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Abstract

Let D be the open unit disk in the complex plane. For ε > 0 we
consider the sector Σε = {z ∈ C : | arg z| < ε}. We prove that for every
α ≥ 0 and for each ε > 0 there is a constant K > 0 depending only on
α and ε such that for any function f in the weighted Bergman space
A1

α univalent on D, and f(0) = 0, then

∫

f−1(Σε)

|f(z)|dAα(z) > K‖f‖1,α.

This result extends a theorem of Marshall and Smith in [MS] for func-
tions belonging to the unweighted Bergman space. We also prove that
a such extension for α negative fails.
Key words and phrases: Bergman space, univalent functions, har-
monic measure, hyperbolic metric.

Resumen

Sea D el disco unitario en el plano complejo. Sea ε > 0 y conside-
remos el sector Σε = {z ∈ C : | arg z| < ε}. Probaremos que para cada
α ≥ 0 y para cada ε > 0 existe una constante K > 0, que depende sólo
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de α y ε tal que para cualquier función f en el espacio de Bergman con
peso A1

α, univalente sobre D, y con f(0) = 0, se cumple
∫

f−1(Σε)

|f(z)|dAα(z) > K‖f‖1,α.

Este resultado extiende un teorema de Marshall y Smith [MS] para
funciones en el espacio de Bergman sin peso. También probaremos que
tal extensión falla para α < 0.
Palabras y frases clave: Espacio de Bergman, funciones univalentes,
medida armónica, métrica hiperbólica.

1 Introduction

Let D be the unit disk in the complex plane. For α > −1, the weighted
Bergman space A1

α := A1
α(D) is the class of all analytic functions in D which

are in L1(D, dAα), where

dAα(z) = (α + 1)(1− |z|2)αdA(z),

dA(z) being the usual two-dimensional Lebesgue measure on D. Equipped
with the norm

‖f‖1,α =
∫

D
|f(z)|dAα(z) < +∞,

L1(D, dAα) is a Banach space containing A1
α as a closed subspace.

For each ε > 0, we define the sector

Σε = {w ∈ C : | arg w| < ε}.
In [MS], D. Marshall and W. Smith proved the following result

Theorem 1.1. For every ε > 0 there exists a δ > 0 such that if f ∈ A1 is
univalent and f(0) = 0, then

∫

f−1(Σε)

|f(z)|dA(z) > δ‖f‖1. (1.1)

They also showed that A1 cannot be replaced by Ap, p > 1 in Theorem
1.1. Moreover, it is an open problem whether or not Theorem 1.1 holds
without assuming the hypothesis of univalence for the functions in A1. In
this paper, we extend Theorem 1.1 for weighted Bergman spaces in the unit
disk, 0 < α < ∞, and give a counterexample showing that this result fails as
α ∈ (−1, 0). We state our main result.
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Theorem 1.2. For every ε > 0 and for any α ≥ 0 there exists a δ > 0,
δ = δ(ε, α) such that if f ∈ A1

α is univalent and f(0) = 0, then
∫

f−1(Σε)

|f(z)|dAα(z) > δ‖f‖1,α. (1.2)

As in the proof of Theorem 1.1, the hyperbolic metric and harmonic mea-
sure play a crucial role in the proof of Theorem 1.2 as well. The hyperbolic
metric on D is defined by

β(z1, z2) = inf
{∫

γ

2|dz|
1− |z|2 : γ is an arc in D from z1 to z2

}
.

In particular, the shortest distance from 0 to any point z is along the radius,
and

β(0, z) = log
(

1 + |z|
1− |z|

)
. (1.3)

The hyperbolic metric is invariant under conformal self-maps of D and hence,
for any z1, z2 in the unit disk, we have

β(z1, z2) = log
|1− z1z2|+ |z1 − z2|
|1− z1z2| − |z1 − z2| .

The hyperbolic geodesics are diameters of the disk together with circles or-
thogonal to the unit circle. On any simple connected proper domain subset
Ω of C, the hyperbolic distance is defined in a natural way. If ϕ : D → Ω is
any conformal map, the hyperbolic metric βΩ in Ω is defined as

βΩ(w1, w2) = β(z1, z2),

where wi = ϕ(zi), i = 1, 2. The shortest arc in D from z1 to z2 is the arc of
the unique circle orthogonal to ∂D passing through z1 and z2. Its image by ϕ
is the shortest arc in Ω from w1 to w2. If E ⊂ Ω, then the hyperbolic distance
from w to E will be denoted by βΩ(w,E).

In general, the hyperbolic distance is not explicitly computable in terms
of the geometry of Ω. A useful substitute is the quasi-hyperbolic distance on
Ω introduced by F. Gehring and B. Palka in [GP]. For w1 and w2 in Ω, the
quasi-hyperbolic distance from w1 to w2 is defined to be

kΩ (w1, w2) := inf
γ

∫

γ

|dw|
δΩ (w)

, (1.4)
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where the infimum is taken over all arcs γ in Ω from w1 to w2, and δΩ (w) being
the Euclidean distance from w to the boundary ∂Ω of Ω. For any w1, w2 ∈ Ω
the following property holds (see [Po, page 92])

1
2
βΩ (w1, w2) ≤ kΩ (w1, w2) ≤ 2βΩ (w1, w2) . (1.5)

Assume that O is an open set and let E be a closed set of the Riemann
sphere. We denote by Γ that part of the boundary of O\E which is contained
in E. We can assume that the geometrical situation is so simple that for
z ∈ O \ E we can calculate ω (z, Γ, O \ E). In these conditions, we define the
harmonic measure of E in z ∈ O \ E to be

ω (z, E,O) := ω (z, Γ, O \ E) .

