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A b s t r a c t. Let G denote the complement of the graph G . If
I(G) is some invariant of G , then relations (identities, bounds, and similar)
pertaining to I(G) + I(G) are said to be of Nordhaus-Gaddum type. A
number of lower and upper bounds of Nordhaus-Gaddum type are obtained
for the energy and Laplacian energy of graphs. Also some new relations for
the Laplacian graph energy are established.
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1. Introduction

In this paper we are concerned with simple graphs. Let G be such a
graph, and let n and m denote, respectively, the number of its vertices and
edges. Then G is said to be an (n,m)-graph.

The (ordinary) spectrum of G is the spectrum of its adjacency matrix [6],
and consists of the numbers λ1 ≥ λ2 ≥ · · · ≥ λn . The Laplacian spectrum
of G is the spectrum of its Laplacian matrix [10, 11, 21, 22], and consists of
the numbers µ1 ≥ µ2 ≥ · · · ≥ µn = 0 .
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The energy of a graph G , denoted by E(G) , is defined as

E(G) =
n∑

i=1

|λi| .

This graph-spectrum-based invariant has its origin in theoretical chemistry
(for details see [13, 14]), but has recently attracted the interest of mathe-
maticians. The basic mathematical properties of graph energy can be found
in the review [12], whereas some most recent mathematical studies in the
papers [3, 4, 25–30, 32, 33, 35].

The Laplacian energy of a graph G , denoted by LE(G) , has been re-
cently defined as [15]

LE(G) =
n∑

i=1

∣∣∣∣µi − 2m

n

∣∣∣∣

and was aimed at being the Laplacian-spectral analog of graph energy. Until
now, only two papers [15, 37] are devoted to the study of Laplacian graph
energy.

As usual, G will symbolize the complement of the graph G . The number
of vertices and edges of the complement of an (n,m)-graph will be denoted
by n and m , respectively.

Nordhaus and Gaddum [23] reported bounds for the sum of the chromatic
numbers of a graph and its complement. Eventually, Norhhaus-Gaddum-
type relations were established for many other graph invariants [1, 2, 5, 8,
9, 16, 17, 20, 31, 34, 36]. In this paper we obtain bounds of this kind for the
graph energy and Laplacian graph energy.

2. Nordhaus-Gaddum-Type Bounds for Graph Energy

Let λ1 be the largest eigenvalue of G . Nosal [24] demonstrated that for
a graph G with n vertices,

n− 1 ≤ λ1 + λ1 <
√

2n (1)

which itself is a Nordhaus-Gaddum-type relation. In connection with the
right-hand side inequality in (1), it was shown in [17] that

λ1 + λ1 ≤
√(

2− 1
ω
− 1

ω

)
n(n− 1) , (2)

where ω and ω denote the clique numbers of G and G , respectively.
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Theorem 2.1. Let G be a graph with n vertices. Then

E(G) + E(G) ≥ 2(n− 1) (3)

with equality if and only if G is the complete graph Kn or its complement,
the empty graph (the n-vertex graph without edges).

P r o o f. We first observe that E(G) ≥ 2λ1 with equality if and only
if G has at most one positive eigenvalue, i.e., if G is the empty graph or a
complete multipartite graph [6]. Therefore,

E(G) + E(G) ≥ 2(λ1 + λ1) ≥ 2(n− 1) .

If equality holds in (3), then both G and G are empty or complete multi-
partite graphs, and so G must be the complete graph or the empty graph.
Conversely, knowing the spectrum of Kn and Kn , see [6], it is easily shown
that (3) is an equality if G ∼= Kn or G ∼= Kn . 2

In [19] it was shown that for an (n,m)-graph G ,

E(G) ≤ λ1 +
√

(n− 1)
(
2m− λ2

1

)
. (4)

From this upper bound it could be deduced that [18]

E(G) ≤ n

2
(√

n + 1
)

which immediately implies

E(G) + E(G) ≤ n
(√

n + 1
)

.

