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0. Introduction

One of the remarkable modern achievements in the qualitative study
of ordinary differential equations is the nonoscillation theory of the second
order linear differential equation

y′′ + q(t)y = 0, t ≥ a, (A)

that was built by Marić, Tomić and others by means of regularly varying
functions introduced by Karamata; see e.g. the papers [4, 5, 8 – 10]. For an
excellent survey of this subject and related topics the reader is referred to
the monograph of Marić [7].

It is natural that there have already been attempts at extending the
results for (A) to the more general self-adjoint equation

(p(t)y′)′ + q(t)y = 0, t ≥ a; (B)

see e.g. the papers [2, 7]. However, the generalization so far seems to be far
from being complete, and it would be worthwhile to examine the possibility
of generalizing the known results for (A) to (B) as far as possible within the
framework of Karamata functions.

The objective of this paper is to show that this kind of generalization
can actually be carried out provided the classes of functions in which the so-
lutions of (B) are sought are replaced by those of generalized Karamata
functions reflecting the essential role played by the differential operator
(p(t)y′)′. To be more specific, we will take up the paper by Howard and
Marić [4] dealing with (A) and demonstrate that all the results therein can
be transplanted to the new field of generalized Karamata functions to yield
nontrivial nonoscillation theorems for the equation (B).

We assume that in (B) the functions p : [a,∞) → (0,∞) and q : [a,∞) →
R are continuous; q(t) is allowed to be oscillatory in the sense that it takes
both positive and negative values in any neighborhood of infinity.

It is essential to distinguish the following two cases for the function p(t):

∫ ∞

a

dt

p(t)
= ∞, (0.1)

∫ ∞

a

dt

p(t)
< ∞. (0.2)
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We will use extensively the functions

P (t) =
∫ t

a

ds

p(s)
in case (0.1) hods, (0.3)

and

π(t) =
∫ ∞

t

ds

p(s)
in case (0.2) holds. (0.4)

Our main results are formulated and proved in Sections 2 and 3 devoted,
respectively, to the cases where p(t) satisfies (0.1) and (0.2). We assume that
q(t) and π(t)2q(t) are integrable on [a,∞) in Sections 2 and 3 and estab-
lish nonoscillation criteria which altogether show the delicate dependence
of the asymptotic growth or decay of solutions of (B) considered as gen-
eralized Karamata functions upon the values of the limit of the functions
P (t)

∫∞
t q(s)ds and 1

π(t)

∫∞
t π(s)2q(s)ds as t →∞. Our results exhibit a dis-

tinctive duality existing between the cases (0.1) and (0.2). The definitions
and basic properties of generalized Karamata functions are summarized in
Section 1 as natural generalizations of those of the classical Karamata func-
tions which are listed in the Appendix. Some examples illustrating the main
results are presented at the end of Sections 2 and 3.

1. Generalized Karamata functions

The purpose of this preparatory section is to set up the framework of
positive functions which is suitable for the asymptotic analysis of the self-
adjoint differential equation (B). This is done by properly generalizing the
class of regularly varying functions in the sense of Karamata, based on the
observation that the behavior of solutions of (B) depends heavily on the func-
tion P (t) or π(t) given by (0.3) or (0.4), respectively. In the generalization
use is made of a positive function R(t) which is continuously differentiable
on [t0,∞) and satisfies

R′(t) > 0 for t ≥ t0 and lim
t→∞R(t) = ∞.

The inverse function of R(t) is denoted by R−1(t). In later sections it will
turn out that R(t) = P (t) or R(t) = 1/π(t) is the best choice of R(t) for the
analysis of the equation (B) with p(t) subject to (0.1) or (0.2), respectively.
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The definitions and some basic properties of generalized Karamata func-
tions now follow. They appear as exact parallels of those developed in the
original theory of Karamata functions, which will be listed in the Appendix.

Definition 1.1. A measurable function f : [t0,∞) → (0,∞) is said to be
slowly varying with respect to R(t) if the function f◦R−1(t) is slowly varying
in the sense of Definition A.1. The totality of slowly varying functions with
respect to R(t) is denoted by SVR.

Definition 1.2. A measurable function g : [t0,∞) → (0,∞) is said
to be regularly varying with index α with respect to R(t) if the function
g ◦ R−1(t) is regularly varying with index α in the sense of Definition A.2.
The set of all regularly varying functions with index α with respect to R(t)
is denoted by RVR(α).

Of fundamental importance is the following representation theorem for
the generalized slowly and regularly varying functions, which is an immedi-
ate consequence of Theorem A.1.

Proposition 1.1.(i) A function f(t) is slowly varying with respect to
R(t) if and only if it can be expressed in the form

f(t) = c(t) exp
{∫ t

t0

R′(s)
R(s)

ε(s)ds

}

= c(t) exp
{∫ t

t0
(log R(s))′ε(s)ds

}
, t ≥ t0,

(1.1)

where c(t) and ε(t) are measurable functions such that

lim
t→∞ c(t) = c ∈ (0,∞) and lim

t→∞ ε(t) = 0.

(ii) A function g(t) is regularly varying with index α with respect to R(t)
if and only if it has the representation

g(t) = c(t) exp
{∫ t

t0

R′(s)
R(s)

δ(s)ds

}

= c(t) exp
{∫ t

t0
(log R(s))′δ(s)ds

}
, t ≥ t0,

(1.2)

where c(t) and δ(t) are measurable functions such that

lim
t→∞ c(t) = c ∈ (0,∞) and lim

t→∞ δ(t) = α.
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If the function c(t) in (1.2) (or (1.3)) is identically a constant on [t0,∞),
then the function f(t) (or g(t)) is called normalized slowly varying (or nor-
malized regularly varying with index α) with respect to R(t). The totality
of such functions is denoted by n-SVR (or n-RVR(α)).

It is easy to see that if g(t) ∈ RVR(α) (or n-RVR(α)), then g(t) =
[R(t)]αf(t) for some f(t) ∈ SVR (or n-SVR).

Proposition 1.2. (i) f(t) ∈ SVR implies f(t)β ∈ SVR for any β ∈ R.
f1(t), f2(t) ∈ SVR implies f1(t)f2(t) ∈ SVR.

(ii) Let f(t) ∈ SVR. Then, for any γ > 0,

lim
t→∞R(t)γf(t) = ∞, lim

t→∞R(t)−γf(t) = 0. (1.3)

(iii) g(t) ∈ RVR(α) and β ∈ R implies g(t)β ∈ RVR(αβ). gi(t) ∈ RVR(αi), i =
1, 2, implies g1(t)g2(t) ∈ RVR(max(α1, α2)).

Proposition 1.3. A positive measurable function f(t) belongs to n-
SVR if and only if, for any γ > 0, R(t)γf(t) is ultimately increasing and
R(t)−γf(t) is ultimately decreasing.

Propositions 1.2 and 1.3 follow readily from Theorems A.2 and A.3,
respectively. Karamata’s theorem (Theorem A.4) is generalized in the fol-
lowing manner.

Proposition 1.4. (i) If γ > −1, then for any f(t) ∈ SVR,
∫ t

t0
R′(s)R(s)γf(s)ds ∼ R(t)γ+1f(t)

γ + 1
as t →∞. (1.4)

(ii) If γ < −1, then for any f(t) ∈ SVR,
∫∞
t0

R′(t)R(t)γf(t)dt < ∞, and
∫ ∞

t
R′(s)R(s)γf(s)ds ∼ − R(t)γ+1f(t)

γ + 1
as t →∞. (1.5)

Here and hereafter the notation ϕ(t) ∼ ψ(t) as t → ∞ is used to mean
the asymptotic equivalence of ϕ(t) and ψ(t) : lim

t→∞ψ(t)/ϕ(t) = 1.

Definition 1.3. A measurable function h : [t0,∞) → (0,∞) is called
regularly bounded with respect to R(t) if the function h◦R−1(t) is regularly
bounded in the sense of Definition A.3.

An immediate consequence of Theorem A.5 is the following

Proposition 1.5. A function h(t) is regularly bounded with respect to
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R(t) if and only if it has the representation

h(t) = exp
{

η(t) +
∫ t

t0

R′(s)
R(s)

ξ(s)ds

}
, (1.6)

where ξ(t) and η(t) are bounded measurable functions on [t0,∞).

The totality of regularly bounded functions with respect to R(t) is de-
noted by ROR.

It can be verified that the integral and the product of functions in ROR

remain in this class.

Remark. It would be of interest to observe that there exists a function
which is slowly varying in the generalized sense but is not slowly varying in
the sense of Karamata, so that, roughly speaking, the class of generalized
Karamata functions is larger than that of classical Karamata functions. In
fact, using the notation

exp0 t = t, expn t = exp(expn−1 t),

log0 t = t, logn t = log(logn−1 t), n = 1, 2, · · · ,
we define the functions φn(t) and fn(t) for n ∈ Z by

φn(t) = expn t, φ−n(t) = logn t, n = 0, 1, 2, · · · ,
and

fn(t) = 2 + sinφn(t), n = 0,±1,±2, · · · .
Since φ−1

n (t) = φ−n(t) and φm ◦ φn(t) = φm+n(t) for any m,n ∈ Z, we have

fn ◦ φ−1
m (t) = fn−m(t)

for any n,m ∈ Z, from which, by taking into account the fact that

fn(t) ∈ SV for n 5 −2 and fn(t) 6∈ SV for n = −1,

we conclude that

fn(t) 6∈ SV and fn(t) ∈ SVφm if n = −1 and m = n + 2.

