ON HYPOELLIPTICITY IN \mathcal{G}

M. NEDELJKOV, S. PILIPOVIĆ

(Presented at the 4th Meeting, held on May 31, 2002)
A bstract. We give a condition of sufficiency for the hypoellipticity of a family of equations with constant coefficients satisfied prescribed power growth rate with respect to $\varepsilon \in(0,1)$. The framework is Colombeau algebra of generalized functions.

AMS Mathematics Subject Classification (2000): 35H10, 46F30
Key Words: hypoellipticity, Colombeau generalized functions

1. Introduction

We have considered in [5] the hypoellipticity of a differential equation with generalized constant coefficients and have given several necessary conditions. In order to explain our approach, consider a family of equations with constant coefficients

$$
P_{\varepsilon}(D) G=\sum_{|\alpha| \leq m} a_{\alpha, \varepsilon} D^{\alpha} G=F_{\varepsilon}, F_{\varepsilon} \in C^{\infty}(\Omega), \varepsilon \in(0,1)
$$

If $P_{\varepsilon}(D)$ is hypoelliptic for fixed $\varepsilon \in(0,1)$, then the corresponding solution to the above equation, G_{ε}, is in $C^{\infty}(\Omega)$. If we suppose that $\sup _{x \in K \subset \subset \Omega}\left|D^{\alpha} F_{\varepsilon}(x)\right|$
satisfies the power growth condition $\mathcal{O}\left(\varepsilon^{-N_{K}}\right)$ for every α (N_{K} depends on a compact set K), then one can ask whether the derivatives of G_{ε} satisfy similar estimates on compact sets.

In this paper we will repeat necessary conditions for the hypoellipticity ([5]) and give appropriate sufficient conditions for it.

Another type of hypoellipticity was considered by Hörmann and Oberguggenberger (personal communication) who pointed to us that our sufficient conditions in [5] need some additional assumptions. In this paper we reconsider the following condition:
"There exist $N>0$ and $q \in \mathbb{N}$ such that for every $\phi \in \mathcal{A}_{q} A>0$ there exist $\eta>0$ and $B \in \mathbb{R}$ such that

$$
|\tau| \geq A(\log |\sigma|+N \log \varepsilon)-B, \sigma+i \tau \in V\left(P_{\phi, \varepsilon}\right), \varepsilon \in(0, \eta), "
$$

and show that above we need

$$
|\tau| \geq A \log |\sigma|+N \log \varepsilon-B, \sigma+i \tau \in V\left(P_{\phi, \varepsilon}\right), \varepsilon \in(0, \eta)
$$

The proof of this fact is the main goal of this paper.

2. Colombeau algebras

Let

$$
\begin{aligned}
\mathcal{A}_{0}(\mathbb{R}) & =\left\{\phi \in C_{0}^{\infty} \mid \int \phi(x) d x=1, \operatorname{diam}(\operatorname{supp} \phi)=1\right\} \\
\mathcal{A}_{q}(\mathbb{R}) & =\left\{\phi \in \mathcal{A}_{0} \mid \int x^{\alpha} \phi(x) d x=0,1 \leq \alpha \leq q, \alpha \in \mathbb{N}\right\}, q \in \mathbb{N}
\end{aligned}
$$

and $\mathcal{A}_{q}\left(\mathbb{R}^{n}\right)=\left\{\phi\left(x_{1}, \ldots, x_{n}\right)=\phi_{1}\left(x_{1}\right) \cdot \ldots \cdot \phi_{1}\left(x_{n}\right) \mid \phi_{1} \in \mathcal{A}_{q}(\mathbb{R})\right\}$. Put $\phi_{\varepsilon}=(1 / \varepsilon) \phi(\cdot / \varepsilon)$, where $\phi \in \mathcal{A}_{0}$.

Let Ω be an open subset of \mathbb{R}^{n} and $\mathcal{E}(\Omega)$ be the space of functions $G: \mathcal{A}_{0} \times(0,1) \times \Omega \rightarrow \mathbb{C}$ which are C^{∞} for every $\phi \in \mathcal{A}_{0}$ and $\varepsilon \in(0,1)$. We will use the notation $G_{\phi, \varepsilon}$ for $(\phi, \varepsilon, x) \mapsto G_{\phi, \varepsilon}(x), x \in \Omega$.

