
Bulletin of Mathematical Analysis and Applications

ISSN: 1821-1291, URL: http://www.bmathaa.org

Volume 2 Issue 2 (2010), Pages 1-17.

ON THE GROWTH ESTIMATE OF COMPOSITE ENTIRE AND

MEROMORPHIC FUNCTIONS

S. KR. DATTA AND T. BISWAS

Abstract. In this paper we study the growth properties of composite entire
and meromorphic functions which improve some earlier results.

1. Introduction

We denote by ℂ the set of all finite complex numbers. Let f be a meromorphic
function and g be an entire function defined on ℂ. We use the standard notations
and definitions in the theory of entire and meromorphic functions which are avail-
able in [7] and [4]. In the sequel we use the following notations:

log[k] x = log
(

log[k−1] x
)

for k = 1, 2, 3, ⋅ ⋅ ⋅ and

log[0] x = x;

and

exp[k] x = exp
(

exp[k−1] x
)

for k = 1, 2, 3, ⋅ ⋅ ⋅ and

exp[0] x = x.

The following definition is well known.
Definition. The order �f and lower order �f of a meromorphic function f are

defined as

�f = lim sup
r→∞

log T (r, f)

log r
and �f = lim inf

r→∞

log T (r, f)

log r
.

If f is entire then

�f = lim sup
r→∞

log[2]M (r, f)

log r
and �f = lim inf

r→∞

log[2]M (r, f)

log r
.

Juneja, Kapoor and Bajpai[5] defined the (p, q) th order and (p, q) th lower order
of an entire function f respectively as follows :

�f (p, q) = lim sup
r→∞

log[p]M (r, f)

log[q] r
and �f (p, q) = lim inf

r→∞

log[p]M (r, f)

log[q] r
,

where p, q are positive integers with p > q.
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When f is meromorphic, one can easily verify that

�f (p, q) = lim sup
r→∞

log[p−1] T (r, f)

log[q] r
and �f (p, q) = lim inf

r→∞

log[p−1] T (r, f)

log[q] r
,

where p, q are positive integers and p > q.
If p = 2 and q = 1 then we write �f (2, 1) = �f and �f (2, 1) = �f .

In this paper we intend to establish some results relating to the growth properties
of composite entire and meromorphic functions on the basis of (p, q) th order (
(p, q) th lower order ) improving some earlier results where p, q are any two positive
integers with p > q.

2. Lemmas.

In this section we present some lemmas which will be needed in the sequel.

Lemma 2.1. [1] If f is a meromorphic function and g is an entire function then
for all sufficiently large values of r,

T (r, f ∘ g) ⩽ {1 + o(1)} T (r, g)

logM (r, g)
T (M (r, g) , f) .

Lemma 2.2. [2] Let f be a meromorphic function and g be an entire function and
suppose that 0 < � < �g ≤ ∞.Then for a sequence of values of r tending to infinity,

T (r, f ∘ g) ≥ T (exp(r�), f).

Lemma 2.3. [3] If f and g are entire functions then for all sufficiently large values
of r,

M(r, f ∘ g) ≥M(
1

8
M(

r

2
, g)− ∣g(0)∣ , f).

3. Theorems.

In this section we present the main results of the paper.

Theorem 3.1. Let g be entire function and ℎ, k be two transcendental entire
functions such that �ℎ (a, b) > 0, �k (c, d) > 0 and �g (m,n) < �k (c, d) where
m,n, a, b, c, d are all positive integers with m > n, a > b and c > d. Then for every
meromorphic function f with 0 < �f (p, q) < ∞ and for any two positive integers
p, q with p > q

(i) lim
r→∞

log[a−1] T (exp[d−1] r, ℎ ∘ k)

log[p−1] T (r, f ∘ g)
=∞ if q ⩾ m and b < c,

(ii) lim
r→∞

log[a−1] T (exp[d−1] r, ℎ ∘ k)

log[p+m−q−2] T (r, f ∘ g)
=∞ if q < m and b < c,

(iii) lim
r→∞

log[a+c−b−2] T (exp[d−1] r, ℎ ∘ k)

log[p−1] T (r, f ∘ g)
=∞ if q ⩾ m and b ⩾ c,

and (iv) lim
r→∞

log[a+c−b−2] T (exp[d−1] r, ℎ ∘ k)

log[p+m−q−2] T (r, f ∘ g)
=∞ if q < m and b ⩾ c.
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Proof. In view of Lemma 1 and the inequality T (r, g) ⩽ log+M (r, g) we obtain
for all sufficiently large values of r that

log[p−1] T (r, f ∘ g) ⩽ log[p−1] T (M (r, g) , f) +O(1)

i.e., log[p−1] T (r, f ∘ g) ⩽ (�f (p, q) + ") log[q]M (r, g) +O(1). (3.1)

