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Abstract

Laplacian and D’Alembertian operators on functions are very impor-
tant tools for several branches of Mathematics and Physics. In addition
to their relevance, both operators are very used in vector calculus.

In this paper, we show a relationship between the Laplacian and
the D’Alembertian operators, not only on functions but also on vector
fields defined on hypersurfaces in the m-dimensional Lorentzian spaces.

We also define the Blﬁ%"“’kl—product and B,,-congruence.
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Resumen

Los operadores Laplaciano y D’Alembertiano aplicados a funciones
son herramientas muy importantes en varias ramas de la Matemética y
de la Fisica. Sumada a su relevancia, ambos operadores se destacan por
ser muy utilizados en el calculo vectorial.

En este articulo mostramos la relacién entre los operadores La-
placiano y D’Alembertiano tanto sobre funciones como sobre campos
vectoriales definidos sobre hipersuperficies del espacio Lorentziano m-
dimensional. Ademds, definimos los BEok productos y la B,,- con-
gruencia entre operadores.
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1 Introduction

In the last three decades the interest in Lorentzian geometry has increased,
[1]. We will concentrate on two differential operators of particular interest
here: the Laplacian and the D’Alembertian.

Laplacian and D’Alembertian operators on functions are very important
tools for several branches of Mathematics and Physics, specificly in investi-
gating many geometrical and physical properties. In addition to relevance,
both operators are very used in vector calculus.

Moreover, the Laplacian operator on functions is quite different from the
Laplacian operator on vector fields and the D’Alembertian on functions is
quite different from the D’Alembertian on vector fields.

There are many interesting vector fields in differential geometry, for ex-
ample the mean curvature vector field. In [5], Bang-yen Chen developed the
Laplacian on vector fields, and he studied its application on mean curvature
vector field for submanifolds in Riemannian space. In [3], we studied the
Laplacian operator of the mean curvature vector fields on surfaces in the 3-
dimensional Lorentzian space, R}, and we showed the Laplacian operator of
the mean curvature vector fields on the non-lightlike surfaces S7, HZ, S1 x R,
H} x R, R} x S! and R3.

The purpose of this article is to show the relationship between the Lapla-
cian and the D’Alembertian operators, not only on functions but also on
vector fields for non null hypersurfaces in the n + 1-dimensional Lorentzian
space.

In order to do that we will first give the definitions of these operators on
functions in both Euclidean and Lorentzian spaces.

In the third section, we will generalize the Laplacian and the D’Alembertian
on vector fields of Riemannian geometry to Lorentzian geometry, specifically of
the hypersurfaces in Riemannian space to non null hypersurfaces in the n 4+ 1-
dimensional Lorentzian space, R}, We will introduce the BF 4 1-product,
from which the relationship between Laplacian and D’Alembertian derives.

In the fourth section, we will study the Bf#i’"k’—pmduct . We will show
that the B:i;‘l"’kl -product becomes a B,,1-congruence.

In the fifth section we will show many examples of operators on vector
fields and B%-products.
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2 Preliminaries and definitions

Let R™ be the n-dimensional Euclidean space with natural coordinates u,. . . ,u,.
In classical notation, the metric tensor is

g = gijdu’ @ du? with g =diag(+1,...,+1)

The Laplacian and D’Alembertian operators on functions definided on R™
are well known operators, defined as follows.

Definition 1. Let uq,...,u, be the natural cordinates in R™. The differential
operators

Azzw (1)

- i 2
ou? * — ou; @)

are called the Laplacian operator and the D’Alembertian operator in R™,
respectively. They are defined on smooth real-valued functions on R™.

Let (R?, g) be an n-dimensional Lorentzian space of zero curvature where
the signature of g is (—,+,...,+). We will indicate with (, ) the correspond-
ing inner product.

In Lorentzian spaces there are three kinds of vectors: timelike, spacelike
and lightlike, according to the inner product of the vector with itself is nega-
tive, positive or zero, respectively.

We say that a hypersurface M in R} is spacelike or timelike if at every
point p € M its tangent space T, (M) is spacelike or timelike, that is if the
normal vector is timelike or spacelike, respectively, (cf. [2] for more details).
We will call these hypersurfaces non null hypersurfaces from now onwards.

Considering R" = R{, we denote the set of all smooth real-valued functions
on R?” with F (R?), where v : 0, 1.

