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ON GENERALIZED FRACTIONAL q-INTEGRAL OPERATORS

INVOLVING THE q-GAUSS HYPERGEOMETRIC FUNCTION

(DEDICATED IN OCCASION OF THE 70-YEARS OF

PROFESSOR HARI M. SRIVASTAVA)

SUNIL DUTT PUROHIT, RAJENDRA KUMAR YADAV

Abstract. In this paper, we introduce two generalized operators of fractional
q-integration, which may be regarded as extensions of Riemann-Liouville, Weyl

and Kober fractional q-integral operators. Certain interesting connection the-
orems involving these operators and q-Mellin transform are also discussed.

1. Introduction

The fractional integration operators involving various special functions, in par-
ticular the Gaussian hypergeometric functions, have found significant importance
and applications in various sub-fields of applicable mathematical analysis. Since
last three decades, a number of workers like Love [11], McBride [13], Kalla and
Saxena [8, 9], Saigo [21-23], Saigo and Raina [24] etc. have studied in depth, the
properties, applications and different extensions of various hypergeometric opera-
tors of fractional integration. A detailed account of such operators along with their
properties and applications can be found in the research monographs by Miller and
Ross [14], Kiryakova [10] and Nishimoto [15-18] etc.

The fractional q-calculus is the q-extension of the ordinary fractional calculus.
The theory of q-calculus operators in recent past have been applied in the areas like
ordinary fractional calculus, optimal control problems, solutions of the q-difference
(differential) and q-integral equations, q-transform analysis etc. Recently, Abu-
Risha, Annaby, Ismail and Mansour [1] and Mansour [12] derived the fundamental
set of solutions for the homogenous linear sequential fractional q-difference equa-
tions with constant coefficients. Fang [6] and Purohit [19] deduced several trans-
formations and summations formulae for the basic hypergeometric functions as the
applications of fractional q-differential operator. For more details one may refer the
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recent papers [4], [5] and [20] on the subject.

We propose to define and investigate the q-extensions of the hypergeometric op-
erators of fractional integration due to Saigo [21].

In a series of papers [21-23], Saigo introduced the following pair of hypergeomet-
ric operators of fractional integration.

For � > 0, real numbers � and �, we have:

I�,�,�0,x f(x) =
x−�−�

Γ(�)

∫ x

0

(x− t)�−1 2F1 (�+ �,−�;�; 1− t/x) f(t)dt, (1.1)

J�,�,�x,∞ f(x) =
1

Γ(�)

∫ ∞
x

(t− x)�−1 t−�−�2F1 (�+ �,−�;�; 1− x/t) f(t)dt, (1.2)

where, the 2F1(.) function occurring in the right-hand side of the above equations,
is the familiar Gaussian hypergeometric function defined as:

2F1 (a, b; c;x) ≡ 2F1

⎡⎣ a, b
; x

c

⎤⎦ =

∞∑
n=0

(a)n(b)n
(c)n

xn

n!
. (1.3)

The operator I�,�,�0,x (.) contains both the Riemann-Liouville and the Erdélyi-Kober
fractional integral operators, by means of the following relationships:

R�0,xf(x) = I�,−�,�0,x f(x) =
1

Γ(�)

∫ x

0

(x− t)�−1f(t)dt, (1.4)

and

E�,�0,x f(x) = I�,0,�0,x f(x) =
x−�−�

Γ(�)

∫ x

0

(x− t)�−1 t�f(t)dt, (1.5)

where as the operator (1.2) unifies the Weyl type and the Erdélyi-Kober fractional
integral operators. Indeed we have

W�
x,∞f(x) = J�,−�,�x,∞ f(x) =

1

Γ(�)

∫ ∞
x

(t− x)�−1f(t)dt, (1.6)

and

K�,�
x,∞f(x) = J�,0,�x,∞ f(x) =

x�

Γ(�)

∫ ∞
x

(t− x)�−1 t−�−�f(t)dt. (1.7)

For real or complex a and ∣q∣ < 1, the q-shifted factorial is defined as:

(a; q)0 = 1, (a; q)n =

n−1∏
i=0

(1− aqi), n > 0, and (a; q)∞ =

∞∏
i=0

(1− aqi). (1.8)

Equivalently

(a; q)n =
Γq(a+ n)(1− q)n

Γq(a)
, (1.9)

where the q-gamma function cf. Gasper and Rahman [7], is given by

Γq(a) =
(q; q)∞

(qa; q)∞(1− q)a−1
=

(q; q)a−1
(1− q)a−1

, (1.10)