Now the following cases may arise :
Case I. Let q ⩾ m. Then we have from (3.1) for all sufficiently large values of r,

log[p−1] T (r, f ∘ g) ⩽ (�f (p, q) + ") log[m−1]M (r, g) +O(1). (3.2)

Now from the definition of (m,n) th order of g we get for arbitrary positive " and
for all sufficiently large values of r,

log[m]M (r, g) ⩽ (�g(m,n) + ") log[n] r

i.e., log[m]M (r, g) ⩽ (�g(m,n) + ") log r. (3.3)

Also for all sufficiently large values of r it follows from (3.3) that

log[m−1]M (r, g) ⩽ r(�g(m,n)+"). (3.4)

So from (3.2) and (3.4) it follows for all sufficiently large values of r that

log[p−1] T (r, f ∘ g) ⩽ (�f (p, q) + ") r(�g(m,n)+") +O(1). (3.5)

Case II. Let q < m. Then we get from(3.1) for all sufficiently large values of r
that

log[p−1] T (r, f ∘ g) ⩽ (�f (p, q) + ") exp[m−q] log[m]M (r, g) +O(1). (3.6)

Again from (3.3) for all sufficiently large values of r,

exp[m−q] log[m]M (r, g) ⩽ exp[m−q] log r(�g(m,n)+")

i.e., exp[m−q] log[m]M (r, g) ⩽ exp[m−q−1] r(�g(m,n)+"). (3.7)

Now from (3.6) and (3.7) we obtain for all sufficiently large values of r that

log[p−1] T (r, f ∘ g) ⩽ (�f (p, q) + ") exp[m−q−1] r(�g(m,n)+") +O(1)

i.e., log[p] T (r, f ∘ g) ⩽ exp[m−q−2] r(�g(m,n)+") +O(1)

i.e., log[p+m−q−2] T (r, f ∘ g) ⩽ log[m−q−2] exp[m−q−2] r(�g(m,n)+") +O(1)

i.e., log[p+m−q−2] T (r, f ∘ g) ⩽ r(�g(m,n)+") +O(1). (3.8)

Since �g (m,n) < �k (c, d) we can choose " (> 0) in such a way that

�g (m,n) + " < �k (c, d)− ". (3.9)

Now using the inequality T (r, ℎ∘k) ⩾ 1
3 log

{
1
8M( r4 , k) + ∘(1), ℎ

}
{cf. [6]} we obtain

for all large values of r that

log[a−1] T (exp[d−1] r, ℎ ∘ k)

⩾ log[a]

{
1

8
M(

exp[d−1] r

4
, k) + ∘(1), ℎ

}
+O (1)

i.e., log[a−1] T (exp[d−1] r, ℎ ∘ k)

⩾ (�ℎ(a, b)− ") log[b]

{
1

9
M(

exp[d−1] r

4
, k)

}
+O (1)
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i.e., log[a−1] T (exp[d−1] r, ℎ ∘ k)

⩾ (�ℎ(a, b)− ") log[b]M(
exp[d−1] r

4
, k) +O (1) . (3.10)

Case III. Let b < c. Then from (3.10) it follows for all sufficiently large values of
r that

log[a−1] T (exp[d−1] r, ℎ ∘ k)

⩾ (�ℎ(a, b)− ") exp[c−b−1] log[c−1]M(
exp[d−1] r

4
, k) +O(1). (3.11)

Now from the definition of (c, d) th lower order of k we obtain for arbitrary positive
" (> 0) and for all sufficiently large values of r that

log[c]M(
exp[d−1] r

4
, k) ⩾ (�k(c, d)− ") log[d](

exp[d−1] r

4
)

i.e., log[c]M(
exp[d−1] r

4
, k) ⩾ (�k(c, d)− ") log r +O(1)

i.e., log[c]M(
exp[d−1] r

4
, k) ⩾ log r(�k(c,d)−") +O(1). (3.12)

Also for all large values of r we get from (3.12) that

log[c−1]M(
exp[d−1] r

4
, k) ⩾ r(�k(c,d)−") +O(1). (3.13)

Now from (3.11) and (3.13) it follows for all sufficiently large values of r that

log[a−1] T (exp[d−1] r, ℎ ∘ k) ⩾ (�ℎ(a, b)− ") exp[c−b−1] r(�k(c,d)−") +O(1). (3.14)

Case IV. Let b ⩾ c. Then from (3.10) we obtain for all sufficiently large values of
r,

log[a−1] T (exp[d−1] r, ℎ ∘ k)

⩾ (�ℎ(a, b)− ") log[b−c] log[c]

{
M(

exp[d−1] r

4
, k)

}
+O(1). (3.15)

Now from (3.12) and (3.15) we have for all sufficiently large values of r,

log[a−1] T (exp[d−1] r, ℎ ∘ k)