In what follows we improve the latter upper bound.

Theorem 2.2. Let G be a graph with n vertices. Then

E(G) + E(G) <
√

2n + (n− 1)
√

n− 1 . (5)

P r o o f. Let m and m denote, respectively, the number of edges of G
and G . By (4) and (1), we have

E(G) + E(G) ≤ λ1 + λ1 +
√

(n− 1)
(
2m− λ2

1

)
+

√
(n− 1)

(
2m− λ1

2
)
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≤ λ1 + λ1 +
√

2(n− 1)
[
2m + 2m−

(
λ2

1 + λ1
2
) ]

≤ λ1 + λ1 +

√
2(n− 1)

[
n(n− 1)− 1

2

(
λ1 + λ1

)2
]

<
√

2n +

√
2(n− 1)

[
n(n− 1)− 1

2
(n− 1)2

]

=
√

2n + (n− 1)
√

n− 1 .

This completes the proof. 2

Remark 2.3. Let G be an n-vertex regular graph of degree r . Then
(4) becomes E(G) ≤ r +

√
(n− 1)r(n− r) and we have

E(G) + E(G) ≤ n− 1 +
√

(n− 1)
[√

r(n− r) +
√

(r + 1)(n− r − 1)
]

≤ (n− 1)
(√

n + 1 + 1
)

which for n ≥ 6 is better than (5).

Remark 2.4. A strongly regular graph G with parameters (n, r, ρ, σ) is
an r-regular graph on n vertices, in which each pair of adjacent vertices has
ρ common neighbors and each pair of non-adjacent vertices has σ common
neighbors. If σ ≥ 1 and G is non-complete, then the eigenvalues of G are
[6] r , s , and t , with multiplicities 1, ms , and mt , where s and t are the
solutions of the equation x2 + (σ − ρ)x + (σ − r) = 0 , and ms and mt are
determined by ms + mt = n− 1 and r + ms s + mt t = 0 . If G is a strongly
regular graph with parameters (n, (n +

√
n)/2, (n + 2

√
n)/4, (n + 2

√
n)/4)

(for some conveniently chosen value of n), then

E(G)+E(G) =
n

2
(√

n + 1
)
+

n

2
(√

n + 1
)−√n−2 = (n−1)

(√
n + 1

)−1 .

If we consider a Paley graph H, which is a strongly regular graph with
parameters (n, (n− 1)/2, (n− 5)/4, (n− 1)/4), then

E(H) + E(H) = (n− 1)(
√

n + 1) .
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The results stated in Remark 2.4 show that the bound (5) is asymptoti-
cally tight.

Remark 2.5. Using (2), from the proof of Theorem 2.2, we have

E(G) + E(G) ≤
√(

2− 1
ω
− 1

ω

)
n(n− 1) + (n− 1)

√
n− 1 .

3. Some Properties of the Laplacian Graph Energy

Details of the theory of Laplacian graph spectra are found in the reviews
[10, 11, 21, 22]. For the following consideration we need the properties:
µn = 0 for all graphs, and µn−1 > 0 if and only if G is connected.

Let G1 ∗ G2 denote the join of the graphs G1 and G2, i.e., the graph
obtained from the disjoint union of G1 and G2 by adding all possible edges
between vertices of G1 and vertices of G2.

Theorem 3.1. Let G1 and G2 be (n,m)-graphs. Then

LE(G1 ∗G2) = LE(G1) + LE(G2) + 2n− 4m

n
.

P r o o f. Let µ′1, µ′2, . . . , µ′n be the Laplacian eigenvalues of G1 and
µ′′1, µ′′2, . . . , µ′′n the Laplacian eigenvalues of G2 . Then the Laplacian eigen-
values of G1 ∗G2 are [22]

2n , n + µ′1 , n + µ′′1 , n + µ′2 , n + µ′′2 , . . . , n + µ′n−1 , n + µ′′n−1 , 0 .

