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Abstract. In a communication network, several vulnerability measures are

used to determine the resistance of the network to disruption of operation after
the failure of certain stations or communication links. If we think of a graph
as modelling a network, the rupture degree of a graph is one measure of graph
vulnerability and it is defined by

r(G) = max{ω(G − S) − |S| − m(G − S) : S ⊂ V (G), ω(G − S) > 1},

where ω(G − S) is the number of components of G − S and m(G − S) is the
order of a largest component of G − S. In this paper we give some results on
the rupture degree of gear graphs. Also the relationships between the rupture
degree and some vulnerability parameters, namely the tenacity and toughness,
are given.
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1. Introduction

When investigating the vulnerability of a communication network to disruption, one
may want to learn the answer of the following questions (there may be others)[1]:

(1) What is the number of elements that are not functioning?
(2) What is the number of remaining connected subnetworks?
(3) What is the size of a largest remaining group within which mutual commu-

nication can still occur?

Many graph theoretical parameters such as connectivity [3], toughness [4], scat-
tering number [6], integrity [1], tenacity [5] and their edge-analogues, have been
defined to obtain the answers of these questions. In other words, these parameters
have been used to measure the vulnerability of a network. In addition, the rupture
degree was introduced as a measure of graph vulnerability by Li et al. [9]. Formally,
the rupture degree of an incomplete connected graph G is defined by

r(G) = max{ω(G − S) − |S| − m(G − S) : S ⊂ V (G), ω(G − S) > 1},
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where ω(G − S) is the number of components of G − S and m(G − S) is the order
of a largest components of G − S. The rupture degree of Kn is defined as 1 − n.

The connectivity deals with the question (1). The toughness and the scattering
number take account of questions (1) and (2). The integrity deals with the questions
(1) and (3). The rupture degree is a measure which deals with the questions (1), (2),
and (3). Therefore the rupture degree gives us more knowledge about the network
to disruption. On the other hand the tenacity is also a measure which deals with
the questions (1), (2), and (3) [9]. But Li et al. [9] gave examples to show that
the rupture degree can reflects the vulnerability of graphs better than the tenacity.
Consequently, the rupture degree is a better parameter to measure the vulnerability
of a network G. Li et al. [9] obtained several results on the rupture degree of a
graph.

Let G = (V, E) be a graph. By κ(G) we denote the connectivity of G. The symbols
α(G) and β(G), respectively, denote the independence number and covering number
of G. We shall use dxe for the smallest integer not smaller than x.

In Section 2, we give some results on the rupture degree of gear graphs. In Section
3, we consider the relationships between the rupture degree and the tenacity and
toughness, respectively.

2. The gear graphs and rupture degree

Geared systems are used in dynamic modelling. These are graph theoretic models
that are obtained by using gear graphs. Similarly the cartesian product of gear
graphs, the complement of a gear graph, and the line graph of a gear graph can be
used to design a gear network. From [9], we know that the rupture degree is a better
parameter to measure the vulnerability among the other parameters. Consequently
these considerations motivated us to investigate the vulnerability of gear graphs by
using rupture degree. Now we give the following definitions.

Definition 2.1. The wheel graph with n spokes, Wn, is the graph that consists of
an n-cycle and one additional vertex, say u, that is adjacent to all the vertices of the
cycle. In Figure 1, we display W6.
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Figure 1. The wheel W6

Definition 2.2. [2] The gear graph is a wheel graph with a vertex added between
each pair adjacent graph vertices of the outer cycle. The gear graph Gn has 2n+1
vertices and 3n edges. In Figure 2 we display G6.

In Figure 2, we call the vertex u center vertex of Gn. Now we give the rupture
degree of a gear graph.
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Figure 2. The gear graph G6

Theorem 2.1. Let Gn be a gear graph. Then r(Gn) = 0.