A family of smooth complex valued functions on $\Omega, G_{\phi, \varepsilon}, \phi \in \mathcal{A}_{0}, \varepsilon \in$ $(0,1)$, belongs to $\mathcal{E}_{M}(\Omega)$ if for every compact set $K \subset \subset \Omega$ and $\alpha \in \mathbb{N}_{0}^{n}$ there exist $N \in \mathbb{N}$ and $r=r(K, \alpha) \in \mathbb{R}$ such that

$$
\begin{equation*}
\sup _{x \in K}\left|\partial^{\alpha} G_{\phi, \varepsilon}(x)\right|=\mathcal{O}\left(\varepsilon^{r}\right), \varepsilon \rightarrow 0, \text { for every } \phi \in \mathcal{A}_{N} \tag{1}
\end{equation*}
$$

If $G_{\phi, \varepsilon}$ does not depend on x and (1) holds for $\alpha=0$, then the space of corresponding families of complex numbers is denoted by \mathbb{C}_{M}. If $g \in \mathcal{D}^{\prime}$, the corresponding element in \mathcal{E}_{M} is given by $G_{\phi, \varepsilon}=g * \delta_{\phi, \varepsilon}$, where we use the notation $\delta_{\phi, \varepsilon}=\phi_{\varepsilon}, \phi \in \mathcal{A}_{0}$ since it is a delta net.

The space of all elements $G_{\phi, \varepsilon}$ in $\mathcal{E}_{M}(\Omega)$ which satisfy (1) independently of $\alpha \in \mathbb{N}_{0}$ is denoted by \mathcal{E}_{M}^{∞}.

The space $\mathcal{E}_{0}(\Omega)$ (resp. \mathbb{C}_{0}) is the subspace of $\mathcal{E}_{M}(\Omega)$ (resp. \mathbb{C}_{M}) consisting of elements $G_{\phi, \varepsilon}$ with the property that for every $K \subset \subset \Omega, \alpha \in \mathbb{N}_{0}^{n}$ and $r \in \mathbb{R}$ there exists $N \in \mathbb{N}$ such that (1) holds (resp. (1) holds for $\alpha=0$ and $G_{\phi, \varepsilon}$ does not depend on x) for every $\phi \in \mathcal{A}_{N}$.

The space of Colombeau's generalized functions on an open set $\Omega \subset \mathbb{R}^{n}$ is defined by $\mathcal{G}(\Omega)=\mathcal{E}_{M}(\Omega) / \mathcal{E}_{0}(\Omega)$ and $\overline{\mathbb{C}}=\mathbb{C}_{M} / \mathbb{C}_{0}$ is the ring of Colombeau's generalized complex numbers. Note that $\Omega \rightarrow \mathcal{G}(\Omega), \Omega \subset \mathbb{R}^{n}$, is a sheaf.
$\left[G_{\phi, \varepsilon}\right]$ denotes the class in \mathcal{G} (or $\overline{\mathbb{C}}$) determinated by the representative $G_{\phi, \varepsilon}$.

Let $G \in \mathcal{G}(\Omega)$. The complement of the largest open set of Ω in which G is equal to the zero generalized function is called the support of $G, \operatorname{supp}_{g} G$.

The space of generalized functions with compact supports in the interior of Ω is denoted by $\mathcal{G}_{c}(\Omega)$.
$\mathcal{G}^{\infty}(\Omega)$ (cf. [6]) is the space of all generalized functions which have a representative in \mathcal{E}_{M}^{∞}. It is a subalgebra of $\mathcal{G}(\Omega)$ and

$$
\mathcal{G}^{\infty}(\Omega) \cap \mathcal{D}^{\prime}(\Omega)=C^{\infty}(\Omega)(\text { see }[6]) .
$$

The space of tempered Colombeau's generalized functions $\mathcal{G}_{\mathbf{t}}\left(\mathbb{R}^{n}\right)$ is defined to be $\mathcal{E}_{\mathbf{t}}\left(\mathbb{R}^{n}\right) / \mathcal{E}_{0 \mathbf{t}}\left(\mathbb{R}^{n}\right)$, where $\mathcal{E}_{\mathbf{t}}\left(\mathbb{R}^{n}\right)$ is the set of all $G_{\phi, \varepsilon} \in \mathcal{E}$ such that for every $\alpha \in \mathbb{N}_{0}^{n}$ there exist $\gamma>0, N \in \mathbb{N}$ and $r \in \mathbb{R}$ such that

$$
\begin{equation*}
\sup _{x \in \mathbb{R}^{n}}\left|\partial^{\alpha} G_{\phi, \varepsilon}(x)\right| /(1+|x|)^{\gamma}=\mathcal{O}\left(\varepsilon^{r}\right), \varepsilon \rightarrow 0 \text { for every } \phi \in \mathcal{A}_{N} \tag{2}
\end{equation*}
$$

and $\mathcal{E}_{\mathbf{0 t}}\left(\mathbb{R}^{n}\right)$ is the space of all $G_{\phi, \varepsilon} \in \mathcal{E}_{\mathbf{t}}$ with the property that for every $\alpha \in \mathbb{N}_{0}^{n}$ there exists $\gamma \in \mathbb{R}$ such that for every $r \in \mathbb{R}$ there exists $N \in \mathbb{N}$ such that (2) holds for every $\phi \in \mathcal{A}_{N}$.