It should be noted that ω is the unique bounded harmonic function in O \E
that is identically 1 on E, and vanishing on ∂ (Ω \ E) \ E.

We use arguments by Marshall and Smith in [MS] but introducing the
necessary modifications because of the presence of the weight. We have ana-
lyzed their methods and techniques in depth and we have put especial care in
illustrating some geometric constructions. Moreover, it has been our task to
give the constants explicitly enough so that, in each occurrence, the parame-
ters on which they depend are rather clear. In order that the paper becomes
self-contained, in Section 2 we reproduce in detail some tools used by Marshall
and Smith. The proof of Theorem 1.2 is given in Section 3, while in Section 4
we supply a counterexample showing that our main result cannot be extended
when α is negative.

2 Background

In this section we collect several results that we will need for our goals. Firstly,
we explain a contruction due to Marshall and Smith providing a covering for
the range of a univalent function in A1. After, we include in detail some useful
area estimates for subsets of the unit disk which will be applied to establish
further properties for the pieces of the covering of the image domain.

2.1 A covering for the image domain.

Fix ε < 1/10, for any conformal map f keeping invariant the origin, we can
cover the domain Ω = f (D) by a countable colection of subsets Ωn according
to a subtle geometric construction by Marshall and Smith introduced in [MS].
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Since such construction plays a fundamental role in the rest of the paper, we
will give it in detail.

Without loss of generality we can assume that δΩ (0) = 1. We put A0 = D,
and for n ≥ 1, let us consider the rings

An =
{

w ∈ C : (1 + ε)n−1
< |w| < (1 + ε)n

}
, n = 1, 2, . . . (2.6)

For each n ∈ N, we choose, if possible, an Euclidean square Qn ⊂ An ∩
Σε ∩ Ω satisfying





(i) diam (Qn) ≥ ε
4 (1 + ε)n−1

,

(ii)
1
2
≤ dist (Qn, ∂ (An ∩ Σε ∩ Ω))

diam (Qn)
≤ 2,

(2.7)

where wn = f (zn) denotes the centre of the square Qn.
It is not difficult to check that δΩ (0) = 1 implies that there is a square

Q0 ⊂ D ∩ Σε satisfying (i) and (ii) in (2.7). We remark that, according to
the geometry of Ω, many annuli may not contain one of these squares Qn

(satisfying the properties in (2.7)).
For those n ∈ N for which we can construct a square Qn with the properties

in (2.7), we define the set N (Qn) as

N (Qn) :=
{

w ∈ C : βΩ (w, wn) <
100
ε

}
.

Note that N (Qn) is a hyperbolic neighbourhood of Qn. Indeed, choosing any
w ∈ Qn, by (1.5), we can write

βΩ (w,wn) ≤ 2kΩ (w, wn) ≤ 2
∫

[w,wn]

|ds|
δΩ∩An∩Σε (s)

,

where we have used that the segment [w, wn] ⊂ Qn ⊂ Ω ∩ An ∩ Σε. Now, it
is easy to see that

βΩ (w, wn) ≤ 16
ε (1 + ε)n−1

∫

[w,wn]

|ds| ≤ 8
ε (1 + ε)n−1 diam (Qn) ≤ 8, (2.8)

so that Qn ⊂ N (Qn).

We are ready to define the covering {Ωn} for the domain Ω. For those
n ∈ N for which we can construct a square Qn, we say that w ∈ Ω is an
element of Ωn if
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(a) βΩ (γw, wn) < 100/ε, and

(b) If γn
w is the component of γw\N (Qn) containing w, then either β(γw, wm)

≥ 100/ε for all n 6= m or else γn
w is empty.

Here γw denotes the hyperbolic geodesic from 0 to w. If there is no Qn in
An, we set Ωn = ∅. In other words, a point w ∈ Ωn iff N (Qn) is the first
hyperbolic neighbourhood that γw finds when running from w to the origin.
It is easy to see that N (Qn) ⊂ Ωn, and since 0 ∈ N (Q0), the family {Ωn} is
a covering of Ω. Note that if w ∈ Ω and w 6∈ Ωn, n > 0, γw just meets N(Q0)
which means that w ∈ Ω0.

2.2 Some area estimates.

We start with some upper and lower estimates for areas of subsets of the unit
disk involving the harmonic measure and the hyperbolic metric. Interesting
by their own right, they will also be useful in the proof of Theorem 1.2 and
lead to prove other estimates for the Qn squares.

