Fórmulas de Cuadratura Optimales en Variedades Integrales

Optimal Quadrature Formulas in Integral Varieties

Yohan Díaz Ferrer (ydiazf@yahoo.es) Lelis Raúl Vaillant Pascual

Departamento de Matemática, Facultad de Matemática y Computación Universidad de Oriente, Patricio Lumumba S/N Santiago de Cuba, CP 90500, Cuba.

Abel Velázquez Pratts

Departamento de Matemática, Facultad de Ingeniería Eléctrica Universidad de Oriente, Santiago de Cuba, Cuba.

Resumen

En este trabajo se da un método para obtener fórmulas de cuadratura optimales en clases de funciones diferenciables con una estructura dada

Palabras y frases clave: Integración numérica, fórmulas de cuadratura.

Abstract

In this paper we present a method to obtain optimal quadrature formula in a class of differentiable function with a given structure. **Key words and phrases:** Numerical integration, quadrature formulas

1 Planteamiento del Problema

Sean el intervalo [0,T] de \mathbb{R}^1 y $\mathbf{F}(0,T)$ el conjunto de funciones que satisfacen en [0,T] la ecuación diferencial

$$\sum_{i=0}^{n} a_i f^{(i)}(t) = \xi(t) \tag{1}$$

Recibido 2003/07/15. Aceptado 2003/11/12. MSC (2000): 65D30, 65D32.

donde a_i , $i=0,1,\cdots,n-1$ son constantes conocidas, $a_n=1, n\geq 1$ y $\xi(t)$ es una función desconocida de un conjunto $\mathbf{E}\subset\mathbf{L}_2(0,T)$. Para algunas funciones $f\in\mathbf{F}$ se conocen valores aproximados de las mismas en los puntos t_1,t_2,\cdots,t_N , o sea,

$$f(t_i) \cong y_i, i = 1, 2, \cdots, N, \tag{2}$$

donde $0 < t_1 < t_2 < \cdots < t_N < T$. Supongamos también que se cumplen las desigualdades

$$\sum_{i=0}^{n} |f(t_i) - y_i|^2 \le \varepsilon^2, \int_0^T \xi^2(t) dt \le \zeta^2.$$
 (3)

Para los datos $\{a_i\}_{i=0}^n$, $\{y_i, t_i\}_{i=1}^N$, ε, ζ , se exige calcular la integral

$$I(f) = \int_0^T \rho(t)f(t)dt \tag{4}$$

donde $\rho(t) \in \mathbf{L}_2(0,T)$ es una función de peso dada, no idénticamente nula. Para el cálculo de la integral (4) usualmente se utiliza una fórmula de cuadratura del tipo

$$\int_0^T \rho(t)f(t)dt \cong \sum_{k=1}^N C_k y_k \tag{5}$$

en la que la suma de la derecha aproxima con cierta precisión a la integral de la izquierda. Ahora bien, definiendo el error de la aproximación como

$$R(C_1, \cdots, C_N) = \sup_{f \in \mathbf{F}} \left| \int_0^T \rho(t) f(t) dt - \sum_{k=1}^N C_k y_k \right|, \tag{6}$$

podemos plantearnos el problema de hallar los coeficientes

$$C_k, k = 1, 2, \cdots, N,$$

para los cuales $R(C_1, \dots, C_N) = R_N(C)$ sea mínimo, o sea,

$$R_N(C) = \min_{C_k} R(C_1, C_2, \cdots, C_N).$$
 (7)

Si el mínimo existe, entonces, los coeficientes que lo alcanzan definen una fórmula de cuadratura optimal en la clase de funciones dada ${\bf F}$.

2 Problema Conjugado

Tomemos una función arbitraria $\psi(t)$, la cual tiene en el intervalo (t_j,t_{j+1}) derivada hasta el orden n inclusive

$$(t_0 = 0, t_{N+1} = T, j = 0, 1, \dots, N).$$

Integrando por partes obtenemos

$$\int_{t_j}^{t_{j+1}} \psi f^{(i)} dt = \sum_{\nu=0}^{i-1} \left(-1 \right)^{\nu} \psi^{(\nu)} f^{(i-\nu-1)} \Big|_{t_j+0}^{t_{j+1}-0} + (-1)^i \int_{t_j}^{t_{j+1}} \psi^{(i)} f dt.$$
 (8)

