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Abstract

The first part of this paper studies extensions in the category of Ba-
nach spaces (natural equivalence of functors). The second part proves
a result which characterizes the duality of extensions.
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Resumen

La primera parte de este art́ıculo estudia las extensiones en la cate-
goŕıa de los espacios de Banach (equivalencia natural de funtores). La
segunda parte prueba un resultado que caracteriza la dualidad de tales
extensiones.
Palabras y frases clave: Extensiones y subidas, sumas torcidas, apli-
caciones casi-lineales.

Introduction

A short exact sequence in the category of Banach spaces is a diagram

0 → Y → X → Z → 0

where the image of each arrow is the kernel of the following.
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The open mapping theorem ensures that Y is a subspace of X and Z is
the corresponding quotient.

Given Banach spaces Y and Z we define the extensions of Y by Z as the
set

Ext(Y, Z) = {[X ] : 0 → Y → X → Z → 0 is exact}
where [X1] = [X2] ⇔ there exists a bounded linear operator T : X1 → X2

such that

0 → Y → X1 → Z → 0
‖ T ↓ ‖

0 → Y → X2 → Z → 0

is commutative.
A map F : Z → Y is quasi-linear if it is homogeneous and there exists a

constant K > 0 such that for all z1, z2 ∈ Z

‖F (z1 + z2) − (Fz1 + Fz2)‖ ≤ K(‖z1‖ + ‖z2‖).

Given a quasi-linear map F : Z → Y , the F -twisted sum of Y and Z is
defined as the quasi-Banach space

Y ⊕F Z = {(y, z) ∈ Y × Z : ‖(y, z)‖F = ‖y − Fz‖ + ‖z‖ < +∞}
Before beginning we shall define

Lin(Z, Y ) = {F : Z → Y linear}
B(Z, Y ) = {F : Z → Y bounded}
L(Z, Y ) = {F : Z → Y bounded and linear}.

1 Three approaches

Definition 1.1. Let Y, Z be two Banach spaces. We define

Q(Y, Z) = {[F ] : F : Z → Y quasi-linear}

such that [F1] = [F2] ⇔ d(F1 − F2, Lin(Z, Y )) < +∞.

Theorem 1.2. Let Y, Z be two Banach spaces. There exists a bijection be-
tween Q(Y, Z) and Ext(Y, Z).
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Proof. If

0 → Y
j−→ X

p−→ Z → 0

is an extension of Y by Z then we can consider a linear selection L ∈ Lin(Z, X)
and a bounded homogeneous selection B ∈ B(Z, X) because the quotient map
is open. Then F = B − L ∈ Q(Y, Z) since p(B − L) = 0, F is homogeneous
and

‖F (z1 + z2) − (Fz1 + Fz2)‖ = ‖B(z1 + z2) − (Bz1 + Bz2)‖
≤ ‖B(z1 + z2)‖ + ‖Bz1‖ + ‖Bz2‖
≤ ‖B‖‖z1 + z2‖ + ‖B‖(‖z1‖ + ‖z2‖)
≤ ‖B‖(‖z1‖ + ‖z2‖) + ‖B‖(‖z1‖ + ‖z2‖)
≤ 2‖B‖(‖z1‖ + ‖z2‖).

To complete the proof let us show that

[Y ⊕F1 Z] = [Y ⊕F2 Z] ⇔ d(F1 − F2, Lin(Z, Y )) < +∞.

⇒)
If [Y ⊕F1 Z] = [Y ⊕F2 Z], there exists a bounded linear operator T :

Y ⊕F1 Z → Y ⊕F2 Z such that

0 → Y → Y ⊕F1 Z → Z → 0
‖ T ↓ ‖

0 → Y → Y ⊕F2 Z → Z → 0

is commutative. In these conditions T must have the form T (y, z) = (y +
Lz, z), where L ∈ Lin(Z, Y ). Hence

‖F1z − F2z + Lz‖ = ‖(F1z + Lz) − F2z‖ ≤ ‖(F1z + Lz, z)‖F2

= ‖T (F1z, z)‖F2 ≤ ‖T ‖‖(F1z, z)‖F1 = ‖T ‖‖z‖.