2. Nonoscillation criteria (The first case)

A) We begin the study of nonoscillation of the equation (B) with the
case where the function p(t) satisfies the condition (0.1). We assume that the
function q(t) is integrable on [a,∞) and satisfies one of the four conditions
listed below:
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−1
4

< lim inf
t→∞ P (t)

∫ ∞

t
q(s)ds ≤ lim sup

t→∞
P (t)

∫ ∞

t
q(s)ds <

1
4
, (2.1)

lim
t→∞P (t)

∫ ∞

t
q(s)ds = 0, (2.2)

−∞ < lim
t→∞P (t)

∫ ∞

t
q(s)ds <

1
4
, (2.3)

lim
t→∞P (t)

∫ ∞

t
q(s)ds =

1
4
, (2.4)

where P (t) is defined by (0.3). Note that lim
t→∞P (t) = ∞ by (0.1).

Our objective here is to prove four nonoscillation theorems which show
how subtly the asymptotic behaviour of all solutions of (B) is affected by
the values of the limits appearing in (2.1)–(2.4).

Theorem 2.1. If (2.1) holds, then the equation (B) is nonoscillatory
and all of its solutions are regularly bounded with respect to P (t).

Theorem 2.2. If (2.2) holds, then the equation (B) is nonoscillatory
and has a fundamental set of solutions {y1(t), y2(t)} such that

y1(t) ∈ n-SVP , y2(t) ∈ n-RVP (1). (2.5)

It will be shown that these theorems follow immediately from the next
existence principle.

Lemma 2.1. Suppose there exists a continuous function Q̃ : [t0,∞) →
(0,∞) with the properties that lim

t→∞ Q̃(t) = 0,

∣∣∣∣
∫ ∞

t
q(s)ds

∣∣∣∣ ≤ Q̃(t), t ≥ t0, (2.6)

∫ ∞

t

Q̃(s)2

p(s)
ds ≤ cQ̃(t), t ≥ t0, (2.7)

where c ∈
(
0, 1

4

)
is a constant. Then, the equation (B) is nonoscillatory and

has a solution of the form

y(t) = exp
{∫ t

t0

Q(s) + v(s)
p(s)

ds

}
, t ≥ t0, (2.8)



32 J. Jaroš, T. Kusano

where Q(t) =
∫∞
t q(s)ds and v(t) = O(Q̃(t)) as t →∞.

P r o o f o f L e m m a 2.1. We look for a solution y(t) of (B)
expressed in the form (2.8), which amounts to requiring that the function
u(t) = Q(t) + v(t) satisfies the Riccati equation

u′ +
u2

p(t)
+ q(t) = 0, t ≥ t0. (2.9)

The differential equation for v(t) then reads:

v′ +
(Q(t) + v(t))2

p(t)
= 0, t ≥ t0, (2.10)

which, combined with the requirement lim
t→∞ v(t) = 0, yields the integral equa-

tion

v(t) =
∫ ∞

t

(Q(s) + v(s))2

p(s)
ds, t ≥ t0. (2.11)

We will solve (2.11) by means of the contraction mapping principle.
Let C

Q̃
[t0,∞) denote the set of all continuous functions v(t) on [t0,∞)

such that

‖v‖
Q̃

= sup
t≥t0

|v(t)|
Q̃(t)

< ∞. (2.12)

Clearly, C
Q̃
[t0,∞) is a Banach space equipped with the norm ‖v‖

Q̃
.

Define the set V ⊂ C
Q̃
[t0,∞) and the integral operator F acting on V as

follows:

V =
{
v ∈ C

Q̃
[t0,∞) : |v(t)| ≤ Q̃(t), t ≥ t0

}
, (2.13)

Fv(t) =
∫ ∞

t

(Q(s) + v(s))2

p(s)
ds, t ≥ t0. (2.14)

If v ∈ V , then, using (2.6) and (2.7), we have

|Fv(t)| ≤ 4
∫ ∞

t

Q̃(s)2

p(s)
ds ≤ 4cQ̃(t) ≤ Q̃(t), t ≥ t0,

so that Fv ∈ V . Furthermore, if v, w ∈ V , then



Self-adjoint differential equations and generalized Karamata functions 33

|Fv(t)−Fw(t)| ≤
∫ ∞

t

2|Q(s)|+ |v(s)|+ |w(s)|
p(s)

|v(s)− w(s)|ds

≤ 4
∫ ∞

t

Q̃(s)2

p(s)
|v(s)− w(s)|

Q̃(s)
ds ≤ 4‖v − w‖

Q̃

∫ ∞

t

Q̃(s)2

p(s)
ds

≤ 4c‖v − w‖
Q̃

Q̃(t), t ≥ t0,

from which it follows that

‖Fv −Fw‖
Q̃
≤ 4c‖v − w‖

Q̃
.

By the contraction mapping principle there exists a unique function v ∈
V such that v = Fv, which clearly is a solution of the integral equation
(2.11), and hence, of the differential equation (2.10). Therefore, the function
y(t) defined by (2.8) with this v(t) provides the desired solution of (B) on
[t0,∞). That v(t) = O(Q̃(t)) as t → ∞ is a consequence of the fact that
v ∈ V . This completes the proof of Lemma 2.1.

P r o o f o f T h e o r e m 2.1. Assume that (2.1) holds. Then, there
exist positive constants c < 1

4 and t0 such that
∣∣∣∣P (t)

∫ ∞

t
q(s)ds

∣∣∣∣ ≤ c, that is,
∣∣∣∣
∫ ∞

t
q(s)ds

∣∣∣∣ ≤
c

P (t)
, t ≥ t0.

Put Q̃(t) = c/P (t). Then,

∫ ∞

t

Q̃(s)2

p(s)
ds =

∫ ∞

t

1
p(s)

(
c

P (s)

)2

ds =
c2

P (t)
= cQ̃(t), t ≥ t0,

and so by Lemma 2.1 (B) has a solution y1(t) of the form

y1(t) = exp
{∫ t

t0

Q(s) + v(s)
p(s)

ds

}
, t ≥ t0,

with v(t) satisfying v(t) = O(1/P (t)) as t →∞. Rewriting y1(t) as

y1(t) = exp
{∫ t

t0

P (s)(Q(s) + v(s))
p(s)P (s)

ds

}

and noting that η(t) = P (t)(Q(t) + v(t)) is bounded on [t0,∞), we see that
y1(t) is regularly bounded with respect to P (t).
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The second (linearly independent) solution of (B) is given by

y2(t) = y1(t)
∫ t

t0

ds

p(s)y1(s)2
or y2(t) = y1(t)

∫ ∞

t

ds

p(s)y1(s)2
(2.15)

according to whether y1(t) is a principal solution or a non-principal solution
of (B) in the sense that

∫ ∞

t0

dt

p(t)y1(t)2
= ∞, or

∫ ∞

t0

dt

p(t)y1(t)2
< ∞, (2.16)

respectively. In either case it can be verified without difficulty that y2(t)
is also regularly bounded with respect to P (t) by using the fact that the
integral and the product of regularly bounded functions with respect to
P (t) is also a function of the same type. Finally, all solutions of (B) are
regularly bounded with respect to P (t) since they are linear combinations
of y1(t) and y2(t). This completes the proof of Theorem 2.1.

P r o o f o f T h e o r e m 2.2. Assume that (2.2) holds. Put

c(t) = sup
s≥t

∣∣∣∣P (s)
∫ ∞

s
q(r)dr

∣∣∣∣ , t ≥ t0.

It is clear that c(t) is decreasing to zero as t →∞ and satisfies
∣∣∣∣
∫ ∞

t
q(s)ds

∣∣∣∣ ≤
c(t)
P (t)

, t ≥ t0.

The function Q̃(t) = c(t)/P (t) satisfies
∫ ∞

t

Q̃(s)2

p(s)
ds =

∫ ∞

t

1
p(s)

(
c(s)
P (s)

)2

ds ≤ c(t)2

P (t)
= c(t)Q̃(t), t ≥ t0.

Consequently, Lemma 2.1 ensures that (B) has a solution y1(t) of the form

y1(t) = exp
{∫ t

t0

P (s)(Q(s) + v(s))
p(s)P (s)

ds

}
, t ≥ t0,

which is slowly varying with respect to P (t) since the function ε(t) =
P (t)(Q(t) + v(t)) → 0 as t → ∞ by construction. We claim that y1(t) is a
principal solution of (B) in the sense of (2.16). In fact, since
lim
t→∞P (t)

1
2 /y1(t)2 = ∞ by Proposition 1.2-(ii) (note that 1/y1(t)2 ∈ SVP ),

there is a constant m > 0 such that P (t)
1
2 /y1(t)2 ≥ m for t ≥ t0, and we

have
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∫ t

t0

ds

p(s)y1(s)2
=

∫ t

t0

P (s)−
1
2

p(s)
P (s)

1
2

y1(s)2
ds ≥ m

∫ t

t0

P (s)−
1
2

p(s)
ds

= 2m
[
P (t)

1
2 − P (t0)

1
2

]
→∞ as t →∞.