Note that $\mathcal{G}_{\mathbf{t}}\left(\mathbb{R}^{n}\right)$ is not a subspace of $\mathcal{G}\left(\mathbb{R}^{n}\right)$, but there is a canonical $\operatorname{map} \mathcal{G}_{\mathbf{t}}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{G}\left(\mathbb{R}^{n}\right)$.

Let $G \in \mathcal{G}(\Omega)$. The complement of the largest open set of Ω in which G is in $\mathcal{G}^{\infty}(\Omega)$ is called the singular support of G. It is denoted by $\operatorname{singsupp}_{g} G$.

The equality in \mathcal{G} is often too strong for applications, so we shall use a notion of equality in generalized distribution (resp. generalized tempered distribution) sense $\stackrel{\text { g.d. }}{=}($ resp. $\stackrel{\text { g.t.d. }}{=})$ which is defined by:
$G_{1} \stackrel{\text { g.d. }}{=} G_{2}$ (resp. $G_{1} \stackrel{\text { g.t.d. }}{=} G_{2}$ for tempered generalized functions) if for every $\psi \in \mathcal{D}$ (resp. $\psi \in \mathcal{S}$), $\left\langle G_{1}, \psi\right\rangle=\left\langle G_{2}, \psi\right\rangle$ in $\overline{\mathbb{C}}$, where $\langle G, \psi\rangle$ means $\int G(x) \psi(x) d x$.

3. Hypoellipticity

Following [8], we define polynomials in n real variables as elements of the ring $\overline{\mathbb{C}}\left[x_{1}, \ldots, x_{n}\right]$. A generalized polynomial function is a tempered generalized function of the form

$$
\sum_{|\alpha| \leq m} a_{\alpha} x^{\alpha}, x \in \mathbb{R}, a_{\alpha}=\left[a_{\alpha, \phi, \varepsilon}\right] \in \overline{\mathbb{C}}, \alpha \in \mathbb{N}_{0}^{n}
$$

It is of degree m if $a_{\alpha}=0$ for $|\alpha|>m$ and there exists $\beta,|\beta|=m$ such that $a_{\beta} \neq 0$.

If $\left[H_{\phi, \varepsilon}(x)\right]=\sum_{|\alpha| \leq m}\left[a_{\alpha, \phi, \varepsilon}\right] x^{\alpha}$ is such a generalized function, then it can be written only in one way as a polynomial. In fact, if $\sum_{|\beta| \leq m} b_{\beta, \phi, \varepsilon} x^{\beta}=$ $N_{\phi, \varepsilon}(x) \in \mathcal{E}_{0 \mathbf{t}}\left(\mathbb{R}^{n}\right)$, then by making successive derivations and by putting $x=0$ it follows $b_{\beta, \phi, \varepsilon} \in \mathbb{C}_{0},|\beta| \leq m([8])$.

Let us remind that in the classical distribution theory a fundamental solution of a differential operator is a distribution E such that $P(D) E=\delta$.

Let

$$
\begin{equation*}
P(D)=\sum_{|\alpha| \leq m} a_{\alpha} D^{\alpha}=\left[P_{\phi, \varepsilon}\left(i \frac{\partial}{\partial x}\right)\right]\left(D^{\alpha}=i^{|\alpha|} \partial^{\alpha}\right) \tag{3}
\end{equation*}
$$

where $\sum_{|\alpha| \leq m} a_{\alpha} x^{\alpha}$ is a polynomial in \mathcal{G}. In Colombeau's theory, the fundamental solution of P is a generalized function $E \in \mathcal{G}$ satisfying $P(D) E=$ $\left[\delta_{\phi, \varepsilon}\right]$. This means that its representatives $E_{\phi, \varepsilon} \in \mathcal{E}_{M}$ satisfy

$$
\sum a_{\alpha, \phi, \varepsilon} D^{\alpha} E_{\phi, \varepsilon}(x)=\delta_{\phi, \varepsilon}(x)+N_{\phi, \varepsilon}(x), x \in \mathbb{R}^{n}
$$

for some $N_{\phi, \varepsilon} \in \mathcal{E}_{0}$.
This fundamental solution allows us to solve the equation $P(D) U \stackrel{\text { g.d. }}{=} G$ for $G \in \mathcal{G}$, because $G *\left[\delta_{\phi, \varepsilon}\right] \stackrel{\text { g.d. }}{=} G$.