Lemma 2.1 (Upper area estimate). Let E be a measurable subset of the
unit disk D. Then

Area (E) ≤ 6πe−β(0,E)ω (0, E) . (2.9)

proof: We observe that if 0 ∈ E, then e−β(0,E) = ω (0, E) = 1 and,
since Area (E) ≤ Area (D) = π, (2.9) follows. Hence we can assume that
0 /∈ E. Let E∗ =

{
z
|z| : z ∈ E

}
be the radial projection of E on ∂D and set

C :=
{

z ∈ D : β (0, z) ≥ β (0, E) and z
|z| ∈ E∗

}
. Since β (0, z) ≥ β (0, E)

and z
|z| ∈ E∗ whenever for z ∈ E, we have that E ⊂ C. Moreover

Area (E) ≤ Area (C) =
|E∗|
2

(
1− d2

)
,

where |E∗| denotes the length of E∗ and d := inf {|z| : z ∈ E} so that

e−β(0,E) =
1− d

1 + d
.

(cf. (1.3)). Therefore

Area (E) ≤ Area (C) =
|E∗|
2

(1 + d)2 e−β(0,E) ≤ 2e−β(0,E) |E∗| . (2.10)
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Now, by Hall’s Lemma (cf. [Du, p. 209]) we deduce

|E∗|
2π

= ω (0, E∗) ≤ 3
2
ω (0, E) ,

which, with (2.10), implies

Area (E) ≤ 6πe−β(0,E)ω (0, E) .

Lemma 2.2 (Lower area estimate). Let E ⊂ D be a hyperbolic ball with
hyperbolic radius bigger than ρ0. Then

Area (E) ≥ π

64
(
1− e−ρ0

)2
e−β(0,E)ω (0, E) . (2.11)

proof: Suppose that 0 /∈ E and let d = inf {|z| : z ∈ E} so that

e−β(0,E) =
1− d

1 + d
. (2.12)

We denote by Γ the circle orthogonal to the unit circle separating E from 0
with β (0, Γ) = β (0, E), and let I be the subarc of ∂D, subtended by Γ and
separated from 0 by Γ. Since Γ is orthogonal to ∂D, it is well known that

ω (z, I) ≡ 1
2
,

for any z ∈ Γ.
In this setting, the function u defined as

u (z) = ω (z, Γ, V )− 2ω (z, I,D) ,

where V is the region bounded by Γ and ∂D\I is harmonic on V and satisfies
that u (z) ≡ 0 for z ∈ Γ ∪ (∂D \ I), and by the maximum principle, u (z) ≡ 0
for all z in V . In particular, u (0) = 0, and since E is inside the disk whose
boundary is Γ, we can write

ω (0, E) ≤ ω (0,Γ) = 2ω (0, I) =
|I|
π

.

We claim that

ω (0, E) ≤ |I|
π
≤ 4 (1− d) . (2.13)

Indeed, for 0 < d < 1
2 , (2.13) is obvious since |I| ≤ 2π., On the other hand,

for 1
2 ≤ d < 1, by construction, the radius of the circle Γ is

1− d2

2d
; therefore,
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one-half of the area of the sector in the disc D (whose border is I) is less than
the area of the triangle whith vertices the origin, the center of the circle Γ,
and one point of intersection of ∂D and Γ. So that

|I|
4
≤ 1− d2

4d
≤ 1− d.

Hence (2.13) holds for all d ∈ (0, 1).
Now, since E is a hyperbolic ball with hyperbolic radius r > ρ0 > ρ0/2 and

hyperbolic centre at a, in particular E is an Euclidean ball whose Euclidean
radius and centre are

R =

(
1− |a|2

)

1− s2 |a|2 s, C =
1− s2

1− s2 |a|2 a,

respectively, where s = tanh r. Moreover, by construction, d = |C| − R and
so

1− d =
1− s2 |a|2 − (

1− s2
) |a|+

(
1− |a|2

)
s

1− s2 |a|2 ≤
2

(
1− |a|2

)

1− s2 |a|2 .

Then

diam (E) = 2R ≥ s (1− d)

≥ (1− d) tanh
(ρ0

2

)
≥ 1

2
(1− d)

(
1− e−ρ0

)
.

Thus,

Area (E) =
π

4
diam (E)2 ≥ π

16
(1− d)2

(
1− e−ρ0

)2

=
π

16
(
1− e−ρ0

)2 (1 + d) e−β(0,E) (1− d) (by 2.12)

≥ π

64
(
1− e−ρ0

)2
e−β(0,E)ω (0, E) ,

which gives (2.11). In the last inequality we have used (2.13).
If 0 ∈ E, then β (0, E) = ω (0, E) = 1, d = 0 and, in this case, we obtain

Area (E) =
π

4
diam (E)2 ≥ π

64
(
1− e−ρ0

)2
.

We are done.
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Remark 2.3. A similar estimate to (2.11) also holds for a closed square Q ⊂ D
containing a hyperbolic ball with radius bigger than ρ0. Indeed, an application
of the same argument yields

ω (0, Q) ≤ ω (0,Γ) ≤ 4 (1− d) , (2.14)

where d = inf {|z| : z ∈ Q}, and satisfying

e−β(0,Q) =
1− d

1 + d
.