The second (linearly independent) solution y2(t) of (B) is determined by the
first formula in (2.15). Applying first Proposition 1.4-(i), we see that

∫ t

t0

ds

p(s)y1(s)2
∼ P (t)

y1(t)2
as t →∞,

and then using Proposition 1.2-(i), we conclude that

y2(t) ∼ P (t)
y1(t)

∈ n-RVP (1) as t →∞.

This completes the proof of Theorem 2.2.

B) A different approach makes it possible to generalize Theorem 2.2 so
as to cover the case where the condition (2.3) is satisfied.

Let c ∈
(
−∞, 1

4

)
and denote by λ1 and λ2, λ1 < λ2, the real roots of

the quadratic equation
λ2 − λ + c = 0. (2.17)

Theorem 2.3. The equation (B) is nonoscillatory and has a fundamen-
tal set of solutions {y1(t), y2(t)} such that

y1(t) ∈ n-RVP (λ1), y2(t) ∈ n-RVP (λ2)

if and only if

lim
t→∞P (s)

∫ ∞

t
q(s)ds = c. (2.18)

P r o o f. (The “only if”part) Suppose that (B) has solutions yi(t)
belonging to n-RVP (λi), i = 1, 2, which can be expressed as

yi(t) = exp
{∫ t

t0

δi(s)
p(s)P (s)

ds

}
, lim

t→∞ δi(t) = λi, i = 1, 2. (2.19)

Put ui(t) = p(t)y′i(t)/yi(t), i = 1, 2. We integrate the Riccati equation (2.9)
satisfied by ui(t) and noting in view of (2.19) that ui(t) = δi(t)/P (t) → 0 as
t →∞, we obtain

ui(t) =
∫ ∞

t

ui(s)2

p(s)
ds +

∫ ∞

t
q(s)ds, t ≥ t0, i = 1, 2,
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whence it follows that the functions vi(t) = P (t)ui(t) satisfy

vi(t) = P (t)
∫ ∞

t

vi(s)2

p(s)P (s)2
ds + P (t)

∫ ∞

t
q(s)ds, t ≥ t0, i = 1, 2.

Passing to the limit as t →∞ in the above and noting that lim
t→∞ vi(t) = λi,

we conclude that

lim
t→∞P (t)

∫ ∞

t
q(s)ds = λi − λ2

i = c, i = 1, 2.

(The “if”part) Assume that (2.18) holds. Put Φ(t) = P (t)
∫∞
t q(s)ds−c.

The desired solutions will be sought in the form

yi(t) = exp
{∫ t

ti

Φ(s) + λi + vi(s)
p(s)P (s)

ds

}
(2.20)

for some ti > a and vi(t) such that lim
t→∞ vi(t) = 0. The requirement that

ui(t) = (Φ(t) + λi + vi(t))/P (t) satisfy (2.9) yields the differential equations
for vi(t):

v′i +
2Φ(t) + 2λi − 1

p(t)P (t)
vi +

Φ(t)2 + 2λiΦ(t) + v2
i

p(t)P (t)
= 0. (2.21)

It is convenient to rewrite (2.21) as

(ρi(t)vi)′ +
ρi(t)

p(t)P (t)

[
Φ(t)2 + 2λiΦ(t) + v2

i

]
= 0, (2.22)

where
ρi(t) = exp

{∫ t

1

2Φ(s) + 2λi − 1
p(s)P (s)

ds

}
, i = 1, 2. (2.23)

Let us first consider the case i = 1. Note that ρ1(t) ∈ n-RVP (2λ1 − 1).
Since 2λ1 − 1 < 0, lim

t→∞ ρ1(t) = 0 by Proposition 1.2-(ii), and integrating

(2.22) from t to ∞, we obtain

v1(t) =
1

ρ1(t)

∫ ∞

t

ρ1(s)
p(s)P (s)

[
Φ(s)2 + 2λ1Φ(s) + v1(s)2

]
ds, (2.24)

which will be solved below by means of the contraction mapping theorem.
For this purpose we need the following two properties of ρ1(t), both of which
are immediate consequences of L’Hospital’s rule:

lim
t→∞

1
ρ1(t)

∫ ∞

t

ρ1(s)
p(s)P (s)

ds =
1

1− 2λ1
> 0, (2.25)
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lim
t→∞

1
ρ1(t)

∫ ∞

t

ρ1(s)
p(s)P (s)

h(s)ds = 0 if h(t) ∈ C[a,∞) and lim
t→∞h(t) = 0.

(2.26)
Choose a positive constant ε1 such that 8ε1/(1 − 2λ1) < 1 and let t1 > a
large enough so that

∣∣∣Φ(t)2 + 2λ1Φ(t)
∣∣∣ ≤ ε2

1, t ≥ t1, (2.27)

and
1

ρ1(t)

∫ ∞

t

ρ1(s)
p(s)P (s)

ds ≤ 2
1− 2λ1

, t ≥ t1. (2.28)

Let C0[t1,∞) denote the Banach space of continuous functions on [t1,∞)
tending to zero as t →∞ with the norm ‖v‖0 = sup

t≥t1

|v(t)|. Define

V1 = {v ∈ C0[t1,∞) : |v(t)| ≤ ε1, t ≥ t1} , (2.29)

F1v(t) =
1

ρ1(t)

∫ ∞

t

ρ1(s)
p(s)P (s)

[
Φ(s)2 + 2λ1Φ(s) + v(s)2

]
ds, t ≥ t1.

(2.30)
It can be shown that F1 is a contraction mapping on V1. In fact, if v ∈ V1,
then

|F1v(t)| ≤ 2ε2
1

1
ρ1(t)

∫ ∞

t

ρ1(s)
p(s)P (s)

ds ≤ 4ε2
1

1− 2λ1
≤ ε1

2
, t ≥ t1,

and if v, w ∈ V , then

|F1v(t)−F1w(t)|≤ 1
ρ1(t)

∫ ∞

t

ρ1(s)
p(s)P (s)

(|v(s)|+ |w(s)|) |v(s)− w(s)|ds

< 2ε1‖v − w‖0
1

ρ1(t)

∫ ∞

t

ρ1(s)
p(s)P (s)

ds ≤ 4ε1

1− 2λ1
‖v − w‖0, t ≥ t1,

which implies that ‖Fv −Fw‖0 ≤ 1
2
‖v − w‖0.

Therefore, there exists a unique element v1 ∈ V1 such that v1 = F1v1.
Since v1(t) is a solution of (2.24), and hence of (2.21), the function y1(t)
defined by (2.20) with this v1(t) gives a solution of the differential equation
(B) on [t1,∞). That y1(t) ∈ n-RVP (λ1) follows from the fact that Φ(t) +
λ1 + v1(t) → λ1 as t →∞ (cf. Proposition 1.1-(ii)).

The solution y1(t) can be represented as y1(t) = P (t)λ1f1(t), f1(t) ∈
n-SVP , so that we see that there is a constant M > 0 such that y1(t)2 =
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P (t) · P (t)2λ1−1f1(t)2 ≤ MP (t), t ≥ t1, because P (t)2λ1−1f1(t)2 → 0 as
t →∞ by Proposition 1.2-(ii). It follows that

∫ t

t1

ds

p(s)y1(s)2
≥ 1

M

∫ t

t1

ds

p(s)P (s)
=

1
M

log
P (t)
P (t1)

→∞ as t →∞,

which ensures that y1(t) is a principal solution of (B).
Our next task is to examine the case i = 2. In this case, the desired

solution y2(t) ∈ n-RVP (λ2) of (B) is given by (2.20) after having obtained
v2(t) as a solution to the first order differential equation (2.22) (i = 2)
formed by means of the function ρ2(t) defined by (2.23). It is clear that
lim
t→∞ ρ2(t) = ∞ since 2λ2 − 1 > 0 (cf. Proposition 1.2-(ii)). Besides, using

L’Hospital’s rule we see that ρ2(t) satisfies

lim
t→∞

1
ρ2(t)

∫ t

t2

ρ2(s)
p(s)P (s)

ds =
1

2λ2 − 1
> 0, (2.31)

lim
t→∞

1
ρ2(t)

∫ t

t2

ρ2(s)
p(s)P (s)

h(s)ds = 0 if h(t) ∈ C[a,∞) and lim
t→∞h(t) = 0,

(2.32)
for any fixed t2 > a.

Let ε2 be a positive constant such that 8ε2/(2λ2 − 1) < 1 and choose
t2 > a so that ∣∣∣Φ(t)2 + 2λ2Φ(t)

∣∣∣ ≤ ε2
2, t ≥ t2, (2.33)

1
ρ2(t)

∫ t

t2

ρ2(s)
p(s)P (s)

ds ≤ 2
2λ2 − 1

, t ≥ t2. (2.34)

It is a matter of easy calculation to show that the integral operator F2

given by

F2v(t) = − 1
ρ2(t)

∫ t

t2

ρ2(s)
p(s)P (s)

[
Φ(s)2 + 2λ2Φ(s) + v(s)2

]
ds, t ≥ t2,

(2.35)
is a contraction mapping acting on the set

V2 = {v ∈ C0[t2,∞) : |v(t)| ≤ ε2, t ≥ t2} . (2.36)

Let v ∈ V2 be the fixed element of F2. Then it solves the integral equation

v2(t) = − 1
ρ2(t)

∫ t

t2

ρ2(s)
p(s)P (s)

[
Φ(s)2 + 2λ2Φ(s) + v2(s)2

]
ds, t ≥ t2, (2.37)
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and a fortiori the differential equation (2.22). This function v2(t) is used to
determine the solution y2(t) of (B) by (2.20). That y2(t) ∈ n-RVP (λ2) is a
consequence of the fact that Φ(t) + λ2 + v2(t) → λ2 as t →∞.

