltonian digraph families, i.e. they are non-hamiltonian
if and only if they have a hamiltonian virus. For example, balanced bipartite
digraphs are hamiltonian if and only if they are hamiltonian virus-free. This
paper has multiple goals:

e To identify non-hamiltonian digraph families which are hamiltonian
virus-free, and digraph families that are hamiltonian if and only if they
are hamiltonian virus-free.

e To characterize digraphs that do not contain hamiltonian viruses of a
given order.

e To present and discuss problems and conjectures related to expected
properties of hamiltonian virus-free digraph families.

1.1 Terminology

The terminology described in what follows is taken textually from [2] and it
will be used throughout the whole paper.

Invariants are integer or boolean values that are preserved under isomor-
phism. We will be using the following invariants, relations between invariants,
theorems and digraph examples. Let D = (V(D), E(D)) be a digraph.

Integer invariants

nodes: number of nodes of a digraph.

arcs: number of arcs of a digraph.

alpha2: maximum size of a set of nodes which induces no circuit of length 2.
alpha@: maximum size of a set of nodes inducing no arc.

woodall: min{d*(z) +d~(y) : (z,y) ¢ E(D),z # y} (if alpha2 = 1, then
woodall = 2nodes by convention.)

minimum: min{mindegpositive, mindegnegative}.

mindegpositive min{d*(z) : x € V(D)}.

mindegnegative min{d~ (z) : x € V(D)}.

Boolean invariants

hamiltonian: the digraph contains a hamiltonian circuit.

traceable: the digraph contains a hamiltonian path.

k-connected: the deletion of fewer than k vertices always results in a connected
digraph.



Hamiltonian virus-free digraphs 3

bipartite: its vertex set is partitioned into two subsets X and Y such that
each arc has one vertex in X and another in Y.

antisymmetric: it does not contain a circuit of length two.

(1,1)-factor: it contains a spanning subdigraph H such that d};(z) = d(z) =
1 for all vertices.

Relations between invariants

Ry1: minimum > 2 A nodes < 4 = hamiltonian.

R31: antisymmetric => arcs < nodes(nodes — 1)/2.

Theorems and conjectures

Theorem 51: k-connected A (alpha0 < k) = (1,1)-factor. Best result: see
Dsyy.

Theorem 64: antisymmetric A (nodes < 2h+2) A (h > 2) A (minimum > h)
= hamiltonian.

Theorem 65: antisymmetric A (nodes > 6) A (woodall > nodes — 2) =
hamiltonian.

Theorem 66: antisymmetric A (h > 5) A (minimum > h) A (nodes < 2h+5)
= hamiltonian.

Theorem 67: antisymmetric A 2-connected A [arcs > nodes(nodes—1)/2 — 2]
=—> hamiltonian. Best result: see Doy.

Theorem 77: (nodes = 2a + 1) A (minimum > a) = hamiltonian VD5 V
D¢V D7V Dg.

Theorem 78: r-direqular A (nodes= 2r + 1) => hamiltonian VD5 V Dg.

Digraphs examples

DE 1 nI:I
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2 Hamiltonian viruses

A hamiltonian virus is a local configuration that, if present in a digraph,
forbids this digraph to have a hamiltonian circuit.

Theorem 1 ([1]). Let H = (V(H),E(H)) be a proper induced subdigraph
of a given digraph D = (V(D),E(D)). A 3-uple (H,T+,T~), where T+ =
{z € V(H) : dj;(z) = d5(z)} and T~ = {x € V(H) : dy(z) = dp(z)},
is a hamiltonian virus if and only if for every set of disjoint directed paths
Pi,...,P. covering V(H) there exists a path P; = x; .. .a:?(J), with q(j) > 1

such that either :U; €T~ or :U‘]I-(j) € Tt. The order of a hamiltonian virus

(H,T*,T™) is defined as the cardinality of V(H).
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In what follows a 3-uple (H,T",T ™) is present in a digraph D if and only
if there exists in D a proper induced subdigraph H' isomorphic to H (for
convenience we identify H' with H), such that T+ = {z € V(H) : df;(z) =
d5(z)} and T~ = {x € V(H) : dy(z) = dp(z)}. Moreover if (H,T+,T7)
is a hamiltonian virus of a given digraph D, then we must have T # () or
T #0.

In [1] we show that if a 3-uple (H,T",T~) is not a hamiltonian virus for
a given digraph, then there exists a digraph D where (H,T*,T~) is present
and D is hamiltonian.