Proposition 5 ([5]) Let $P(D)$ be a generalized differential operator of the form (4) with coefficients in $\overline{\mathbb{C}}$ of degree m such that for some $\left(c_{1}, c_{2}, \ldots, c_{n}\right) \in$
\mathbb{R}^{n} there exist $r>0$ and $N \in \mathbb{N}$ such that for every $\phi \in \mathcal{A}_{N}$ there exist $C>0$ and $\eta>0$ such that

$$
\begin{equation*}
\left|\sum_{|\alpha|=m} a_{\alpha, \phi, \varepsilon} c^{\alpha}\right| \geq C \varepsilon^{r}, \varepsilon \in(0, \eta) \tag{4}
\end{equation*}
$$

Then, $P(D)$ admits a generalized fundamental solution.
In non-standard models of Colombeau's theory this hypothesis can be replaced by $\sum_{|\alpha|=m} a_{\alpha, \phi, \varepsilon} c^{\alpha} \neq 0$, since $\overline{\mathbb{C}}$ is a field in such models (cf. Li Bang He, [4] and Oberguggenberger [7]).

Solution to

$$
\begin{equation*}
\sum_{|\alpha| \leq m} a_{\alpha, \phi, \varepsilon} D^{\alpha} G_{\phi, \varepsilon}=F_{\phi, \varepsilon}, F_{\phi, \varepsilon} \in \mathcal{E}_{M}, a_{\alpha, \phi, \varepsilon} \in \mathbb{C}_{M} \tag{5}
\end{equation*}
$$

in \mathcal{E}_{M} are constructed in [8], in a simplified version of Colombeau's theory, by adapting the classical distributional method of solving a constant coefficients partial differential equation. Problems which are specific for (5) are connected with the growth rate of solutions with respect to ε which implies that the main assertions in [8] and in this paper are non-trivial generalization of the corresponding ones in the space of distributions.

In this paper we investigate the hypoellipticity of the families of equations (5). This family is hypoelliptic if $F_{\phi, \varepsilon} \in \mathcal{E}_{M}^{\infty}$ implies $G_{\phi, \varepsilon} * \delta_{\phi, \varepsilon} \in \mathcal{E}_{M}^{\infty}$.

Now we give the definition of hypoellipticity in the framework of Colombeau generalized functions. Let $\left[P_{\phi, \varepsilon}(D)\right]$ be of the form (3) and suppose that (4) holds for some $c=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{R}^{n}, C_{1}>0, r>0, N \in \mathbb{N}$ and $\eta>0$. This operator is called hypoelliptic if for every open $\Omega \subset \mathbb{R}^{n}$ and every solution $G \in \mathcal{G}(\Omega)$ to

$$
\begin{equation*}
P(D) G=0 \tag{6}
\end{equation*}
$$

the generalized function $G *\left[\delta_{\phi, \varepsilon}\right]$ is in $\mathcal{G}^{\infty}(\Omega)$.
Proposition 6 ([5])
a) $P(D)$ is hypoelliptic if it admits a fundamental solution E with

$$
\begin{equation*}
\underset{g}{\operatorname{singsupp}} E=\{0\} \tag{7}
\end{equation*}
$$

b) Let $\left[P_{\phi, \varepsilon}(D)\right]$ be hypoelliptic. Then, for every open set Ω and $G \in \mathcal{G}(\Omega)$, $P(D) G \in \mathcal{G}^{\infty}(\Omega)$ implies $G *\left[\delta_{\phi, \varepsilon}\right] \in \mathcal{G}^{\infty}(\Omega)$.

Let $P_{\phi, \varepsilon}$ be a hypoelliptic differential operator on Ω, Ω_{0}, W, and O are
the same as in the proof of assertion a) in Proposition 6, G a solution of (6) and $W \pm O \subset \Omega_{0}$. Then we have the following

Proposition 7 ([5]) There exists $N \in \mathbb{N}$ such that for every $q \in \mathbf{N}_{0}^{n}$ there exist $C>0$ and $\eta>0$ such that

$$
\max _{x \in W}\left|D^{q} G_{\phi, \varepsilon} * \delta_{\phi, \varepsilon}(x)\right| \leq C \max _{x \in \Omega_{0}}\left|G_{\phi, \varepsilon}(x)\right| \varepsilon^{-N}, \varepsilon<\eta
$$

4. Main assertion

The main prerequisite, Lemma 1 of [5], has the same proof as in [5].
Lemma 1 Let N, A, η and B be the same as in (8) below. Assume that a), b) and c) hold for $\varepsilon<\varepsilon_{0}, \phi \in \mathcal{A}_{q_{0}}$ where
a) $\left(\sigma_{1}, \sigma_{2}\right) \in \mathbb{R}^{2}$ such that $A \log \left|\left(\sigma_{1}, \sigma_{2}\right)\right|+N \log \varepsilon \geq B+1$.
b) $\tau_{1} \in \mathbb{R},\left|\tau_{1}\right| \leq\left(A \log \left|\left(\sigma_{1}, \sigma_{2}\right)\right|+N \log \varepsilon-B\right) / 2$.
c) $\left(\bar{\sigma}_{1}+i \bar{\tau}_{1}\right) \in V\left(P_{\phi, \varepsilon}\right)$ and $\left|\bar{\tau}_{1}\right| \geq\left(A \log \left|\left(\bar{\sigma}_{1}, \sigma_{2}\right)\right|+N \log \varepsilon-B\right)$.