Let y2(t) = P (t)λ2f2(t), f2(t) ∈ n-SVP . Since P (t)
2λ2−1

2 f2(t) → ∞ as
t →∞ by Proposition 1.2-(ii), we have

y2(t)2 = P (t)
2λ2+1

2 · P (t)
2λ2−1

2 f2(t) ≥ mP (t)
2λ2+1

2 , t ≥ t2,

for some constant m > 0, and so we find

∫ t

t2

ds

p(s)y2(s)2
≤ 1

m

∫ t

t2

ds

p(s)P (s)
2λ2+1

2

<
2

2λ2 − 1
P (t2)

1−2λ2
2 , t ≥ t2,

which implies that y2(t) is a non-principal solution of (B). Thus the proof
of Theorem 2.3 is complete.

Remark 2.1. In the proof of the “if”part of Theorem 2.3 both of the two
linearly independent solutions y1(t) and y2(t) of (B) have been constructed
under the condition (2.3) by means of the contraction mapping principle.
Actually, it suffices to establish the existence of either of them, because if
y1(t) (or y2(t)) has been found first, then the other one y2(t) (or y1(t)) can
be obtained by the formula

y2(t) = y1(t)
∫ t

t2

ds

p(s)y1(s)2

(
y1(t) = y2(t)

∫ ∞

t

ds

p(s)y2(s)2

)

and it can be concluded that y1(t) ∈ n-RVP (λ1) implies y2(t) ∈ n-RVP (λ2)
(or y2(t) ∈ n-RVP (λ2) implies y1(t) ∈ n-RVP (λ1)) from (i) (or (ii)) of the
generalized Karamata theorem (Proposition 1.4).

C) Our consideration in this subsection is devoted to the case where the
condition (2.4) is satisfied for the equation (B). This case is critical in the
sense that nothing definite can be said about the oscillation or nonoscillation
of (B) unless additional conditions are placed on p(t) and q(t). Simple but
nontrivial conditions guaranteeing the nonoscillation of (B) in this critical
case are given in the following

Theorem 2.4. Assume that (2.4) holds. Put

Φ(t) = P (t)
∫ ∞

t
q(s)ds− 1

4
(2.38)
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and suppose that ∫ ∞ |Φ(t)|
p(t)P (t)

dt < ∞, (2.39)

∫ ∞ Ψ(t)
p(t)P (t)

dt < ∞, where Ψ(t) =
∫ ∞

t

|Φ(s)|
p(s)P (s)

ds. (2.40)

Then the equation (B) possesses a fundamental set of solutions {y1(t), y2(t)}
such that yi(t) ∈ n-RVP

(
1
2

)
, i = 1, 2, and

y1(t) = P (t)
1
2 f1(t), y2(t) = P (t)

1
2 log P (t)f2(t), (2.41)

where fi(t) ∈ n-SVP and lim
t→∞ fi(t) = fi(∞) ∈ (0,∞), i = 1, 2, with

f1(∞)f2(∞) = 1.

P r o o f. We seek a solution of (B) expressed in the form

y1(t) = exp

{∫ t

t0

Φ(s) + 1
2 + v(s)

p(s)P (s)
ds

}
. (2.42)

The same argument as in the proof of the “if”part of Theorem 2.3 leads
to the differential equation for v(t):

(ρ(t)v)′ +
ρ(t)

p(t)P (t)

[
Φ(t)2 + Φ(t) + v2

]
= 0, (2.43)

where ρ(t) is given by

ρ(t) = exp
{
−

∫ t

1

2Φ(s)
p(s)P (s)

ds

}
. (2.44)

Let m > 0 be a constant such that |Φ(t)2 + Φ(t)| ≤ mΦ(t), t ≥ a, which
is possible by (2.4). Noting that lim

t→∞ ρ(t) = const > 0 by (2.39) and using

(2.40), we see that there exists t0 > a such that

ρ(s)
ρ(t)

≤ 2, s ≥ t ≥ t0, (2.45)

32m

∫ ∞

t0

Ψ(s)
p(s)P (s)

ds ≤ 1. (2.46)
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Let CΨ[t0,∞) denote the Banach space of all continuous functions on
[t0,∞) such that sup

t≥t0

{|v(t)|/Ψ(t)} < ∞, and let V ⊂ CΨ[t0,∞) and G :

V → CΨ[t0,∞) be defined by

V = {v ∈ CΨ[t0,∞) : |v(t)| ≤ 4mΨ(t), t ≥ t0} , (2.47)

Gv(t) =
1

ρ(t)

∫ ∞

t

ρ(s)
p(s)P (s)

[
Φ(s)2 + Φ(s) + v(s)2

]
ds, t ≥ t0. (2.48)

We show that G is a contraction mapping on V . In fact, if v ∈ V , then

|Gv(t)| ≤ 1
ρ(t)

∫ ∞

t

ρ(s)
p(s)P (s)

[
m|Φ(t)|+ 16m2Ψ(s)2

]
ds

≤ 2m

∫ ∞

t

|Φ(s)|
p(s)P (s)

ds + 32m2Ψ(t)
∫ ∞

t

Ψ(s)
p(s)P (s)

ds

≤ 2mΨ(t) + mΨ(t) ≤ 4mΨ(t), t ≥ t0,

and if v, w ∈ V , then

|Gv(t)− Gw(t)| ≤ 1
ρ(t)

∫ ∞

t

ρ(s)
p(s)P (s)

(|v(s)|+ |w(s)|)|v(s)− w(s)|ds

≤ 16m
∫ ∞

t

Ψ(s)
p(s)P (s)

|v(s)− w(s)|ds

= 16m
∫ ∞

t

Ψ(s)2

p(s)P (s)
|v(s)− w(s)|

Ψ(s)
ds

≤ 16m
∫ ∞

t0

Ψ(s)
p(s)P (s)

ds‖v − w‖ΨΨ(t), t ≥ t0,

which implies that ‖Gv − Gw‖Ψ ≤ 1
2
‖v − w‖Ψ.

Let v ∈ V be the fixed element of G. Then it satisfies the integral
equation

v(t) =
1

ρ(t)

∫ ∞

t

ρ(s)
p(s)P (s)

[
Φ(s)2 + Φ(s) + v(s)2

]
ds, t ≥ t0, (2.49)

and hence the differential equation (2.43) for t ≥ t0. It follows that the
function y1(t) defined by (2.42) with this v(t) provides a solution of the
equation (B) on [t0,∞).
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To see that y1(t) ∈ n-RVP

(
1
2

)
it suffices to rewrite y1(t) as

y1(t) = P (t)
1
2 f1(t), f1(t) = exp

{∫ t

t0

Φ(s) + v(s)
p(s)P (s)

ds

}
,

and note that f1(t) ∈ n-SVP since Φ(t) + v(t) → 0 as t →∞. Furthermore,
f1(t) has a positive limit as t → ∞ since (2.39) and (2.40) ensure that
(Φ(t) + v(t))/p(t)P (t) is absolutely integrable on [t0,∞). Using this fact, it
is shown that the integral of 1/p(t)y1(t)2 on [t0,∞) diverges, which implies
that y1(t) is a principal solution of (B).

The second (linearly independent) solution y2(t) given by

y2(t) = y1(t)
∫ t

t0

ds

p(s)y1(s)2
= P (t)

1
2 f1(t)

∫ t

t0

ds

p(s)P (s)f1(s)2
, t ≥ t0,

satisfies, via L’Hospital’s rule,

y2(t)

P (t)
1
2 log P (t)

∼ 1
f1(∞)

∫ t

t0

ds

p(s)P (s)
log P (t)

∼ 1
f1(∞)

as t →∞.

Therefore, y2(t) can be expressed as y2(t) = P (t)
1
2 log P (t)f2(t) with f2(t) ∈

n-SVP such that lim
t→∞ f2(t) = 1/f1(∞). Thus the proof is complete.

D) Example 2.1. The Hermite equation

(e−t2y′)′ + λe−t2y = 0, t ≥ 0, (2.50)

λ ∈ R being a parameter, is a special case of (B) with p(t) = e−t2 and
q(t) = λe−t2 . The function defined by (0.3) is P (t) =

∫ t
0 es2

ds. Since

lim
t→∞P (t)

∫ ∞

t
q(s)ds = lim

t→∞

(∫ t

0
es2

ds

) (∫ ∞

t
λe−s2

ds

)
= 0,

by Theorem 2.2 the equation (2.50) is nonoscillatory for any λ and has a
fundamental set of solutions {y1(t), y2(t)} such that y1(t) ∈ n-SVP , y2(t) ∈
n-RVP (1).

Let Hn(t) be the Hermite polynomial of degree n ∈ N, which is a solution
of (2.50) for the case λ = 2n. That y1(t) = Hn(t) ∈ n-SVP follows from
Proposition 1.3, since, for any γ > 0, P (t)γHn(t) is increasing to ∞ and
P (t)−γHn(t) is decreasing to 0 as t →∞.
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Example 2.2. Consider the equation

(ty′)′ +
[
ktα sin(tβ) +

c

t(log t)2

]
y = 0, t ≥ e, (2.51)

where k, α and β are positive constants. In this case the function P (t)
defined by (0.3) can be taken to be P (t) = log t.