Debido a las relaciones (1) y (2) se cumplen las identidades

$$\int_0^T \psi(t) \left(\sum_{i=0}^n a_i f^{(i)}(t) - \xi(t) \right) dt \equiv 0,$$

$$\sum_{i=0}^N C_i (y_i - f(t_i) + \varepsilon_i) \equiv 0.$$
(9)

Aquí los C_i son números arbitrarios, $\varepsilon_i = f(t_i) - y_i$ son errores desconocidos de los datos (2). Sumando formalmente las identidades (9), usando la relación (8) y la identidad (4) y luego igualando los coeficientes de $f^{(\nu)}$, $t \in [0, T]$, $\nu = 0, \dots, n-1$, obtenemos las siguientes condiciones para la función $\psi(\cdot)$:

$$\psi^{(n)} + \sum_{\nu=0}^{n-1} (-1)^{n-\nu} a_{\nu} \psi^{(\nu)} = (-1)^{n-1} \rho(t), t \in (t_i, t_{i+1}), i = \overline{1, N}$$
 (10)

$$\psi^{(\nu)}(0) = \psi^{(\nu)}(T) = 0, \nu = \overline{0, n - 1}$$

$$\psi^{(\nu)}(t_i + 0) = \psi^{(\nu)}(t_i - 0), \nu = \overline{0, n - 2}, i = \overline{1, N}$$
(11)

$$\psi^{(n-1)}(t_i+0) - \psi^{(n-1)}(t_i-0) = (-1)^n C_i, i = \overline{1,N}$$
(12)

si tal función $\psi(t)$ existe, entonces la integral (4) toma la forma

$$I(f) = \sum_{i=1}^{N} C_i(y_i + \varepsilon_i) - \int_0^T \psi(t)\xi(t)dt.$$

De este modo, llegamos a la siguiente fórmula de cuadratura

$$I(f) = \int_0^T \rho(t)f(t)dt \cong \sum_{i=1}^N C_i y_i \equiv S_N(y)$$
 (13)

el error de la cual tiene la expresión

$$I(f) - S_N(y) \equiv R(f, C, \varepsilon) = \sum_{i=1}^{N} C_i \varepsilon_i - \int_0^T \psi(t) \xi(t) dt$$
 (14)

El problema de frontera (10)-(12) se llama problema conjugado del problema de búsqueda de la fórmula de cuadratura (13), la que es exacta en el conjunto de soluciones de la ecuación homogénea de $(1)(\xi=0)$. Para la existencia de la solución del problema conjugado es suficiente que $N \ge n$. Es fácil calcular, para las condiciones (3) el valor exacto del error (6) de (14).

$$|R(f, \{C_i\})| \le \varepsilon \sqrt{\sum_{i=1}^{N} C_i^2} + \xi \sqrt{\int_0^T \psi^2(t) dt} \equiv R(C).$$
 (15)

De esta forma, la solución del problema sobre la búsqueda de la forma de cuadratura optimal (13), se reduce a la solución del problema

$$\min_{C_1, \dots, C_N} R(C) \tag{16}$$

con las condiciones (10) - (12).

3 Solución del Problema Conjugado

Usando el sistema fundamental de soluciones de la ecuación homogénea de $(10)(\rho(t)=0)$, el problema de frontera (10)-(12) se puede reducir a un sistema de ecuaciones lineales relativo a las incógnitas C_1, C_2, \dots, C_N , a través de las cuales se puede expresar el valor de R(C). Denotemos por $\psi_1(t)$ la solución particular de la ecuación no homogénea (10) con las condiciones nulas

$$\psi^{(i)}(0) = 0, i = 0, 1, \dots, n - 1. \tag{17}$$

Ahora sea $\psi_2(t)$ la solución de la ecuación homogénea de (10) con condiciones iniciales

$$\psi^{(i)}(0) = 0, i = 0, 1, \dots, n - 2, \psi^{(n-1)}(0) = (-1)^n.$$
(18)

Entonces, la solución de la ecuación (10) con condiciones iniciales (17) y condiciones de saltos (11) y (12) tiene la forma

$$\psi(t) = \psi_1(t) + \sum_{i=1}^{N(t)} C_i \psi_2(t - t_i) \equiv \psi(t; C_1, C_2, \dots, C_N) \equiv \psi(t; C), \quad (19)$$

donde $N(t) = \max j : t_j < t$. De este modo, el problema de frontera (10) – (12) se reduce a la búsqueda de las constantes C_1, C_2, \dots, C_N de las condiciones

$$0 = \psi^{(j)}(T) = \psi_1^{(j)}(T) + \sum_{i=1}^{N} C_i \psi_2^{(j)}(T - t_i), j = 0, 1, \dots, n - 1.$$
 (20)