Note that Q is contained in a hyperbolic (and therefore Euclidean) disk E ⊂ D
so that diam (Q) = diam (E). Then, if dE = inf {|z| : z ∈ E} so that

e−β(0,E) =
1− dE

1 + dE
,

then dE ≤ d, and by Lemma 2.2, it follows that

diam (Q) = diam (E) ≥ 1
2

(1− dE)
(
1− e−ρ0

) ≥ 1
2

(1− d)
(
1− e−ρ0

)
.

Since Area (Q) =
√

2 diam2 (Q), by (2.14) and the definition of d we have
that

Area (Q) ≥
√

2
4

(1− d)2
(
1− e−ρ0

)2

≥
√

2
16

(
1− e−ρ0

)2
e−β(0,Q)ω (0, Q) .

2.3 Further Properties for the Q′
ns Squares.

Lemma 2.4. Suppose that n ∈ N is such that we can build up its respective
Qn. Then, Qn contains a hyperbolic ball with radius bigger than

√
2

32 ε.

proof: By (2.7) we know that Qn contains an Euclidean disk ∆n with
radius at least 1

8
√

2
ε (1 + ε)n−1 (note that diam (Qn) ≥ ε

4 (1 + ε)n−1). Take a
curve γ connecting the centre of ∆n with its boundary and observe that for
s ∈ γ we have

δΩ (s) = dist (s, ∂Ω) ≤ δΩ (0) + |s|
≤ 1 + (1 + ε)n

≤ 2 (1 + ε)n
,
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where we have used that s ∈ Qn ⊂ An. If w ∈ ∆n then

βD(z, zn) = βΩ (w, wn) ≥ 1
2
kΩ (w, wn) =

1
2

inf
γ

∫

γ

|ds|
δΩ (s)

≥ 1
2 (1 + ε)n |γ| ≥

√
2

32
ε.

Here we have used that 0 < ε < 1
10 and that the curve γ is longer than any

radius in ∆n. Consequently, it is clear that Qn contains a hyperbolic ball
with radius at least

√
2

32 ε.

Lemma 2.5. Suppose that Γ1 is a circle orthogonal to ∂D separating 0 from
a subset E ⊂ D, and so that e−β(0,Γ1) ≤ 1/4. If R =

[
0, eiα

]
is the radius

orthogonal to Γ1, let Γ0 be the circle orthogonal both to ∂D and R satisfying

e−β(0,Γ0) = 2e−β(0,Γ1).

Let ξ0 = Γ0 ∩R so that β (0, ξ0) = β (0, Γ0). Then

sup
ξ∈Γ0

ω (ξ, E) ≤ Cω (ξ0, E) .

proof: Due to the conformal invariance, we can assume that e−β(0,Γ1) =
1/4 and ξ0 > 0. Note that it determines Γ0 and Γ1; in fact, ξ0 = 1/3,
ξ1 = Γ1 ∩ R = 3/5 and, consequently, the Euclidean distance from Γ0 ∩ D
to Γ1 ∩ D is 4/15. Let U be the region in D bounded by ∂D and Γ1, and
containing Γ0. Let ϕ : U → D be a conformal map with ϕ (ξ0) = 0 and put
I = ϕ (Γ1 ∩ D) ⊂ ∂D.

If ϕ−1 (z) ∈ Γ0 ∩ D, then ω
(
ϕ−1 (z) , E

)
is a harmonic function in D

vanishing on ∂D\I. This means that it is the solution of the Dirichlet problem,
with boundary data 0, for ξ ∈ ∂D\I, and u (ξ) ≥ 0, if ξ ∈ I, where u is some
continuous function. Then

ω
(
ϕ−1 (z) , E

)
=

∫

I

1− |z|2
|ξ − z|2 u (ξ)

|dξ|
2π

=
∫

I

1− |z|2
|ξ − z|2 dµ (ξ) ,

where dµ (ξ) = u (ξ)
|dξ|
2π

is a positive measure. Since ξ = ϕ (s1) ∈ I =

ϕ (Γ1 ∩ D) and z = ϕ (s0) ∈ ϕ (Γ0 ∩ D) we can assert that the Euclidean dis-
tance from ϕ (Γ0 ∩ D) to I is positive, so that there exists a constant C > 0
so that

1− |z|2
|ξ − z|2 ≤ C,
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for any ξ ∈ I and z ∈ ϕ (Γ0 ∩ D). Integrating this inequality over I against
the measure dµ (ξ) we find that for all ϕ−1 (z) ∈ Γ0 ∩ D,

ω
(
ϕ−1 (z) , E

) ≤ C

∫

I

dµ (ξ) = Cω (ξ0, E)

since ϕ−1 (0) = ξ0. We obtain that

sup
z∈Γ0

ω (z, E) ≤ Cω (ξ0, E) .

