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Abstract

A hamiltonian virus is a local con�guration that, if present in a

digraph, forbids this digraph to have a hamiltonian circuit. Unfortu-

nately, there are non-hamiltonian digraphs that are hamiltonian virus-

free. Some families of these digraphs will be described here. Moreover,

problems and conjectures related to hamiltonian virus-free digraphs are

given.
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virus.

Resumen

Un virus hamiltoniano es una estructura local que, estando pre-

sente en un digrafo, impide que �este tenga un circuito hamiltoniano.

Desafortunadamente, existen digrafos no hamiltonianos sin virus ha-

miltonianos. Algunas familias de estos digrafos son descritas aqu��. M�as

a�un, se plantean problemas y conjeturas relativas a digrafos sin virus

hamiltonianos.
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1 Introduction and terminology

The importance of hamiltonian viruses [1, 8] is their relation with the \certi-

�cation" of non-hamiltonian digraph families, i.e. they are non-hamiltonian

if and only if they have a hamiltonian virus. For example, balanced bipartite

digraphs are hamiltonian if and only if they are hamiltonian virus-free. This

paper has multiple goals:

� To identify non-hamiltonian digraph families which are hamiltonian

virus-free, and digraph families that are hamiltonian if and only if they

are hamiltonian virus-free.

� To characterize digraphs that do not contain hamiltonian viruses of a

given order.

� To present and discuss problems and conjectures related to expected

properties of hamiltonian virus-free digraph families.

1.1 Terminology

The terminology described in what follows is taken textually from [2] and it

will be used throughout the whole paper.

Invariants are integer or boolean values that are preserved under isomor-

phism. We will be using the following invariants, relations between invariants,

theorems and digraph examples. Let D = (V (D); E(D)) be a digraph.

Integer invariants

nodes : number of nodes of a digraph.

arcs : number of arcs of a digraph.

alpha2 : maximum size of a set of nodes which induces no circuit of length 2.

alpha0 : maximum size of a set of nodes inducing no arc.

woodall : minfd+(x) + d�(y) : (x; y) =2 E(D); x 6= yg (if alpha2 = 1, then

woodall = 2nodes by convention.)

minimum: minfmindegpositive, mindegnegativeg.
mindegpositive minfd+(x) : x 2 V (D)g.
mindegnegative minfd�(x) : x 2 V (D)g.

Boolean invariants

hamiltonian: the digraph contains a hamiltonian circuit.

traceable: the digraph contains a hamiltonian path.

k-connected : the deletion of fewer than k vertices always results in a connected

digraph.
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bipartite: its vertex set is partitioned into two subsets X and Y such that

each arc has one vertex in X and another in Y .

antisymmetric: it does not contain a circuit of length two.

(1,1)-factor : it contains a spanning subdigraphH such that d+
H
(x) = d�

H
(x) =

1 for all vertices.

Relations between invariants

R11: minimum � 2 ^ nodes � 4 =) hamiltonian.

R31: antisymmetric =) arcs � nodes(nodes � 1)/2.

Theorems and conjectures

Theorem 51: k-connected ^ (alpha0 � k) =) (1,1)-factor. Best result: see

D20.

Theorem 64: antisymmetric ^ (nodes � 2h+2) ^ (h � 2) ^ (minimum � h)

=) hamiltonian.

Theorem 65: antisymmetric ^ (nodes � 6) ^ (woodall � nodes � 2) =)
hamiltonian.

Theorem 66: antisymmetric ^ (h � 5) ^ (minimum � h) ^ (nodes � 2h+5)

=) hamiltonian.

Theorem 67: antisymmetric ^ 2-connected ^ [arcs � nodes(nodes� 1)/2� 2]

=) hamiltonian. Best result: see D20:

Theorem 77: (nodes = 2a + 1) ^ (minimum � a) =) hamiltonian _D5 _
D6 _D7 _D8.

Theorem 78: r-diregular ^ (nodes= 2r + 1) =) hamiltonian _D5 _D6.

Digraphs examples
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2 Hamiltonian viruses

A hamiltonian virus is a local con�guration that, if present in a digraph,

forbids this digraph to have a hamiltonian circuit.