(a ∕= 0,−1,−2, ⋅ ⋅ ⋅ ).
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Also, the q-analogue of the power (binomial) function (x + y)n cf. Gasper and
Rahman (see also Ernst [5]), is given by

(x+ y)(n) =

⎧⎨⎩
xn(− yx ; q)n , x ∕= 0

qn(n−1)/2 yn , x = 0,
(1.11)

where the q-binomial coefficient is defined as:[
n
k

]
q

=
(q; q)n

(q; q)k (q; q)n−k
. (1.12)

For a bounded sequence (An)n∈ℤ of real or complex numbers, let f(x) =
+∞∑

n=−∞
Anx

n

be a power series in x, then the q-translation operator is defined as:

Tq,y(f(x)) =

+∞∑
n=−∞

Anx
n(y/x; q)n. (1.13)

The generalized basic hypergeometric series cf. Gasper and Rahman [7] is given by

rΦs

⎡⎣ a1, ⋅ ⋅ ⋅ , ar
; q, x

b1, ⋅ ⋅ ⋅ , bs

⎤⎦ =

∞∑
n=0

(a1, ⋅ ⋅ ⋅ , ar; q)n
(q, b1, ⋅ ⋅ ⋅ , bs; q)n

xn
{

(−1)nqn(n−1)/2
}(1+s−r)

,

(1.14)
where

(a1, ⋅ ⋅ ⋅ , ar; q)n = (a1; q)n(a2; q)n ⋅ ⋅ ⋅ (ar; q)n,
and for convergence, we have ∣q∣ < 1 and ∣x∣ < 1 if r = s+1, and for any x if r ≤ s.

A q-analogue of the familiar Riemann-Liouville fractional integral operator of a
function f(x) due to Agarwal [2] is defined as:

I�q {f(x)} =
x�−1

Γq(�)

∫ x

0

(qt/x; q)�−1f(t) dqt, (1.15)

where ℜ(�) > 0; ∣q∣ < 1 and

(a; q)� =
(a; q)∞

(aq�; q)∞
, � ∈ ℝ.

Also, the basic analogue of the Kober fractional integral operator cf. Agarwal [2]
is defined by

I�,�q {f(x)} =
x−�−1

Γq(�)

∫ x

0

(qt/x; q)�−1t
�f(t) dqt, (1.16)

where ℜ(�) > 0; ∣q∣ < 1; � ∈ ℝ.
A q-analogue of the Weyl fractional integral operator (1.6) due to Al-Salam [3], is
defined as:

K�
q f(x) =

q−�(�−1)/2

Γq(�)

∫ ∞
x

t�−1(x/t; q)�−1f(tq1−�) dqt, (1.17)

where ℜ(�) > 0; ∣q∣ < 1.
In the same paper, Al-Salam [3] introduced the q-analogue of the operator (1.7) in
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the following manner:

K�,�
q {f(x)} =

q−�x�

Γq(�)

∫ ∞
x

(x/t; q)�−1 t
−�−1f(tq1−�) dqt, (1.18)

where ℜ(�) > 0; ∣q∣ < 1; � ∈ ℝ.
Also the basic integrals (cf. Gasper and Rahman [7]), are defined as:∫ x

0

f(t) dqt = x(1− q)
∞∑
k=0

qkf(zqk), (1.19)

∫ ∞
x

f(t) dqt = x(1− q)
∞∑
k=1

q−kf(xq−k), (1.20)

and ∫ ∞
0

f(t) dqt = (1− q)
∞∑

k=−∞

qkf(qk). (1.21)

The q-binomial summation theorem is given by

1Φ0 [a;−; q, z] =
(az; q)∞
(z; q)∞

, ∣z∣ < 1. (1.22)

Also the q-Chu-Vondermonde summation theorem cf. Gasper and Rahman [7]

2Φ1

⎡⎣ q−n, a
; q, q

c

⎤⎦ =
(c/a; q)n
(c; q)n

(a)n. (1.23)

The object of this paper is to introduce two hypergeometric operators of frac-
tional q-integration, which may be regarded as extensions of the fractional q-integral
operators (1.15)-(1.18). Having defined a q-extensions of these operaotrs, we inves-
tigate their fundamental properties such as integration by parts and connection
theorems with q-analogue of Mellin transform. Certain interesting special cases in
the form of the known results have also been discussed.