⩾ (�ℎ(a, b)− ") log[b−c] log r(�k(c,d)−") +O(1)

i.e., log[a−1] T (exp[d−1] r, ℎ ∘ k)

⩾ (�ℎ(a, b)− ") log[b−c+1] r(�k(c,d)−") +O(1)

i.e., log[a] T (exp[d−1] r, ℎ ∘ k) ⩾ log[b−c+2] r(�k(c,d)−") +O(1)

i.e., log[a+c−b−2] T (exp[d−1] r, ℎ∘k) ⩾ r(�k(c,d)−")+O(1). (3.16)

Now combining (3.5) of Case I and (3.14) of Case III it follows for all sufficiently
large values of r that

log[a−1] T (exp[d−1] r, ℎ ∘ k)

log[p−1] T (r, f ∘ g)
≥ (�ℎ(a, b)− ") exp[c−b−1] r(�k(c,d)−") +O(1)

(�f (p, q) + ") r(�g(m,n)+") +O(1)

i.e., lim inf
r→∞

log[a−1] T (exp[d−1] r, ℎ ∘ k)

log[p−1] T (r, f ∘ g)
=∞,
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from which the first part of the theorem follows.
Again combining (3.8) of Case II and (3.14) of Case III we obtain for all sufficiently
large values of r that

log[a−1] T (exp[d−1] r, ℎ ∘ k)

log[p+m−q−2] T (r, f ∘ g)
≥ (�ℎ(a, b)− ") exp[c−b−1] r(�k(c,d)−") +O(1)

r(�g(m,n)+") +O(1)

i.e., lim inf
r→∞

log[a−1] T (exp[d−1] r, ℎ ∘ k)

log[p+m−q−2] T (r, f ∘ g)
=∞

i.e., lim
r→∞

log[a−1] T (exp[d−1] r, ℎ ∘ k)

log[p+m−q−2] T (r, f ∘ g)
=∞.

This establishes the second part of the theorem.
Now in view of (3.5) of Case I and (3.16) Case IV we get for all sufficiently large
values of r that

log[a+c−b−2] T (exp[d−1] r, ℎ ∘ k)

log[p−1] T (r, f ∘ g)
≥ r(�k(c,d)−") +O(1)

(�f (p, q) + ") r(�g(m,n)+") +O(1)
. (3.17)

So from (3.9) and (3.17) we obtain that

lim inf
r→∞

log[a+c−b−2] T (exp[d−1] r, ℎ ∘ k)

log[p−1] T (r, f ∘ g)
=∞,

from which the third part of the theorem follows.
Again combining (3.8) of Case II and (3.16) of Case IV it follows for all sufficiently
large values of r that

log[a+c−b−2] T (exp[d−1] r, ℎ ∘ k)

log[p+m−q−2] T (r, f ∘ g)
≥ r(�k(c,d)−") +O(1)

r(�g(m,n)+") +O(1)
. (3.18)

Now in view of (3.9) we obtain from (3.18) that

lim inf
r→∞

log[a+c−b−2] T (exp[d−1] r, ℎ ∘ k)

log[p+m−q−2] T (r, f ∘ g)
= ∞

i.e., lim
r→∞

log[a+c−b−2] T (exp[d−1] r, ℎ ∘ k)

log[p+m−q−2] T (r, f ∘ g)
= ∞.

This proves the fourth part of the theorem.
Thus the theorem follows.

Remark. The conditions �ℎ (a, b) > 0, �g (m,n) < �k (c, d) and �f (p, q) < ∞
in Theorem 1 are necessary which are evident from the following examples.

Example. Let

f = g = ℎ = exp z and k = exp
(
z2
)
.

Also let

a = 3 , p = m = c = 2 and q = n = b = d = 1.

Then

�f = 1, �g = 1 < 2 = �k and
−
�ℎ = �ℎ (3, 1) = 0.

Now

T (r, ℎ ∘ k) ≤ logM(r, ℎ ∘ k) = log exp[2] r2 = exp r2
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and

T (r, f ∘ g) ∼ exp r

(2�3r)
1
2

.

So

log[2] T (r, ℎ ∘ k)

log T (r, f ∘ g)
≤ 2 log r

r − 1
2 log r +O(1)

i.e., lim
r→∞

log[2] T (r, ℎ ∘ k)

log T (r, f ∘ g)
= 0.

Example. Let

f = ℎ = k = exp z and g = exp
(
z2
)
.

Also let

p = m = a = c = 2 and q = n = b = d = 1.

Then

�f = 1, �g = 2 > 1 = �k and �ℎ = 1.