It is natural then to define Laplacian and D’Alembertian operators on
functions in the Lorentzian space R}. Some operators on functions in the
Lorentzian space R} are well known, (cf. [1] and [7]).

Definition 2. Let uy,...,u, be the natural coordinates in R}. The differen-
tial operators A and O are given by:
n
82
A= it 3
2o @
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and , ,
0 L9
O=—e1=> i, 4
s1au%+;e a2 4)
1 i =1,

respectively, where €; = 41 if 2<i<n.

Both operators are defined on functions f € F (R}).

According to Definition 1 and Definition 2, the Laplacian operator is de-
fined by using the tensor metric of the respective structure. In some contexts,

the Laplacian is defined with opposite sign and others name are used to call
it (cf. [7]).

3 Relationships between the Laplacian and
D’Alembertian operators

We denote the Laplacian and the D’Alembertian operators on functions in R}
with AT and 07, and on functions in R™ with Af and 0Of, respectively.

Proposition 3. According to Definitions 1 and 2,
AT (f) =05 (f) and Ag (f) =07 (f)-

Proof. By Definition 2, O0F (f) = ‘|' Ez -2 au

By Definition 1, A7 (f) = an + Zz 2
Thus A} (f) =05 (f) -
Similarly, O (/) = = (-4 ) + Sl 5f =S, Sh = A3 (). O

The Laplacian operator on vector fields for submanifolds in Riemannian
manifolds is known (cf. [5]). Now, we show the Laplacian and D’Alembertian
operators on vector fields for hypersurfaces in a n + 1-dimensional Lorentzian
space of zero curvature, ]R;LH.

Let M be an n-dimensional non null hypersurface in R?H with induced
connection V.

Let

du

(1]

(M)={X:M— R?* X is a vector field and X (p) € R?H}

and

(1]

(M) = {X : M — | T, (M); X is vector field and X (p) € T, (M) }
peEM
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We say Ei, ..., E, is a basis of 2 (M) and FE,, 1 is the unit normal vector
field on M if at every point p € M, {E1 (p),...,E, (p)} is a basis of T}, (M)
and F,, 11 (p) is the unit normal vector at p, respectively. Thus, E1,..., Ey41
is a basis of E(M). If {E; (p),...,E, (p)} is a orthonormal basis of T}, (M)
and E,;1 (p) is the unit normal vector at p,Vp € M, Eq,...,E,41 is an
orthonormal basis of = (M)

We recall the well known fact that if X € =(M) and E; € Z (M), then
Ve, X is vector field of Z(M). Consequently, if X € Z(M) and E;, € Z(M)
then ﬁEil Vg, X € E(M). Thus it is possible to define the Laplacian
and the D’Alembertian operators on vector fields of = (M).

im

Definition 4. Let M be an n-dimensional non null hypersurface in R?H

with induced connection V. Let FEi,...,FE, be an orthonormal basis of
=2 (M). B
a) The Laplacian A on vector fields of = (M) is given by:
A= ZE:‘lvElvEl, (5)
i=1

b) The D’Alembertian [ on vector fields of = (M) is given by:

O=-e1Ve Ve, + Z&inﬁEi, (6)

=2

where &, = <EZ,EZ>,’L:17,TL

Now we introduce some notation which will be used later. Let ﬁ; = ﬁEﬁ ,
=2 s = = = = . .

Viiios=VE, VE,, ..., szm = Vg, Vg, ,where 1 <iy,...,0p, <n
and Eq,...,FE,41 is basis of =(M). Let F (M) be the set of all smooth

real-valued functions on M. Let
m

P(M) = {Q #0; Q= 2?121 Qilvjl +eee ZZ,‘..,imzl Qirsevsim Vg sovoim

where m = m(Q) < co and ¢;,,...,qi,....i,, €F (M) }.

We define a new application which produces a certain change of sign in

some terms of the operators of P (M). Since this application satisfies prop-

erties of inner products, we shall call it “product”. We shall make use of this
product when we relate the Laplacian and the D’Alembertian operators.

Definition 5. Let M be an n-dimensional non null hypersurface in R?Ji with
induced connection V. Let Ey,..., E,+1 be an orthonormal basis of = (M).
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For k : 0,...,n, the BF,  -product is an application on P (M) to P (M) which
is characterized by

Fooy _f —eie ifke{in,. . im)
(0. zm)jt_{ e k¢ {ir,... im} "

where €;; = (E;, Ey), j,t=1,...,n+1,and {41,...,in} C {1,...,n}.