Note that G1 ∗ G2 is a (2n, 2m + n2)-graph with average vertex degree
(2m + n2)/n . Therefore,

LE(G1 ∗G2) = 2n +
n−1∑

i=1

∣∣∣∣∣n + µ′i −
2m + n2

n

∣∣∣∣∣ +
n−1∑

i=1

∣∣∣∣∣n + µ′′i −
2m + n2

n

∣∣∣∣∣

= 2n +
n−1∑

i=1

∣∣∣∣µ′i −
2m

n

∣∣∣∣ +
n−1∑

i=1

∣∣∣∣µ′′i −
2m

n

∣∣∣∣

= 2n + LE(G1)− 2m

n
+ LE(G2)− 2m

n
.

The result follows. 2
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Remark 3.2. Let G1 and G2 be regular graphs of degrees r′ and r′′ ,
respectively, with n′ and n′′ vertices, respectively. Then

E(G1 ∗G2) = E(G1) + E(G2) +
√

(r′ − r′′)2 + 4 n′ n′′ − r′ − r′′ .

Let G1 ×G2 denote the Cartesian product of graphs G1 and G2 . Then
V (G1×G2) = V (G1)×V (G2) and (u1, u2) is adjacent to (v1, v2) if and only
if u1 = v1 and (u2, v2) ∈ E(G2), or u2 = v2 and (u1, v1) ∈ E(G1) .

Theorem 3.3. Let G1 and G2 be, respectively, (n,m1)– and (n,m2)-
graphs. Then

LE(G1 ×G2) ≤ nLE(G1) + nLE(G2) .

P r o o f. Let the notation be the same as in the proof of Theorem 3.1.
Then the Laplacian eigenvalues of G1 ×G2 are [22]

µ′i + µ′′j , i, j = 1, 2, . . . , n .

Note that G1×G2 is an (n2, n(m1 + m2))-graph with average vertex degree
(2m1 + 2m2)/n . Therefore,

LE(G1 ×G2) =
n∑

i=1

n∑

j=1

∣∣∣∣µ′i + µ′′j −
2 m1 + 2 m2

n

∣∣∣∣

≤
n∑

i=1

n∑

j=1

(∣∣∣∣µ′i −
2 m1

n

∣∣∣∣ +
∣∣∣∣µ′′j −

2m2

n

∣∣∣∣
)

= n LE(G1) + nLE(G2) .

The result follows. 2

Let G be an (n,m)-graph. Note that µ1 ≥ 2m/n . Then

LE(G) = µ1 +
n−1∑

i=2

∣∣∣∣µi − 2m

n

∣∣∣∣ .

If G is not a complete graph, then µn−1 ≤ 2m/n [7], and therefore

LE(G) = µ1 − µn−1 +
2m

n
+

n−2∑

i=2

∣∣∣∣µi − 2m

n

∣∣∣∣ .
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Theorem 3.4. Let G be an (n,m)-graph with n ≥ 2 and m ≥ 1 . Then
LE(G) ≥ µ1 , with equality if and only if G ∼= Kn/2,n/2 , in which case, of
course, n must be even.

P r o o f. It is easy to see that LE(G) ≥ µ1 , with equality if and only
if n = 2 or for n ≥ 3 , if µ2 = · · · = µn−1 = 2m

n . Suppose that n ≥ 3 and
LE(G) = µ1 . Then by a result from [37], G is a regular complete k-partite
graph with 1 < k ≤ n . Then

n− n

k
+ (k − 1)

n

k
= n ,

implying k = 2 . Thus, G ∼= Kn/2,n/2 . Conversely, if G ∼= Kn/2,n/2 , then it
is easy to verify that LE(G) = µ1 . 2

In a similar manner we arrive at

Theorem 3.5. Let G be an (n,m)-graph, such that n ≥ 3 and m ≥ 1 .
Then

LE(G) ≥ µ1 − µn−1 +
2m

n

with equality if and only if n = 3 or for n ≥ 4 , if µ2 = · · · = µn−2 = 2m/n .