Proof. We know that a gear graph Gn can be constructed from a wheel graph Wn

by adding the new vertices to Wn. Let S be a subset of V (Gn) such that w(Gn −
S)− |S| −m(Gn − S) = r(Gn). Then S must contain the vertices of n-cycle in Wn.
It is obvious that S is a covering set of Gn and |S| = n. Since S is a covering set of
Gn, we have m(Gn −S) = 1 and w(Gn −S) = n + 1. Consequently r(Gn) = 0. The
proof is completed.

Theorem 2.2. Let Gn be a gear graph. Then r(Ḡn) = 2 − 2n.

Proof. We know that a gear graph Gn can be constructed from a wheel graph Wn

by adding the new vertices to Wn. Let S′ be a set of vertices of n-cycle in Wn,
and let S′′ be a set of vertices which are added to n-cycle in Gn. Let u be a center
vertex. Since S′ is an independent set of Gn, these vertices form a complete graph
with order n in Ḡn. Similarly, since S′′

⋃{u} is an independent set of Gn, these
vertices form a complete graph with order n + 1 in Ḡn. Moreover the graph Ḡn

contains some edges joining Kn+1 to Kn. It is obvious that the vertex u in Ḡn is
not adjacent to any vertex in Kn. So we have two cases:

Case 1. If we remove the vertices of S′ in Ḡn, then we have only one components
which is graph Kn+1. Then m(Ḡn − S′) = |V (Kn+1)| = n + 1 and so

(2.1) w(Ḡn − S′) − |S′| − m(Ḡn − S′) = −2n.

Case 2. If we remove the vertices of S′′ in Ḡn, then we have two components which
are graphs Kn and K1. Then m(Ḡn − S′′) = |V (Kn)| = n and so

(2.2) w(Ḡn − S′′) − |S′′| − m(Ḡn − S′′) = 2 − 2n.

By using (2.1) and (2.2) we have

r(Ḡn) = max{−2n, 2− 2n} = 2 − 2n.

The proof is completed.

Now we consider the Cartesian product of two graphs.

Definition 2.3. The (Cartesian) product G1 × G2 of graphs G1 and G2 also has
V (G1) × V (G2) as its vertex set, but here (u1, u2) is adjacent to (v1, v2) if either
u1 = v1 and u2 is adjacent to v2 or u2 = v2 and u1 is adjacent to v1.

Theorem 2.3. Let Gn be a gear graph. Then r(K2 × Gn) = −1.
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Proof. If we remove r vertices from K2 × Gn, then we have at most r components.
Since 1 ≤ m((K2 × Gn) − S) ≤ n − 1 for every S ⊂ V (Gn), we have

1 − n ≤ −m((K2 × Gn) − S) ≤ −1.

Hence
w((K2 × Gn) − S) − |S| − m((K2 × Gn) − S) ≤ r − r − 1

and so

(2.3) r(K2 × Gn) ≤ −1.

On the other hand we can take the covering set of K2×Gn instead of a vertex cut of
K2×Gn. Then |S| = β(G) = 2n+1 and w((K2 ×Gn)−S) = α(K2×Gn) = 2n+1.
So m((K2 × Gn) − S) = 1. From the definition of rupture degree we have

r(K2 × Gn) ≥ w((K2 × Gn) − S) − |S| − m((K2 × Gn) − S)

and so

(2.4) r(K2 × Gn) ≥ −1.

By using (2.3) and (2.4) we have

r(K2 × Gn) = −1

This completes the proof.

Definition 2.4. The line graph L(G) of a graph G is a graph such that each vertex
of L(G) represents an edge of G, and any two vertices of L(G) are adjacent if and
only if their edges are incident, meaning they share a common end vertex, in G.

Theorem 2.4. Let Gn be a gear graph with order n. Then

r(L(Gn)) ≤ n + 2 − d2
√

6ne.
Proof. If we remove r vertices from L(Gn), then we have at most r/2 components
and so

m(L(Gn − S)) ≤ 3n − r

r/2
.

Since w(L(Gn − S)) ≤ α(L(Gn)) = n for every S ⊂ V (L(Gn)), we have

r(L(Gn)) ≤ max

{

n − r − 3n − r

r/2

}

.