We denote the BY, ;-product with (, ) Bt
The equality Q = Z"+1 (Q, Et>B 1y Bt means QX = E"'H (QX, Et>%n+1 E,
for all X € E(M). Hence, the BY_;-product is well defined.
Remark 6. The BY_ -product is F (M)-bilinear.

Remark 7. From Definition 5, ifvm X = Znﬂ Xj i, Fj then we have
— k
<v’.” im % Et> =S XD i (B By

115--5tm
bt g ¢ k
= ijl Xilv",i'm (bilw~7im)jt = Xi17~“5im (bll, 7Zm)tt
_gttXitl,...,im if ke {il,. 7Zm}
EttXitl;“-ﬂ;m if k ¢ {7;17...,im} ’
The following theorem relates the Laplacian and the D’Alembertian oper-
ators, which are defined in (5) and (6).

n+1

Theorem 8. Let M be an n-dimensional non null hypersurface in R?"j with
induced connection V. Let Ey,...,E,+1 be an orthonormal basis of = (M).
Then, the Laplacian A and the D’Alembertian O operators on vector fields of

= (M) are related by:
n+1

O=> (AE)g,  E (8)

t=1

and
n+1

A=>"(0,E)p,  E (9)

t=1

Proof. Let X € Z(M) and let V, Vp, X = 377 X/ E;. By (5) and (6),
2 (AX By Ee=Y00 <z$:15iininX7Et>B E,

t=1 n41

_ ;jf (T e (Ve Ve X B, | b B

n+1 n n+1
= S S e S XY (B B, B
From the orthonormahty condition of the basis of = (M),
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S e i X By B, H}Et
= ?+11 { e1 X1y (B, Ey) + Zn+21 g X <Et7Et>} E,
_ _Z;H-llg <Zn+1 Xg E Et>Et + Zn+l Z:H—l <Zn+1 X]E Et>Et
= —a1 200 <VE1VE1X E)E, + ZnH € ?+11 (Ve,VEX,E) E,
= Ve Ve, X + 30 Ve Ve, X =0X.
Therefore, 0 = ZnH (N By} Boys Bt Analogously,
2 OX, By, B
= E"H — e (Ve Ve X, By ot S e (Ve Ve X, By, - VB,
— Zn-‘rl{ e Zn+1 Xi (B, Et>B +1+Zz L€ Zn+1 X7 (E;, By . \E,
— n+1 {Zz e <Zn+1 X’E Et> }Et

= zz e 0 (Ve Ve X, E) B}
= Zi:l EsziinX = AX. O

From now onwards, we will extend Definition 5 and Theorem 8 to general,
not necessary orthonormal basis. In order to do that we first define the Lapla-
cian and D’Alembertian operators on vector fields when M is a n-dimensional
non null hypersurface in R?“. In a classical way, we denote g;; = (E;, Ej),

1 S Za] S n+ 17 and (glj) = (glj)_l

Definition 9. Let M be an n-dimensional non null hypersurface in R?H
with induced connection V. Let E1, ..., E, be a basis of Z(M).
a) The Laplacian A on vector fields of = (M) is given by:

A=2 9"Ve V. (10)
i,j=1
b) The D’Alembertian [J on vector fields of = (M) is given by:
O=-¢"VE Ve, — Zg“ (Ve,Ve, + Ve VE) + Z gijﬁEiij. (11)
i=2 i,j=2
Naturally, the BF »a1-product must also be extended to general basis.

Definition 10. Let M be an n-dimensional non null hypersurface in R?Jrl
with induced connection V. Let Ei,...,FE,4+1 be an orthonormal basis of
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Z(M). For k : 0,...,n, the B,’iﬂ—product is an application on P (M) to
P (M) which is characterized by:

koo f —gjt fk€{ir,. . im}
O%.... “")J‘t_{ gt itk {in,... im} (12)

We denote the BY, ;-product with (, >B .
Remark 11. Since (,) is F (M)-bilinear, the BY ,-product is F (M)-bilinear
too.
Remark 12. If ﬁZL i

