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A b s t r a c t. Let G be a graph on n vertices, Ḡ its complement and Kn

the complete graph on n vertices. We show that if G is connected, then any
Laplacian eigenvector of G is also a Laplacian eigenvector of Ḡ and of Kn .
This result holds, with a slight modification, also for disconnected graphs.
We establish also some other results, all showing that the structural infor-
mation contained in the Laplacian eigenvectors is rather limited. An analogy
between the theories of Laplacian and ordinary graph spectra is pointed out.
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1. Introduction

In this work we are concerned with simple graphs, i. e., graphs without
multiple or directed edges, and without loops. Let G be such a graph and let
n be the number of its vertices. Denote the vertices of G by v1, v2, . . . , vn .

The adjacency matrix A(G) of G is a square matrix of order n whose
(i, j)-entry is unity if the vertices vi and vj are adjacent, and is zero other-
wise.

The eigenvalues and eigenvectors of the adjacency matrix are called the
(ordinary) graph eigenvalues and eigenvectors. Their theory, usually referred
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to as “graph spectral theory”, is nowadays well developed [1, 2].
The degree di of the vertex vi is the number of first neighbors of this

vertex. By D(G) we denote the square matrix of order n whose i-th diagonal
element is equal to di and whose off–diagonal elements are zero.

The Laplacian matrix of the graph G is

L(G) = D(G)−A(G) . (1)

Its eigenvalues and eigenvectors are the Laplacian eigenvalues and Laplacian
eigenvectors of the respective graph. Their theory is also well elaborated and
is outlined in a number of reviews [3, 4, 6, 7, 9].

The Laplacian eigenvalues of the graph G will be denoted by µi = µi(G)
and the corresponding eigenvectors by Xi = Xi(G) , i = 1, 2, . . . , n , assum-
ing that the equality

L(G) Xi = µi Xi

is obeyed for i = 1, 2, . . . , n . Thus, Xi , i = 1, 2, . . . , n , are n-dimensional
column–vectors.

As usual, we label the Laplacian eigenvalues so that

µ1 ≥ µ2 ≥ · · · ≥ µn .

The following are well known results of the theory of Laplacian spectra
[3, 4, 6, 7, 9]:

The Laplacian eigenvalues are non-negative real numbers, and µn is al-
ways zero. The eigenvalue µn−1(G) , called the “algebraic connectivity” (of
the graph G), is positive–valued if and only if G is connected

∗ ∗ ∗
Let X be an arbitrary n-dimensional vector. The sum of its elements will

be denoted by σ(X) .
The n-dimensional column–vectors, whose all elements are equal to 1

and 0, are denoted by 1 and 0 , respectively. Clearly, σ(X) = X • 1 , where
• indicates scalar product.

The unit matrix of order n is denoted by I . The square matrix of order
n , whose all elements are equal to 1, is denoted by J .

2. Some Auxiliary Results

Lemma 1. If G is any n-vertex graph, then 1 is its Laplacian eigenvec-
tor, with eigenvalue zero.
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P r o o f. From definition (1) there follows that the sum of any row of
L(G) is zero. Therefore, L(G) 1 = 0 , i.e.,

L(G) 1 = 0 · 1 . 2

Without loss of generality we may set Xn(G) = 1 .
The eigenvectors, corresponding to different eigenvalues, are necessarily

orthogonal. This, in particular means that whenever µi 6= 0 , then Xi is
orthogonal to 1 . This, in turn, implies Xi • 1 = 0 , i.e., σ(Xi) = 0 .

Lemma 2a. If G is a connected n-vertex graph, then σ(Xi(G)) = 0
holds for all i = 1, 2, . . . , n− 1 . 2

If µi = 0 for some i < n (which happens only in the case of disconnected
graphs), then the Laplacian eigenvectors Xi and Xn need not be orthogo-
nal. However, it is always possible to choose them orthogonal, i.e., so that
condition (2) be fulfilled:

If µi = 0 and i < n , then Xi • 1 = 0 . (2)

If condition (2) is obeyed, then σ(Xi) = 0 for all i = 1, 2, . . . , n− 1 .

Lemma 2b. If G is a disconnected n-vertex graph, then σ(Xi(G)) = 0
holds for every Laplacian eigenvector of G with non-zero eigenvalue. If, in
addition, condition (2) is satisfied, then σ(Xi(G)) = 0 holds for all i =
1, 2, . . . , n− 1 . 2

We are now prepared to prove our main results, namely Theorems 3 and
4. Although these results are deduced by simple and elementary reasoning,
and although they express fundamental and generally valid properties of
Laplacian eigenvectors, they seem not to be (explicitly) stated in the math-
ematical literature. At least, these results are not mentioned in the reviews
[3, 4, 6, 7, 9] and in a paper [8] solely devoted to Laplacian eigenvectors.
Theorem 3 appears in a recent paper by the present author [5].

3. The Main Result

Theorem 3a. Let G be a graph and Ḡ its complement. If G is connected,
then every Laplacian eigenvector of G is a Laplacian eigenvector of Ḡ .

P r o o f. We first have to observe that

L(Ḡ) = n I − J − L(G)
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and that for any column–vector X ,

J X = σ(X) 1 .