The function n − r − (3n − r)r/2 takes its maximum value at r =
√

6n and

r(L(Gn)) ≤ n + 2 − 2
√

6n.

Since the rupture degree is integer valued, we round this up to get a lower bound
and

r(L(Gn)) ≤ n + 2 − d2
√

6ne.
The proof is completed.
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3. Relationships between rupture degree and vulnerability parameters

In this section, the relationships between the rupture degree and some vulnerability
parameters, namely the tenacity and toughness, are established.

We know that the rupture degree and the tenacity deal with the questions (1),
(2), and (3) in Section 1. Moreover the rupture degree is additive dual of tenac-
ity. Therefore the relationships between the rupture degree and tenacity are very
exciting. Now we consider the tenacity of a graph G.

The concept of tenacity was introduced by Cozzens et al.[5]. The tenacity of an
incomplete connected graph G, denoted by T (G), is defined as

T (G) = min

{ |S| + m(G − S)

w(G − S)
: S ⊂ V (G), ω(G − S) > 1

}

.

Theorem 3.1. [10] Let G be an incomplete connected graph with the tenacity T (G).
Then r(G) ≤ α(G)(1 − T (G)).

Theorem 3.2. Let G be a graph with order n. Then

r(G) ≤ n

(

1

T (G)
− 1

)

.

Proof. Let S be a vertex cut of G. Then from the definition of T (G) we know that

w(G − S) ≤ |S| + m(G − S)

T (G)
.

Hence

w(G − S) − |S| − m(G − S) ≤ |S| + m(G − S)

T (G)
− |S| − m(G − S)

and so

max{w(G − S) − |S| − m(G − S)} ≤ max

{

(|S| + m(G − S))

(

1

T (G)
− 1

)}

.

Since the maximum value of |S|+ m(G− S) is the number of vertices of a graph G,
we have

r(G) ≤ n

(

1

T (G)
− 1

)

.

The proof is completed.

Remark 3.1. If β(G) ≥ α(G)(T−1) for any graph G, then the result in Theorem 3.2
is better than the result in Theorem 3.1.

Theorem 3.3. There is no graph G of order n such that r(G) = T (G).

Proof. Suppose that there is an incomplete connected graph of order n such that
r(G)=T (G). Since T (G) > 0 and r(G) is an integer, we have T (G) ≥ 1. Then from
the definition of T (G) we know that |S| + m(G − S) ≥ w(G − S). Therefore

w(G − S) − |S| − m(G − S) ≤ w(G − S) − w(G − S)

and so r(G) ≤ 0. Hence T (G) ≤ 0, which is a contradiction. This completes the
proof.
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Now we consider another vulnerability parameter. The concept of toughness was
introduced by Chvátal [4]. The toughness of a graph, denoted by t(G), is defined

t(G) = min

{ |S|
w(G − S)

: S ⊂ V (G), w(G − S) > 1

}

.

The following theorem gives a relation between the rupture degree and toughness.

Theorem 3.4. Let G be a graph with order n. Then

r(G) ≤ β(G)

t(G)
− κ(G) − 1.

Proof. Let S be a vertex cut of G. Then from the definition of t(G) we know that

w(G − S) ≤ |S|
t(G)

.

Hence

w(G − S) − |S| − m(G − S) ≤ |S|
t(G)

− |S| − m(G − S)

and so

r(G) ≤ max

{ |S|
t(G)

− |S| − m(G − S)

}

.

Since κ(G) ≤ |S| ≤ β(G) for every S ⊂ V (G), we have

r(G) ≤ β(G)

t(G)
− κ(G) − 1

The proof is completed.

References

[1] C. A. Barefoot, R. Entringer and H. Swart, Vulnerability in graphs—a comparative survey, J.
Combin. Math. Combin. Comput. 1 (1987), 13–22.

[2] A. Brandstädt, V. B. Le and J. P. Spinrad, Graph classes: a survey, SIAM, Philadelphia, PA,
1999.

[3] J. A. Bondy and U. S. R. Murty, Graph theory with applications, American Elsevier Publishing
Co., Inc., New York, 1976.
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