Then, for every fixed $\varepsilon<\eta,\left|\bar{\sigma}_{1}-\sigma_{1}\right| \geq \varepsilon^{N+1}$ or $\left|\bar{\tau}_{1}-\tau_{1}\right| \geq \varepsilon^{N+1}$.
Theorem 1 The operator $P(D)$ is hypoelliptic if and only if there exist $N>0$ and $q \in \mathbb{N}$ such that for every $\phi \in \mathcal{A}_{q}$ and $A>0$ there exist $\eta>0$ and $B>0$ such that

$$
\begin{equation*}
|\tau| \geq A \log |\sigma|+N \log \varepsilon-B, \sigma+i \tau \in V\left(P_{\phi, \varepsilon}\right), \varepsilon \in(0, \eta) \tag{8}
\end{equation*}
$$

Proof of sufficiency Without a loss of generality one can assume that $\eta<\varepsilon_{0}$ and $q>q_{0}$, where η and q are used in the estimates bellow, while ε_{0} and q_{0} are from Lemma 1 . The change of constant A bellow will cause an appropriate decrease of η, but we shall use the same letter η in all cases.

One needs to prove that (8) implies (5). We will assume, without loss of generality, that $P_{\phi, \varepsilon}$ is of the form $P_{\phi, \varepsilon}(s)=a_{m, \phi, \varepsilon} s_{1}^{m}+$ lower order terms. The fundamental solution for $P_{\phi, \varepsilon}$ is given by

$$
\begin{aligned}
E_{\phi, \varepsilon}(x) & =(2 \pi)^{-n} \int_{T_{\phi, \varepsilon}} \frac{e^{-i\langle x, s\rangle} \hat{\phi}(\varepsilon s)}{P_{\phi, \varepsilon}(s)} d s \\
& =(2 \pi)^{-n} \sum_{k=1}^{\infty} \int_{\mathbb{R}} d \sigma_{1} \int_{\Gamma_{k, \phi, \varepsilon}} \frac{e^{-i\left\langle x,\left(\sigma_{1}+i \tau_{1}, \sigma^{\prime}\right)\right\rangle} \hat{\phi}\left(\varepsilon\left(\sigma_{1}+i \tau_{1}, \sigma^{\prime}\right)\right)}{P_{\phi, \varepsilon}\left(\left(\sigma_{1}+i \tau_{1}, \sigma^{\prime}\right)\right)} d \sigma^{\prime},
\end{aligned}
$$

where $T_{\phi, \varepsilon}=\bigcup_{j=1}^{\infty}\left\{\left(\sigma_{1}+i \tau_{1}, \sigma^{\prime}\right) ; \sigma_{1} \in \mathbb{R}, \tau_{1}=k_{j} \in\{0, \ldots, m+1\}, \sigma^{\prime}=\right.$ $\left.\sigma_{2} \in \Gamma_{j, \phi, \varepsilon}\right\}$ and $\Gamma_{j, \phi, \varepsilon}$ are bounded closed domains of \mathbb{R}^{n-1} such that for $\phi \in \mathcal{A}_{q}, P_{\phi, \varepsilon}(\xi)>C_{P} \varepsilon^{r}, \xi \in T_{\phi, \varepsilon}, \varepsilon<\eta$.

Only the proof for $n=2$ is given bellow. Higher dimensions can be handled in a similar way.

Let the ball $B_{h}=B\left(\left(x_{1}, x_{2}\right), h\right), h>0$, does not contain the point 0 and $a=\operatorname{dist}\left(0, B_{h}\right)$. We will prove that $E_{\phi, \varepsilon}$ represents an element in $\mathcal{G}^{\infty}\left(B_{h}\right)$.

Divide $\left(\sigma_{1}, \sigma_{2}\right)$-plane into nine regions $\Omega_{j}, j=1, \ldots, 9$ by the lines $\sigma_{1}=$ $\pm \mu, \sigma_{2}= \pm \mu$ and denote them by $\Omega_{1}=\left\{\left|\sigma_{1}\right| \leq \mu,\left|\sigma_{2}\right| \leq \mu\right\}, \Omega_{2}=\left\{\sigma_{1} \geq\right.$ $\left.\mu,\left|\sigma_{2}\right| \leq \mu\right\}, \Omega_{3}=\left\{\sigma_{1} \geq \mu, \sigma_{2} \geq \mu\right\}, \Omega_{4}=\left\{\left|\sigma_{1}\right| \leq \mu, \sigma_{2} \geq \mu\right\}, \ldots$. Now, choose $\mu>0$ such that

$$
A \log \mu+N \log \varepsilon-B=\max \left\{\max _{s \in T_{\phi, \varepsilon}}|\tau|, 1\right\}=C_{0}, \text { i.e. } \mu=e^{B+C_{0} / A} \varepsilon^{-N / A}, \varepsilon<\eta
$$

