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Abstract
The Waring number of the integers modulo m with respect to k-th

powers, denoted by ρ(m, k), is the smallest r such that every integer is
a sum of r k-th powers modulo m. This number is also the diameter
of an associated Cayley graph, called the Waring graph. In this paper
this number is computed when m is a power of 2. More precisely the
following result is obtained:

Let n, s and b be natural numbers such that b is odd, s ≥ 1 and
n ≥ 4. Put k = b2s. Then

(i) if s ≥ n− 2, then ρ(2n, k) = 2n − 1.
(ii) if k ≥ 6 and s ≤ n− 3, then ρ(2n, k) = 2s+2.
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Resumen
El número de Waring de los enteros módulo m con respecto a las

potencias k-ésimas, denotado ρ(m, k), es el menor r tal que todo entero
es la suma de r potencias k-ésimas módulo m. Este número es también
el diámetro de un grafo de Cayley asociado, llamado el grafo de Waring.
En este trabajo se calcula este número cuando m es una potencia de 2.
Más precisamente se obtiene el siguiente resultado:

Sean n, s y b números naturales tales que b es impar, s ≥ 1 y n ≥ 4.
Sea k = b2s. Entonces

(i) si s ≥ n− 2, entonces ρ(2n, k) = 2n − 1.
(ii) si k ≥ 6 y s ≤ n− 3, entonces ρ(2n, k) = 2s+2.
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1 Introduction

Let R be a ring and k a natural number. The Waring number ρ(R, k) is
the smallest n such that {xk1 + xk2 + · · · + xkn : xi ∈ R, 1 ≤ i ≤ n} = R.
The determination of this number is a generalization of the classical Waring
problem. Here we give a brief survey of this problem for finite R. We’ll denote
by Zm the ring of integers modulo m. Cauchy proved in [1] that ρ(Zp, k) ≤ k,
for all prime numbers p. In [2] Chowla, Mann and Straus obtained the bound
ρ(Zp, k) ≤ bk/2c + 1, for p prime and k 6= (p − 1)/2. Schwarz obtained in
[9] similar results for any finite field in which every element is a sum of k-th
powers. Heilbronn conjectured in [6] that supp{ρ(Zp, k) : k 6= (p − 1)/2} =
O(
√
k), for p prime. The reader can find details about this problem in [3].

The best known result is the following theorem of Dodson and Tietäväinen
[3]: for p prime, ρ(Zp, k) < 68(log k)2

√
k.

Helleset showed in [7] that the Waring number for a finite field is the
covering radius of a certain code. The Waring number in Zn where n is
not necessarily a prime, is studied by C. Small in [10] and [11], where it is
calculated for k ≤ 5, while upper bounds are obtained for other k’s.

We have ρ(Zm, k) = maxp ρ(Zpnp , k), where pnp is the greatest power of
the prime p dividing m [8, remark in proof of Theorem 1]. In graphic terms the
Waring number is the diameter of a certain Cayley graph, where the group is
the underlying additive group of a ring with respect to the set of k-th powers.
While studying the connectivity and diameter of such graphs for the rings Zm,
we found that the case m = 2n is particularly simple and does not require the
relatively difficult theorems of connectivity or Additive Theory.

We obtain here, using simple combinatorial arguments, the exact value of
the Waring number ρ(Zn, k) for any k, when n is a power of 2. In particular,
it is always a power of 2, apart from a few exceptions.

2 Preliminaries

We restrict ourselves to abelian groups. We’ll use the following well known
lemma (see [8], Theorem 1.1):

Lemma 2.1. Let G be a finite abelian group containing two subsets A and B
such that |A|+ |B| ≥ |G|+ 1. Then A+B = G.

Let G be a finite abelian group containing a subset S. Let Cay(G,S)
denote the graph (G,E), where E = {(x, y) : y−x ∈ S}. Cay(G,S) is known
as the Cayley graph defined on G by S.
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Remark 2.2. The Cayley graph Cay(G,S) is not necessarily symmetric. In
fact, it is symmetric if and only if S = −S.

Remark 2.3. Cay(G,S) is (strongly) connected if and only if S is a set of
generators of G.

The diameter of Cay(G,S) will be denoted by ρ(Cay(G,S)). We can see
easily that ρ(Cay(G,S)) = min{j : {0} ∪ S ∪ S + S ∪ . . . ∪ jS} = G, or
equivalently ρ(Cay(G,S)) = min{j : j(S ∪ {0}) = G}, where the notation jS
means {x1 + x2 + · · ·+ xj : xi ∈ S}.

When G is the underlying additive group of a ring R and S is the set of
k-th powers of R, Cay(G,S) is called a Waring graph (this term is used by
Hamidoune [4, 5]; these graphs were also studied by Babai).

Henceforth we’ll study the case R = Zm, that is the ring of residues modulo
m.

The (additive) subgroup of G generated by an element x ∈ G will be
denoted by 〈x〉.

Let m and k be natural numbers. Let us put ρ(m, k) for ρ(Zm, k). We
clearly have ρ(m, k) = ρ(Cay(Zm, Zkm)). In order to study also the represen-
tation using only powers of the units, let’s define ρ1(m, k) = ρ(Cay(Zm, Uk)),
where U is the set of units of Zm.