Ahora, la solución del problema (16) consiste en la búsqueda del mínimo de la función suave convexa R(C), definida por la fórmula (15) para las relaciones (19) y (20). Este problema se puede resolver con ayuda de los multiplicadores de Lagrange. Para ello formemos el funcional de Lagrange

$$L(C, l) = R(C) + \sum_{j=0}^{n-1} l_j \psi^{(j)}(T, C),$$

hallando su primera variación tenemos

$$\delta L = \gamma_0 \sum_{i=1}^{N} C_i \delta_i + \gamma_1 \int_0^T \psi(t, C) \delta \psi(t, C) dt + \sum_{i=0}^{n-1} l_j \delta \psi^{(j)}(T, C)$$
 (21)

donde $l=(l_0,l_1,\cdots,l_{n-1})$ es el vector de multiplicadores de Lagrange. De acuerdo a (19) tenemos

$$\delta\psi^{(j)}(t,C) = \sum_{i=1}^{N(t)} \delta C_i \psi_2^{(j)}(t-t_i), j = 0, 1, \dots, n-1$$
 (22)

$$\gamma_0 = \varepsilon / \left(\sum_{i=1}^N C_i^2\right)^{1/2}, \gamma_1 = \zeta / \left(\int_0^T \psi^2(t)dt\right)^{1/2}.$$
 (23)

Poniendo la expresión (22) en (21) e igualando a cero los coeficientes de δC_i , obtenemos la condición necesaria de extremo del problema (16)

$$\gamma_1 b_i + \gamma_0 C_i + \gamma_1 \sum_{s=1}^{N} C_s b_{is} = -\sum_{j=0}^{n-1} l_j \psi_2^{(j)}(T - t_i), i = 1, 2, \dots, N,$$
 (24)

144

donde

$$b_i = \int_{t_i}^{T} \psi_1(t)\psi_2(t - t_i)dt, b = (b_1, b_2, \cdots, b_N)$$

У

$$b_{is} = \int_{t_{is}}^{T} \psi_2(t - t_i) \psi_2(t - t_s) dt, t_{is} = \max\{t_i, t_s\}.$$

Sin perder generalidad puede considerarse que $\gamma_0 = 1$, entonces el sistema (24) puede escribirse en forma matricial como

$$(E + \gamma_1 B)C = -\Psi l - \gamma_1 b,$$

donde E es la matriz identidad y las matrices

$$B = B = \{b_{is}\}_{i,s=1}^{N}$$

У

$$\Psi = \{\psi_2^{(j)}(T - t_i)\}_{i=1, j=0}^{N, n-1}$$

son transformaciones conocidas del sistema paramétrico (24). Como $\gamma_1 \geq 0$, entonces la matriz $(E + \gamma_1 B)$ es no singular por lo que

$$C = -(E + \gamma_1 B)^{-1} (\Psi l + \gamma_1 b). \tag{25}$$

Como la condición (22) en forma matricial toma la forma

$$\Psi^t C = -\psi_{1T}$$
.

Poniendo en ella la ecuación (25), hallamos la ecuación para los multiplicadores de Lagrange

$$\Psi^{t}(E + \gamma_{1}B)^{-1}(\Psi l + \gamma_{1}b) = \psi_{1T}.$$
(26)

Aquí denotamos $\psi_{1T} = (\psi_1(T), \psi_1^{(1)}(T), \cdots, \psi_1^{(n-1)}(T))$. Para resolver el problema debemos escoger el parámetro γ_1 apropiado. Esto puede hacerse a través de un método iterativo aplicado a la ecuación que resulta de dividir las relaciones de (23)

$$\frac{\gamma_0}{\gamma_1} = \frac{1}{\gamma_1} = \frac{\varepsilon \|\psi\|}{\zeta \|C\|},\tag{27}$$

donde la norma de ψ se toma sobre el espacio $L_2(0,T)$ y la de C es la norma euclidiana. El vector C y la función $\psi(\cdot)$ se consideran dependientes del parámetro γ_1 a través de la fórmula (25) y la solución l del sistema (26). De esta forma, resolviendo la ecuación

$$||C|| - \gamma_1 \frac{\varepsilon ||\psi||}{\zeta ||C||} = 0,$$

podemos hallar una aproximación a γ_1 y por supuesto una aproximación a C.