Theorem 2. If a digraph of order n is free of hamiltonian viruses of order h
for some h with 2 < h < n, then it has no hamiltonian viruses of order less
than h.

Equivalently, from a hamiltonian virus of order 1 < h < n—2 we can build
a hamiltonian virus of order h + 1.

Proof. Let us reason ab absurdo. Let D be a digraph of order n and 2 <
h < n — 1. Assuming D contains a hamiltonian virus (H,T%,T~) of order
h—1. Let z € V(D) \ V(H) and H; the subdigraph induced by V(H U {z})
in D. It is clear that the 3-uple (Hy, T, , T, ) with T," = T+ and T, = T~
is present in D. Now, we shall see that (Hy,T;",7,") is a hamiltonian virus.
Let Py,..., P, be a set of disjoint directed paths covering V(Hy). Without
loss of generality we can suppose that = € V(P;). We consider three cases:

Case 1 P, = zz}...x{. In this case z} ¢ T~. Hence P} =z} ...2§, P} =
P; (2 <i < r) are disjoint directed paths covering V(H). Since (H,T+,T7)
is a hamiltonian virus there exists a path P} = 7 .. .a:?(J ) such that x; €T~
or :U‘JI-(]) € Tt. Therefore z} € T or :U‘JI-(]) €T,

Case 2 P, =z} ...z{z. Hence z§ ¢ T*. This situation will be treated as
Case 1.

Case 3 P, = z}...zlzx™ . .27, In this case P! = z}...2}, P} =
e, P!, = P;(2 <i <r) are disjoint directed paths covering V (H).
Since x ¢ TTUT ™~ and (H,T",T") is a hamiltonian virus, z1 € T~ or z§ €
T+t. Incasex] ¢ T~ and ] ¢ T~ there exists a path P} (3 <j <r+1) such
that «}_, € T~ or m;(ffl) € T*. Therefore (Hy,T;",T,) is a hamiltonian
virus of order h. A contradiction. O

Corollary 1. If a digraph of order n has hamiltonian viruses then it contains
a hamiltonian virus of order n — 1.

Proof. Directly from Theorem 2. O
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From Corollary 1 we have:

Remark 1. Let D = (V(D), E(D)) be a digraph. If for each z € V(D), the
3-uple (H,T+,T~) with H = D —z, T+ = {z € V(H) : df;(z) = d},(z)}
and T~ = {z € V(H) : di(z) = d(x)} is not a hamiltonian virus then D is
hamiltonian virus-free. Moreover, if D — z is not a hamiltonian virus for some
z, then for each hamiltonian virus (H,T%,T~) of D we have x € V(H).

Digraph Dg shows that there exist non-hamiltonian digraphs hamiltonian
virus-free. In Dg hamiltonian viruses of order 6 are not present. Then by
Corollary 1 Dg does not have viruses.

From Theorem 1 we have:

Remark 2. A hamiltonian virus-free digraph D has the following structure:
for each vertex x the remaining part D — z has a covering by vertex disjoint
paths Py,..., P, such that each one of them makes a circuit with z.

In the next lemma DI[S] denotes the subdigraph induced by S.

Lemma 1. Let (H,T+,T™) be a hamiltonian virus present in D. Let S C
V(H)\ (TTUT") # 0 be such that for all z € S, dJ[)[T,](:L“) = dB[TJr](a:) =0.

Then (H — S, T*,T™) is a hamiltonian virus present in D.

Proof. Let Py,..., P, be a set of disjoint directed paths covering V(H — S).
Then for any set of disjoint directed paths P,y1,... , Ps covering V(D[S]) we
have that Pi,... ,P., Pry1,..., Ps is a set of disjoint directed paths covering
V(H). Since (H,T",T") is a hamiltonian virus, there exists a path P;(1 <
j <'s)withaj € T~ or a:;’-(J) € T*. On the other hand since SN(TTUT ™) = 0,
it must be 1 < j < r. Therefore (H — S, T+, T™) is a hamiltonian virus. [

Theorem 3. Let D be an antisymmetric digraph with minimum > 2. Then
D is free of hamiltonian viruses of order < 4.