Lemma 2.6. There exists a constant K0 (ε) > 0 so that for any j, n ∈ N∪{0},
ωΩ (0, Ωn ∩Aj) ≤ K0 (ε)ωΩ (0, Qn) ωΩ (wn, Ωn ∩Aj) . (2.15)

proof: Firstly, we will assume that βΩ (0, N (Qn)) < log 4. By Lemma
2.1 and the conformal invariance of the harmonic measure we can write

ωΩ (0, Qn) ≥ 1
6π

eβΩ(0,Qn) Area
(
f−1 (Qn)

)
;

according to the definition of N (Qn), and using the triangle inequality, we
have that βΩ (0, Qn) ≥ βΩ (0, zn)− 100

ε , and by Definition 1.3 we obtain

eβΩ(0,Qn) ≥ e−100/ε
(
1− |zn|2

)−1

.

Now, by Lemma 2.4, f−1 (Qn) contains a hyperbolic ball ∆n centered at
zn with hyperbolic radius at least

√
2

32 ε. Then

Area
(
f−1 (Qn)

) ≥ Area (∆n) ≥ π tanh2

(√
2

32
ε

)(
1− |zn|2

)2

since, we recall once again, any hyperbolic ball is also an Euclidean ball. We
get that

ωΩ (0, Qn) ≥ 1
6
e−100/ε tanh2

(√
2

32
ε

) (
1− |zn|2

)
. (2.16)

Now, there is a w ∈ N (Qn) so that

βΩ (0, w) < βΩ (0, N (Qn)) + ε < log 4 + ε,

and using the triangle inequality we find that

βΩ (0, wn) ≤ βΩ (0, w) + βΩ (w, wn) < log (4) + ε +
100
ε

.
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By Definition 1.3 and the conformal invariance of the hyperbolic metric, it
results that

1− |zn|
1 + |zn| >

1
4
e−(ε+ 100

ε ).

From this inequality, using Harnack inequality and (2.16), it follows that

ωΩ (0, Qn)ωΩ (wn, Ωn ∩Aj)

≥ 1
6
e−100/ε tanh2

(√
2

32
ε

)
(1− |zn|)2 ωΩ (0, Ωn ∩Aj)

≥ 1
96

tanh2

(√
2

32
ε

)
e−2ε−300/εωΩ (0,Ωn ∩Aj) ,

and the estimate holds for this case.
Now, let us go to assume that exp (−βΩ (0, N (Qn))) ≤ 1

4 . Let Γn be the
hyperbolic geodesic in D separating 0 from f−1 (N (Qn)), orthogonal to the ra-
dius in D through zn and satisfying exp (−β (0, Γn)) = 2 exp (−β (0, N (Qn))) .
Put B = supξ∈Γn

ω
(
ξ, f−1 (Ωn ∩Aj)

)
, and let I be the subarc in ∂D sub-

tended by Γn and consider the harmonic function in D given by

u (z) = ω
(
z, f−1 (Ωn ∩Aj)

)−Bω (z, Γn) .

Note that u (z) ≡ 0 for z ∈ ∂D \ I, and for z ∈ Γn we have that u (z) =
ω

(
z, f−1 (Ωn ∩Aj)

)−B ≤ 0, by the definition of B. By the maximum prin-
ciple u (z) ≤ 0 for all z in the region bounded by ∂D\I and Γn; in particular,
u (0) ≤ 0 and so

ω
(
0, f−1 (Ωn ∩Aj)

) ≤ ω (0, Γn) sup
ξ∈Γn

ω
(
ξ, f−1 (Ωn ∩Aj)

)
. (2.17)

To estimate the first factor in the right-hand side of (2.17), note that,
by construction, β

(
0, f−1 (Qn)

) ≥ β (0, Γn), and, since f−1 (Qn) contains a
hyperbolic ball of radius at least

√
2

32 ε we have

ωΩ (0, Qn) = ω
(
0, f−1 (Qn)

) ≥ 1
6π

eβ(0,f−1(Qn)) Area
(
f−1 (Qn)

)

≥ 1
6π

eβ(0,Γn) Area
(
f−1 (Qn)

)

≥ 1
96

(
1− e−

√
2

32 ε
)2 Area

(
f−1 (Qn)

)

Area
(
Γ̃n

) ω (0,Γn) ,
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Γ̃n being the disc whose boundary is Γn. Note that, by construction, the
radius of Γ̃n is r =

(
1− d2

)
/ (2d); hence

1 + d

1− d
= eβ(0,Γn) ≥ 2,

where we have used that exp (−β (0, Γn)) = 2 exp (−βΩ (0, N (Qn))); so d ≥ 1
3 ,

Area
(
Γ̃n

)
≤ 9π (1− d)2 and

1− d = (1 + d) e−β(0,Γn) ≤ 4e−βΩ(0,N(Qn)).

Take now w ∈ N (Qn) such that βΩ (0, w) < βΩ (0, N (Qn)) + ε; by the
definition of N (Qn) and the triangle inequality we have βΩ (0, N (Qn)) ≥
β (0, zn)− (

ε + 100
ε

)
; therefore,

1− d ≤ 4eε+ 100
ε e−β(0,zn) = 4eε+ 100

ε
1− |zn|
1 + |zn| ≤ 4eε+ 100

ε

(
1− |zn|2

)
,

and

Area
(
Γ̃n

)
≤ 144πe2ε+200/ε

(
1− |zn|2

)2

.