⇐)
Supposing that F1 − F2 = B − L with B bounded and L linear then

T (y, z) = (y + Lz −Bz, z) is a linear operator from Y ⊕F1 Z to Y ⊕F2 Z. Let
us prove that T is bounded:

‖T (y, z)‖F2 = ‖(y + Lz − Bz, z)‖F2 = ‖y + Lz − Bz − F2z‖ + ‖z‖
= ‖y − F1z‖ + ‖z‖ = ‖(y, z)‖F1.



136 Antonio A. Pulgaŕın

Corollary 1.3. Let Y, Z be two Banach spaces and [F ] ∈ Q(Y, Z). The fol-
lowing relationships are equivalent:

(i) 0 → Y → Y ⊕F Z → Z → 0 splits

(ii) [Y ⊕F Z] = [Y ⊕ Z]

(iii) d(F, Lin(Z, Y )) < +∞.

Definition 1.4. Let 0 → Y
j−→ X

p−→ Z → 0 be a short exact sequence. A
bounded linear operator h from Y to a Banach space E has an extension onto
X if there is a bounded linear operator ĥ from X to E such that ĥj = h.

0 → Y
j−→ X

p−→ Z → 0
h ↓ ↙ ĥ
E

A bounded linear operator h from a Banach space E to Z has a lifting
into X if there is a bounded linear operator ĥ from E to X such that pĥ = h.

0 → Y
j−→ X

p−→ Z → 0
ĥ ↖ ↑ h

E

Further information about extensions and liftings of operators can be
found in [2].

Lemma 1.5. Let X be a Banach space. There exists an index set I such that

(i) 0 → Ker p → l1(I)
p−→ X → 0 is exact. (Projective representation).

(ii) 0 → X
j−→ l∞(I) → l∞(I)/X → 0 is exact. (Injective representation).

Proof. Let I be such that (xi)i∈I = BX . Then

(i) p(y) =
∑

i∈I y(i)xi is surjective.

(ii) Let (x∗
i )i∈I ⊂ X∗ be such that x∗

i (xi) = ‖xi‖ ∀i ∈ I then j(x) =
(x∗

i (x))i∈I is injective.

We shall henceforth write Ker p as K, l1(I) as l1, and l∞(I) as l∞.
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Definition 1.6. Let Y, Z be two Banach spaces. We define

E (Y, Z) = {[h] : h ∈ L(K, Y )}

such that [h1] = [h2] if and only if h1 − h2 has an extension onto l1, and

L (Y, Z) = {[h] : h ∈ L(Z, l∞/Y )}

such that [h1] = [h2] if and only if h1 − h2 has a lifting into l∞.

The following Lemma is frequently used in homological algebra (see [1]),
and here it will allow us to prove the next theorem.

Lemma 1.7. (Push-Out and Pull-Back universal properties.)

(i) Let h1 : X → X1, h2 : X → X2 be two operators. Then

PO(h1, h2) =: X1 × X2/ {(h1x,h2x) : x∈X}

represents the covariant functor

E ∈ Ban {(α, β) : X
h1−→ X1 is commutative.}

h2



y α



y

X2
β−→ E

(ii) Let h1 : X1 → X, h2 : X2 → X be two operators. Then

PB(h1, h2) =: {(x1, x2) ∈ X1 × X2 : h1x1 = h2x2}

represents the contravariant functor

E ∈ Ban {(α, β) : X1
h1−→ X is commutative.}

α
x

 h2

x



E
β−→ X2

Theorem 1.8. Let Y, Z be two Banach spaces. There exists a bijection be-
tween E (Y, Z), L (Y, Z) and Ext(Y, Z).

Proof. We shall prove that there exists a bijection between E (Y, Z) and Ext(Y, Z).
The other case is similar.
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On the one hand, we have that [l1] ∈ Ext(K, Z). Hence using Theorem 1.2
there is a quasi-linear map F : Z → K such that [l1] = [K ⊕F Z].