4 Fórmulas de Cuadratura Particulares

Consideremos que el polinomio característico de (10)

$$\lambda^{n} + \sum_{k=0}^{n-1} (-1)^{n-k} a_{k} \lambda^{k} = 0$$
 (28)

tiene raíces reales distintas $\lambda_1, \lambda_2, \cdots, \lambda_n$ y supongamos además que $\rho(t) = 1$. Entonces $\psi_2(t)$ como solución de la ecuación homogénea con condiciones iniciales

$$\psi_2^{(k)}(0) = 0, k = \overline{0, n-2}, \psi_2^{(n-1)}(0) = (-1)^n$$

se expresa en la forma

$$\psi_2(t) = \sum_{i=1}^n g_i e^{\lambda_i t}, k = \overline{0, n-1},$$

como $\psi_2^{(k)}(t) = \sum_{i=1}^n g_i \lambda_i^k e^{t\lambda_i}, k = \overline{0, n-1}$ entonces $g = (g_1, g_2, \cdots, g_n)$ se determina como solución del sistema de ecuaciones

$$\psi_2^k(0) = \sum_{i=1}^n g_i \lambda_i^k = 0, k = \overline{0, n-2}, \psi_2^{(n-1)}(0) = \sum_{i=1}^n g_i \lambda_i^{n-1} = (-1)^n$$
 (29)

de aquí obtenemos que

$$g_{i} = \frac{(-1)^{n+i}}{\prod_{k=1}^{i-1} (x_{i} - x_{k}) \prod_{k=i+1}^{n} (x_{k} - x_{i})}, i = \overline{1, n}$$
(30)

ahora $\psi_1(t)$ es la solución particular de la ecuación (10) con condiciones iniciales

$$\psi^{(k)}(0) = 0, k = \overline{0, n - 1} \tag{31}$$

y puede escribirse como

$$\psi_1(t) = \sum_{i=1}^n \overline{g}_i e^{t\lambda_i} + K$$

y es evidente que $K = \frac{-1}{a_0}$, teniendo en cuenta las condiciones (31)

$$\psi_1(0) = \sum_{i=1}^n \overline{g}_i + \frac{-1}{a_0} = 0, \psi_1^{(k)}(0) = \sum_{i=1}^n \overline{g}_i \lambda_i^k = 0, k = \overline{1, n-1}$$

de aquí obtenemos $\overline{g} = (g_1, g_2, \dots, g_n)$. La solución $\psi(t)$ se puede escribir en la forma

$$\psi(t) = \sum_{k=1}^{n} \overline{g}_k e^{t\lambda_k} - \frac{1}{a_0} + \sum_{k=1}^{N(t)} c_k \left(\sum_{i=1}^{n} g_i e^{\lambda_i (t - t_k)} \right)$$
(32)

donde $N(t) = \max_{t_j \le t \le t_{j+1}} \{j : t > t_j\}$, derivando q veces obtenemos

$$\psi^{(q)}(t) = \sum_{k=1}^{n} \overline{g}_k \lambda_k^q e^{\lambda_k t} + \sum_{k=1}^{N(t)} c_k \left(\sum_{i=1}^{n} g_i \lambda_i^q e^{\lambda_i (t - t_k)} \right), q = \overline{1, n - 1}$$

entonces

$$0 = \psi(T) = \sum_{k=1}^{n} \overline{g}_{k} e^{\lambda_{k}T} - \frac{1}{a_{0}} + \sum_{k=1}^{N} c_{k} \left(\sum_{i=1}^{n} g_{i} e^{\lambda_{i}(T - t_{k})} \right)$$

$$0 = \psi^{(q)}(T) = \sum_{k=1}^{n} \overline{g}_{k} \lambda_{k}^{q} e^{\lambda_{k}T} + \sum_{k=1}^{N} c_{k} \left(\sum_{i=1}^{n} g_{i} \lambda_{i}^{q} e^{\lambda_{i}(T - t_{k})} \right), q = \overline{1, n - 1}$$

$$\sum_{k=1}^{N} c_{k} \left(\sum_{i=1}^{n} g_{i} e^{\lambda_{i}(T - t_{k})} \right) = -\sum_{k=1}^{n} \overline{g}_{k} e^{\lambda_{k}T} + \frac{1}{a_{0}}$$