Since

Area
(
f−1 (Qn)

) ≥ π tanh2

(√
2

32
ε

) (
1− |zn|2

)2

,

we get

ωΩ (0, Qn) ≥ 1
13824

(
1− e−

√
2

32 ε
)2

e−2ε−200/ε tanh2

(√
2

32
ε

)
ω (0, Γn) .

(2.18)
To estimate the second factor in the right-hand side of (2.17) we use

Lemma 2.6 and Harnack’s inequality to obtain

supζ∈Γn
ω

(
ζ, f−1 (Ωn ∩Aj)

) ≤ Cω
(
ζn, f−1 (Ωn ∩Aj)

)

≤ 2C
|ζn|ω

(
zn, f−1 (Ωn ∩Aj)

)

≤ 6Cω
(
zn, f−1 (Ωn ∩Aj)

)

= 6CωΩ (wn, Ωn ∩Aj)

(2.19)

Divulgaciones Matemáticas Vol. 12 No. 1(2004), pp. 65–86



78 Julio C. Ramos Fernández, Fernando Pérez-González

where ξn ∈ Γn satisfies β (0, ξn) = β (0,Γn) (note, then, that |ζn| ≥ 1
3 ).

Replacing (2.18) and (2.19) in (2.17) we have

ωΩ (0,Ωn ∩Aj) ≤ ω (0, Γn) sup
ξ∈Γn

ω
(
ξ, f−1 (Ωn ∩Aj)

)

≤ C (ε)ωΩ (0, Qn) ωΩ (wn, Ωn ∩Aj) ,

where

C (ε) = 256C
(
1− e−

√
2

32 ε
)−2

tanh−2

(√
2

32
ε

)
e2ε+ 200

ε ,

and the proof is complete.

3 Proof of Theorem 1.2.

The idea to prove (1.2) is to establish adequate integral inequalities for each
pair (Qn, Ωn) with constants independent of n and f . This is done in Lemma
3.1 below.

Lemma 3.1 (Main Lemma). For α > 0 fixed and given ε > 0, there exists
a constant K (ε, α) > 0 such that for any f ∈ A1

α, univalent with f (0) = 0,
then ∫

f−1(Qn)

|f (z)| dAα (z) ≥ K (ε, α)
∫

f−1(Ωn)

|f (z)| dAα (z) (3.20)

for all n = 1, 2, . . .

Taking Lemma 3.1 for granted, Theorem 1.2 follows as a simple conse-
quence of it. Indeed, since

⋃
Qn ⊂ Σε and D =

⋃
f−1 (Ωn), we can write

∫

f−1(Σε)

|f (z)| dAα (z) ≥
∫

f−1(∪Qn)

|f (z)| dAα (z)

=
∑

n≥0

∫

f−1(Qn)

|f (z)| dAα (z)

≥ K (ε, α)
∑

n≥0

∫

f−1(Ωn)

|f (z)| dAα (z)

≥ K (ε, α)
∫

∪f−1(Ωn)

|f (z)| dAα (z)

= K (ε, α)
∫

D
|f (z)| dAα (z)

= K (ε, α) ‖f‖1,α
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which is (1.2) and Theorem 1.2 would be proven.
To prove Lemma 3.1 we will require an estimate that implicitly appears

in [MS, pp. 104-110] and that we bring out in Lemma 3.2 below.

Lemma 3.2 (Marshall-Smith). There exists an absolute positive constant
K1 ≤ 1

3π1010 and a constant K2 (ε) ≥ 16
π (1 + ε)(1+K1ε) (depending only on ε)

such that

e−βΩ(wn,Ωn∩Aj)ωΩ (wn, Ωn ∩Aj) ≤ K2 (ε) (1 + ε)−|j−n|(1+K1ε)
,

for all j, n ∈ N. For n = 0 we replace wn by 0.

To start with the proof of Lemma 3.1, first we consider the case n = 0.
Let us see that there is a constant K3 (ε, α) > 0 such that

∫

f−1(Q0)

|f (z)| dAα (z) ≥ K3 (ε, α) . (3.21)

In fact, by (2.7), for w ∈ Q0 we have

δΩ (w) = dist (w, ∂Ω) ≥ dist (Q0, ∂ (A0 ∩ Σε)) ≥ ε

10
;

therefore, δΩ (s) ≥ δΩ (w) ≥ ε
10 , for any s in the radius connecting 0 and w.

Since hyperbolic distance and quasi-hyperbolic distance are comparable (cf.
(1.5)) we can put

βΩ (0, w) ≤ 2kΩ (0, w) ≤ 2
∫

[0,w0]

|ds|
δΩ (s)

≤ 20
ε

. (3.22)

Now, using (1.3), the conformal invariance of βΩ and (3.22) it results that

log
(

1 + |z|
1− |z|

)
= β (0, z) = βΩ (0, f (z)) ≤ 20

ε
, (3.23)

for any z ∈ f−1 (Q0) and, since α ≥ 0, we obtain
(
1− |z|2

)α

≥ e−
20
ε α. (3.24)