(Vi i XEt> —Z"+1 XJ Z. (E Byt
Sim Bny, T e m nt1
= S50 X O,

2171 Vim 7i7n)jt
_ _Zt:— gth reesim if ke {i1,...,im}
Z? 1 g]thJh...,’ if k ¢ {ila"'aim,}

tm

V1 yeeesl
(Vi X B ik {in o in}

Theorem 13. Let M be an n-dimensional non null hypersurface in
with induced connection V. Let Ey,...,E, be a basis of 2(M) and let E, 1
be the unit normal vector field. Then,

_<vf" .mX7Et> if k€ {ir,... im}

n+1
Rl

n+1
0= (AE)g, B (13)

t=1

and
n+1

A=>(0,E)g,  E (14)

t=1
Proof. Clearly, the Laplacian A and the D’Alembertian [ are two operators
of P (M).
Let X € E(M), then Vg, Vg X = 3" F X F,, where
X5 =" 9" (Vi VE, X, Es) By (10) and (11)
AKX, By Bo= Y (S0 99V 8 Y, X, Et> Eq

1
nE Bp41

- ZH-H {Z’J 1 glj <VE VE X, Et>Bn+1}Et
= ;H—ll {Z . gz] Zn+1 XT <Er, Et>}3"+1 } E;
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n+1 n+1
= t+1 {Ez] 19 Z]Z—'—XT (bl)t}Et
= :j—ll {_ Zj—l 9 legrt =2 io 9" X gt + sz‘:z gin{jgrt} By
= = S 09 (Ve Ve X Br) + S0 ¢ (VB Vi, X Br) | By

i S 07 (Ve Ve, X B L B

_ D)z(: =19 ]vElvE X— Z QQZlvE vEl*X_’_Z:n+1 sz 2ngE VE X
Therefore, [ = ZnH (A, Et>}3 . E,.

In similar way, "+1 1 (OX,E; ) o B
e {z;;l gUXT, (BY),, + X1y 6 XE (1), } B
+ i {ZZJ':2 97X} (bllj)rt} By
=-Yuh {— POUED CHTMED DI giIX;igrt} E,
+ E?Lﬂ {Ezg‘:z ginirjgrt} E;
. an {E?j_l 49 (V5 Vi, X, Et>} B =Y, ¢9V5 Ve X = AX.
Therefore, A = S0} (D,Et>}3n+l E;. O

4 B, i-congruence

Let M be an n-dimensional non null hypersurface in R} with induced con-
nection V. From now anwards, we consider Ei,..., E,, vector fields such
that E,41 (p) is the unit normal vector at p and {F; (p),...,E,(p)} is a
basis of T}, (M) , at all p € M.

Definition 14. Let kq,...,k; be integer numbers such that 0 < k; < --- <
k; <n. The BZﬂr"l"’k’—product is characterized by:

(bi'@ll,.‘....,ikz) — (_1)ngt, (15)
) sfm jt
with ¢ = [{k¢; ke € {i1,...,im} and 1 <t <[}

In classical way, we consider |} = 0. It is obvious that 0 < ¢ < min {I, m} <
n.
n+1
the BFYyM-product is too F (M)-bilinear.
If Q € P (M), we denote 31 (Q, Ey) " By with By ™ (Q).

We denote the B*>* -product with (, )kl’+ " Since (, ) is F (M)-bilinear,
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From Definition 14, we get st_"l'"kl (Q) is a differential operator of P (M) .
Remark 15. Let us note that (b?l_’_”’l-m)jt =g, atall j,t:1,...,n+1 and
{ir,...,im} C {1,...,n}. Thus B% , (Q) = Q.

Definition 16. Let P, @ be two differential operators of P (M ). We say that
P is B,41-congruent to Q if P = B, (Q).

Lemma 17. Let (bf , (b,}}17~~~1j5)rt be as in (15), then

S

k h ~GuvGrt kae{zl”zm}/\h¢{]1vajs}a
(bi17"'7i’nz)u7j (bjl,...,js)Tt = —Guovgrt ka ¢ {217"'71m}/\h€ {]17"'7.75}7
GuvJrt in other case.