4. Nordhaus-Gaddum-Type Bounds for Laplacian Graph Energy

Lemma 4.1. If G is not the complete graph, and has at least one edge,
then µ1 − µn−1 > 1 .

P r o o f. Since G has at least one edge, µ1 ≥ ∆ + 1 , where ∆ is the
maximum vertex degree of G [10, 21]. If G is connected, then equality holds
if and only if ∆ = n− 1 .

Suppose that G is connected. Then µ1 − µn−1 ≥ ∆− 2m/n + 1 ≥ 1 . If
µ1 − µn−1 = 1 , then 2m/n = ∆ = n − 1 and then it would be G ∼= Kn, a
contradiction.

If G is not connected, then µ1 − µn−1 = µ1 ≥ ∆ + 1 > 1 . 2

Theorem 4.2. Let G be a graph with n vertices. Then

LE(G) + LE(G) ≥ 2n− 2

with equality if and only if G is isomorphic to Kn or Kn .

P r o o f. If G is isomorphic to Kn or Kn , then it is easy to show that
LE(G)+LE(G) = 2n− 2 . Suppose that n ≥ 3 and that G is different from
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Kn and Kn . Then

LE(G) + LE(G) = µ1 − µn−1 +
2m

n
+

n−2∑

i=2

∣∣∣∣µi − 2m

n

∣∣∣∣

+ µ1 − µn−1 +
2m

n
+

n−2∑

i=2

∣∣∣∣n− µi − 2m

n

∣∣∣∣

≥ 2 (µ1 − µn−1) + n− 1 +
n−2∑

i=2

1 = 2 (µ1 − µn−1) + 2n− 4 .

By Lemma 4.1, LE(G) + LE(G) > 2n− 2 . 2

Theorem 4.3. Let G be a graph with n vertices. Then

LE(G) + LE(G) < n
√

n2 − 1 .

P r o o f. Denote by d1, d2, . . . , dn the vertex degrees of G . Assume that
n ≥ 2 . Let the auxiliary quantity M be defined as [15]

M = M(G) = m +
1
2

n∑

i=1

(
di − 2m

n

)2

.

Then

M(G) = m +
1
2

n∑

i=1

(
di − 2m

n

)2

.

Using the fact
n∑

i=1

(di)2 ≤ 2(n− 1)m

with equality if and only if G is the empty graph or the complete graph, we
have

M(G) + M(G) =
1
2

n(n− 1) +
n∑

i=1

(
di − 2m

n

)2

=
1
2

n(n− 1) +
n∑

i=1

(di)2 − 4m2

n

≤ 1
2

n(n− 1) + 2(n− 1)m− 4m2

n

≤ 1
2

n(n− 1) +
1
4

n(n− 1)2 =
1
4

(n− 1)n(n + 1) .
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Now, because for n ≥ 2 the number of edges of Kn and Kn differs from
n(n− 1)/4 , we have

M(G) + M(G) <
1
4

(n− 1)n(n + 1) . (6)

In [15] it has been shown that LE(G) ≤ √
2nM , which combined with

(6) implies

LE(G) + LE(G) ≤
√

4n
[
M(G) + M(G)

]
< n

√
n2 − 1 . 2

Example 4.4. Let G ∼= Kn/2 ∪Kn/2 . Then the Laplacian eigenvalues
of G are

n

2

(
n

2
− 1 times

)
and 0

(
n

2
+ 1 times

)

and therefore

LE(G) =
(

n

2
− 1

)
n + 2

4
+

(
n

2
+ 1

)
n− 2

4
=

1
4

(n2 − 4) .

The Laplacian eigenvalues of G are

n

(
n

2
times

)
,
n

2

(
n

2
− 1 times

)
and 0 (1 time )

and therefore

LE(G) =
n

2
n + 2

4
+

(
n

2
− 1

)
n− 2

4
+

3n− 2
4

=
1
4

(n2 + 2n) .

This implies

LE(G) + LE(G) =
1
2

(n2 + n− 2) .
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