If z ∈ f−1 (Q0), and remaining that 0 ∈ ∂ (A0 ∩ Σε ∩ Ω) we get

|f (z)| ≥ dist (Q0, ∂ (A0 ∩ Σε ∩ Ω)) ≥ ε

8 (1 + ε)
;
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this inequality and (3.24) yield
∫

f−1(Q0)

|f (z)| dAα (z) ≥ ε

8 (1 + ε)
e−

20
ε α

∫

f−1(Q0)

dA (z) . (3.25)

On the other hand, by (3.23) and keeping in mind that δΩ (0) = 1, f (0) =
0, we can apply the Koebe Distortion Theorem to deduce that

|f ′ (z)| ≤ 4e3βΩ(0,f(z)) ≤ 4e60/ε.

for any z ∈ f−1 (Q0). So, (3.25) can be written as

∫

f−1(Q0)

|f (z)| dAα (z) ≥ εe−120/ε

128 (1 + ε)
e−

20
ε α

∫

f−1(Q0)

|f ′ (z)|2 dA (z)

=
ε

128 (1 + ε)
e−

20
ε (6+α) Area (Q0) .

Since Area (Q0) = 1
2 diam (Q0)

2 ≥ 1
32(1+ε)2

ε2, we conclude
∫

f−1(Q0)

|f (z)| dAα (z) ≥ K3 (ε, α) ,

where

K3 (ε, α) =
ε3

4096 (1 + ε)3
e−

20
ε (6+α).

Next, we will prove that there is a constant K4 (ε) > 0 such that
∫

f−1(Ω0)

|f (z)| dAα (z) ≤ K4 (ε) . (3.26)

Indeed, by the definition of Aj it is clear that
∫

f−1(Ω0)

|f (z)| dAα (z) =
+∞∑

j=0

∫

f−1(Ω0∩Aj)

|f (z)| dAα (z) ,

and since |f (z)| < (1 + ε)j whenever z ∈ f−1 (Ω0 ∩Aj), and
(
1− |z|2

)α

≤ 1
for all z ∈ D, it is clear that

∫

f−1(Ω0)

|f (z)| dAα (z) ≤
+∞∑

j=0

(1 + ε)j
∫

f−1(Ω0∩Aj)

dA (z)

=
+∞∑

j=0

(1 + ε)j Area
(
f−1 (Ω0 ∩Aj)

)
.
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Now, by Lemma 2.1

Area
(
f−1 (Ω0 ∩Aj)

) ≤ 6πe−βΩ(0,Ω0∩Aj)ωΩ (0,Ω0 ∩Aj) ,

which, with Lemma 3.2, yields
∫

f−1(Ω0)

|f (z)| dAα (z) ≤ K4(ε),

where

K4(ε) =
6πK2 (ε)

1− (1 + ε)−K1ε

as was claimed. Comparing (3.21) and (3.26) we conclude that our assertion

holds for n = 0 with Ǩ (ε, α) =
K4(ε)

K3 (ε, α)
.

Assume now that n > 0. Note that if z ∈ f−1 (Qn) then f (z) ∈ Qn, so
that, by triangle inequality, we can write

βΩ (0, f (z)) ≤ βΩ (0, wn) + βΩ (wn, f (z)) ;

by definition (1.3), the conformal invariance and (2.8) we have

log
(

1 + |z|
1− |z|

)
≤ log

(
1 + |zn|
1− |zn|

)
+ 8,

so that for all z ∈ f−1 (Qn) ,
(
1− |z|2

)α

≥
[

1
4e8

]α (
1− |zn|2

)α

. (3.27)

Now, by Lemma 2.4, Qn contains a hyperbolic ball with radius bigger than√
2

32 ε, and since Qn ⊂ An, by Lemma 2.2 we can write
∫

f−1(Qn)

|f (z)| dAα (z) ≥ (1 + ε)n−1
∫

f−1(Qn)

dAα (z)

≥
[

1
4e8

]α (
1− |zn|2

)α

(1 + ε)n−1 Area
(
f−1 (Qn)

)

≥ K5 (ε, α)
(
1− |zn|2

)α

(1 + ε)n
e−βΩ(0,Qn)ωΩ (0, Qn) ,

(3.28)

where

K5 (ε, α) =
1

1 + ε

(
1− e−

√
2ε/32

)2
[

1
4e8

]α

.

Divulgaciones Matemáticas Vol. 12 No. 1(2004), pp. 65–86



82 Julio C. Ramos Fernández, Fernando Pérez-González

We observe that for any w = f (z) ∈ Ωn, looking at the hyperbolic geodesic
γw from w to 0, we can find a point w̃ ∈ γw such that

βΩ (wn, w̃) ≤ 100
ε

and satisfying

βΩ (0, w) = βΩ (0, w̃) + βΩ (w̃, wn) .