Proof. 1t follows from the table:

k=i o k=im k& {in,... i)
h = jl (_guv) (_grt) (_guv) (_grt) Guv (_grt)
h = j2 (_guv) (_g'rt) (_guv> (_grt) Guv (_grt)
h :.78 (_guv-)“(_grt) (_guv.)“(_g’rt) Juv (.;grt)
h ¢ {jl» e ajs} (7.91“;) 9rt (791“)) grt Guvdrt

O

We denote the set of all Bsﬂr"l“’kl—products with B,11, where 0 < k; <
<k <n.

Concecutive application of products in B, 41 result in another product in
Br+1. Its proof is more dull than the idea itself. So we have developed it in
steps.

Proposition 18. Let P,Q,R € P (M) such that P = B% | (R) and R =
Bl 1(Q), then
By (Q) if k<h,
P=Bi,(Bin@)=§ Q i k=h (16)
B, (Q) if k>h,

where 0 < k,h < n.
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Proof. We will expllcltly show that BF, | (B, | (Q)). Let

Q=" 14V ++ 30 ’Zm_lqil,,,,,i,,LVZﬂm,m Since

S Bn+1 (R) = n+1 <R Et> Bny1 By and R = Zn+1 (Q.E > B T
then

P = Bn+1 (Z?: <Q E; > By Ej)

n+1< n+1{ Q1= 1(]“ v“;E> +1}Ej>+

n+1 n —=m h
+Bn+1 Zj:l Zil,.“,im:1qilv---7im Vitroosim i Ej|.
n+1

B
Let us note that

n n =l
S an (Vi > =50 i (Vi By ) = an (Vo By )
Brbt - iizh

h
=2 =2
n n
Zil,i2:1 qil 442 <Vi1,i2 Y E]>B - ZihiQ:lqil 442 <Vi1,i27
ntl i1,i2#h

n =2 n =2 =2
= iy=1hiis <Vh,¢2, Ej> =2 ii—1 Gin,h <V¢1,h7 Ej> + Gn,n <Vh,h, Ej> )

and in the same way,

n —m
Zil,...,im:l Qiy,....im, <vi1,...,ima Ej>
Bni1

—m
- Zzh 71,m_1q111 Jim <vi1,...,im,7Ej>

i1y im#ER

- Ziz,...,imzl Ahiz,... im <v2i2,...,i7,lij>

- ZZ,’L‘g,‘..,’L‘m::l Qi1 hyiz,... im <v:,h,i3,...,im’ Ej>

— = i =1 Dt 1h <v:'?,...,im_1,hv Ej>

+ ZZ,..A,im:I Ah,hyis,... im <§Zh,i3,...,im7Ej>

+ Zg,z};,“.,im:l Ahiz,hyig,... im <ﬁ:ﬁi2,h7i47...,im ) E7>
i a1 Dty 2,h <v:,1l,...,im,2,h,hv Ej>

- ZZ im=14h,h,hig,.. <$hm,h,h,i4,...,ima Ej>

—m

h

- Zil,...,i7,,,,3:1 qil»--wimf?n}hh;h <v7;1,.4.,i»mf3,h,h,h’ EJ>

4.4 (_1)m dh,....h <v;:m’h, EJ> .
We distinguish two cases:

a)If k # h,
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n+1 n n+1 =1 k
P (S (VB ) - e (Ve B
il;éh n+1 n+1

k
n+1 n —m
G (Vi )| B
n+41

i1,eeim#h

k
n+1 n =m
== <Zi2,...,im_1 Qhoiz,...sim <vh,z’2,..‘,im7Ej> > E;

Bn+1

k
n+1 n =m
- _Z (Zi17-..,im_1—1 Qiy,....im—1,h <Vi1,...,im71,h7Ej> ) Ej

Bn+1
n+1 —m k
S ) g (T BB

Bpt1

= Zn+1 ZZ:lqil <V“,E > Ej

i17#h,k
n+1 S n+1 1
=20 @ <V;ﬁ >E 2j=14n <vh>Ej E;
n+1 n =m
+ Z Zil,...,’imilqilv'winz <V,L‘1’“.7im7Ej> E]
01,0 im ARk
n+l n =m
Z Zig,..‘,imzlqk;iz;m,im <Vk,i2,...,iman> E;
12,ee e im FEh
n+1 n —m
72 Zil,4,,7im71:1qi17~--»im—17k <Vi1,...,im_1,kan> Ej
01,0y —17h