Now

T (r, ℎ ∘ k) ∼ exp r

(2�3r)
1
2

i.e., log T (r, ℎ ∘ k) ∼ r − 1

2
log r +O(1)

and

T (r, f ∘ g) ≥ 1

3
logM(

r

2
, f ∘ g)

i.e., log T (r, f ∘ g) ≥ log[2] exp[2]

(
r2

4

)
+O(1)

i.e., log T (r, f ∘ g) ≥ r2

4
+O (1) .

Therefore

log T (r, ℎ ∘ k)

log T (r, f ∘ g)
≤

r − 1
2 log r +O(1)
r2

4 +O (1)

i.e., lim
r→∞

log T (r, ℎ ∘ k)

log T (r, f ∘ g)
= 0,

which is contrary to Theorem 1.
Example. Let

f = g = ℎ = k = exp z and p = m = a = c = 2 and q = n = b = d = 1.

Then

�f = 1, �g = 1 = �k and �ℎ = 1.

Now

T (r, ℎ ∘ k) ∼ exp r

(2�3r)
1
2

i.e., log T (r, ℎ ∘ k) ∼ r − 1

2
log r +O(1)
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and T (r, f ∘ g) ≥ 1

3
logM(

r

2
, f ∘ g)

i.e., log T (r, f ∘ g) ≥ log[2]M(
r

2
, f ∘ g) +O(1)

i.e., log T (r, f ∘ g) ≥ log[2] exp[2]
(r

2

)
+O(1)

i.e., log T (r, f ∘ g) ≥ r

2
+O(1).

So we get that

log T (r, ℎ ∘ k)

log T (r, f ∘ g)
≤

r − 1
2 log r +O(1)
r
2 +O (1)

i.e., lim
r→∞

log T (r, ℎ ∘ k)

log T (r, f ∘ g)
≤ 2.

Example. Let

f = exp[2] z, g = ℎ = exp z, k = exp
(
z2
)

and

p = m = a = c = 2 and q = n = b = d = 1.

Then

�f =∞, �g = 1 < 2 = �k and �ℎ = 1.

Now

T (r, ℎ ∘ k) ≤ logM(r, ℎ ∘ k) = log exp[2]
(
r2
)

= exp
(
r2
)

i.e., log T (r, ℎ ∘ k) ≤ r2

and

T (r, f ∘ g) ≥ 1

3
logM(

r

2
, f ∘ g)

i.e., log T (r, f ∘ g) ≥ log[2]M(
r

2
, f ∘ g) +O(1)

i.e., log T (r, f ∘ g) ≥ log[2] exp[3]
(r

2

)
+O(1)

i.e., log T (r, f ∘ g) ≥ exp
(r

2

)
+O(1).

Hence

log T (r, ℎ ∘ k)

log T (r, f ∘ g)
≤ r2

exp
(
r
2

)
+O (1)

i.e., lim
r→∞

log T (r, ℎ ∘ k)

log T (r, f ∘ g)
= 0,

which contradicts Theorem 1.
Remark. The condition �g (m,n) < �k (c, d) in Theorem 1 is necessary, which

is true in general only if �f (p, q) > 0 otherwise the condition �g (m,n) < �k (c, d)
will be violated.The following two examples strengthen this comment.

Example. Let

g = exp
(
z2
)

and f = ℎ = k = exp z.

Also let

p = 3 , m = a = c = 2 and q = n = b = d = 1.
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Then
−
�f = �f (3, 1) = 0 <∞, �g = 2 > 1 = �k and �ℎ = 1.

Now

T (r, ℎ ∘ k) ∼ exp r

(2�3r)
1
2

i.e., log T (r, ℎ ∘ k) ∼ r − 1

2
log r +O(1)

and

T (r, f ∘ g) ≤ logM(r, f ∘ g) = exp r2

i.e., log[2] T (r, f ∘ g) ≤ 2 log r.

Therefore

log T (r, ℎ ∘ k)

log[2] T (r, f ∘ g)
≥

r − 1
2 log r +O(1)

2 log r

i.e., lim
r→∞

log T (r, ℎ ∘ k)

log[2] T (r, f ∘ g)
= ∞.

Example. Let

f = g = ℎ = k = exp z.

Also let

p = 3 , m = a = c = 2 and q = n = b = d = 1.

Then
−
�f = �f (3, 1) = 0 <∞, �g = 1 = �k and �ℎ = 1.

Now

T (r, ℎ ∘ k) ∼ exp r

(2�3r)
1
2

i.e., log T (r, ℎ ∘ k) ∼ r − 1

2
log r +O(1)

and

T (r, f ∘ g) ≤ logM(r, f ∘ g) = exp r

i.e., log[2] T (r, f ∘ g) ≤ log r.

Therefore

log T (r, ℎ ∘ k)

log[2] T (r, f ∘ g)
=

r − 1
2 log r +O(1)

log r

i.e., lim
r→∞

log T (r, ℎ ∘ k)

log[2] T (r, f ∘ g)
= ∞.