Lemma 2.4. Let k, n and m be natural numbers. Then

(i) ρ(m, k) ≤ ρ1(m, k)

(ii) If k ≥ n, then ρ(2n, k) = ρ1(2n, k).

Proof. Being Cay(Zm, Uk) a subgraph of Cay(Zm, Zkm)), inequality (i) follows.
Equality (ii) follows since Uk = (Zkm) \ {0}, for k ≥ n.

Remark 2.5. Note that if n divides m then ρ(n, k) ≤ ρ(m, k). Actually, if
π : Zm −→ Zn is the canonical morphism, one verifies easily that π(Zkm) =
Zkn. Put r = ρ(m, k). By the definitions, we have rZkm = Zm. Therefore
rZkn = rπ(Zkm) = π(rZkm) = π(Zm) = Zn. It follows that ρ(m, k) ≥ ρ(n, k).

Lemma 2.6. Let G be an abelian group whose order is a power of two, and
let k be an odd integer, k > 2. Let φk be the endomorphism of G defined by
φk(x) = xk. Then

(i) if G is cyclic and k = 2, then |Im(φk)| = |G|/2.

(ii) if k is odd, then φk is an automorphism.

The proof of this lemma is left as an exercise.
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3 Diameter modulo 2n

In what follows σ denotes the canonical mapping from Z onto Z2n .

Lemma 3.1. Let n, b and s be natural numbers such that b is odd and let
k = b2s. Then,

(i) ρ1(2n, b) = 2, b > 1.

(ii) Uk = σ(1) + 〈σ(2s+2)〉.

(iii) ρ1(2n, k) = ρ1(2n, 2s).

Proof. By Lemma 2.6, U b = U . We have clearly |U b ∪ {0}| = 2n−1 + 1. By
Lemma 2.1, 2(U b ∪ {0}) = Z2n . Therefore ρ1(2n, b) = 2. This proves (i).

It is obvious that U is a direct product of the subgroups {σ(1),−σ(1)} and
σ(1) + 〈σ(4)〉. Therefore U2 is a subgroup of the cyclic group σ(1) + 〈σ(4)〉
with order 2n−3. This subgroup is unique and hence U2 = σ(1) + 〈σ(23)〉.
Therefore the result holds for s = 1. Suppose it is proved for s. We may
assume s + 2 < n, since otherwise the result holds trivially. By Lemma 2.6,
U2(s+1)

is a cyclic subgroup of U2s = σ(1) + 〈σ(2s+2)〉 with order 2n−s−3.
Therefore U2(s+1)

= σ(1) + 〈σ(2s+3)〉. This proves (ii). The statement (iii)
follows now since Uk = (U b)2s = U2s , by Lemma 2.6.

We prove now our main result.

Theorem 3.2. Let n, s and b be natural numbers such that b is odd, s ≥ 1
and n ≥ 4. Let k = b2s. Then the following holds:

(i) If s ≥ n− 2 then ρ(2n, k) = ρ1(2n, k) = 2n − 1.

(ii) If s ≤ n− 3 then ρ1(2n, k) = 2s+2.

(iii) If k ≥ 6 and s ≤ n− 3 then ρ(2n, k) = 2s+2.

Proof. We prove first (i). Suppose s ≥ n − 2. By Lemma 3.1(ii) we have
Uk = σ(1) + 〈σ(2s+2)〉 = {σ(1)}. It follows easily that (Z2n)k = {σ(0), σ(1)},
because 2s ≥ n. Therefore ρ(2n, k) = ρ1(2n, k) = 2n − 1.

We prove now (ii). Suppose s ≤ n−3. By Lemma 3.1(ii) we have t(Uk) =
tσ(1) + t〈σ(2s+2)〉 = σ(t) + 〈σ(2s+2)〉. It follows that

t({0} ∪ (σ(1) + 〈σ(2s+2)〉)) =

{0} ∪ (σ(1) + 〈σ(2s+2)〉) ∪ (σ(2) + 〈σ(2s+2)〉) ∪ . . . ∪ (σ(t) + 〈σ(2s+2)〉).
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Clearly |σ(i) + 〈σ(2s+2)〉| = 2n−s−2 and |t({0} ∪ (σ(1) + 〈σ(2s+2)〉))| =
min(2n, 1 + t2n−s−2). It follows that

ρ1(2n, 2s) =
⌈

2n − 1
2n−s−2

⌉
= 2s+2.

It remains to show (iii). Suppose k ≥ 6 and s ≤ n − 3. We have clearly
s+ 3 ≤ k and s+ 3 ≤ n. By (ii), Lemma 2.4 and Remark 2.5 we have 2s+2 =
ρ1(2n, k) ≥ ρ(2n, k) ≥ ρ(2s+3, k). By Lemma 2.4 and (ii) ρ(2s+3, k) = 2s+2.
Therefore ρ(2n, k) = 2s+2.

In order to give a complete account of the Waring number modulo 2n we need
to consider the cases k = 2 and k = 4. The study of sums of squares modulo
n is due essentially to Gauss. See Small’s paper [8, Theorem 3.1]. For fourth
powers modulo n, a solution is given in Small [9, Theorems 3, 3’]. In our
notation the corresponding results are summarized as follows:

Theorem 3.3. ρ(22, 2) = 3,
ρ(2n, 2) = 4, for all n ≥ 3,
ρ(23, 4) = 7,
ρ(2n, 4) = 15, for all n ≥ 4.
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