S ) e (Vi B ) B

n+1 n =m
- Z Ziz,..‘,im:ﬂh,iz,m,im <Vh,i2,...,i,,,L7Ej> E;
i27 yim7ék7

+- +Zn+1( D™ ank,..k <vZLk:,m,k7Ej>Ej

s

m

n+1 n =
e , v N B
1 b= seestbm—1,
Z Zz . =141, sim 1-h< i1,eeim—1,h ] J

clm—1=

i yerrim—1 2k
+eeet Znﬂ (=)™ q,....kh <vZ,L‘..,k,h7Ej> E;
AR D Dy Co ) KA <v;z...,h7Ej> Ej
= Eilzlqhvil — @V - fﬂﬁi,Ej +---

i1#£h,k
n —m n —m
JFZil,...,im:ﬂil7---,imvi1,...,im - Ziz,4..,%:1%,1‘2,---,%vk,z@,...,im
i1yeeyim R K inyeyim#h
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47

n
_Zil,...,im,1:1Qi1,“ sim— 17kv11, Sim—1,k +oe Tt (_1) qk
i1, rim—17h
n =m
_ZiQ,.H,imZIqh)iZa-”,i'mvhﬂz,...,im + T + (_1) qh,k, ,k}vh k
12,y im FEk
n —m m
_Zil,...,im_lzlqil,u.,im,l,hvil’myimil’h +oo 4+ (D) g,

115y im—17#k
4+ 4 (_1)m qh,.. v]7-:?...,]7.

=m
E @,V -+ E Qi yeesim Vi, im
i1=1 By esbm =1
=m
_E qll i1 + z : Qil,...,im B] yeensim
11=1 i1y =1
3j: ij=h AVt i Ek
=m
_E qll i1 + z : qilwu;im B]yeensim
i1=1 01,0y bm =1
3dj: ij=k AVt: i17#h
=m
—+ § qll -+ E : Qiv,..iiy Vi, iim*

L1—

01,0y bm =1

dj: ij=h A It: iy=k

From Definition 14, if £k < h then the above expression is the same as

Bn+1 (@), thus we write P = Bﬁfl

b) If k = h,

P Zn+1 ZZ:lqi’l <v“,E >

n+1 n
SR A D

+1
Zn <Z;L27 Sim=1 Qh yB2,5.-
+1 oM
- ZTL <le» ime1=1 i1, im—1,h <vi1,...
() an

i17£h

i1y eyimFh

n+1

h
=m
im =111, s0m <Vz’1,..‘,im7Ej>

<Vh i2,..

Bn+1

h

<ﬁh,...,h7Ej> Ej

Bn+1

n+1 =1 h
E; =350 an <VmEj>B B E;

h
J Bn+1> J

,im_l,hij>

(Q). If k > h then we get P = Bn+1 Q).
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=y (Zzlqn <V11»E >> Ei+ Y an <vf1ij> E;

i17#h

+1 =m
30 (Z“, iy =1Titseim <Vi1,...,i,,,nEj>> E;

i15im#ER

+1 om
+Zn (Zzg, im=14Ryi2,.im <vh,i2,...,im3Ej>> E;

12, yim#h

n+1 n —=m
R D Irir DS i =100 1m_17h<Vi1,...,¢m_1,h7Ej> E;

A ) <vh w E5 ) E;
n+1 n —m
= Z - (<Z“ 1 qnv +eee Zil tm=1 qil’m,imvil,...,im’Ej>) Ej

.....

By Remark 15, P=B),, (Q) = Q. O

Corollary 19. Let Q € P (M) and 0 < ky, ko, k3 < n, then

B2 (Q) if  ki=k
) . kBii;lk(Q) if k1= ks
Bty (BN (@) =4 BRA™ @ o ki<h<ky . (1)
Bni’l17 3 (Q) Zf ko < k1 < kg
@

) Zf ko < k3 < kq

=l =m
PTOOf. LEt Q = ZZ:I qilvil + + Z’Ll Sim=1 q'Ll ----- im v’il

..... i
In similar way to Proposition 18,
n n
k1 kz,ks _ § : S =m
Bn+1 (BnJrl )) - iy vil +ot § : Qiv,...pim vh ----- im
i1=1 i1y ey =1