Suppose that β > 1 + α. Then, we have
∫ ∞

t
sα sin(sβ)ds =

1
β

t1+α−β cos(tβ)+
1 + α− β

β

∫ ∞

t
sα−β cos(sβ)ds, (2.52)

from which it follows that

lim
t→∞ log t

∫ ∞

t
sα sin(sβ)ds = 0

and
lim
t→∞ log t

∫ ∞

t

[
ksα sin(sβ) +

c

s(log s)2

]
ds = c. (2.53)

Let c ∈
(
−∞, 1

4

)
. Then, by Theorem 2.3, the equation (2.51) is nonoscil-

latory and has a pair of solutions {y1(t), y2(t)} such that yi(t) ∈ n-RVlog t(λi), i =
1, 2, where λ1, λ2 (λ1 < λ2) are the real roots of λ2 − λ + c = 0.

Now let c = 1
4 . Put

Φ(t) = log t

∫ ∞

t

[
ksα sin(sβ) +

1
4s(log s)2

]
ds− 1

4
= log t

∫ ∞

t
ksα sin(sβ)ds.

We then see from (2.52) that

|Φ(t)|
tP (t)

=
1
t

∣∣∣∣
∫ ∞

t
ksα sin(sβ)ds

∣∣∣∣ = O
(
tα−β

)
as t →∞,

which implies that |Φ(t)|/tP (t) is integrable on [e,∞) and

Ψ(t) =
∫ ∞

t

|Φ(s)|
sP (s)

ds = O
(
t1+α−β

)
as t →∞.

Since α−β < −1, Ψ(t)/tP (t) = O
(
tα−β

)
/ log t is integrable on [e,∞), and

Theorem 2.4 guarantees the nonoscillation of (2.51) as well as the existence
of two linearly independent solutions of the form

y1(t) = (log t)
1
2 f1(t), y2(t) = (log t)

1
2 log(log t)f2(t),
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with fi(t) ∈ n-SVlog t, i = 1, 2, satisfying f2(t) ∼ 1/f1(t) as t →∞ and
lim
t→∞ f1(t) = f1(∞) ∈ (0,∞).

We notice that the coefficient q(t) = ktα sin(tβ) + c
t(log t)2

is strongly
oscillating in the sense that

lim inf
t→∞ q(t) = −∞ and lim sup

t→∞
q(t) = ∞.

3. Nonoscillation criteria (The second case)

A) We now turn to the study of equation (B) in the case where p(t)
satisfies the condition (0.2). We assume here that the function π(t)2q(t)
is integrable on [a,∞), where π(t) is defined by (0.4), and establish four
nonoscillation criteria corresponding to the following additional conditions
on the integral of π(t)2q(t):

−1
4

< lim inf
t→∞

1
π(t)

∫ ∞

t
π(s)2q(s)ds ≤ lim sup

t→∞
1

π(t)

∫ ∞

t
π(s)2q(s)ds <

1
4
; (3.1)

lim
t→∞

1
π(t)

∫ ∞

t
π(s)2q(s)ds = 0; (3.2)

−∞ < lim
t→∞

1
π(t)

∫ ∞

t
π(s)2q(s)ds <

1
4
; (3.3)

lim
t→∞

1
π(t)

∫ ∞

t
π(s)2q(s)ds =

1
4
. (3.4)

Theorem 3.1. If (3.1) holds, then the equation (B) is nonoscillatory
and all of its solutions are regularly bounded with respect to 1/π(t).

Theorem 3.2. If (3.2) holds, then the equation (B) is nonoscillatory
and has a fundamental set of solutions {y1(t), y2(t)} such that

y1(t) ∈ n-RV 1
π
(−1), y2(t) ∈ n-SV 1

π
. (3.5)

These two theorems are counterparts of Theorems 2.1 and 2.2 and follow
readily from the lemma below which parallels Lemma 2.1.

Lemma 3.1. Suppose that there exists a continuous function Q̃ : [t0,∞) →
(0,∞) with the properties that lim

t→∞ Q̃(t) = 0,

∣∣∣∣
∫ ∞

t
π(s)2q(s)ds

∣∣∣∣ ≤ Q̃(t), t ≥ t0, (3.6)
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∫ ∞

t

Q̃(s)2

p(s)π(s)2
ds ≤ cQ̃(t), t ≥ t0, (3.7)

where c ∈
(
0, 1

4

)
is a constant. Then, the equation (B) is nonoscillatory and

has a solution of the form

y(t) = exp
{∫ t

t0

Q(s)− π(s) + v(s)
p(s)π(s)2

ds

}
, (3.8)

where Q(t) =
∫∞
t π(s)2q(s)ds and v(t) = O(Q̃(t)) as t →∞.

P r o o f o f L e m m a 3.1. A nonoscillatory solution y(t) of
(B) will be sought in the form (3.8). It suffices to determine v(t) so that
u(t) = (Q(t) − π(t) + v(t))/π(t)2 satisfies the Riccati equation (2.9). The
differential equation for v(t) then reads:

v′ +
(Q(t) + v)2

p(t)π(t)2
= 0, t ≥ t0, (3.9)

which, upon integrating with the additional requirement lim
t→∞ v(t) = 0, yields

v(t) =
∫ ∞

t

(Q(s) + v(s))2

p(s)π(s)2
ds, t ≥ t0. (3.10)

As in the proof of Lemma 2.1 let C
Q̃
[t0,∞) denote the set of all contin-

uous functions u(t) on [t0,∞) such that (2.12) is satisfied, and let the set V
of continuous functions and the integral operator F acting on V be defined
by

V =
{
v ∈ C

Q̃
[t0,∞) : |v(t)| ≤ Q̃(t), t ≥ t0

}
(3.11)

and

Fv(t) =
∫ ∞

t

(Q(s) + v(s))2

p(s)π(s)2
ds, t ≥ t0. (3.12)

It is easy to verify that F maps V into itself and satisfies

‖Fv −Fw‖
Q̃
≤ 4c‖v − w‖

Q̃
,

so that F has a unique fixed element v ∈ V . This function v = v(t) satisfies
(3.10), and hence (3.9), on [t0,∞), and so the function y(t) defined by (3.8)
with this v(t) gives rise to a solution of (B) on [t0,∞) with the required
property. This completes the proof.
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P r o o f o f T h e o r e m 3.1. The condition (3.1) is equivalent to
the existence of positive constants c < 1/4 and t0 > a such that

∣∣∣∣
1

π(t)

∫ ∞

t
π(s)2q(s)ds

∣∣∣∣ ≤ c or
∣∣∣∣
∫ ∞

t
π(s)2q(s)ds

∣∣∣∣ ≤ cπ(t), t ≥ t0.

Put Q̃(t) = cπ(t). Then, it satisfies
∫ ∞

t

Q̃(s)2

p(s)π(s)2
ds = c2

∫ ∞

t

ds

p(s)
= c2π(t) = cQ̃(t), t ≥ t0,

and so, by Lemma 3.1, (B) has a nonoscillatory solution y1(t) of the form

y1(t) = exp
{∫ t

t0

Q(s)− π(s) + v(s)
p(s)π(s)2

ds

}
, t ≥ t0.

Rewriting y1(t) as

y1(t) = exp





∫ t

t0

1
π(s)(Q(s)− π(s) + v(s))

p(s)π(s)
ds





and noting that (Q(t) − π(t) + v(t))/π(t) is bounded on [t0,∞), we see
that y1(t) is regularly bounded with respect to 1/π(t). The second (linearly
independent) solution y2(t) given by (2.15) is also regularly bounded with
respect to 1/π(t). The proof of Theorem 3.1 is complete.

P r o o f o f T h e o r e m 3.2. Define c(t) by

c(t) = sup
s≥t

1
π(s)

∣∣∣∣
∫ ∞

s
π(r)2q(r)dr

∣∣∣∣ .

Then c(t) decreases to 0 as t →∞ and there exists t0 > a such that c(t) <
1/4 and ∣∣∣∣

∫ ∞

t
π(s)2q(s)ds

∣∣∣∣ ≤ c(t)π(t), t ≥ t0.

If we put Q̃(t) = c(t)π(t), then
∫ ∞

t

Q̃(s)2

p(s)π(s)2
ds ≤ c(t)2

∫ ∞

t

ds

p(s)
= c(t)2π(t) = c(t)Q̃(t), t ≥ t0.

Therefore, Lemma 3.1 is applicable to this case and it follows that (B)
possesses a solution y1(t) of the form

y1(t) = exp
{∫ t

t0

Q(s)− π(s) + v(s)
p(s)π(s)2

ds

}
, t ≥ t0,
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which can be written as

y1(t) = c0π(t) exp
{∫ t

t0

Q(s) + v(s)
p(s)π(s)2

ds

}
, t ≥ t0

for some constant c0 > 0. This implies that y1(t) ∈ n-RV 1
π
(−1), since

(Q(t) + v(t))/π(t) = O(c(t)) as t →∞. This solution is a principal solution
of (B). To see this, let y1(t) = π(t)f1(t), f1(t) ∈ n-SV 1

π
. Choose a positive

constant ε < 1. Then, by Proposition 1.2-(ii), lim
t→∞(1/π(t))εf1(t)−2 = ∞,

so that there exists a constant m > 0 such that (1/π(t))εf1(t)−2 ≥ m for
t ≥ t0. We then have
∫ t

t0

ds

p(s)y1(s)2
≥ m

∫ t

t0

ds

p(s)π(s)2−ε
=

m

1− ε

[
π(t)ε−1 − π(t0)ε−1

]
→∞, t →∞,

which implies that y1(t) is a principal solution of (B) as claimed.
Let y2(t) be the second solution of (B) defined by the first formula in

(2.15). Using the relation
∫ t

t0

ds

p(s)y1(s)2
=

∫ t

t0

(
1

π(s)

)′ ds

f1(s)2
∼ 1

π(t)f1(t)2
as t →∞,

following from Proposition 1.4-(i), we arrive at the desired conclusion that

y2(t) ∼ 1
f1(t)

∈ n-SV 1
π

as t →∞.