Given two bounded linear operators h1, h2 from K to Y , we define the
natural quasi-linear maps F1 = h1F and F2 = h2F from Z to Y . We have to
prove that [Y ⊕F1 Z] = [Y ⊕F2 Z] ⇔ h1 − h2 has an extension onto l1. From
Corollary 1.3 this is equivalent to proving that [Y ⊕F1−F2 Z] = [Y ⊕ Z] ⇔
h1 − h2 has an extension onto l1.
⇒)

Writing F for F1 − F2 and h for h1 − h2, the following diagram is com-
mutative:

0 → K
j−−−→ l1

p−−−→ Z → 0
r

h


y x H



y

∥
∥
∥

0 → Y
i−→ Y ⊕F Z

q−→ Z → 0
‖

Y ⊕ Z

This means that there exists a retract r : Y ⊕Z → Y , hence ri = IY . Let
us write ĥ = rH . Then ĥj = rHj = rih = h so that ĥ is an extension of h.
⇐)

Now we have the following commutative diagram.

0 → K
j−−−→ l1

p−−−→ Z → 0
h ↓ ↙ ĥ ↓ H ‖

0 → Y
i−→ Y ⊕F Z

q−→ Z → 0
.

Hj = ih so that K ⊂ Ker(H − ĥ). Hence H − ĥ factors through p, and
therefore there exists a bounded linear operator s : Z → Y ⊕F Z such that
sp = H − ĥ. Hence qsp = qH − qĥ = qH = p, i.e. qs = IZ . Thus Y ⊕F Z =
Y ⊕ Z.

On the other hand, let [h] ∈ E (Y, Z) and let us consider the Push-Out
of j and h, where j is the embedding of K in l1. It only remains to prove
that there exists a bounded linear operator T : PO → Y ⊕F Z such that the
following diagram is commutative, with F defined as at the beginning of this
proof:

0 → K
j−−−→ l1

p−−−→ Z → 0
h ↓ ↓ H ‖

0 → Y → PO(j, h) → Z → 0
‖ ‖

0 → Y
i−→ Y ⊕F Z

q−→ Z → 0.
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Let b be a bounded selection of q. Hence we have a bounded linear operator
P : x ∈ l1 → bpx ∈ Y ⊕F Z, and the following diagram is commutative:

K
j−−−→ l1

h ↓ ↓ P

Y
i−→ Y ⊕F Z.

Using the Push-Out universal property, there exists a unique bounded
linear operator t : PO → K such that the third diagram is commutative.
Considering T = ith, then T is the operator sought.

Corollary 1.9.

(i) Let Z be a Banach space and let us consider its projective representation.
Then K represents the covariant functor Y ∈ Ban Ext(Y, Z).

(ii) Let Y be a Banach space and let us consider its injective representation.
Then l∞/Y represents the contravariant functor Z ∈ Ban Ext(Y, Z).

2 Main Result

Lemma 2.1. Let Y, Z be two Banach spaces. Then

Ext(Y, Z) = {[Y ⊕ Z]} ⇒ Ext(Y1, Z1) = {[Y1 ⊕ Z1]}
for all Y1 complemented in Y , and for all Z1 complemented in Z.

Proof. Let [F ] ∈ Ext(Y1, Z1). If Ext(Y, Z) = {[Y ⊕ Z]}, this means that
every short exact sequence that has Y as subspace and Z as quotient splits.
Then there exists a retract R : Y ⊕ Z → Y such that the following diagram
is commutative:

s
x

0 → Y1 ↪→ Y1 ⊕F Z1
q−→ Z1 → 0

r S∥
∥

x P
x


x p
x


yj

0 → Y1
i−→ PB

Q−−→ Z → 0
R

φ
xyπ x

yΠ
∥∥

0 → Y
I−−→ PBO � Z → 0.

‖
Y ⊕ Z
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If r = φRΠ then ri = φRΠi = φRIπ = φπ = IY1 . Hence, there is also a
section S of Q. Thus s = PSj is such that qs = qPSj = pQSj = pj = IZ1 .
Therefore Ext(Y1, Z1) = {[Y1 ⊕ Z1]}.

Theorem 2.2. Let Y, Z be two Banach spaces, then

Ext(Y, Z) = {[Y ⊕ Z]} ⇒ Ext(Z∗, Y ∗) = {[Z∗ ⊕ Y ∗]}
Proof. Let us consider the projective representation of Z

0 → K
j−→ l1

p−→ Z → 0

Let h ∈ L(K, Y ). Then h has an extension onto l1, and there exists
ĥ ∈ L(l1, Y ) such that h = ĥj. Therefore h∗∗∗ = j∗∗∗(ĥ)∗∗∗.