Vj: ij;éktl A\ ij;ﬁkz AN ij?fklg

n
Z =1 Z =m
- qilvil + qilwn;i?nvil,...,i,n

i1=1 01,00 tm =1

Jj: ’i_jikl AVt: iy#ko or 3] i_j:kl AVt: iy#ks

n
—1 =m
*Z ¢ Vi, +---F Z Qirseosin Vigoosi

i1=1 1,0y tm =1

EVE ij:kz AVt: iy #kq or 3j: ij:kg AVt iy F# k1
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n n
Z =1 Z =m
+ qil Vil + e + Qi17---;i7n vil,...,im'

i1=1 i1, yim=1

3j: i]‘:kl A 3t: iy=ko A 3r: i,.=k3
Equality (17) follows from Definition 14. O

Corollary 20. Let Bsi'{’kl € Byy1. Then

Byt =Bl (Bl (- (B ) (18)

Proof. Tt follows from Proposition 18 and Corollary 19. O

Now, we define an operation on By, 11 X B,41.

Definition 21. Define o: B,,41 X B,11 — B,41 by
(Bﬁir"l'"k’ o BZﬁr’i”’ht) (P) = BEuyh (BZii"*ht (P)), for all P € P (M).

Proposition 22. (B,,11,0) is an abelian group.

Proof. By Proposition 18 and corollaries 19 and 20, o is a well-defined opera-
tion. By Proposition 18 and Corollary 20, o is a conmutative operation. From
Remark 15 and Proposition 18, the identity of (8,41, 0) is the B?H_l—product.
By Proposition 18 and Corollary 19,

Bﬁ:—l o Bg+1 if k‘g = kg
B o (ijil o Bﬁil) —{ BRL o BR i hy < ky
B o BRI i ko >k

B it ko = ks

B, i ki=ks
BFs itk =ke
Bsi]{é’ks if k< ko <ks
= B:i»:hza if ke <k <ky =B 0B,
B3 it ke <ks <k
BS:C]fB’kZ if ky <hks <k
BRSO ks <y < ko
BE M kg < ko <y
= (Bly, 0Bl ) 0 BEL,.
According to Corollary 20, o is an associative operation.
From the above properties,
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k1,...,k; ki,....k1 __ k1 k; k1 k;
B oB —B_,'_1o---an_,'_lan_i_lo~-~an_,’_1

n+1 n+1 n
_ k1 k1 ki ki _ 0 0 _ 0
- (BnJrl © Bn+1) ©---0 (BnJrl o Bn+1> - Bn+1 ©---0 Bn+1 - Bn+1'
—1
k1,....k1 _ pki,. ke
Therefore (Bn s ) = Bluyoh, O

: ki,...ki _ po
Remark 23. The order of BEyi7* is L }f By = Bujy,
" 2 in other case.
Theorem 24. Let P and Q) be two Byy1-congruent operators. There ez-
ists B:j_"l“’kl € Bptisuch that P = bej_"l“’k’ (Q) ,and this is an equivalence
relationship.

Proof. Let P,Q, R € P (M). By Proposition 22, for all P € P (M) there exists
BY ., € By 41 such that P = BY | (P). Therefore, P is By, 1-congruent to P,
forall Pe P(M).

If P is B, 41-congruent to @ then there exists BfLH € B, 41 such that
P = BE ., (Q). From Proposition 22 Q = BE | (B% , (Q)) = Bk, (P) ,that
is, there exists B | € B,,+1 such that Q = B% , (P). Therefore, Q is By41-
congruent to P.

If P=Bf | (R) and R = B!, (Q), it follows from Proposition 18 that

P =B (Q), with BE', € By O

5 Examples

Lastly, we show some examples of the Laplacian and D’Alembertian operators
on vector fields and Bf, ;-products.

In [3] the reader can find more information about non null surfaces of
constant curvature in R}, mean curvature vector fields, and Laplacian on
mean curvature vector fields on non null surfaces in R.

Example 25. Let 21, 22, 73 be a coordinate system in R$ such that {9y, 92, 93}
is an orthonormal basis for R$, where 9; = 8%1_. The pseudosphere S7 in R?
is the surface defined by 57 = {(#1,22,23) € R} : —af + a3 +2f =1}.

S? can be parametrized as x; = sinhw, 75 = cosf coshw, x3 = sinf coshw,
where w € R and 0 < 6 < 27.

The tangent vectors are expressed as follows:

0, = % = coshw 0y + sinhw cosf O + sinhwsinf Js,

Oy = a% = —coshwsinf 0y 4 coshw cos @ 0s.