Theorem 3.2. Let ℎ be meromorphic and g, k be entire such that �ℎ (a, b) > 0 ,
0 < �k <∞ and �g(m,n) < �k where m,n, a, b are all positive integers with m > n
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and a > b. Then for every meromorphic function f with 0 < �f (p, q) <∞ and for
any two positive integers p, q with p > q

(i) lim sup
r→∞

log[a−1] T (r, ℎ ∘ k)

log[p−1] T (r, f ∘ g) + log[m]M (r, g)
= ∞

if b = 1 and q ⩾ m;

(ii) lim sup
r→∞

log[a−1] T (r, ℎ ∘ k)

log[p+m−q−2] T (r, f ∘ g) + log[m]M (r, g)
= ∞

if b = 1 and q < m;

(iii) lim sup
r→∞

log[a−1] T (r, ℎ ∘ k)

log[p−1] T (r, f ∘ g) + log[m]M (r, g)
= ∞

if q ⩾ m and 1 < b < n+ 1;

(iv) lim sup
r→∞

log[a−1] T (r, ℎ ∘ k)

log[p−1] T (r, f ∘ g) + log[m]M (r, g)
≥ ��ℎ (a, b)

(�f (p, q) + 1) �g (m,n)

if q ≥ m, b = n = 2 and 0 < � < �k;

(v) lim sup
r→∞

log[a−1] T (r, ℎ ∘ k)

log[p−1] T (r, f ∘ g) + log[m]M (r, g)
≥ �ℎ (a, b)

(�f (p, q) + 1) �g (m,n)

if q ≥ m and b = n > 2;

(vi) lim sup
r→∞

log[a−1] T (r, ℎ ∘ k)

log[p+m+n−q−2] T (r, f ∘ g) + log[m]M (r, g)
=∞

if q < m and 1 < b < n+ 1;

(vii) lim sup
r→∞

log[a−1] T (r, ℎ ∘ k)

log[p+m+n−q−2] T (r, f ∘ g) + log[m]M (r, g)
≥ ��ℎ (a, b)

1 + �g (m,n)

if q < m , b = n = 2 and 0 < � < �k

and

(viii) lim sup
r→∞

log[a−1] T (r, ℎ ∘ k)

log[p+m+n−q−2] T (r, f ∘ g) + log[m]M (r, g)
≥ �ℎ (a, b)

1 + �g (m,n)

if q < m and b = n > 2.

Proof. Since �g(m,n) < �k we can choose "(> 0) in such a way that

�g(m,n) + " < � < �k − ". (3.19)

By Lemma 2 we obtain for a sequence of values of r tending to infinity,

T (r, ℎ ∘ k) ≥ T (exp(r�), ℎ), where 0 < � < �k ≤ ∞

i.e., log[a−1] T (r, ℎ ∘ k) ≥ log[a−1] T (exp(r�), ℎ)

i.e., log[a−1] T (r, ℎ ∘ k) ≥ (�ℎ (a, b)− ") log[b] exp(r�)

i.e., log[a−1] T (r, ℎ ∘ k) ≥ (�ℎ (a, b)− ") log[b−1](r�). (3.20)

Now the following two cases may arise :
Case I. Let b = 1. Then from (3.20) we get for a sequence of values of r tending
to infinity that

log[a−1] T (r, ℎ ∘ k) ≥ (�ℎ (a, b)− ")(r�). (3.21)
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Case II. Let b− 1 = l > 0. Then from (3.20) it follows for a sequence of values of
r tending to infinity that

log[a−1] T (r, ℎ ∘ k) ≥ (�ℎ (a, b)− ") log[l](r�). (3.22)

Now from the definition of (m,n) th order of g we have for arbitrary positive " and
for all sufficiently large values of r,

log[m]M (r, g) ⩽ (�g(m,n) + ") log[n] r. (3.23)

Let q ⩾ m. Then we have from (3.1) and (3.23) for all sufficiently large values of r,

log[p−1] T (r, f ∘ g) ≤ (�f (p, q) + ") (�g(m,n) + ") log[n] r. (3.24)

Now if b = 1 and q ⩾ m , we get from (3.5) , (3.21) , (3.23) and in view of (3.19)
for a sequence of values of r tending to infinity,

log[a−1] T (r, ℎ ∘ k)

log[p−1] T (r, f ∘ g) + log[m]M (r, g)

≥ (�ℎ (a, b)− ")(r�)

(�f (p, q) + ") r(�g(m,n)+") + (�g(m,n) + ") log[n] r +O(1)

i.e., lim sup
r→∞

log[a−1] T (r, ℎ ∘ k)

log[p−1] T (r, f ∘ g) + log[m]M (r, g)
=∞,

which proves the first part of the theorem.
Again we obtain from (3.8) , (3.19) ,(3.22) and (3.23) for a sequence of values of r
tending to infinity when b = 1 and q < m

log[a−1] T (r, ℎ ∘ k)

log[p+m−q−2] T (r, f ∘ g) + log[m]M (r, g)

≥ (�ℎ (a, b)− ")(r�)

r(�g(m,n)+") + (�g(m,n) + ") log[n] r +O(1)

i.e., lim sup
r→∞

log[a−1] T (r, ℎ ∘ k)

log[p+m−q−2] T (r, f ∘ g) + log[m]M (r, g)
=∞.