Theorem 1 ([1]). Let H = (V (H); E(H)) be a proper induced subdigraph

of a given digraph D = (V (D); E(D)). A 3-uple (H;T+; T�), where T+ =

fx 2 V (H) : d+
H
(x) = d+

D
(x)g and T� = fx 2 V (H) : d�

H
(x) = d�

D
(x)g,

is a hamiltonian virus if and only if for every set of disjoint directed paths

P1; : : : ; Pr covering V (H) there exists a path Pj = x1
j
: : : x

q(j)

j
, with q(j) � 1

such that either x1
j
2 T� or x

q(j)

j
2 T+. The order of a hamiltonian virus

(H;T+; T�) is de�ned as the cardinality of V (H).
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In what follows a 3-uple (H;T+; T�) is present in a digraph D if and only

if there exists in D a proper induced subdigraph H1 isomorphic to H (for

convenience we identify H1 with H), such that T+ = fx 2 V (H) : d+
H
(x) =

d+
D
(x)g and T� = fx 2 V (H) : d�

H
(x) = d�

D
(x)g. Moreover if (H;T+; T�)

is a hamiltonian virus of a given digraph D; then we must have T+ 6= ; or

T� 6= ;.
In [1] we show that if a 3-uple (H;T+; T�) is not a hamiltonian virus for

a given digraph, then there exists a digraph D where (H;T+; T�) is present

and D is hamiltonian.

Theorem 2. If a digraph of order n is free of hamiltonian viruses of order h

for some h with 2 � h < n; then it has no hamiltonian viruses of order less

than h.

Equivalently, from a hamiltonian virus of order 1 � h � n�2 we can build

a hamiltonian virus of order h+ 1:

Proof. Let us reason ab absurdo. Let D be a digraph of order n and 2 �
h � n � 1: Assuming D contains a hamiltonian virus (H;T+; T�) of order

h� 1. Let x 2 V (D) n V (H) and H1 the subdigraph induced by V (H [ fxg)
in D. It is clear that the 3-uple (H1; T

+
1 ; T

�

1 ) with T+
1 = T+ and T�1 = T�

is present in D. Now, we shall see that (H1; T
+
1 ; T

�

1 ) is a hamiltonian virus.

Let P1; : : : ; Pr be a set of disjoint directed paths covering V (H1): Without

loss of generality we can suppose that x 2 V (P1): We consider three cases:

Case 1 P1 = xx11 : : : x
s

1: In this case x11 =2 T�. Hence P 1
1 = x11 : : : x

s

1, P
1
i
=

Pi (2 � i � r) are disjoint directed paths covering V (H). Since (H;T+; T�)

is a hamiltonian virus there exists a path P 1
j
= x1

j
: : : x

q(j)

j
such that x1

j
2 T�

or x
q(j)

j
2 T+: Therefore x1

j
2 T�1 or x

q(j)

j
2 T+

1 :

Case 2 P1 = x11 : : : x
s

1x. Hence x
s

1 =2 T+. This situation will be treated as

Case 1.

Case 3 P1 = x11 : : : x
i

1xx
i+1
1 : : : xs1. In this case P 1

1 = x11 : : : x
i

1, P
1
2 =

xi+1
1 : : : xs1, P

1
i+1 = Pi(2 � i � r) are disjoint directed paths covering V (H).

Since x =2 T+ [ T� and (H;T+; T�) is a hamiltonian virus, x11 2 T� or xs1 2
T+. In case x11 =2 T� and x11 =2 T� there exists a path P 1

j
(3 � j � r+1) such

that x1
j�1 2 T� or x

q(j�1)

j�1 2 T+. Therefore (H1; T
+
1 ; T

�

1 ) is a hamiltonian

virus of order h. A contradiction.

Corollary 1. If a digraph of order n has hamiltonian viruses then it contains

a hamiltonian virus of order n� 1.