Without a loss of generality one can assume that $B\left(\left(x_{1}, x_{2}\right), h\right) \subset[0, \infty) \times$ $[0, \infty)$. Denote by $T_{j, \phi, \varepsilon}$ the projection of Ω_{j} on $T_{\phi, \varepsilon}$,
$T_{j, \phi, \varepsilon}=\left\{\left(\sigma_{1}+i \tau_{1}, \sigma_{2}\right) \mid \sigma_{1} \in \mathbb{R}, \tau_{1} \in\{0, \ldots, m+1\}, \sigma_{2} \in \Gamma_{k, \phi, \varepsilon} \cap \Omega_{j}, k \in \mathbb{N}\right\}$.
Then $E_{\phi, \varepsilon}=\sum_{j=0}^{9} E_{j, \phi, \varepsilon}$, where

$$
E_{j, \phi, \varepsilon}(x)=(2 \pi)^{-n} \int_{T_{j, \phi, \varepsilon}} \frac{e^{-i\left\langle\left(x_{1}, x_{2}\right),\left(s_{1}, s_{2}\right)\right\rangle} \hat{\phi}(\varepsilon s)}{P_{\phi, \varepsilon}(s)} d s, j=1, \ldots, 9, x \in \mathbb{R}^{2}
$$

We will show that there exist \tilde{N} and \tilde{q} such that for every $\phi \in \mathcal{A}_{\tilde{q}}$, $\alpha=\left(\alpha_{1}, \alpha_{2}\right) \in \mathbb{N}_{0}^{2}$ there exist $C_{\alpha}>0$ and η_{α} such that

$$
\begin{equation*}
\sup _{x \in B_{h}}\left|\partial^{\alpha} E_{j, \phi, \varepsilon}(x)\right| \leq C_{\alpha} \varepsilon^{\tilde{N}}, \varepsilon<\eta_{\alpha}, j=1, \ldots, 9 \tag{9}
\end{equation*}
$$

We always take $\tilde{q}=q$ and $\phi \in \mathcal{A}_{q}$.
Let $j=1$ and $A>3|\alpha|$. Put $\eta_{\alpha}=\eta$ and take any $\varepsilon<\eta$. Using that $\operatorname{mes}\left(T_{1, \phi, \varepsilon}\right)=(2 \mu)^{2}=4\left(e^{\left(B+C_{0}\right) / A} \varepsilon^{-N / A}\right)^{2}, P_{\phi, \varepsilon}(s) \geq C_{P} \varepsilon^{r}, s \in T_{1, \phi, \varepsilon}$ and $\left|s_{1}^{\alpha_{1}} s_{2}^{\alpha_{2}}\right| \leq \tilde{C}_{\alpha} \varepsilon^{-(N / A)|\alpha|}(\varepsilon<\eta)$, we have

$$
\begin{align*}
\sup _{x \in B_{h}}\left|\partial^{\alpha} E_{1, \phi, \varepsilon}(x)\right| & =(2 \pi)^{-n}\left|\int_{T_{1, \phi, \varepsilon}} \frac{(-i)^{|\alpha|} s_{1}^{\alpha_{1}} s_{2}^{\alpha_{2}} \hat{\phi}(\varepsilon s)}{P_{\phi, \varepsilon}(s)} d s\right| \tag{10}\\
& \leq C \varepsilon^{-3 N|\alpha| / A-r} \tag{11}
\end{align*}
$$

for some $C>0$. This proves (9) for $j=1$.

Consider $E_{2, \phi, \varepsilon}, \varepsilon<\eta$. The integration over the contour $\sigma_{1}+i \tau_{1}, \mu \leq$ $\sigma_{1} \leq \nu, \tau_{1} \in\{0, \ldots, m+1\}$ is changed by integration over the contour

$$
\overline{Q(\mu) Q_{1}(\mu)} \cup \overline{Q_{1}(\mu) Q_{1}(\nu)} \cup-\overline{Q(\nu) Q_{1}(\nu)},
$$

where $\overline{Q(\mu) Q_{1}(\mu)}=\left\{\mu+i t \left\lvert\, 0 \leq t \leq \frac{1}{2}(A \log \mu+N \log \varepsilon-B)\right.\right\}, \overline{Q_{1}(\mu) Q_{1}(\nu)}=$ $\left\{\sigma_{1}+i \tau_{1} \left\lvert\, \tau_{1}=\frac{1}{2}\left(A \log \left|\sigma_{1}\right|+N \log \varepsilon-B\right)\right., \sigma_{1} \in[\mu, \nu]\right\}, \overline{Q(\nu) Q_{1}(\nu)}=\{\nu+$ $\left.i t \left\lvert\, 0 \leq t \leq \frac{1}{2}(A \log \nu+N \log \varepsilon-B)\right.\right\}$. We have