This proves the second part of the theorem.
When b > 1 and q ≥ m , from (3.22) , (3.23) , and (3.24) we get for a sequence of
values of r tending to infinity,

log[a−1] T (r, ℎ ∘ k)

log[p−1] T (r, f ∘ g) + log[m]M (r, g)

≥ (�ℎ (a, b)− ") log[l](r�)

(�f (p, q) + ") (�g(m,n) + ") log[n] r + (�g(m,n) + ") log[n] r +O(1)

i.e., lim sup
r→∞

log[a−1] T (r, ℎ ∘ k)

log[p−1] T (r, f ∘ g) + log[m]M (r, g)
=∞ if 1 < b < n+ 1;

again

lim sup
r→∞

log[a−1] T (r, ℎ ∘ k)

log[p−1] T (r, f ∘ g) + log[m]M (r, g)
≥ ��ℎ (a, b)

(�f (p, q) + 1) �g (m,n)

if b = n = 2 and 0 < � < �k
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and also

lim sup
r→∞

log[a−1] T (r, ℎ ∘ k)

log[p−1] T (r, f ∘ g) + log[m]M (r, g)
≥ �ℎ (a, b)

(�f (p, q) + 1) �g (m,n)

if b = n > 2 and 0 < � < �k.

This respectively proves the third , fourth and fifth part of the theorem.
Again when b > 1 and q < m, combining (3.8) , (3.22) and (3.23) we obtain for a
sequence of values of r tending to infinity,

log[a−1] T (r, ℎ ∘ k)

log[p+m+n−q−2] T (r, f ∘ g) + log[m]M (r, g)

≥ (�ℎ (a, b)− ") log[l](r)�

log[n] r + (�g(m,n) + ") log[n] r +O(1)

i.e., lim sup
r→∞

log[a−1] T (r, ℎ ∘ k)

log[p+m+n−q−2] T (r, f ∘ g) + log[m]M (r, g)
=∞ if 1 < b < n+ 1;

also

lim sup
r→∞

log[a−1] T (r, ℎ ∘ k)

log[p+m+n−q−2] T (r, f ∘ g) + log[m]M (r, g)
≥ ��ℎ (a, b)

1 + �g (m,n)

if b = n = 2 and 0 < � < �k

and again

lim sup
r→∞

log[a−1] T (r, ℎ ∘ k)

log[p+m+n−q−2] T (r, f ∘ g) + log[m]M (r, g)
≥ �ℎ (a, b)

1 + �g (m,n)

if b = n > 2 and 0 < � < �k.

from which the sixth , seventh and eighth part of the theorem respectively follows.
Remark. The condition �g(m,n) < �k and �f (p, q) < ∞ in Theorem 2 are

essential as we see in the following examples.
Example. Let

f = g = ℎ = k = exp z.

Also let

p = m = a = 2 and q = n = b = 1.

Then

�f = 1, �g = 1 = �k and �ℎ = 1.

Now

T (r, f ∘ g) = T (r, ℎ ∘ k) ∼ exp r

(2�3r)
1
2

i.e., log T (r, f ∘ g) = log T (r, ℎ ∘ k) ∼ r − 1

2
log r +O(1)

So

lim sup
r→∞

log T (r, ℎ ∘ k)

log T (r, f ∘ g) + log[2]M(r, g)
= lim sup

r→∞

r − 1
2 log r +O(1)

r − 1
2 log r +O(1) + log r
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i.e., lim sup
r→∞

log T (r, ℎ ∘ k)

log T (r, f ∘ g) + log[2]M(r, g)

= lim sup
r→∞

r − 1
2 log r +O(1)

r + 1
2 log r +O(1)

= 1,

which is contrary to Theorem 2.
Example. Let

f = exp[2] z , g = ℎ = exp z and k = exp
(
z2
)
.

and

p = m = a = 2 and q = n = b = 1.

Then

�f =∞, �g = 1 < 2 = �k and �ℎ = 1.

Now

T (r, ℎ ∘ k) ≤ logM(r, ℎ ∘ k) = log exp[2]
(
r2
)

i.e., T (r, ℎ ∘ k) ≤ exp
(
r2
)
,

and T (r, f ∘ g) ≥ 1

3
logM

(r
2
, f ∘ g

)
i.e., T (r, f ∘ g) ≥ 1

3
log exp[3]

(r
2

)
=

1

3
exp[2]

(r
2

)
and log[2]M(r, g) = log r.