Proof. Let us reason ab absurdo. Let (H,T%,T~) be a hamiltonian virus
of order 4 present in D. Let us see that 1 < [TT] < 2and 1 < |T7| < 2.
Suppose |[T| > 3 (similarly, |T~| > 3). By a simple inspection on the relative
positions of the arcs in H, we can deduce that either there exists a symmetric
arc or (H,TT,T7) is not a hamiltonian virus. A contradiction. Therefore it
must be [TF] > 1 and |T7] > 1. If TT = () then T~ # (), hence there are
disjoint directed paths covering V(H) that do not verify the conditions for
(H,T*,T") to be a hamiltonian virus. A contradiction. Consider now the
case |TT| = 1 and |[T~| = 2 (the case |T"| = 2 and |T| = 1 is similarly
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treated). By enumerating several cases resulting from the relative positions
of the arcs in H, sets of disjoint directed paths covering V(H) do not verify
the condition in order that (H,T+,T~) is a hamiltonian virus. For the case
T =T~ =1 (or |T*| = |T~| = 2), we can see the existence of sets of
disjoint directed paths covering V' (H) that do not verify the conditions to be
a hamiltonian virus. By Theorem 2, D is a hamiltonian virus-free digraph of
order < 3. [l

In Theorem 4, we need the following definition:

Definition 1. [1] A 1-connected virus is a local configuration that, if present
in a digraph, forbids this digraph to be 1-connected. Let H = (V(H), E(H))
be a proper induced subdigraph of a given digraph D = (V (D), E(D)). A 3-
uple (H,T+,T~), where T* = {z € V(H) : d};(z) = d},(z)} and T~ = {z €
V(H) : dg(z) = dp(x)}, is a 1-connected virus if and only if V(H) = T or
V(H)=T".

Theorem 4. A hamiltonian virus-free digraph is 2-connected.

Proof. Let D = (V(D), E(D)) be hamiltonian virus-free. Let us reason ab
absurdo. Let (H,T%,T~) be a l-connected virus present in D — z for some
z € V(D) with V(H) =T . The case V(H) = T is treated in a similar way.
Let y € V(D — z) \ V(H). By Remark 2, there exist vertex disjoint paths
Py, ..., P, covering D — y such that each one of them makes a circuit with
y. Since V(H) = T~ then for each P; = m}...xg(J) we have =} ¢ V(H).
Moreover, for each zt € V(H) NV (P;) we have zt~' € V(H). Hence z} €
V(H). A contradiction. O

3 Hamiltonian virus-free digraph families

In this section we describe non-hamiltonian and hamiltonian virus-free di-
graph families. There exist non-hamiltonian digraph families with hamilto-
nian viruses. This fact has allowed to derive problems and conjectures that
are presented and discussed in this section.

Theorem 5. Balanced bipartite digraphs are hamiltonian if and only if they
are hamiltonian virus-free.

Proof. Let D = (X UY, E(D)) be a hamiltonian balanced bipartite digraph.
Hence D is hamiltonian virus-free (by Theorem 1 ). Let us assume that D
is hamiltonian virus-free. Let z € X (similarly discussed for y € V). By
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Remark 2, D — z has a covering by vertex disjoint paths P,... , P, such that
each one of them makes a circuit with z. Let C; (1 < i < r) be these circuits.
Since D is a balanced bipartite digraph we have |V (C;)| = 2n; (the circuits
have even length), | X|=n1+ns—1+---4+n,—1land |Y| =ny +na+---+n,.
Therefore D is not balanced. A contradiction. O

The next remark follows directly from Theorem 77.

Remark 3. There are no non-hamiltonian and hamiltonian virus-free di-
graphs with minimum = 2 and nodes = 5. Notice that digraph Ds has
hamiltonian virus.

The only non-hamiltonian and hamiltonian virus-free digraph with mini-
mum = 3 and nodes = 7 is Dg.

A non-hamiltonian digraph with nodes = 2minimum + 1 > 9 has hamil-
tonian viruses. By Theorem 77 the only families of digraphs that are non-
hamiltonian and where nodes = 2minimum + 1 > 9 holds, are D; and Ds.
These families have viruses.

Proposition 1. A hamiltonian virus-free digraph with nodes <5 is hamilto-
nian.

Proof. Let D be a hamiltonian virus-free digraph; then minimum > 2. If
nodes < 4 then, by Ry, D is hamiltonian. The case nodes = 5 follows
directly from Remark 3. |

Proposition 2. A hamiltonian virus-free digraph with minimum = 2 is trace-
able or hamiltonian.