This completes the proof.
B) We now take up the condition (3.3) which can be written as

lim
t→∞

1
π(t)

∫ ∞

t
π(s)2q(s)ds = c ∈

(
−∞,

1
4

)
. (3.13)

Theorem 3.3. Let c ∈
(
−∞, 1

4

)
and let µ1 and µ2, µ1 < µ2, denote the

two real roots of the quadratic equation

µ2 + µ + c = 0. (3.14)

The equation (B) is nonoscillatory and has a fundamental set of solutions
{y1(t), y2(t)} such that

y1(t) ∈ n-RV 1
π
(µ1), y2(t) ∈ n-RV 1

π
(µ2)
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if and only if the condition (3.13) is satisfied.

P r o o f. (The “only if”part) Suppose that there exist linearly inde-
pendent solutions yi(t) ∈ n-RV 1

π
(µi), i = 1, 2, which have representations

yi(t) = exp
{∫ t

ti

δi(s)
p(s)π(s)

ds

}
, lim

t→∞ δi(t) = µi, i = 1, 2. (3.15)

Put ui(t) = p(t)y′i(t)/yi(t) and vi(t) = π(t)ui(t), i = 1, 2. In view of (3.15)
we see that vi(t) → µi as t → ∞ and from the Riccati equations (2.9)
satisfied by ui(t) we have the differential equations for vi(t):

(π(t)vi)′ +
2vi + v2

i

p(t)
+ π(t)2q(t) = 0, t ≥ ti, i = 1, 2.

Integration of the above equation from t to ∞ yields

vi(t) =
1

π(t)

∫ ∞

t

2vi(s) + vi(s)2

p(s)
ds+

1
π(t)

∫ ∞

t
π(s)2q(s)ds, t ≥ ti, i = 1, 2.

(3.16)
Letting t →∞ in (3.16), we conclude that

µi = 2µi + µ2
i + lim

t→∞
1

π(t)

∫ ∞

t
π(s)2q(s)ds,

which clearly implies (3.13).

(The “if”part) Suppose that (3.3) holds. We put

ϕ(t) =
1

π(t)

∫ ∞

t
π(s)2q(s)ds− c

and try to find a solution of (B) of the form

yi(t) = exp
{∫ t

ti

ϕ(s) + µi + vi(s)
p(s)π(s)

ds

}
. (3.17)

The functions vi(t) should be determined from the requirement that ui(t) =
(ϕ(t)+µi + vi(t))/π(t) satisfy the Riccati equation (2.9). A straightforward
calculation leads to the differential equations for vi(t):

v′i +
2ϕ(t) + 2µi + 1

p(t)π(t)
vi +

ϕ(t)2 + (2µi + 1)ϕ(t) + v2
i

p(t)π(t)
= 0, (3.18)
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which are conveniently rewritten as follows:

(ρi(t)vi)′ +
ρi(t)

p(t)π(t)

[
ϕ(t)2 + (2µi + 1)ϕ(t) + v2

i

]
= 0, (3.19)

where
ρi(t) = exp

{∫ t

1

2ϕ(s) + 2µi + 1
p(s)π(s)

ds

}
, i = 1, 2. (3.20)

We first consider the case i = 1. Then, ρ1(t) ∈ n-RV 1
π
(2µ1 + 1) from

(3.20), which implies that lim
t→∞ ρ1(t) = 0 since 2µ1 + 1 < 0. To obtain a

solution v1(t) of (3.19) such that lim
t→∞ v1(t) = 0 it suffices to solve the integral

equation

v1(t) =
1

ρ1(t)

∫ ∞

t

ρ1(s)
p(s)π(s)

[
ϕ(s)2 + (2µ1 + 1)ϕ(s) + v1(s)2

]
ds. (3.21)

It is easy to show, via L’Hospital’s rule, that:

lim
t→∞

1
ρ1(t)

∫ ∞

t

ρ1(s)
p(s)π(s)

ds = − 1
2µ1 + 1

> 0, (3.22)

lim
t→∞

1
ρ1(t)

∫ ∞

t

ρ1(s)
p(s)π(s)

h(s)ds = 0 if h(t) ∈ C[a,∞) and lim
t→∞h(t) = 0.

(3.23)
Let ε1 be a positive constant such that −8ε1/(2µ1 + 1) < 1, and choose
t1 > a large enough so that

|ϕ(t)2 + (2µ1 + 1)ϕ(t)| ≤ ε2
1, t ≥ t1, (3.24)

and
1

ρ1(t)

∫ ∞

t

ρ1(s)
p(s)π(s)

ds ≤ − 2
2µ1 + 1

, t ≥ t1. (3.25)

Consider the set V1 of continuous functions and the integral operator F1

defined by
V1 = {v ∈ C0[t1,∞) : |v(t)| ≤ ε1, t ≥ t1} , (3.26)

F1v(t) =
1

ρ1(t)

∫ ∞

t

ρ1(s)
p(s)π(s)

[
ϕ(s)2 + (2µ1 + 1)ϕ(s) + v(s)2

]
ds, t ≥ t1.

(3.27)
Then it can be shown that F1(V1) ⊂ V1 and

‖F1v −F1w‖0 ≤ − 4
2µ1 + 1

ε1‖v − w‖0 ≤ 1
2
‖v − w‖0, v, w ∈ V1.
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The contraction mapping principle then ensures the existence of a fixed
element v1 ∈ V1 of F1, which gives rise to a solution of (3.21) on [t1,∞).
Thus a solution y1(t) of (B) is obtained by using this v1(t) in (3.15) and it
belongs to n-RV 1

π
(µ1) because lim

t→∞ v1(t) = 0.
Let y1(t) = (1/π(t))µ1f1(t), f1(t) ∈ n-SV 1

π
. Since 2µ1+1 < 0 and f1(t) ∈

n-SV 1
π
, there exists a constant k > 0 such that (1/π(t))−

2µ1+1

2 f1(t)−2 ≥ k

for t ≥ t1 (cf. Proposition 1.2-(ii)). Using this inequality, we have
∫ t

t1

ds

p(s)y1(s)2
=

∫ t

t1

1
p(s)

(
1

π(s)

)−2µ1

f1(s)−2ds

=
∫ t

t1

(
1

π(s)

)′ ( 1
π(s)

)−2µ1−2

f1(s)−2ds

=
∫ t

t1

(
1

π(s)

)′ ( 1
π(s)

)−µ1− 3
2

(
1

π(s)

)− 2µ1+1

2

f1(s)−2ds

≥ k

∫ t

t1

(
1

π(s)

)′ ( 1
π(s)

)−µ1− 3
2

ds

= − k

µ1 + 1
2

[(
1

π(t)

)−µ1− 1
2−

(
1

π(t1)

)−µ1− 1
2

]
→∞ as t →∞,

which implies that y1(t) is a principal solution of (B)
We next consider the case i = 2. The function ρ2(t) given by (3.20)

(i = 2) satisfies lim
t→∞ ρ2(t) = ∞ and has the properties that

lim
t→∞

1
ρ2(t)

∫ t

t2

ρ2(s)
p(s)π(s)

ds =
1

2µ2 + 1
> 0, (3.28)

lim
t→∞

1
ρ2(t)

∫ t

t2

ρ2(s)
p(s)π(s)

h(s)ds = 0 if h(t) ∈ C[a,∞) and lim
t→∞h(t) = 0,

(3.29)
for any fixed t2 > a, which are verifiable by means of L’Hospital’s rule.

Let ε2 be a positive constant such that 8ε2/(2µ2+1) ≤ 1 and take t2 > a
large enough so that

∣∣∣ϕ(t)2 + (2µ2 + 1)ϕ(t)
∣∣∣ ≤ ε2

2, t ≥ t2, (3.30)

1
ρ2(t)

∫ t

t2

ρ2(s)
p(s)π(s)

ds ≤ 2
2µ2 + 1

, t ≥ t2. (3.31)
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Consider the integral operator F2 defined by

F2v(t) = − 1
ρ2(t)

∫ t

t2

ρ2(s)
p(s)π(s)

[
ϕ(s)2 + (2µ2 + 1)ϕ(s) + v(s)2

]
ds, t ≥ t2,

(3.32)
on the set

V2 = {v ∈ C0[t2,∞) : |v(t)| ≤ ε2, t ≥ t2} . (3.33)

It is shown that F2 sends V2 into itself and satisfies

‖F2v −F2w‖0 <
4ε2

2µ2 + 1
‖v − w‖0 ≤ 1

2
‖v − w‖0, v, w ∈ V2.