Therefore

log T (r, ℎ ∘ k)

log T (r, f ∘ g) + log[2]M(r, g)
≤

log exp
(
r2
)

log exp[2]
(
r
2

)
+O(1) + log[2] exp r

i.e.,
log T (r, ℎ ∘ k)

log T (r, f ∘ g) + log[2]M(r, g)
≤ r2

exp
(
r
2

)
+ log r +O(1)

i.e., lim sup
r→∞

log T (r, ℎ ∘ k)

log T (r, f ∘ g) + log[2]M(r, g)
= 0,

which is contrary to Theorem 2.
Remark. The condition �g (m,n) < �k in Theorem 2 is necessary which is

true in general only if �f (p, q) > 0 otherwise the condition �g (m,n) < �k will be
violated.The following example ensure this comment.

Example. Let

f = ℎ = k = exp z and g = exp
(
z3
)
.

Also let

p = 3 , m = a = 2 and q = n = b = 1.

Then
−
�f = �f (3, 1) = 0 <∞, �g = 3 > 1 = �k and �ℎ = 1.

Now

T (r, ℎ ∘ k) ∼ exp r

(2�3r)
1
2

i.e., log T (r, ℎ ∘ k) ∼ r − 1

2
log r +O(1),
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T (r, f ∘ g) ≤ logM(r, f ∘ g) = exp r3

i.e., log[2] T (r, f ∘ g) ≤ 3 log r.

and log[2]M(r, g) = 3 log r.

Therefore

log T (r, ℎ ∘ k)

log[2] T (r, f ∘ g) + log[2]M(r, g)
≥

r − 1
2 log r +O(1)

6 log r

i.e., lim
r→∞

log T (r, ℎ ∘ k)

log[2] T (r, f ∘ g) + log[2]M(r, g)
= ∞.

Theorem 3.3. Let f, g be entire functions such that 0 < �f (p, q) ≤ �f (p, q) <∞
and �g (m,n) > 0 where p, q,m, n are positive integers with p > q and m > n.Then
for any positive integer l,

(i) lim
r→∞

log[p]M(exp[n−1] r, f ∘ g)

log[p+1]M
(
exp[l] r, f

) = ∞ if q < m and q ⩾ l;

(ii) lim sup
r→∞

log[p]M(exp[n−1] r, f ∘ g)

log[p+1]M
(
exp[l] r, f

) ≥ �f (p, q)�g (m,n)

if q = m and q ⩾ l;

(iii) lim
r→∞

log[p]M(exp[n−1] r, f ∘ g)

log[p−q−l+1]M
(
exp[l] r, f

) = ∞ if q < m and q < l;

(iv) lim sup
r→∞

log[p]M(exp[n−1] r, f ∘ g)

log[p−q−l+1]M
(
exp[l] r, f

) ≥ �f (p, q)�g (m,n)

if q = m and q < l;

(v) lim
r→∞

log[p+m−q−1]M(exp[n−1] r, f ∘ g)

log[p+1]M
(
exp[l] r, f

) =∞ if q > m and q < l;

and

(vi) lim
r→∞

log[p+m−q−1]M(exp[n−1] r, f ∘ g)

log[p+1]M
(
exp[l] r, f

) =∞ if q > m and q ⩾ l.

Proof. Let us choose 0 < " < min {�f (p, q) , �g (m,n)} .
Now for all sufficiently large values of r we get from Lemma 3,

M(exp[n−1] r, f ∘ g) ⩾ M

{
1

16
M(

exp[n−1] r

2
, g), f

}
i.e., log[p]M(exp[n−1] r, f ∘ g) ⩾ log[p]M

{
1

16
M(

exp[n−1] r

2
, g), f

}
i.e., log[p]M(exp[n−1] r, f ∘ g) ⩾ (�f (p, q)− ") log[q]

{
1

16
M(

exp[n−1] r

2
, g)

}
i.e., log[p]M(exp[n−1] r, f ∘ g)

⩾ (�f (p, q)− ") log[q]M(
exp[n−1] r

2
, g) +O(1). (3.25)
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Now the following two cases may arise.
Case I.Let q ≤ m. Then from (3.25) we obtain for all sufficiently large values of r
that

log[p]M(exp[n−1] r, f ∘ g)

⩾ (�f (p, q)− ") exp[m−q] log[m]M(
exp[n−1] r

2
, g). (3.26)