Proof. Since minimum = 2, there exists z € V(D) such that d*(z) = 2 or
d—(xz) = 2. Then by Remark 2, there exist at most two vertex disjoint paths

covering D — z, say P; = zla?. ..x:(i)(l < i < 2), such that each one of
them makes a circuit with z. If there is only one path then D is hamiltonian,

otherwise the path z!z? ... 2{Wzzla? . . 25® makes D traceable. O

Proposition 3. A hamiltonian virus-free antisymmetric digraph with nodes
=6, 7 or 8 is hamiltonian or traceable. Moreover, the only hamiltonian non-
hamiltonian virus-free antisymmetric digraph with nodes = 7 is digraph EX .

Proof. Let D be a hamiltonian virus-free digraph. Then minimum > 2 and
woodall > 4. By Theorem 65, if nodes = 6 then D is hamiltonian. For
nodes = 7 or 8, if minimum = 2 then, by Proposition 2, D is hamiltonian or
traceable. If minimum > 3 then, by Theorem 65, D is hamiltonian. |
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The following conjecture should be true:

Conjecture 1. A hamiltonian virus-free antisymmetric digraph is hamilto-
nian or traceable.

Notice that digraph FX is non-hamiltonian, but it is traceable.
The following conjecture should be true:

Conjecture 2. A hamiltonian virus-free antisymmetric r —diregular digraph
with r > 3 and nodes < 4r + 1 is hamiltonian.

We can formulate the following remarks for Conjecture 2: By Theorem
64, the conjecture for r = 3 is true when nodes < 8. For case 9 < nodes < 13
the hypothesis hamiltonian virus-free perhaps can be useful. Notice that by
Theorem 78, the conjecture is true for nodes = 2r + 1. The conjecture is true
from Theorem 66 for r = 5 and nodes < 15.

Problem 1. Let D be an antisymmetric and hamiltonian virus-free digraph.
Find the greatest positive integer x such that when arcs> nodes(nodes-1)/2—x
then D is hamiltonian.

By Theorem 4 and Theorem 67 we have x > 2. Moreover the digraph Dsg
shows that Theorem 67 is the best possible. Notice that Dyy has hamiltonian
viruses.

Problem 2. Let D be a k-connected and hamiltonian virus-free digraph. Find
the greatest integer x such that when alpha0 < k+ x then D contains a (1,1)-
factor.

By Theorem 51 we have that x > 0. Moreover digraph Dsg shows that
this theorem is the best possible. Notice that Dy has hamiltonian viruses.

3.1 Hamiltonian virus-free hypohamiltonian digraphs

This section is devoted to study hypohamiltonian hamiltonian virus-free di-
graphs and those that have hamiltonian viruses. The methods, for building
hypohamiltonian digraphs, established in [9] and [4] are given. Some con-
jectures related to hamiltonian virus-free and hypohamiltonian digraphs are
discussed.

A digraph D is hypohamiltonian if it has no hamiltonian circuits but every
vertex-deleted subdigraph D — v has such a circuit.

It is natural to formulate, as in [6], the following conjectures:
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Conjecture 3. Every hamiltonian virus-free non-hamiltonian digraph is hy-
pohamiltonian.

Or the weaker one:

Conjecture 4. Every non-hamiltonian vertez-transitive hamiltonian virus-
free digraph is hypohamiltonian.

Conjecture 5. Every hypohamiltonian digraph is hamiltonian virus-free.

Notice that digraph Dg is hypohamiltonian and hamiltonian virus-free.
In [9] Thomassen gives a method for obtaining hypohamiltonian digraphs by
forming the cartesian product of cycles. We give here a short summary of his
results, in order to give some remarks on Conjectures 3, 4, 5.

Recall that if D; and D, are digraphs then its cartesian product Dy x D5
is the digraph with vertex set V(D;) x V(D) such that the edge from (v, vs)
to (u1,us) is present if and only if v = u; and vyus € E(D3), or va = us and
viur € E(D;). The directed cycle of length k, 2 < k, is denoted Cj. With
this notation Thomassen gives the following theorems:

Theorem 6 ([9]). For each k >3, m > 2, Ci, X Crui—1 is a hypohamiltonian
antisymmetric digraph. Moreover, C3 X Cgryq is hypohamiltonian for each
k> 0.

Theorem 7 ([9]). There is no hypohamiltonian digraph with fewer than siz
vertices, and for each odd m > 3, Cy x C,, is a hypohamiltonian digraph.