Proof. Directly from Theorem 2.
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From Corollary 1 we have:

Remark 1. Let D = (V (D); E(D)) be a digraph. If for each x 2 V (D); the

3-uple (H;T+; T�) with H = D � x; T+ = fx 2 V (H) : d+
H
(x) = d+

D
(x)g

and T� = fx 2 V (H) : d�
H
(x) = d�

D
(x)g is not a hamiltonian virus then D is

hamiltonian virus-free. Moreover, if D�x is not a hamiltonian virus for some

x, then for each hamiltonian virus (H;T+; T�) of D we have x 2 V (H):

Digraph D6 shows that there exist non-hamiltonian digraphs hamiltonian

virus-free. In D6 hamiltonian viruses of order 6 are not present. Then by

Corollary 1 D6 does not have viruses.

From Theorem 1 we have:

Remark 2. A hamiltonian virus-free digraph D has the following structure:

for each vertex x the remaining part D � x has a covering by vertex disjoint

paths P1; : : : ; Pr such that each one of them makes a circuit with x.

In the next lemma D[S] denotes the subdigraph induced by S.

Lemma 1. Let (H;T+; T�) be a hamiltonian virus present in D. Let S �
V (H) n (T+ [ T�) 6= ; be such that for all x 2 S, d+

D[T�]
(x) = d�

D[T+]
(x) = 0.

Then (H � S; T+; T�) is a hamiltonian virus present in D.

Proof. Let P1; : : : ; Pr be a set of disjoint directed paths covering V (H � S):

Then for any set of disjoint directed paths Pr+1; : : : ; Ps covering V (D[S]) we

have that P1; : : : ; Pr; Pr+1; : : : ; Ps is a set of disjoint directed paths covering

V (H). Since (H;T+; T�) is a hamiltonian virus, there exists a path Pj(1 �

j � s) with x1
j
2 T� or x

q(j)

j
2 T+: On the other hand since S\(T+[T�) = ;,

it must be 1 � j � r: Therefore (H � S; T+; T�) is a hamiltonian virus.

Theorem 3. Let D be an antisymmetric digraph with minimum � 2. Then

D is free of hamiltonian viruses of order � 4.

Proof. Let us reason ab absurdo. Let (H;T+; T�) be a hamiltonian virus

of order 4 present in D. Let us see that 1 � jT+j � 2 and 1 � jT�j � 2.

Suppose jT+j � 3 (similarly, jT�j � 3). By a simple inspection on the relative

positions of the arcs in H , we can deduce that either there exists a symmetric

arc or (H;T+; T�) is not a hamiltonian virus. A contradiction. Therefore it

must be jT+j � 1 and jT�j � 1. If T+ = ; then T� 6= ;, hence there are

disjoint directed paths covering V (H) that do not verify the conditions for

(H;T+; T�) to be a hamiltonian virus. A contradiction. Consider now the

case jT+j = 1 and jT�j = 2 (the case jT+j = 2 and jT�j = 1 is similarly
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treated). By enumerating several cases resulting from the relative positions

of the arcs in H , sets of disjoint directed paths covering V (H) do not verify

the condition in order that (H;T+; T�) is a hamiltonian virus. For the case

jT+j = jT�j = 1 ( or jT+j = jT�j = 2), we can see the existence of sets of

disjoint directed paths covering V (H) that do not verify the conditions to be

a hamiltonian virus. By Theorem 2, D is a hamiltonian virus-free digraph of

order � 3.

In Theorem 4, we need the following de�nition:

De�nition 1. [1] A 1-connected virus is a local con�guration that, if present

in a digraph, forbids this digraph to be 1-connected. Let H = (V (H); E(H))

be a proper induced subdigraph of a given digraph D = (V (D); E(D)): A 3-

uple (H;T+; T�); where T+ = fx 2 V (H) : d+
H
(x) = d+

D
(x)g and T� = fx 2

V (H) : d�
H
(x) = d�

D
(x)g, is a 1-connected virus if and only if V (H) = T+ or

V (H) = T�.

Theorem 4. A hamiltonian virus-free digraph is 2-connected.