Hence,

βΩ (0, w) ≥ βΩ (0, w̃) ≥ βΩ (0, wn)− βΩ (wn, w̃) ≥ βΩ (0, wn)− 100
ε

and
(
1− |z|2

)α

≤
[
4e100/ε

]α (
1− |zn|2

)α

, z ∈ f−1 (Ωn) . (3.29)

Using (3.29) and arguing as in the case n = 0, we obtain

∫

f−1(Ωn)

|f (z)| dAα (z)

≤
[
4e100/ε

]α (
1− |zn|2

)α +∞∑

j=0

(1 + ε)j Area
(
f−1 (Ωn ∩Aj)

)
. (3.30)

Note that, in this setting, Lemma 2.1 asserts that

Area
(
f−1 (Ωn ∩Aj)

) ≤ 6πe−βΩ(0,Ωn∩Aj)ωΩ (0,Ωn ∩Aj) ; (3.31)

We also observe that there exists w ∈ Ωn ∩Aj such that

βΩ (0, Ωn ∩Aj) ≥ βΩ (0, w)− ε,

and, since for any w ∈ Ωn there is a s ∈ γw so that

βΩ (0, w) = βΩ (0, s) + βΩ (s, w)

and
βΩ (s, wn) ≤ 100

ε
,
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we may write

βΩ (0, Qn) + βΩ (wn, Ωn ∩Aj) ≤ βΩ (0, wn) + βΩ (wn, w)
≤ βΩ (0, s) + βΩ (s, w) + 2βΩ (wn, s)

≤ βΩ (0,Ωn ∩Aj) +
200
ε

+ ε,

so that
e−βΩ(0,Ωn∩Aj) ≤ e

200
ε +εe−βΩ(0,Qn)e−βΩ(wn,Ωn∩Aj). (3.32)

Carrying (3.32), (2.15) and (3.31) in (3.30), and applying Lemma 3.2 we find
∫

f−1(Ωn)

|f (z)| dAα (z)

≤ K6(ε, α)
(
1− |zn|2

)α +∞∑

j=0

(1 + ε)j−|j−n|(1+K1ε)
e−βΩ(0,Qn)ωΩ (0, Qn) ,

where
K6(ε, α) = 6π

[
4e100/ε

]α

e200/ε+εK0 (ε) K2(ε);

substituting in (3.28) we obtain
∫

f−1(Ωn)

|f (z)| dAα (z)

≤ K7(ε, α)
+∞∑

j=0

(1 + ε)j−n−|j−n|(1+K1ε)
∫

f−1(Qn)

|f (z)| dAα (z) ,

where

K7(ε, α) =
K6(ε)

K5 (ε, α)
;

finally,
∫

f−1(Ωn)

|f (z)| dAα (z) ≤ K̂(ε, α)
∫

f−1(Qn)

|f (z)| dAα (z) ,

with
K̂(ε, α) =

2

1− (1 + ε)−K1ε
K7 (ε, α) .

So, our assertion also holds for n > 0. Taking

K (ε, α) = max
{

Ǩ(ε, α), K̂(ε, α)
}
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it follows that∫

f−1(Ωn)

|f (z)| dAα (z) ≤ K(ε, α)
∫

f−1(Qn)

|f (z)| dAα (z) ,

for all n = 0, 1, 2, . . .

4 Failure for α negative

In this section we provide a counterexample showing that Theorem 1.2 does
not hold for α ∈ (−1, 0).

Suppose we have fixed α ∈ (−1, 0), and for each n = 1, 2, . . ., and take

εn =
−απ

2
+

1
n

.

For each n, let fn be the Riemann mapping from D onto Ωn := C \ (1 + Σεn)
such that fn(0) = 0 and f ′n(0) > 0. These functions are explicitly defined as

fn(z) = 1−
(

1− z

1 + z

)(2+α− 2
nπ )

.

To show that fn ∈ A1
α, it is sufficient to check that (1 + z)−(2+α− 2

nπ ) ∈ A1
α.

To see this, we can look at the proof of Theorem 1.7 in [HKZ, page 7]), and

taking there β =
−2
nπ

and λ = λn =
2 + α− 2

nπ

2
, we obtain that

‖(1 + z)−(2+α− 2
nπ )‖A1

α
=

Γ(α + 1)
Γ(λn)2

+∞∑

k=0

Γ(k + λn)2

k!Γ(k + α + 2)
.

By Stirling’s formula

Γ(k + λn)2

k!Γ(k + α + 2)
∼ (k + 1)−

2
nπ−1, k → +∞,

we conclude that ‖fn‖A1
α

< ∞ for all n = 1, 2, . . . Note that

fn(z) → f(z) = 1−
(

1− z

1 + z

)(2+α)

,

as n → ∞, for any z ∈ D, and f /∈ A1
α (this is due to the case β = 0 in the

reference above). Applying Fatou Lemma we obtain that

‖fn‖A1
α
→∞, as n →∞. (4.33)
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On the other hand, take ε = −απ

4
. Standard trigonometric calculations

yield
Σε ∪ Ωn ⊂ Σε ∩ (C \ (1 + Σ2ε)) ⊂ D(0, 2),

and we get that
∫

f−1
n (Σε)

|fn(z)|dAα(z) ≤ 2
∫

D
dAα(z) = 2 (4.34)

for all n. But, if δ is a constant such that

‖g‖A1
α

< δ

∫

g−1(Σε)

|g(z)|dAα(z)

for any univalent function g ∈ A1
α which fixes the origin, in particular we

would get that

‖fn‖A1
α

< δ

∫

f−1
n (Σε)

|fn(z)|dAα(z)

which gives a contradiction between (4.33) and (4.34).
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