$$\sum_{k=1}^{N} c_{k} \left(\sum_{i=1}^{n} g_{i} \lambda_{i}^{q} e^{\lambda_{i}(T - t_{k})} \right) = -\sum_{k=1}^{n} \overline{g}_{k} \lambda_{k}^{q} e^{\lambda_{k}T}, q = \overline{1, n - 1}$$

$$(34)$$

Sean

$$\psi_{kq} = \sum_{i=1}^{n} g_i \lambda_i^q e^{\lambda_i (T - t_k)}, \quad q = \overline{1, n - 1}, \quad k = \overline{1, N}, \qquad \psi_0 = \sum_{i=1}^{n} \overline{g}_i e^{\lambda_i T} - \frac{1}{a_0},$$

$$\psi_q = \sum_{i=0}^{n} \overline{g}_i \lambda_i^q e^{\lambda_i T}, \quad q = \overline{1, n - 1}, \qquad \psi_{1T} = (\psi_0, \psi_1, \dots, \psi_{n-1})$$

recordemos que

$$\Psi^t C = -\psi_{1T},$$

$$C = -(E + \gamma B)^{-1} (\Psi l + \gamma b),$$

$$\Psi^t (E + \gamma B)^{-1} (\Psi l + \gamma b),$$

$$\Psi^t (E + \gamma B)^{-1} (\Psi l + \gamma b) = \psi_{1T},$$

$$b = (b_1, b_2, \dots, b_n),$$

$$b_i = \int_{t_i}^T \psi_1(t) \psi_2(t - t_i) dt, i = \overline{1, N},$$

$$b_i = \int_{t_i}^T \left(\sum_{k=1}^n \overline{g}_k e^{\lambda_k t} - \frac{1}{a_0} \right) \left(\sum_{k=1}^n g_k e^{\lambda_k (t - t_i)} \right) dt,$$

ahora tenemos que

$$b_{is} = \int_{t_{is}}^{T} \psi_{2}(t - t_{i})\psi_{2}(t - t_{s})dt = \int_{t_{is}}^{T} \sum_{k=1}^{n} g_{k}e^{\lambda_{k}(t - t_{i})} \sum_{j=1}^{n} g_{j}e^{\lambda_{j}(t - t_{s})}dt$$

$$= \sum_{k=1}^{n} \sum_{j=1}^{n} g_{k}g_{j} \int_{t_{is}}^{T} e^{\lambda_{k}(t - t_{i}) + \lambda_{j}(t - t_{s})}dt$$

$$= \sum_{k=1}^{n} \sum_{j=1}^{n} \frac{e^{(\lambda_{k} + \lambda_{j})(T - \lambda_{k}t_{i} - \lambda_{j}t_{s})} - e^{(\lambda_{k} + \lambda_{j})(t_{is} - \lambda_{k}t_{i} - \lambda_{j}t_{s})}}{\lambda_{k} + \lambda_{j}}.$$

Referencias

- [1] Andersson, J. E. Optimal quadrature of H^p functions, Math. Z. **172** (1980), 55–62.
- [2] Andersson, J. E., Bojanov, B. D. A note on the optimal quadrature in H^p , Numer. Math. 44 (1984), 301–308.
- [3] Bajvalov, N. S. Métodos numéricos, edit. Mir, Moscú, 1973.
- [4] Bojanov, B. D. Best quadrature formula for a certain class of analytic functions, Zastosowania Mathematyki Applications Mathematicae, XIV, 3 (1974), 441–447.
- [5] Rabinowitz, P., Davis, P. J. Methods of numerical integration, Academic Press, New York, 1978.
- [6] Gansca, I. On an optimal quadrature formula with high degree of exactness, Rev. Roum. de Mathematiques Pures et Appliquees, XXI(2) (1976).
- [7] Issacson, E., Keller, H. B. Analysis of numerical methods, John Wiley & Sons, New York, 1966.
- [8] Kirin, N. E. Valoración de sistemas en problemas de teoría de control, Edit. FAN, Taskent, 1990.
- [9] Korneichuk, N. P. Splines en teoría de aproximación, Edit. Ciencias, Moscú, 1984.
- [10] Krylov, V. I. Cálculo aproximado de integrales, Edit. Ciencias, Moscú, 1982.
- [11] Nikolski, S. Fórmulas de cuadratura, Edit. MIR, Moscú, 1990.
- [12] Tijomirov, V., Galeev, E. Breve curso de la teoría de problemas extremales, Edit. MIR, Moscú, 1991.