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Abstract

In this paper we study the instability of the semilinear ordinary
differential equation z’(t) = Axz(t) + f(¢,x), where f(¢,0) = 0 and
|f(t,z)] < ~(t)]z|*, 0 < a < 1. In the case 0 < a < 1, we show that
the existence of an eigenvalue A of the constant matrix A satisfying
Re )\ > 0 implies the instability of the null solution, for a function ~(t)
satisfying lim sup ¢”*~y(t) > 0, 8 < 0.
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Resumen

En este articulo se estudia la inestabilidad de la ecuacién diferencial
ordinaria semilineal z'(t) = Axz(t) + f(¢t,x), en donde f(¢,0) = 0y
|f(t,z)] <~(t)|z|*, 0 <a<1. Enelcaso 0 < a < 1, se muestra que la
existencia de un autovalor A de la matriz A tal que Re A\ > 0 implica
la inestabilidad de la solucién nula para una funcién y(t) que cumple
con lim sup em’y(t) >0, 8<0.
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1 Introduction
A classical result on the Liapounov instability [1] for the ordinary equation
y'(t) = Ay(t) + f(t,y(t)), f(t,0)=0,t>0, A= constant, (1)

states the instability of the solution y = 0, if the matrix A has an eigenvalue
with positive real part and the continuous function f(t,y), uniformly respect
to t, satisfies

lim f(t,y)ly|~" = 0. (2)
ly|—0

This assertion is known as the Perron’s theorem on instability [6]. It has
played an important role in the applications of differential equations. In this
paper we discuss the following question: is the Perron’s result still valid for a
more general condition than (2)? We will assume that the continuous function
f(t,y) satisfies the condition

(F) There exists a positive function vy such that

lfE )l <)yl 0 <a <1

We will show that the existence of an eigenvalue of the matrix A satisfying
Re) > 0 and condition (F) with 0 < @ < 1 imply the instability of the trivial
solution y = 0 of Eq. (1), for a function v with the property

lim sup e’ |y(t)| > 0, 8 < 0. (3)
t

— 00

The main ideas of this paper arise from the Coppel result on instability [2].
The additional ingredient to treat Eq. (1) is the notion of (h, k)-dichotomies
[5], instead of the the exponential dichotomies used in [2].

2 Preliminaries

V denotes the space R" or C". |z| denotes a fixed norm of the vector x
and |A| is the corresponding matrix norm. The interval [tg, 00), tg > 0, will
be denoted by J(tp). ®(¢) will denote the fundamental matrix of the linear
equation

'(t) = A(t)x(t) (4)
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From now on, the notations y(t,to,§), x(t,to,&) respectively stand for the
solutions of Egs. (1) and (4) with initial condition £ at ¢y. Throughout, h(t),
k(t) will denote positive continuous functions on J(0), such that A(0) = k(0) =
1. We will use the norms |f|o. = sup {|f(t)| :t € J(0)} and |f|n = |h7  foo-
Besides Cr(J(to)) will denote the space of continuous functions satisfying
|f|n < oo and Bp[0,p] = {f € C(J(to)) : |fln < p}. Finally, we will use the
following subspace of initial conditions:

Vi = {6 ev: {L‘(Lto,f) S Ch(J(O))}

Definition 1. We shall say that on the interval J(¢y) the null solution of
Eq.(1) is h-stable if for each positive € there exists a § > 0 such that for any
initial condition yo satisfying |h(to) ~tyo| < J, the solution y(t,to,yo) satisfies
[y (-0, Yo)|n < e

We will assume that Eq. (4) possesses an (h, k)-dichotomy:

Definition 2. Eq. (4) has an (h, k)-dichotomy on J(tg), iff there exist a
projection matrix P and constants K, C' such that

A |D(H)PD~1(s)| < Kh(t)h(s)~!, 0<s<t,
(4) |®(t)(I — P)®1(s)] < Kk(t)k(s)™, 0<t<s
(B) h(t)h(s)™' < Ck()k(s)™t, t>s.
For a further use we define
)0 = [ SOPE () y()ds — [ " B(0)(1 — PYB(5) (5, y(s)ds.

3 A theorem on instability

The following instability theorem is valid for the nonautonomous system

y'(t) = Aty (t) + f(ty(t). (5)

Theorem 1. Assume that (/) has an (h, k)-dichotomy and the condition (F)
1s fulfilled. Moreover, assume that there exists pg such that for 0 < p < po,

KCp® /00 h(s) "ty (s)k(s)*ds < p. (6)

to

Then, if Vi, # Vi, the null solution of Eq. (5) is h-unstable on J(tg).
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Proof. By contradiction, assume that the null solution of Eq.(5) is h-stable.
Then for € > 0, there exists a 6 > 0 such that |y(-,¢o,y0)ln < € if
|h(to) " tyo| < 6. Let

p < min{5h(t0)k(to)71,po}. (7)
Choose a positive o satisfying
o+ KCp [ h(s) 9 (ok(s)ds < .
to

and fix an initial value zg € ®(to)[Vi] \ ®(to)[V4a] such that |z(-, to, x0)|x < 0.
Let us consider the integral equation y = U(y), where

Uy)(t) = z(t,to,x0) + T (y) (1)
Step 1: Show that U : Bi[0, p] — B0, p]. From (A), (B) and (6), we obtain

RO UWO] < k@) 2t to, 0)| + k(1) 7T (y)(1)]

IN

|k(t)~ta(t, to, x0)| + KCp* ftzo h(s)~ty(s)k(s)*ds < p.