Proof. Let D = (V (D); E(D)) be hamiltonian virus-free. Let us reason ab

absurdo. Let (H;T+; T�) be a 1-connected virus present in D � x for some

x 2 V (D) with V (H) = T�: The case V (H) = T+ is treated in a similar way.

Let y 2 V (D � x) n V (H): By Remark 2, there exist vertex disjoint paths

P1; : : : ; Pr covering D � y such that each one of them makes a circuit with

y. Since V (H) = T� then for each Pj = x1
j
: : : x

q(j)

j
we have x1

j
=2 V (H):

Moreover, for each xt
i
2 V (H) \ V (Pi) we have xt�1

i
2 V (H). Hence x1

i
2

V (H): A contradiction.

3 Hamiltonian virus-free digraph families

In this section we describe non-hamiltonian and hamiltonian virus-free di-

graph families. There exist non-hamiltonian digraph families with hamilto-

nian viruses. This fact has allowed to derive problems and conjectures that

are presented and discussed in this section.

Theorem 5. Balanced bipartite digraphs are hamiltonian if and only if they

are hamiltonian virus-free.

Proof. Let D = (X [ Y;E(D)) be a hamiltonian balanced bipartite digraph.

Hence D is hamiltonian virus-free (by Theorem 1 ). Let us assume that D

is hamiltonian virus-free. Let x 2 X (similarly discussed for y 2 Y ). By
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Remark 2, D�x has a covering by vertex disjoint paths P1; : : : ; Pr such that

each one of them makes a circuit with x. Let Ci (1 � i � r) be these circuits.

Since D is a balanced bipartite digraph we have jV (Ci)j = 2ni (the circuits

have even length), jX j = n1+n2�1+ � � �+nr�1 and jY j = n1+n2+ � � �+nr.

Therefore D is not balanced. A contradiction.

The next remark follows directly from Theorem 77.

Remark 3. There are no non-hamiltonian and hamiltonian virus-free di-

graphs with minimum = 2 and nodes = 5. Notice that digraph D5 has

hamiltonian virus.

The only non-hamiltonian and hamiltonian virus-free digraph with mini-

mum = 3 and nodes = 7 is D6.

A non-hamiltonian digraph with nodes = 2minimum + 1 � 9 has hamil-

tonian viruses. By Theorem 77 the only families of digraphs that are non-

hamiltonian and where nodes = 2minimum + 1 � 9 holds, are D7 and D8.

These families have viruses.

Proposition 1. A hamiltonian virus-free digraph with nodes � 5 is hamilto-

nian.

Proof. Let D be a hamiltonian virus-free digraph; then minimum � 2. If

nodes � 4 then, by R11, D is hamiltonian. The case nodes = 5 follows

directly from Remark 3.

Proposition 2. A hamiltonian virus-free digraph with minimum = 2 is trace-

able or hamiltonian.

Proof. Since minimum = 2, there exists x 2 V (D) such that d+(x) = 2 or

d�(x) = 2. Then by Remark 2, there exist at most two vertex disjoint paths

covering D � x, say Pi = x1
i
x2
i
: : : x

r(i)

i
(1 � i � 2), such that each one of

them makes a circuit with x. If there is only one path then D is hamiltonian,

otherwise the path x11x
2
1 : : : x

r(1)

1 xx12x
2
2 : : : x

r(2)

2 makes D traceable.

Proposition 3. A hamiltonian virus-free antisymmetric digraph with nodes

= 6, 7 or 8 is hamiltonian or traceable. Moreover, the only hamiltonian non-

hamiltonian virus-free antisymmetric digraph with nodes = 7 is digraph EX.

Proof. Let D be a hamiltonian virus-free digraph. Then minimum � 2 and

woodall � 4. By Theorem 65, if nodes = 6 then D is hamiltonian. For

nodes = 7 or 8, if minimum = 2 then, by Proposition 2, D is hamiltonian or

traceable. If minimum � 3 then, by Theorem 65, D is hamiltonian.
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The following conjecture should be true:

Conjecture 1. A hamiltonian virus-free antisymmetric digraph is hamilto-

nian or traceable.

Notice that digraph EX is non-hamiltonian, but it is traceable.