The unit normal vector to the surface S? at (w, ) is

N = (sinhw, coshw cos @, coshwsin 6) .
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Hence (0,,,0.,) = —1, (0, 09) =0, (09, Op) = cosh? w and (N,N) =1.
According to Definition 9, the Laplacian operator on vector fields, A, for
S? is given by:

A= fﬁawﬁaw + ﬁaeﬁae.

cosh? w
The mean curvature vector field H for S? is given by H = —N (cf. [3]).
By applying to H the Laplacian operator on vector fields for S?, we obtain
AH =2 N —tanhw 9,, = —2H — tanhwd,,, (cf. [3]).

Example 26. Let z1, 22, 73 be a coordinate system in R} such that {01, 9o, 93}
is an orthonormal basis for R$, where 9; = %. The cylinder R} x S in R}

is the surface defined by R} x S* = {(z1,22,23) € L3 : 23 + 23 =1}.

R} x St can be parametrized as 1 = t, x3 = cosf, r3 = sin ), where t € R
and 0 < 0 < 2m.

The tangent vectors are expressed as 0y = 01, 09 = —sinf 0, + cos 6 0s.

The unit normal vector to the surface R xSt at (¢,6) is N = (0, cos 6, sin6).

Hence, (0;,0¢) = —1, {9, 0:) = 0, (9p,p) = 1 and (N, N) = 1.

According to Definition 9, the D’Alembertian operator on vector fields for
R} x St is given by 0 = V5,Va, + Vg, Va,-

The mean curvature vector field H is given by H = —3N (cf. [3]).

Since V,Vo, H =0 and Vy, Vs, H = —%Wag (Og) = %N7 applying to H
the D’Alembertian operator on vector fields for R} x S we obtain OH =
IN=—H.

Example 27. Let A be the Laplacian operator on vector fields for a surface
P p p
M in R3. We denote the B,,;1-equivalence class of A with [A]. If A is defined
by
A= guValVal + 912V31V32 + 921V32 Val + 922V32V327
then,
B(T)L+1 (A) = Av
Byy1 (D) =—(9"Va, Vo, +9'°Va,Va, +9°'Va,Va,) + 9%V, Vo,
=-A+ 2922ValVai, o o o
B2y i (A)=g"Vs, Vo, — (9"*Ve,Va, +9°'Va,Va, +9°*Va,Va,)

=-A+ 2911v31val7
and o o o o
B}Lil (A) = _gllvﬁl th + gl2val V32 + 921v32V31 - 922vt92 vaz
> © s = B (M)+B2 (A
=A_-2 (gllvalval + QZZVSQVBQ) - _ nt1( )J2F nya( )

are B,,;1-congruent operators. Therefore,

O+B2, (A
A] = {A,0, B, (&), =202

Divulgaciones Matemadticas Vol. 12 No. 1(2004), pp. 35-52



52

Graciela S. Birman, Graciela M. Desideri

Acknowledgement The authors want to thank one of the referees for his
valuable comments.

References

1]

2]

Been, J. K., Ehrlich, P. E., Easley, K. L. Global Lorentzian Geometry,
Second Edition, Marcel Dekker Inc., New York, 1996.

Birman, G. S. Integral Formulas in Semi-Riemannian Manifolds, To ap-
pear.

Birman, G. S., Desideri, G. M., Laplacian on Mean Curvature Vector
Fields for some Non-Lightlike Surfaces in the 3-Dimensional Lorentzian
Space, To appear in Actas del VII Congreso Monteiro.

Birman, G., Nomizu, K., Trigonometry in Lorentzian Geometry, Amer.
Math. Monthly 91 (6) (1984), 543-549.

Chen, Bang-yen. Geometry of Submanifolds, Marcel Dekker, Inc., New
York, 1973.

Kupeli, D. N., The Method of Separation of Variables for Laplace-Beltrami
Equation in Semi-Riemannian Geometry, New Developments in Differ-
ential Geometry (December, 1994), 279-290, Math. Appl., 350, Kluwer
Acad. Publ., Dordrecht, 1996.

O’Neill, B. Semi-Riemannian Geometry with Applications to Relativity,
Academic Press, New York, 1983.

Divulgaciones Matemadticas Vol. 12 No. 1(2004), pp. 35-52