Therefore F2 has a unique fixed element v ∈ V2, which solves the integral
equation

v2(t) = − 1
ρ2(t)

∫ t

t2

ρ2(s)
p(s)π(s)

[
ϕ(s)2 + (2µ2 + 1)ϕ(s) + v2(s)2

]
ds, t ≥ t2.

(3.34)
Since v2(t) satisfies the differential equation (3.21) (i = 2), the function y2(t)
defined by (3.15) with this v2(t) gives a solution of (B) on [t2,∞) belonging to
n-RV 1

π
(µ2). Let y2(t) = (1/π(t))µ2f2(t), f2(t) ∈ n-SV 1

π
. Noting that there

is a constant l > 0 such that (1/π(t))
2µ2+1

2 f2(t)−2 ≤ l, t ≥ t2, by Proposition
1.2-(ii), we obtain

∫ t

t2

ds

p(s)y2(s)2
=

∫ t

t2

1
p(s)

(
1

π(s)

)−2µ2

f2(s)−2ds

=
∫ t

t2

(
1

π(s)

)′ ( 1
π(s)

)−3µ2− 5
2

(
1

π(s)

) 2µ2+1

2

f2(s)−2ds

≤ l

∫ t

t2

(
1

π(s)

)′ ( 1
π(s)

)−3µ2− 5
2

ds

≤ l

3µ2 + 3
2

(
1

π(t2)

)−3µ2− 3
2

, t ≥ t2,

which shows that y2(t) is a non-principal solution of (B). This completes the
proof of Theorem 3.3.

Remark 3.1. We observe that to prove Theorem 3.3 it suffices to con-
struct either of the solutions y1(t) and y2(t) of (B). In fact, if a principal
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solution y1(t) ∈ n-RV 1
π
(µ1) has been found, then the second solution y2(t) is

given by y2(t) = y1(t)
∫ t
t1

ds/p(s)y1(s)2. Noting that y1(t) = (1/π(t))µ1f1(t),
f1(t) ∈ n-SV 1

π
, we find

∫ t

t1

ds

p(s)y1(s)2
=

∫ t

t1

(
1

π(s)

)′ ( 1
π(s)

)−2µ1−2

f1(s)−2ds

∼ −1
2µ1 + 1

(
1

π(t)

)−2µ1−1

f1(t)−2 as t →∞

by the generalized Karamata theorem (Proposition 1-3), whence we conclude
that

y2(t) ∼ −1
2µ1 + 1

(
1

π(t)

)−µ1−1

f1(t)−1 =
−1

2µ + 1

(
1

π(t)

)µ2

f(t) as t →∞.

This shows that y2(t) ∈ n-RV 1
π
(µ2).

On the other hand, if a non-principal solution y2(t) ∈ n-RV 1
π
(µ2) has

been found, then the second solution y1(t) determined by y1(t) = y2(t)
∫∞
t ds/

p(s)y2(s)2 belongs to n-RV 1
π
(µ1). Since y2(t) = (1/π(t))µ2f2(t), f2(t) ∈ n-SV 1

π
,

the generalized Karamata theorem implies that
∫ ∞

t

ds

p(s)y2(s)2
=

∫ ∞

t

(
1

π(s)

)′ ( 1
π(s)

)−2µ2−2

f2(s)−2ds

∼ 1
2µ2 + 1

(
1

π(t)

)−2µ2−1

f2(t)−2 as t →∞,

from which it follows that y1(t) ∈ n-RV 1
π
(µ1) as desired.

C) The following theorem is a counterpart of Theorem 2.4 in Section 2.

Theorem 3.4. Assume that (3.4) holds. Put

Φ(t) =
1

π(t)

∫ ∞

t
π(s)2q(s)ds− 1

4
(3.35)

and suppose that ∫ ∞ |Φ(t)|
p(t)π(t)

dt < ∞, (3.36)

∫ ∞ Ψ(t)
p(t)π(t)

dt < ∞, where Ψ(t) =
∫ ∞

t

|Φ(s)|
p(s)π(s)

ds. (3.37)
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Then, the equation (B) possesses a fundamental set of solutions {y1(t), y2(t)}
such that yi(t) ∈ n-RV 1

π

(
−1

2

)
, i = 1, 2, and

y1(t) = π(t)
1
2 f1(t), y2(t) = π(t)

1
2 log

1
π(t)

f2(t), (3.38)

where fi(t) ∈ n-SV 1
π

and lim
t→∞ fi(t) = fi(∞) ∈ (0,∞), i = 1, 2, f1(∞)f2(∞) = 1.

P r o o f. The function defined by

y(t) = exp

{∫ t

t0

Φ(s)− 1
2 + v(s)

p(s)π(s)
ds

}
(3.39)

will be a solution of (B) if the function u(t) = (Φ(t)− 1
2 + v(t))/π(t) satis-

fies the Riccati equation (2.9) on some interval [t0,∞). We then have the
differential equation for v(t) :

v′ +
2Φ(t)

p(t)π(t)
v +

Φ(t)2 + Φ(t) + v2

p(t)π(t)
= 0, (3.40)

which can be rewritten as

(ρ(t)v)′ +
ρ(t)

p(t)π(t)

[
Φ(t)2 + Φ(t) + v2

]
= 0, (3.41)

where

ρ(t) = exp
{∫ t

1

2Φ(s)
p(s)π(s)

ds

}
. (3.42)

Let m > 0 be a constant such that
∣∣∣Φ(t)2 + Φ(t)

∣∣∣ ≤ mΦ(t), t ≥ 0, (3.43)

and let t0 > 0 be large enough so that

ρ(s)
ρ(t)

≤ 2 for s ≥ t ≥ t0, (3.44)

and

32m

∫ ∞

t0

Ψ(s)
p(s)π(s)

ds ≤ 1, (3.45)

which is possible because of (3.36) and (3.37), respectively.
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Define

V = {v ∈ CΨ[t0,∞) : |v(t)| ≤ 4mΨ(t), t ≥ t0} , (3.46)

Gv(t) =
1

ρ(t)

∫ ∞

t

ρ(s)
p(s)π(s)

[
Φ(s)2 + Φ(s) + v(s)2

]
ds, t ≥ t0. (3.47)

It is easily checked that v ∈ V implies Gv ∈ V and v, w ∈ V implies

‖Gv − Gw‖Ψ ≤ 1
2
‖v − w‖Ψ.

Consequently, there exists a unique element v1 ∈ V such that v1 = Gv1,
which is a solution of the integral equation

v1(t) =
1

ρ(t)

∫ ∞

t

ρ(s)
p(s)π(s)

[
Φ(s)2 + Φ(s) + v1(s)2

]
ds t ≥ t0. (3.48)

Since (3.48) is an integrated version of (3.41), the function y1(t) given by
(3.39) with this v1(t) is a solution of (B) on [t0,∞) belonging to n-RV 1

π
(−1

2).
Representing y1(t) as

y1(t) =
(

1
π(t)

)− 1
2

f1(t) = π(t)
1
2 f1(t), f1(t) = exp

{∫ t

t0

Φ(s) + v(s)
p(s)π(s)

ds

}
,

(3.49)
we see from (3.36) and (3.37) that lim

t→∞ f1(t) = f1(∞) ∈ (0,∞). Thus y1(t) is

a principal solution of (B). The second (non-principal) solution y2(t) of (B)
is determined by y2(t) = y1(t)

∫ t
t0

ds
/
p(s)y1(s)2 . Since

∫ t
t0

ds
/
p(s)y1(s)2 ∼

f1(∞)−2 log(1/π(t)) as t → ∞, we conclude that y2(t) has the form
y2(t) = π(t)

1
2 log(1/π(t)) · f2(t) with f2(t) ∈ n-SV 1

π
such that f2(∞) = 1/f1(∞).

This completes the proof.

Example 3.1. It is known [3] that the Weber equation

(e
t2

2 y′)′ − 2λe
t2

2 y = 0, λ ∈ R, (3.50)

has a pair of solutions {y1(t), y2(t)} satisfying

y1(t) ∼ t−1−2λe−
t2

2 , y2(t) ∼ t2λ as t →∞. (3.51)

This equation is a special case of (B) with p(t) = et2/2 and q(t) =
−2λet2/2. The function p(t) satisfies (0.2) and generates π(t) =

∫∞
t e−s2/2ds

by (0.4). Since

π(t) =
∫ ∞

t
e−

s2

2 ds ∼ t−1e−
t2

2 as t →∞ (3.52)



Self-adjoint differential equations and generalized Karamata functions 55

and

lim
t→∞

1
π(t)

∫ ∞

t
π(s)2q(s)ds = −2λ lim

t→∞

∫ ∞

t

(∫ ∞

s
e−

r2

2 dr

)2

e
s2

2 ds
∫ ∞

t
e−

s2

2 ds
= 0,

we can apply Theorem 3.2 to conclude that there exists a fundamental set
of solutions {η1(t), η2(t)} of (3.50) such that η1(t) ∈ n-RV 1

π
(−1), η2(t) ∈

n-SV 1
π
, that is,

η1(t) =
(∫ ∞

t
e−

s2

2 ds

)
f1(t), η2(t) = f2(t) (3.53)

for some fi(t) ∈ n-SV 1
π
, i = 1, 2, such that f2(t) ∼ 1/f1(t) as t → ∞. No

further specific information on fi(t) is included in Theorem 3.2.
Comparison of (3.51) with the asymptotic relation