Step 2: The operator 7 is continuous in the following sense: If {y,} is a
sequence of continuous functions contained in By[0, p], uniformly converging
on each interval [tg, t1] to a function y.., then the sequence {U(y,)} converges
uniformly on [tg, 1] to the function {U(yo)}. Let u > 0, choose T > t; large
enough such that

KCp® /TOo h(s) ™ y(s)k(s)*ds < /3.
Therefore for alln =0,1,..., and all t > T we have:

) [ @00 - P8 o) o)l <
From this estimate we obtain

Ul)(t) = / ()P (5) (5, yn(5))ds —

to

[ B(1)(I — PYO f(s,yu(s))ds + k(1)O(1/3).
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where O(u/3) is the Landau asymptotic symbol: |O(u/3)(t)] < Mu/3 for
some constant M. From this asymptotic formula, we observe that the uni-
form convergence of {y,} to yo on the interval [tg, T], implies the uniform
convergence of U(yy,) to U(ys) on the interval [to, t1].

Step 3: The sequence {k(t)"'U(y,)} is equicontinuous for each sequence
{yn} contained in Bylto,p]. This assertion follows from the boundedness
{U(y,)} and {LU(yn)}, on the interval [to, T].

Step 1-Step 3 imply that the conditions of the Schauder-Tychonoff theorem
[3] are fulfilled, and therefore the operator U has a fixed point y(¢) in the ball
Bg0, p]. This function y(¢) is a solution of Eq. (5). Since |k(to) "ty(to)| < p,
from (7) we obtain that |h(to) ty(to)] < 6, implying that h(t)~ly(t) is a
bounded function. But condition (6) and the property (B) of the (h,k)-
dichotomy imply the boundedness of the function h(t)~17 (y)(t). Since

y(t) = x(t, to, o) + T (y)(1),

we obtain that the function h(t)~lz(t,t9,20) must be bounded. But this
contradicts the choise of xg. O

4 The Perron instability theorem

o(A) will denote the set of eigenvalues of the constant matrix A; further, we
denote 0_(A) = {A € 0(4) : Re A < 0}, 04 (A) = {) € 0(4) : Re X > 0},
00(A) ={A € a(A) : Re\ =0}.

Regarding Eq. (1) we assume condition (F) and o4 (A) # 0. Consequently
we define gy = min{Re X : A € 0 (A)}. We will distinguish two cases:

0 < a < 1: In this case, for a number r, 0 < r < min{l, u}, we have
#o,(A—rl) =F#0,(A) (#D =number of elements contained in the set D),
and og(A —rI) = 0.

Introducing the change of variable y(t) = €"*2(t) in Eq. (1), one obtains

2(t) = (A—rDz(t) +e " f(t, e 2(t), f(t,0)=0. (8)
We observe that
pw—r=min{Rer: A€o (A—rl)},

Let ®,.(t) denote the fundamental matrix of the equation a’(t) = (A—rI)x(t).
Let R be a positive number satisfying a(p —r) < R < pp—r. It is easy to
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prove the existence of a projection matrix P and a constant K > 1, such that

|, (t) PO 1 (s)| < Kefill=9) 0<s<t,

@, (t)(I — P)®,(s)] < Kew (=9 (<t <s.

This implies that equation 2’(t) = (A—rI)x(t) has an (e, e(*~")*)-dichotomy
(we emphasize that this is not an exponential dichotomy). The condition
Vi, # Vi, of Theorem 1 is clearly satisfied as well as the condition (6) if

/ e(fRfT(1*0‘)+0‘(“77ﬂ))s’}/(8)d5 < 00. (9)

to

According to Theorem 1 the null solution of Eq. (8) is ef!-unstable. This
implies the Liapunov instability of the null solution of Eq. (1) for a function

~(t) satisfying (9).
The following result is a consequence of the above analysis:

Theorem 2. If o (A) #0, |f(t,z)| <~(t),t>tg, [f(t,00=0, and
/ B8 (5)ds < oo, (10)
to
then the null solution of Eq. (1) is unstable.

From this theorem it follows the instability of the null solution of the scalar

equation
V() V]|

/(1) = pe(t) + T

w>0

if condition (10) if fulfilled.
The instability of this example cannot be obtained from the Perron’s the-
orem.

a = 1: Let ®.(t) denote the fundamental matrix of the equation z’(t) = Ax(t).
Let us assume the existence of a projection matrix P and a constant K > 1,
such that

() PR (s)| < Kett=9, 0<s<t,
[@e()(I = P)D 1 (s)| < Ket=9), 0<t<s,

and

lim e *eA' P = 0. (11)

t—oo
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Hence equation z/(t) = Az(t) has an (e#!, e**)-dichotomy. In this case condi-
tion Vj, # Vi is not satisfied and therefore Theorem 1 does not apply. Nev-
ertheless, we emphasize the existence of e#!-bounded solutions of equation
a'(t) = Az(t) such that

limsup e #|z(t)| > 0. (12)

t—o0

Let z(t) be such a solution. Then following the proof of Theorem 1 we may
prove that the integral equation U(y)(t) = z(t) + 7 (y)(t) has an e**-bounded
solution y(¢), if

o0

K ~v(s)ds < 1.
to

This solution y(t) satisfies (1). Since

|z (to)]
1-— Kftzo v(s)ds’

ly(to)| <

then the norm of the initial condition y(to) is small if |x(tp)| is small. From
(11) it follows

lim 7 (y)(t) = 0.

t—oo

This property and (12) give

limsup e *!|y(¢)| > 0.

t—o0

implying the instability of the null solution of Eq. (1).

In this case, we recall the result of Coppel [2] asserting that the null
solution of Eq. (1) is unstable if |f(¢,z)] < ~|x|, where v is a constant
sufficiently small. Such a result, obtained by using an exponential dichotomy
for the equation z/(t) = Axz(t), clearly can be obtained by the ideas of this
paper. Thus, this paper complements the results on instability obtained in
[2] for the class of systems satisfying condition (F).
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