The following conjecture should be true:

Conjecture 2. A hamiltonian virus-free antisymmetric r�diregular digraph
with r � 3 and nodes � 4r + 1 is hamiltonian.

We can formulate the following remarks for Conjecture 2: By Theorem

64, the conjecture for r = 3 is true when nodes � 8. For case 9 � nodes � 13

the hypothesis hamiltonian virus-free perhaps can be useful. Notice that by

Theorem 78, the conjecture is true for nodes = 2r+1. The conjecture is true

from Theorem 66 for r = 5 and nodes � 15.

Problem 1. Let D be an antisymmetric and hamiltonian virus-free digraph.

Find the greatest positive integer x such that when arcs� nodes(nodes-1)/2�x
then D is hamiltonian.

By Theorem 4 and Theorem 67 we have x � 2. Moreover the digraph D20

shows that Theorem 67 is the best possible. Notice that D20 has hamiltonian

viruses.

Problem 2. Let D be a k-connected and hamiltonian virus-free digraph. Find

the greatest integer x such that when alpha0 � k+x then D contains a (1,1)-

factor.

By Theorem 51 we have that x � 0. Moreover digraph D20 shows that

this theorem is the best possible. Notice that D20 has hamiltonian viruses.

3.1 Hamiltonian virus-free hypohamiltonian digraphs

This section is devoted to study hypohamiltonian hamiltonian virus-free di-

graphs and those that have hamiltonian viruses. The methods, for building

hypohamiltonian digraphs, established in [9] and [4] are given. Some con-

jectures related to hamiltonian virus-free and hypohamiltonian digraphs are

discussed.

A digraph D is hypohamiltonian if it has no hamiltonian circuits but every

vertex-deleted subdigraph D � v has such a circuit.

It is natural to formulate, as in [6], the following conjectures:
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Conjecture 3. Every hamiltonian virus-free non-hamiltonian digraph is hy-

pohamiltonian.

Or the weaker one:

Conjecture 4. Every non-hamiltonian vertex-transitive hamiltonian virus-

free digraph is hypohamiltonian.

Conjecture 5. Every hypohamiltonian digraph is hamiltonian virus-free.

Notice that digraph D6 is hypohamiltonian and hamiltonian virus-free.

In [9] Thomassen gives a method for obtaining hypohamiltonian digraphs by

forming the cartesian product of cycles. We give here a short summary of his

results, in order to give some remarks on Conjectures 3, 4, 5.

Recall that if D1 and D2 are digraphs then its cartesian product D1 �D2

is the digraph with vertex set V (D1)�V (D2) such that the edge from (v1; v2)

to (u1; u2) is present if and only if v1 = u1 and v2u2 2 E(D2), or v2 = u2 and

v1u1 2 E(D1): The directed cycle of length k; 2 � k; is denoted Ck. With

this notation Thomassen gives the following theorems:

Theorem 6 ([9]). For each k � 3; m � 2; Ck�Cmk�1 is a hypohamiltonian

antisymmetric digraph. Moreover, C3 � C6k+4 is hypohamiltonian for each

k � 0.

Theorem 7 ([9]). There is no hypohamiltonian digraph with fewer than six

vertices, and for each odd m � 3, C2 � Cm is a hypohamiltonian digraph.

Remark 4. The hypohamiltonian digraphs C3�C6k+4 with k � 0 (Theorem

6) and the hypohamiltonian digraphs given in Theorem 7 verify Conjecture 5.

However the digraph C4 � C11, i.e., k = 4 and m = 3 in Theorem 6, refutes

Conjecture 5. We have proved that the only non-hamiltonian vertex-transitive

digraph which is also hamiltonian virus-free of order 6, is the hypohamilto-

nian digraph C2 � C3: Which is in favor of Conjecture 4. Nevertheless the

Conjecture 4 is false, the digraph EX is non-hamiltonian, vertex-transitive,

hamiltonian virus-free and not hypohamiltonian.

In [4] Fouquet and Jolivet give the following theorem for obtaining hypo-

hamiltonian digraphs.