Remark 4. The hypohamiltonian digraphs C3 X Cgg14 with k& > 0 (Theorem
6) and the hypohamiltonian digraphs given in Theorem 7 verify Conjecture 5.
However the digraph Cy x Ci1, i.e., kK =4 and m = 3 in Theorem 6, refutes
Conjecture 5. We have proved that the only non-hamiltonian vertex-transitive
digraph which is also hamiltonian virus-free of order 6, is the hypohamilto-
nian digraph Cs x C5. Which is in favor of Conjecture 4. Nevertheless the
Conjecture 4 is false, the digraph EX is non-hamiltonian, vertex-transitive,
hamiltonian virus-free and not hypohamiltonian.

In [4] Fouquet and Jolivet give the following theorem for obtaining hypo-
hamiltonian digraphs.

Theorem 8 ([4]). For each n > 6, the digraph F,, = (V(F,), E(F,)) de-
scribed below is hypohamiltonian.

e Forn=206, Fg = Cs x (3.
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e Forn=2p+1andp>3: V(F,) ={zs,21,... ,22p-1,y} and E(F,) =
{Top—120,TiTip1 (0 <0 < 2p—2)} U {zpxp_2 and cpxpya ,1 < k <
2p — 1,k odd}U {zy and yxy ,0 < k < 2p— 1,k even}. Each index is
taken modulo 2p.

e Forn = 2p and p > 4, F, is obtained from Fb,_1 replacing the arc
Tap—3%, by the path x2p_sxx, and adding the following arcs: Tap_aT2p—3,
T2p—3T2p—4, Lok, T2p—3T2p—5, L2p—7TL2p—3, T1T, T3, ToL2p—4,T2p—37,

xx2p—3. Bach index is taken modulo 2p — 2.

In the next theorem let C' = z,x1 ... 22,12, be a circuit. We denote by
C(x;,z;) the induced path of C' beginning at z; and ending at z;.

Theorem 9. For each n > 8, F,, is hamiltonian virus-free.

Proof. We follow Remark 1 and Remark 2. In each step of the proof, we show
the paths P; (1 < i < 2) that cover F,, — w and make a circuit with w. For
all w € V(F,). We consider two cases:

Case 1 n=2p+1andp>4.

o [, —x, with 0 <k <2p—1.
For k even, the paths are P, =y and P> = C(xg41,Tk—1)-
For k odd, the paths are P, = C(zg44,Tr—4a) and Py = C(Tg41,Tit3)Y
C(zp—3,T}—1)-
e F,, —y: the paths are P; = C(x2,23)T1%2p_1%, and Py = C(z4, T2p_2).
Case 2 n =2pand p > 4.
o I, —x, with 0 <k <2p-—3.
For k odd except 3 and 2p — 3 the paths are similar to those of Case 1.
For k = 3 the paths are P, = C(x7,z) and P> = C(x4,x6)yC(z,0, T2)-
For k = 2p—3 the paths are P, = x and P> = 2,_5C(1, T2p—6)YToTap_4.
For k even, the paths are P, =y and P> = C(xg41,Tk—1)-
e F,—y: the paths are P, = C(22, z2p—6) and Py = 2,T12%2p_3T2p_5T2p—4.
e F,, —x: the paths are P = z3p_3 and Py = 2,22,_4yC(z2, T2p_5)T1.

O

Remark 5. For n > 8, the hypohamiltonian digraphs F), given in Theorem
8 is in favor of Conjecture 5.
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4 Conclusion

It is well known that the problem to decide when a digraph is hamiltonian
is NP-complete [3]. A “yes” answer to the hamiltonicity problem for a given
digraph can be verified by checking in polynomial time that a sequence of
vertices given by an oracle is a hamiltonian circuit. In case of non-hamiltonian
digraphs, as stated in [7] pages 28, 29, there is no known way of verifying a
“yes” answer to the complementary problem of deciding if a digraph is non-
hamiltonian. A solution to this problem is to provide a hamiltonian virus,
whose presence in the digraph can also be checked in polynomial time. In
case of the non-hamiltonian hamiltonian virus-free digraphs, they must hold
the particular structure given in Remark 2. The virus notion has been used
in random generation of digraphs without certain properties [8].

We have built an interactive support tool called GRAPHVIRUS [5] that
allows the graphical edition of hamiltonian viruses and the verification that
a given structure is a hamiltonian virus. GRAPHVIRUS can also be used to
derive a procedure for deciding whether a given digraph is non-hamiltonian.
This procedure is of the same complexity of the problem of deciding if a given
digraph is hamiltonian, but the interest of the procedure is the fact of using
a local structure.

Finally, the theoretic interest of the results presented here is their relation
with the extension of known sufficient conditions with the new hamiltonian
virus-free condition for the existence of hamiltonian circuits.
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