$$
\begin{aligned}
\partial^{\alpha} E_{2, \phi, \varepsilon}(x)= & (2 \pi)^{-n} \int_{-\mu}^{\mu}\left(\int_{\overline{Q(\mu) Q_{1}(\mu)}}-\int_{\overline{Q(\nu) Q_{1}(\nu)}}+\int_{\overline{Q_{1}(\mu) Q_{1}(\nu)}}\right) \\
& \frac{s_{1}^{\alpha_{1}} s_{2}^{\alpha_{2}} e^{-i\left\langle\left(x_{1}, x_{2}\right),\left(s_{1}, s_{2}\right)\right\rangle} \hat{\phi}(\varepsilon s)}{P_{\phi, \varepsilon}(s)} d s=I_{1 \varepsilon}+I_{2 \varepsilon}+I_{3 \varepsilon}, x \in B_{h}
\end{aligned}
$$

Since

$$
\left|P_{\phi, \varepsilon}\left(s_{1}, \sigma_{2}\right)\right|=\left|a_{m, \phi, \varepsilon}\right| \prod_{j=1}^{m}\left(\left|\sigma_{1}-\bar{\sigma}_{1}\right|^{2}+\left|\tau_{1}-\bar{\tau}_{1}\right|^{2}\right)^{1 / 2}
$$

where σ_{2} is fixed, $\bar{\sigma}_{1}+i \bar{\tau}_{1} \in V\left(P_{\phi, \varepsilon}\right)$ and $s_{1}=\sigma_{1}+i \tau_{1}$ belongs to any of the quoted contours, Lemma 1 implies that $\left|P_{\phi, \varepsilon}(s)\right| \geq C_{P} \varepsilon^{r}$ on these contours (for $\varepsilon<\eta$). Now, one can prove that $I_{1 \varepsilon} \leq C \varepsilon^{-r-2} \varepsilon^{-N / A}, \varepsilon<\eta$ for some $C>0$.

For every $k>0$ there exists $C_{k}>0$ such that

$$
\begin{aligned}
& |\nu+i \tau|^{\alpha_{1}}\left|\sigma_{2}\right|^{\alpha_{2}}\left|\hat{\phi}\left(\varepsilon\left(\nu+i \tau, \sigma_{2}\right)\right)\right| \\
\leq & |\nu+i \tau|^{\alpha_{1}}|\mu|^{\alpha_{2}} \frac{C_{k} e^{\varepsilon|\tau|}}{\left(1+\varepsilon\left(\nu^{2}+\tau^{2}+\left|\sigma_{2}\right|^{2}\right)^{1 / 2}\right)^{k}} \text { on } \overline{Q(\nu) Q_{1}(\nu)}
\end{aligned}
$$

(see (1.4) in [2],Ch.2, Sec.2). Choosing $\nu=\varepsilon^{-2}$ and k large enough one gets $I_{2 \varepsilon} \leq C \varepsilon^{-r-1} \varepsilon^{-N / A}$, for some $C>0$.

Consider $I_{3 \varepsilon}$. Again,

$$
\begin{aligned}
& \left|\hat{\phi}\left(\varepsilon\left(\sigma_{1}+i\left(\log \left|\sigma_{1}\right|^{A} \varepsilon^{N}-B\right) / 2, \sigma_{2}\right)\right)\right| \\
\leq & \frac{C_{k} e^{\varepsilon\left(\log \left|\sigma_{1}\right|^{A} \varepsilon^{N}\right) / 2}}{\left(1+\varepsilon\left(\sigma_{1}^{2}+\left(\log \left|\sigma_{1}\right|^{A} \varepsilon^{N}-B\right)^{2} / 4+\left|\sigma_{2}\right|^{2}\right)^{1 / 2}\right)^{k}} \leq C\left|\sigma_{1}\right|^{A \varepsilon / 2}
\end{aligned}
$$

on $\overline{Q_{1}(\mu) Q_{1}(\nu)}$ for some $C>0$. Thus, with suitable constants, we have

$$
\left|I_{3 \varepsilon}\right| \leq C_{1} \int_{-\mu}^{\mu} \int_{\mu}^{\infty} \frac{\left|\sigma_{1}+i\left(\log \left(\left|\sigma_{1}\right|^{A} \varepsilon^{N}\right)-B\right) / 2\right|^{\alpha_{1}}\left|\sigma_{2}\right|^{\alpha_{2}} e^{-x_{1}\left(\log \left(\left|\sigma_{1}\right|^{A} \varepsilon^{N}\right)-B\right) / 2}}{P_{\phi, \varepsilon}(s)}
$$

$$
\begin{aligned}
& \hat{\phi}(\varepsilon s)\left(1+\frac{A}{2\left|\sigma_{1}\right|}\right) d \sigma_{1} d \sigma_{2} \\
\leq & C_{2} \varepsilon^{-r}(2 \mu)|\mu|^{\alpha_{2}} \varepsilon^{-a N / 2} \int_{\mu}^{\infty}\left|\sigma_{1}\right|^{A \varepsilon / 2-a A / 2}\left(\left|\sigma_{1}\right|^{\alpha_{1}}+\log ^{\alpha_{1}}\left|\sigma_{1}\right|^{A} \varepsilon^{N}\right) d \sigma_{1}
\end{aligned}
$$