η1(t) ∼ t−1
(∫ ∞

t
e−

s2

2 ds

)
f1(t), η2(t) ∼ 1

f1(t)
as t →∞,

which, in view of (3.52), is equivalent to (3.53), shows that the function f1(t)
can be taken to be f1(t) = t−2λ. That actually t−2λ ∈ n-SV 1

π
follows from

Proposition 1.3, based on the observation that, for every γ > 0,
(

1
π(t)

)−γ

t−2λ =
(

te
t2

2

)−γ

t−2λ is eventually decreasing

and
(

1
π(t)

)γ

t−2λ =
(

te
t2

2

)γ

t−2λ is eventually increasing

Example 3.2. We present here an interpretation of the solutions of the
Legendre equation

((t2 − 1)y′)′ − λ(λ + 1)y = 0, λ > 0, (3.54)

from the viewpoint of generalized Karamata functions.
The function p(t) = t2 − 1 clearly satisfies (0.2) for t > 1 and generates

by (0.4) the function

π(t) =
1
2

log
t + 1
t− 1

∼ 1
t

as t →∞. (3.55)
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Since q(t) = λ(λ + 1) satisfies

lim
t→∞

1
π(t)

∫ ∞

t
π(s)2q(s)ds = −λ(λ + 1),

we assert from Theorem 3.3 that (3.54) has a pair of of solutions {y1(t),
y2(t)} such that

y1(t) ∈ n-RV 1
π
(−(λ + 1)), y2(t) ∈ n-RV 1

π
(λ).

We have used the fact that µ1 = −(λ + 1), µ2 = λ are the real roots of the
quadratic equation µ2 + µ− λ(λ + 1) = 0. It should be observed because of
(3.55) that the class of regularly varying functions with index α with respect
to 1/π(t) coincides with that of regularly varying functions with index α in
the sense of Karamata. Thus, the equation (3.54) has a fundamental set of
solutions {y1(t), y2(t)} such that

y1(t) ∈ n-RV(−(λ + 1)), y2(t) ∈ n-RV(λ).

The above observation endorses the classical result [6] from the theory of
special functions that the Legendre functions of the first and second kinds,
denoted, respectively, by Pλ(t) and Qλ(t), which are linearly independent
solutions of (3.54), have the asymptotic properties

Pλ(t) ∼ Γ(λ + 1
2)√

π Γ(λ + 1)
(2t)λ ∈ n-RV(λ) as t →∞,

Qλ(t) ∼
√

π Γ(λ + 1)
Γ(λ + 3

2)
(2t)−λ−1 ∈ n-RV(−(λ + 1)) as t →∞.

Example 3.3. Consider the equation

(eαty′)′ +
[
keβt sin(eγt) + α2ceαt

]
y = 0, t ≥ 0. (3.56)

where α, β, γ, c and k are positive constants. We put

p(t) = eαt, q0(t) = keβt sin(eγt), q(t) = q0(t) + α2ceαt.

Suppose that α − β + γ > 0. Using the function π(t) = e−αt/α defined by
(0.4), we obtain

∫ ∞

t
π(s)2q0(s)ds =

k

α2

∫ ∞

t
e(−2α+β)s sin(eγs)ds

=
k

α2γ
e−(2α−β+γ)t cos(eγt)− 2α− β + γ

α2γ

∫ ∞

t
e−(2α−β+γ)s cos(eγs)ds,

(3.57)



Self-adjoint differential equations and generalized Karamata functions 57

which implies that

lim
t→∞

1
π(t)

∫ ∞

t
π(s)2q0(s)ds = 0

and
lim
t→∞

1
π(t)

∫ ∞

t
π(s)2q(s)ds = c.

Let c ∈ (−∞, 1
4). Then, it follows from Theorem 3.3 that the equation

(3.56) is nonoscillatory and possesses a pair of solutions {y1(t), y2(t)} such
that yi(t) ∈ n-RVαeαt(µi), i = 1, 2, where µ1, µ2 (µ1 < µ2) are the real
roots of µ2 + µ + c = 0.

Now let c = 1
4 and define

Φ(t) =
1

π(t)

∫ ∞

t
π(s)2q(s)ds− 1

4
=

1
π(t)

∫ ∞

t
π(s)2q0(s)ds.

In view of (3.57) we see that Φ(t) satisfies

|Φ(t)|
p(t)π(t)

= O(e−(α−β+γ)t) as t →∞,

which implies that |Φ(t)|/p(t)π(t) is integrable on [0,∞) and

Ψ(t) =
∫ ∞

t

|Φ(s)|
p(s)π(s)

ds = O(e−(α−β+γ)t) as t →∞.

Since the function Ψ(t) is also integrable on [0,∞), from Theorem 3.4 it
follows that (3.56) is nonoscillatory and has a fundamental set of solutions
{y1(t), y2(t)} satisfying

y1(t) ∼ αe
α
2

tf1(t), y2(t) ∼ α2te
α
2

t

f1(t)
as t →∞,

where f1(t) is a slowly varying function with respect to αeαt such that
lim
t→∞ f1(t) = f1(∞) ∈ (0,∞).

We note that if β > α, then the function q(t) in (3.56) is strongly oscil-
lating in the sense that

lim inf
t→∞ q(t) = −∞ and lim sup

t→∞
q(t) = ∞.
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Appendix

We summarize here definitions and properties of some of the basic classes
of Karamata functions which have been generalized in Section 1 so as to be
an appropriate means for the analysis of self-adjoint differential equations
of the form (B). For the proofs of the theorems stated below the reader is
referred to the books [1, 11].

Definition A.1. A measurable function f : [t0,∞) → (0,∞) is said to
be slowly varying if it satisfies

lim
t→∞

f(λt)
f(t)

= 1 for every λ > 0.

Definition A.2. A measurable function g : [t0,∞) → (0,∞) is said to
be regularly varying with index α ∈ R if it satisfies

lim
t→∞

g(λt)
g(t)

= λα for every λ > 0.

One of the fundamental properties of slowly and regularly varying func-
tions is the following representation theorem.

Theorem A.1. (i) A positive measurable function f(t) is slowly varying
if and only if it can be expressed in the form

f(t) = c(t) exp
{∫ t

t0

ε(s)
s

ds

}
, t ≥ t0, (A.1)

where c(t) and ε(t) are measurable functions such that

lim
t→∞ c(t) = c ∈ (0,∞), lim

t→∞ ε(t) = 0.

(ii) A positive measurable function g(t) is regularly varying with index
α if and only if it has the representation

g(t) = c(t) exp
{∫ t

t0

δ(s)
s

ds

}
, t ≥ t0, (A.2)

where c(t) and δ(t) are measurable functions such that

lim
t→∞ c(t) = c ∈ (0,∞), lim

t→∞ δ(t) = α.
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If the function c(t) in (A.1) (or (A.2)) is identically a constant on [t0,∞),
then f(t) (or g(t)) is called a normalized slowly varying function (or a nor-
malized regularly varying function with index α). The totality of slowly
varying (or normalized slowly varying) functions is denoted by SV (or n-
SV) and the totality of regularly varying (or normalized regularly varying)
functions with index α is denoted by RV(α) (or n-RV(α)). It is easy to see
that g(t) ∈ RV(α)(or g(t) ∈ n-RV(α)) if and only if g(t) = tαf(t) for some
f(t) ∈ SV (or f(t) ∈ n-SV).

Theorem A.2. (i) f(t) ∈ SV implies f(t)β ∈ SV for any β ∈ R.
f1(t), f2(t) ∈ SV implies f1(t)f2(t) ∈ SV.

(ii) If f(t) ∈ SV, then for any γ > 0,

lim
t→∞ tγf(t) = ∞, lim

t→∞ t−γf(t) = 0. (A.3)

(iii) g(t) ∈ RV(α) and β ∈ R imply g(t)β ∈ RV(αβ). gi(t) ∈ RV(αi), i =
1, 2, implies g1(t)g2(t) ∈ RV(max(α1, α2)).

Theorem A.3. (Bojanic and Karamata) A positive measurable
function f(t) belongs to n-SV if and only if, for every γ > 0, tγf(t) is
ultimately increasing and t−γf(t) is ultimately decreasing.

Theorem A.4. (Karamata) (i) If ν > −1, then for any f(t) ∈ SV,
∫ t

t0
sνf(s)ds ∼ tν+1f(t)

ν + 1
as t →∞. (A.4)

(ii) If ν < −1, then for any f(t) ∈ SV,
∫∞
t0

sνf(s)ds < ∞, and
∫ ∞

t
sνf(s)ds ∼ − tν+1f(t)

ν + 1
as t →∞. (A.5)

Here the notation ϕ(t) ∼ ψ(t) as t →∞ is used to mean lim
t→∞ψ(t)/ϕ(t) = 1.

Definition A.3. A measurable function h : [t0,∞) → (0,∞) is called
regularly bounded if it satisfies

0 < lim inf
t→∞

h(λt)
h(t)

≤ lim sup
t→∞

h(λt)
h(t)

< ∞ for every λ ≥ 1.

Theorem A.5. A function h(t) is regularly bounded if and only if it
has the representation

h(t) = exp
{

η(t) +
∫ t

t0

ξ(s)
s

ds

}
, t ≥ t0, (A.6)
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where ξ(t) and η(t) are bounded and measurable on [t0,∞). The set of all
regularly bounded functions is denoted by RO. It can be shown that the
integral and the product of functions in RO remain in this class.
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