The following diagram is commutative:

0 → K∗∗ j∗∗−−→ l∗∗1
p∗∗
−−→ Z∗∗ → 0

‖ ↑ i ↑ iZ

0 → K∗∗ j1−−→ PB
p1−−→ Z → 0.

If we consider now the following commutative diagram:

0 → Z∗ p∗
−−−−−→ l∗1

j∗−−−−−→ K∗ → 0
↓ iZ∗ ↓ il∗1 ↓ iK∗

0 → Z∗∗∗ p∗∗∗
−−−→ l∗∗∗1

j∗∗∗−−−→ K∗∗∗ → 0
↓ i∗Z ↓ i∗ ‖

0 → Z∗ p∗
1−−−−→ PO

j∗1−−−−→ K∗∗∗ → 0
↑ h∗∗∗

Y ∗∗∗

then PO = PB∗.

Let H = i∗(ĥ)∗∗∗. Since

Im
(
H ∣

∣Y ∗
) ⊂ Im

(
j∗1

−1∣
∣K∗

)
= Im(i∗il∗1 )

then h∗ = j∗((i∗il∗1 )
−1 ◦H ∣

∣Y ∗), so that (i∗il∗1 )
−1 ◦H ∣

∣Y ∗ is the lifting we are

looking for.
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In general the reciprocal is not true. For instance, the Lindenstrauss lifting
principle ([3], Proposition 2.1.) states that Ext(l2, l1) = {[l2 ⊕ l1]}.

If JL denotes the Johnson-Lindenstrauss space then c0 is a subspace of JL
and JL/c0 = l2 thus [JL] ∈ Ext(c0, l2) and [JL] 6= [c0 ⊕ l2] because c0 is not
complemented in JL.

Adding a condition the reciprocal is true.

Theorem 2.3. Let Y, Z be two Banach spaces such that Y is complemented
in its bidual. Then

Ext(Z∗, Y ∗) = {[Z∗ ⊕ Y ∗]} ⇒ Ext(Y, Z) = {[Y ⊕ Z]}
Proof. Let iK∗ : K∗ ↪→ K∗∗∗, iK∗∗ : K∗∗ ↪→ K∗∗∗∗, il∗∗1

: l∗∗1 ↪→ l∗∗∗∗1 ,
il∗1 : l∗1 ↪→ l∗∗∗1 be the canonical embeddings. Let h ∈ L(K, Y ). Then h∗ has a
lifting into l∗1, and we have the following commutative diagram:

0 → Z∗ p∗
−→ l∗1

j∗−→ K∗ → 0
ĥ∗ ↖ ↑ h∗

Y ∗

where h∗ = j∗ĥ∗ therefore h∗∗ = (ĥ∗)∗j∗∗ thus h∗∗i∗K∗ = (ĥ∗)∗j∗∗i∗K∗ . Hence
we have that

h∗∗ =h∗∗i∗K∗iK∗∗ = (ĥ∗)∗j∗∗i∗K∗iK∗∗

=(ĥ∗)∗i∗l∗1 il∗∗1
j∗∗.

In these conditions, (ĥ∗)∗i∗l∗1 il∗∗1
is an extension of h∗∗ onto l∗∗1 , so if iK :

K ↪→ K∗∗, il1 : l1 ↪→ l∗∗1 , are the natural embeddings then (ĥ∗)∗i∗l∗1 il∗∗1
il1 is an

extension of h∗∗iK onto l1.
Finally, using Lemma 2.1 the proof is complete.

Corollary 2.4. Let Y, Z be two Banach spaces such that Y is complemented
in its bidual and [F ] ∈ Q(Z, Y ). If F ∗ : Y ∗ → Z∗ is such that F ∗y∗(z) =:
y∗(Fz), then [F ∗] ∈ Q(Y ∗, Z∗) and d(F, Lin(Z, Y )) = d(F ∗, Lin(Y ∗, Z∗)).
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