Taking A so large that $-a A / 4$ dominates all exponents of σ_{1} under the integral sign and $\sigma_{1}>\mu$, we have (with suitable constants)

$$
\begin{aligned}
\left|I_{3 \varepsilon}\right| & \leq C_{3} \varepsilon^{-r-a N / 2}|\mu|^{\alpha_{2}+1-a A / 4+A \varepsilon / 2+\alpha_{1}} \log ^{\alpha_{1}}|\mu|^{A} \int_{1}^{\infty}|\tilde{\sigma}|^{-a N / 4} d \tilde{\sigma} \\
& \leq C_{4} \varepsilon^{-r-a N / 2}\left(\varepsilon^{-N / A}\right)^{\alpha_{2}+2-a A / 4+A \varepsilon / 2+\alpha_{1}}
\end{aligned}
$$

Now, it is easy to see that (4) holds in the case $j=2$ if one takes $A>$ $a(|\alpha|+2) / 4$.

One can give similar estimate for $E_{3, \phi, \varepsilon}, \varepsilon<\eta$ with a change of the integration over $T_{3, \phi, \varepsilon}$ (for $\mu \leq \sigma_{1}$ and $\mu \leq \sigma_{2}$) by the path consisting of lines connecting the boundary points of $T_{3, \phi, \varepsilon}$ and the points

$$
\begin{aligned}
& \left(\left(\sigma_{1}+i\left(A \log \left|\sigma_{1}\right|+N \log \varepsilon-B\right) / 2\right), \sigma_{2}\right) \text { and } \\
& \left.\left(\left(\sigma_{1}+i\left(A \log \left|\sigma_{1}\right|+N \log \varepsilon-B\right) / 2\right), \sigma_{2}+i\left(A \log \left|\sigma_{2}\right|+N \log \varepsilon-B\right) / 2\right)\right)
\end{aligned}
$$

The proof is based on the estimate on $\hat{\phi}$ as above.
The proof for each of $E_{k, \phi, \varepsilon}, j=4, \ldots, 9$ is the same as for $j=2$ or $j=3$.

The change of condition (8) implies the change of Theorem 2 in [5]. Again its proof has the same idea as in [5].

Theorem 2 An operator $\left[P_{\phi, \varepsilon}(D)\right]$ is hypoelliptic if and only if there exist $N>0$ and $q \in \mathbb{N}$ such that for every $\phi \in \mathcal{A}_{q}$ and every $A>0$ there exist $h>0, \eta>0$ and $b \in \mathbb{R}$ such that

$$
\sigma+i \tau \in V\left(P_{\phi, \varepsilon}\right) \Rightarrow|\tau| \geq \varepsilon^{h N}|\sigma|^{h A}-b, \varepsilon \in(0, \eta)
$$

REFERENCES

[1] J. F. C o lom b e a u, Elementary Introduction in New Generalized Functions, North Holland, Amsterdam, 1985.
[2] A. Frie d m a n, Generalized Functions and Partial Differential Equations, PrenticeHall, INC, Englewood Cliffs, New York, 1963.
[3] E. A. Gorin, Asymptotic properties of polynomials and algebraic functions of several variables, Russian Math. Surveys, 93-119 (1961).
[4] Li B ang-He, Non-standard analysis and multiplication of distributions, Sci. Sinica, 21, 561-585 (1978).
[5] M. N e d el j k o v, S. P i lipovi ć, Hypoelliptic differential operators with generalized constant coefficients, Proc. Edinburgh Math. Soc., 41, 47-60 (1998).
[6] M. O berg ugg enberger, Multiplication of Distributions and Applications to Partial Differential Equations, Pitman Res. Not. Math. 259, Longman Sci. Techn., Essex, 1992.
[7] M. O berg uggen berger, Products of Distributions: Nonstandard Methods, Z. Anal. Anwendungen, 7(12), 347-365 (1988).
[8] S. P illipovi ć, D. S c ar palézos, Differential operators with generalized constant coefficients, Preprint.

Institute of Mathematics
University of Novi Sad
Trg Dositeja Obradovića 4
21000 Novi Sad
Yugoslavia