Theorem 8 ([4]). For each n � 6; the digraph Fn = (V (Fn); E(Fn)) de-

scribed below is hypohamiltonian.

� For n = 6, F6 = C2 � C3:
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� For n = 2p+1 and p � 3: V (Fn) = fxo; x1; : : : ; x2p�1; yg and E(Fn) =

fx2p�1xo; xixi+1 (0 � i � 2p � 2)g [ fxkxk�2 and xkxk+4 ; 1 � k �
2p� 1; k oddg[ fxky and yxk ; 0 � k � 2p� 1; k eveng: Each index is

taken modulo 2p:

� For n = 2p and p � 4, Fn is obtained from F2p�1 replacing the arc

x2p�3xo by the path x2p�3xxo and adding the following arcs: x2p�4x2p�3;

x2p�3x2p�4; xox; x2p�3x2p�5; x2p�7x2p�3; x1x; xx3; xox2p�4; x2p�3x;

xx2p�3: Each index is taken modulo 2p� 2:

In the next theorem let C = xox1 : : : x2p�1xo be a circuit. We denote by

C(xi; xj) the induced path of C beginning at xi and ending at xj .

Theorem 9. For each n � 8; Fn is hamiltonian virus-free.

Proof. We follow Remark 1 and Remark 2. In each step of the proof, we show

the paths Pi (1 � i � 2) that cover Fn � w and make a circuit with w. For

all w 2 V (Fn). We consider two cases:

Case 1 n = 2p+ 1 and p � 4:

� Fn � xk with 0 � k � 2p� 1.

For k even, the paths are P1 = y and P2 = C(xk+1; xk�1).

For k odd, the paths are P1 = C(xk+4; xk�4) and P2 = C(xk+1; xk+3)y

C(xk�3; xk�1).

� Fn � y: the paths are P1 = C(x2; x3)x1x2p�1xo and P2 = C(x4; x2p�2):

Case 2 n = 2p and p � 4:

� Fn � xk with 0 � k � 2p� 3.

For k odd except 3 and 2p� 3 the paths are similar to those of Case 1.

For k = 3 the paths are P1 = C(x7; x) and P2 = C(x4; x6)yC(xo; x2).

For k = 2p�3 the paths are P1 = x and P2 = x2p�5C(x1; x2p�6)yxox2p�4.

For k even, the paths are P1 = y and P2 = C(xk+1; xk�1).

� Fn�y: the paths are P1 = C(x2; x2p�6) and P2 = xox1xx2p�3x2p�5x2p�4.

� Fn � x: the paths are P1 = x2p�3 and P2 = xox2p�4yC(x2; x2p�5)x1.

Remark 5. For n � 8, the hypohamiltonian digraphs Fn given in Theorem

8 is in favor of Conjecture 5.
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4 Conclusion

It is well known that the problem to decide when a digraph is hamiltonian

is NP-complete [3]. A \yes" answer to the hamiltonicity problem for a given

digraph can be veri�ed by checking in polynomial time that a sequence of

vertices given by an oracle is a hamiltonian circuit. In case of non-hamiltonian

digraphs, as stated in [7] pages 28, 29, there is no known way of verifying a

\yes" answer to the complementary problem of deciding if a digraph is non-

hamiltonian. A solution to this problem is to provide a hamiltonian virus,

whose presence in the digraph can also be checked in polynomial time. In

case of the non-hamiltonian hamiltonian virus-free digraphs, they must hold

the particular structure given in Remark 2. The virus notion has been used

in random generation of digraphs without certain properties [8].

We have built an interactive support tool called GRAPHVIRUS [5] that

allows the graphical edition of hamiltonian viruses and the veri�cation that

a given structure is a hamiltonian virus. GRAPHVIRUS can also be used to

derive a procedure for deciding whether a given digraph is non-hamiltonian.

This procedure is of the same complexity of the problem of deciding if a given

digraph is hamiltonian, but the interest of the procedure is the fact of using

a local structure.

Finally, the theoretic interest of the results presented here is their relation

with the extension of known suÆcient conditions with the new hamiltonian

virus-free condition for the existence of hamiltonian circuits.
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