2. The Fractional q-Integral Operators

In this section, we introduce the following fractional q-integral operators in-
volving the Gaussian basic hypergeometric function, which may be regarded as
q-extensions of the Saigo operators (1.1) and (1.2).

For � and real �, we define the fractional q-integral operators I�,�,�q (.) and

K�,�,�
q (.) in the following manner:

I�,�,�q f(x) =
x−�−1q−�(�+�)

Γq(�)

×
∫ x

0

(tq/x; q)�−1 Tq, q�+1t
x

(
2Φ1

[
q�+� , q−�; q�; q, q

])
f(t) dqt, ∣t/x∣ < 1, (2.1)

and

K�,�,�
q f(x) =

q−�(�+�)−�(�+1)/2−2�

Γq(�)
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×
∫ ∞
x

(x/t; q)�−1 t
−�−1 T

q, q
�+1x
t

(
2Φ1

[
q�+� , q−�; q�; q, q

])
f(tq1−�) dqt, ∣x/t∣ < 1,

(2.2)
where � is any non negative integer and the 2Φ1(.) function occurring in the right-
hand side of (2.1) and (2.2) is the Gaussian q-hypergeometric function defined as
special case (for r = 2 and s = 1) of the power series (1.14). Using series definitions
of the basic integrals given by (1.19)-(1.20) and q-translation operator (1.13), we
define the series representation for the operators (2.1) and (2.2) as:

I�,�,�q f(x) = x−�q−�(�+�)(1−q)�

×
�∑

n=0

(q�+� ; q)n(q−�; q)n
(q; q)n

qn
∞∑
k=0

qk(q�+n; q)k
(q; q)k

f(xqk), (2.3)

and

K�,�,�
q f(x) = x−�q−�(�+�)−�(�+1)/2−�(1−q)�

×
�∑

n=0

(q�+� ; q)n(q−�; q)n
(q; q)n

qn
∞∑
k=0

q�k(q�+n; q)k
(q; q)k

f(xq−�−k), (2.4)

where � > 0, � being real number, and � is any non negative integer.

3. Fractional q-Integral Images of x�−1

This section envisage the evaluation of the q-images of an elimentary function
x�−1 under the generalized fractional q-integral operators introduced in the previ-
ous section.

Theorem 1. If ∣q∣ < 1, � > 0 and (�− � + �) > 0, then

I�,�,�q

{
x�−1

}
=

Γq(�)Γq(�− � + �)

Γq(�− �)Γq(�+ �+ �)
x�−�−1. (3.1)

Proof. To prove the theorem (3.1), we take f(x) = x�−1 in the series definition
of fractional q-integral operator I�,�,�q (.), given by (2.3), the left-hand side yields
to

I�,�,�q

{
x�−1

}
= x�−�−1q−�(�+�)(1− q)�

�∑
n=0

(q�+� ; q)n(q−�; q)n
(q; q)n

qn

×
∞∑
k=0

q�k(q�+n; q)k
(q; q)k

. (3.2)

On summing the inner 1Φ0(.) series with the help of the equation (1.22), it reduces
to

I�,�,�q

{
x�−1

}
= x�−�−1q−�(�+�)(1− q)�

�∑
n=0

(q�+� ; q)n(q−�; q)n
(q; q)n(q�; q)�+n

qn, (3.3)

on simplification and the usage of the q-Chu-Vondermonde summation theorem
given by (1.23), the above equation leads to Theorem 1.
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Theorem 2. If ∣q∣ < 1, (� − �+ 1) > 0 and (� − �+ 1) > 0, then

K�,�,�
q

{
x�−1

}
=

Γq(� − �+ 1)Γq(� − �+ 1)

Γq(1− �)Γq(� + �− �+ � + 1)
x�−�−1q�(1−�)−�(�+1)/2−� .

(3.4)
Proof. On employing the definition (2.4) with f(x) = x�−1, we obtain

K�,�,�
q

{
x�−1

}
= x�−�−1q�(1−�)−�(�+�)−�(�+1)/2−�(1− q)�

×
�∑

n=0

(q�+� ; q)n(q−�; q)n
(q; q)n

qn
∞∑
k=0

q(�−�+1)k(q�+n; q)k
(q; q)k

. (3.5)

On summing the inner 1Φ0(.) series with the help of the equation (1.22), it leads to

K�,�,�
q

{
x�−1

}
= x�−�−1q�(1−�)−�(�+�)−�(�+1)/2−�(1− q)�

×
�∑

n=0

(q�+� ; q)n(q−�; q)n
(q; q)n(q�−�+1; q)�+n

qn, (3.6)

which, on using the q-Vondermonde summation theorem (1.23) and some simplifi-
cations, leads to the proof of the result (3.4).