Now, that the eigenvector Xn(G) coincides with Xn(Ḡ) follows from
Lemma 1. Therefore, consider an eigenvector Xi(G) for some i = 1, 2, . . . , n−
1 , and bear in mind Lemma 2a:

L(Ḡ) Xi(G) = [n I − J − L(G)]Xi(G)
= n Xi(G)− σ(Xi(G)) 1− µi(G) Xi(G)
= [n− µi(G)]Xi(G) .

Thus, for i = 1, 2, . . . , n−1 , the Laplacian eigenvector Xi(G) of the graph
G coincides with the Laplacian eigenvector Xn−i(Ḡ) of the complement of
G . 2

The fact that the Laplacian eigenvalues of Ḡ are equal to n−µn−i(G) , i =
1, 2, . . . , n− 1 , and 0 is a well known result [3, 4, 6, 7, 9].

In a fully analogous manner we obtain:

Theorem 3b. Let G be a graph and Ḡ its complement. If G is discon-
nected, then every Laplacian eigenvector of G with non-zero eigenvalue is a
Laplacian eigenvector of Ḡ . If, in addition, condition (2) is satisfied, then
every Laplacian eigenvector of G is a Laplacian eigenvector of Ḡ .

With regard to Theorems 3a and 3b recall that either G or Ḡ (or both)
are connected graphs.

Theorem 4a. Let G be an n-vertex graph and Kn the complete graph
on n vertices. If G is connected, then every Laplacian eigenvector of G is a
Laplacian eigenvector of Kn .

P r o o f. From Lemma 1 we know that Xn(G) coincides with Xn(Kn) .
Bearing in mind Lemma 2a and L(Kn) = n I − J , we obtain for i =
1, 2, ..., n− 1 :

L(Kn)Xi(G) = nXi − σ(XI(G)) 1 = nXi . 2

The analogous statement for disconnected graphs reads:

Theorem 4b. Let G be an n-vertex graph and Kn the complete graph on
n vertices. If G is disconnected, then every Laplacian eigenvector of G with
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non-zero eigenvalue is a Laplacian eigenvector of Kn . If, in addition, con-
dition (2) is satisfied, then every Laplacian eigenvector of G is a Laplacian
eigenvector of Kn .

Denote by On the n-vertex graph without edges. All its Laplacian eigen-
values are equal to zero.

Corollary 5 (of Theorems 3b and 4b). If condition (2) is satisfied, then
every Laplacian eigenvector of G is a Laplacian eigenvector of On .

4. Discussion

The theory of graph spectra (both ordinary and Laplacian) is concerned
with discovering relations between eigenvalues and eigenvectors and the
structure of the underlying graphs [1, 2]. It is known that in the general
case the spectrum (either ordinary or Laplacian) does not fully determine
a graph, but that numerous structural features of a graph can be deduced
from its spectrum. Theorems 3 and 4 imply that the structural information
contained in the Laplacian eigenvectors is much smaller. This is made clear
in the below Corollaries 6 and 7.

In order to avoid unnecessary complications, in the following we shall
assume that all Laplacian eigenvectors of the graph G are mutually orthog-
onal, i.e., that σi(G) = 0 for all i = 1, 2, . . . , n− 1 . Then we have

Corollary 6. For G being an arbitrary graph on n vertices, it is possible
to find mutually orthogonal vectors X1, X2, . . . , Xn , such that each of these
vectors is a Laplacian eigenvector of both G , Ḡ , Kn , and On .

Let G and H be two n-vertex graphs (with disjoint vertex sets) that
are Laplacian–cospectral; G and H may be disconnected, and they may be
isomorphic. Let G ∪ H be the (2n)-vertex graph whose components are
G and H . As usual, Kn,n denotes the complete bipartite graph on n + n
vertices.

Corollary 7. It is possible to find mutually orthogonal vectors X1, X2,
. . . , X2n , such that each of these vectors is a Laplacian eigenvector of both
G ∪H , Ḡ ∪ H̄ , G ∪H , Ḡ ∪ H̄ , K2n , Kn ∪Kn , Kn,n , and O2n .

In the theory of ordinary graph spectra [1, 2] there are results analogous
to Theorems 3 and 4, but valid only for regular graphs. Namely, 1 is an
eigenvector of the adjacency matrix A(G) if and only if the graph G is
regular. Then, using the facts that A(Ḡ) = J−I−A(G) and A(Kn) = J−I
we arrive at:
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Theorem 8. If the graph G is connected and regular, then every eigen-
vector (of the adjacency matrix) of G is an eigenvector (of the adjacency
matrix) of Ḡ .

Theorem 9. If G is a connected regular graph on n vertices, then
every eigenvector (of the adjacency matrix) of G is an eigenvector (of the
adjacency matrix) of Kn .

If the graph G in Theorems 8 and 9 is not connected, then these Theo-
rems need to be re-stated in line with Theorems 3b and 4b.

Comparison of Theorems 3 and 4 with Theorems 8 and 9 hints towards
the possibility to view at the theory of Laplacian spectra as a kind of ex-
tension (to all graphs) of the ordinary spectral theory of regular graphs. In
other words, it looks as if the Laplacian spectrum of any graph possesses
properties which, within the theory of ordinary graph spectra, are restricted
to regular graphs.
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