Further, it is interesting to observe that the newly defined operators (2.1) and
(2.2) can be regarded as extensions of Riemann-Liouville, Weyl and Kober fractional
q-integral operators with the following functional relations:

I�,0,�q f(x) = I�,�q f(x), (3.7)

I�,−�,�q f(x) = I�q f(x), (3.8)

K�,0,�
q f(x) = q−�(�+1)/2K�,�

q f(x), (3.9)

K�,−�,�
q f(x) = K�

q f(x). (3.10)

4. Fractional Integration by Parts

In this section, we shall prove a theorem involving an important relationship
between the operators I�,�,�q (.) and K�,�,�

q (.):

Theorem 3. If � > 0, � a real number, and � being a non negative integer,
then ∫ ∞

0

f(x)K�,�,�
q g(x) dqt = q−�(�+1)/2−�

∫ ∞
0

g(xq−�)I�,�,�q f(x) dqt. (4.1)

Provided that both of the q-integrals exist.

Proof. On using the series definition of q-Saigo operator K�,�,�
q (.), given by

(2.4), the left-hand side, say L of Equation (4.1) yields to

L =

∫ ∞
0

f(x) x−�q−�(�+�)−�(�+1)/2−�(1− q)�
�∑

n=0

(q�+� ; q)n(q−�; q)n
(q; q)n

qn

×
∞∑
k=0

q�k(q�+n; q)k
(q; q)k

g(xq−�−k) dqt. (4.2)
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On changing the order of integration and summations in the above expression,
which is valid under conditions mentioned with (2.4) and using the integral (1.21),
the above equation reduces to

L = q−�(�+�)−�(�+1)/2−�(1−q)�+1
∞∑

r=−∞
qrf(qr) q−r�+�

�∑
n=0

(q�+� ; q)n(q−�; q)n
(q; q)n

qn

×
∞∑
k=0

q�k(q�+n; q)k
(q; q)k

g(qr−�−k)

= q−�(�+�)−�(�+1)/2−�(1−q)�+1
∞∑

t=−∞
qtg(qt−�) q−t�+�

�∑
n=0

(q�+� ; q)n(q−�; q)n
(q; q)n

qn

×
∞∑
k=0

qk(q�+n; q)k
(q; q)k

f(qt+k), (4.3)

on replacing the basic bilateral series in the above relation by the integral (1.21),
we obtain

L = q−�(�+�)−�(�+1)/2−�
∫ ∞
0

g(xq−�) x−�q�(1− q)�
�∑

n=0

(q�+� ; q)n(q−�; q)n
(q; q)n

qn

×
∞∑
k=0

qk(q�+n; q)k
(q; q)k

f(xqk) dqt. (4.4)

On interpreting the above expression in light of the series definition (2.3) of the q-
Saigo operator I�,�,�q (.), the above equation (4.4) finally reduces to the right-hand
side of the Theorem 3.

Interestingly, on setting � = 0 and employing the relations (3.7) and (3.9), the
Theorem 3 yields to the following Corollary:

Corollary 1. For � > 0 and � being a non negative integer, the following result
holds: ∫ ∞

0

f(x)K�,�
q g(x) dqt =

∫ ∞
0

g(xq−�)I�,�q f(x) dqt. (4.5)

Provided both of the q-integrals exist.

Further, if we replace � by −� and make use of the relations (3.8) and (3.10), in
the Theorem 3, we obtain yet another corollary providing interesting relationship
between the operators K�

q (.) and I�q (.) namely:

Corollary 2. For � > 0 and � being a non negative integer, the following result
holds:

q�(�−1)/2
∫ ∞
0

f(x)K�
q g(x) dqt =

∫ ∞
0

g(xq−�)I�q f(x) dqt. (4.6)

Provided that both of the q-integrals exist.

Finally, it is worth mentioning that, if we remove the non negativity restriction
on the parameter �, the corollaries (4.5) and (4.6) reduces to the known results due
to Agarwal [2].
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5. The q-Mellin Transform of the q-Saigo Operators

In this section, we shall prove two theorems, which exhibit the connection be-
tween the q-Mellin transform and the operators given by Equations (2.1) and (2.2).

Theorem 4. If � > 0 and s < 1 +min {0, � − �}, then

Mq

(
x� I�,�,�q f(x)

)
(s) =

Γq(1− s)Γq(� + 1− s− �)

Γq(1− s− �)Γq(� + 1− s+ �)
Mq (f(x)) (s), (5.1)

where the q-Mellin transform of f(x) is defined as:

Mq (f(x)) (s) =
1

(1− q)

∫ ∞
0

xs−1f(x) dqt =

∞∑
r=−∞

qrsf(qr). (5.2)

Proof. On using the definition (5.2) and the series definition of fractional q-
integral operator I�,�,�q (.) given by (2.3), the left-hand side (say L) becomes

L =

∞∑
r=−∞

qrs−�(�+�)(1− q)�
�∑

n=0

(q�+� ; q)n(q−�; q)n
(q; q)n

qn
∞∑
k=0

qk(q�+n; q)k
(q; q)k

f(qr+k)

=

∞∑
r=−∞

qrs−�(�+�)(1− q)�f(qr)

�∑
n=0

(q�+� ; q)n(q−�; q)n
(q; q)n

qn
∞∑
k=0

qk(1−s)(q�+n; q)k
(q; q)k

.

(5.3)
On summing the inner 1Φ0(.) series with the help of the equation (1.22), it reduces
to

L =

∞∑
r=−∞

qrs−�(�+�)(1− q)�f(qr)

�∑
n=0

(q�+� ; q)n(q−�; q)n
(q; q)n(q1−s; q)�+n

qn, (5.4)

which further simplifies to

L =
Γq(1− s)Γq(� + 1− s− �)

Γq(1− s− �)Γq(� + 1− s+ �)

∞∑
r=−∞

qrsf(qr). (5.5)

On interpreting the basic bilateral series in light of the definition (5.2), the above
equation yields to the right-hand side of the theorem (5.1).

Theorem 5. If � > 0 and s > −min {�, �}, then following relation holds:

Mq

(
x� K�,�,�

q f(x)
)

(s) =
Γq(� + s)Γq(� + s)

Γq(s)Γq(s+ �+ � + �)
q−�(�+1)/2−�Mq

(
f(xq−�)

)
(s),

(5.6)
where the q-Mellin transform of f(x) is given by the relation (5.2).

The proof of the above theorem follows similarly.

If we set � = 0 and make use of relations (3.7) and (3.9), the results of Theorems
4 and 5 respectively give rise to the following corollaries involving relations between
the q-Mellin transform and the Kober fractional q-integral operators:
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Corollary 3. If � > 0 and (1− s) > 0, then

Mq

(
I�,�q f(x)

)
(s) =

Γq(� + 1− s)
Γq(� + 1− s+ �)

Mq (f(x)) (s), (5.7)

and
Corollary 4. If � > 0 and (� + s) > 0, then following relation holds:

Mq

(
K�,�
q f(x)

)
(s) =

Γq(� + s)

Γq(� + s+ �)
Mq

(
f(xq−�)

)
(s). (5.8)

Finaly, if we replace � by −� and make use of the relations (3.8) and (3.10),
Theorems 4 and 5 yield the following corollaries:

Corollary 5. For � > 0 and (1− s) > 0, following result holds:

Mq

(
x−� I�q f(x)

)
(s) =

Γq(1− s)
Γq(1− s+ �)

Mq (f(x)) (s), (5.9)

and
Corollary 6. If � > 0 and (s− �) > 0, then:

Mq

(
x−� K�

q f(x)
)

(s) =
Γq(s− �)

Γq(s)
q−�(�−1)/2 Mq

(
f(xq−�)

)
(s). (5.10)

6. Concluding Observations

We briefly consider now some consequences of the results derived in the preceed-
ing sections.

(i) If we let q → 1−, and make use of the limit formulae:

lim
q→1−

Γq(a) = Γ(a) and lim
q→1−

(qa; q)n
(1− q)n

= (a)n , (6.1)

where
(a)n = a(a+ 1) ⋅ ⋅ ⋅ (a+ n− 1), (6.2)

we observe that the operators (2.1) and (2.2) provides respectively, the q-extensions
of the known hypergeometric operators (1.1) and (1.2) due to Saigo [21].

(ii) Further, it is interesting to observe that the results given by (5.1) and (5.6)
are the q-extensions of the known results due to Saigo, Saxena and Ram [25, pp.
295-296, eqn. (4.1) and (4.3)].
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