Now from the definition of (m,n) th lower order of g we have for all sufficiently
large values of r,

log[m]M(
exp[n−1] r

2
, g) ⩾ (�g (m,n)− ") log[n](

exp[n−1] r

2
)

i.e., log[m]M(
exp[n−1] r

2
, g) ⩾ (�g (m,n)− ") log r +O(1)

i.e., log[m]M(
exp[n−1] r

2
, g) ⩾ log r(�g(m,n)−") +O(1). (3.27)

Now from(3.26)and(3.27)we get for all sufficiently large values of r that

log[p]M(exp[n−1] r, f ∘ g) ⩾ (�f (p, q)− ") exp[m−q] log r(�g(m,n)−") +O(1)

i.e., log[p]M(exp[n−1] r, f ∘ g)

⩾ (�f (p, q)− ") exp[m−q−1] r(�g(m,n)−") +O(1). (3.28)

Case II. Let q > m. Then from (3.25) and (3.27) it follows for all sufficiently large
values of r that

log[p]M(exp[n−1] r, f ∘ g)

⩾ (�f (p, q)− ") log[q−m] . log r(�g(m,n)−") +O(1)

i.e., log[p+1]M(exp[n−1] r, f ∘ g) ⩾ log[q−m+2] r(�g(m,n)−") +O(1)

i.e., log[p+m−q−1]M(exp[n−1] r, f ∘ g) ⩾ r(�g(m,n)−") +O(1). (3.29)

Again from the definition of �f (p, q) we get for all large values of r that

log[p]M
(

exp[l] r, f
)
≤ (�f (p, q) + ") log[q]

{
exp[l] r

}
. (3.30)

Now the following two cases may arise.
Case III. Let q ⩾ l. Then we have from (3.30) for all sufficiently large values of r,

log[p]M
(

exp[l] r, f
)
≤ (�f (p, q) + ") log[l]

{
exp[l] r

}
i.e., log[p]M

(
exp[l] r, f

)
≤ (�f (p, q) + ") r

i.e., log[p+1]M
(

exp[l] r, f
)
≤ log r +O(1). (3.31)

Case IV. Let q < l. Then we have from (3.30) for all sufficiently large values of r
that

log[p]M
(

exp[l] r, f
)
≤ (�f (p, q) + ") exp[l−q] r

i.e., log[p+1]M
(

exp[l] r, f
)
≤ exp[l−q−1] r +O(1)

i.e., log[p−q+l+1]M
(

exp[l] r, f
)
≤ log r +O(1). (3.32)
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Now combining (3.28) of Case I and (3.31) of Case III it follows for all sufficiently
large values of r that

log[p]M(exp[n−1] r, f ∘ g)

log[p+1]M
(
exp[l] r, f

)
≥ (�f (p, q)− ") exp[m−q−1] r(�g(m,n)−") +O(1)

log r +O(1)
. (3.33)

If q < m then from (3.33) we get that

lim inf
r→∞

log[p]M(exp[n−1] r, f ∘ g)

log[p+1]M
(
exp[l] r, f

) = ∞

i.e., lim
r→∞

log[p]M(exp[n−1] r, f ∘ g)

log[p+1]M
(
exp[l] r, f

) = ∞.

This proves the first part of the theorem.
If q = m then from (3.33) it follows for all sufficiently large values of r that

log[p]M(exp[n−1] r, f ∘ g)

log[p+1]M
(
exp[l] r, f

) ≥ (�f (p, q)− ")(�g (m,n)− ") log r +O(1)

log r +O(1)
.

As " (> 0) is arbitrary we obtain from above that

lim sup
r→∞

log[p]M(exp[n−1] r, f ∘ g)

log[p+1]M
(
exp[l] r, f

) ≥ �f (p, q)�g (m,n) .

Thus the second part of the theorem follows.
Again in view of(3.28) of Case I and (3.32) of Case IV we have for all sufficiently
large values of r,

log[p]M(exp[n−1] r, f ∘ g)

log[p−q+l+1]M
(
exp[l] r, f

)
≥ (�f (p, q)− ") exp[m−q−1] r(�f (m,n)−") +O(1)

log r +O(1)
. (3.34)

When q < m and q < l then we get from (3.34) that

lim inf
r→∞

log[p]M(exp[n−1] r, f ∘ g)

log[p−q+l+1]M
(
exp[l] r, f

) = ∞

i.e., lim
r→∞

log[p]M(exp[n−1] r, f ∘ g)

log[p−q+l+1]M
(
exp[l] r, f

) = ∞.

This establishes the third part of the theorem.
Again when q = m and q < l then it follows from (3.34) for all sufficiently large
values of r that

log[p]M(exp[n−1] r, f ∘ g)

log[p−q+l+1]M
(
exp[l] r, f

) ≥ (�f (p, q)− ")(�g (m,n)− ") log r +O(1)

log r +O(1)
.
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As " (> 0) is arbitrary it follows from above that

lim sup
r→∞

log[p]M(exp[n−1] r, f ∘ g)

log[p−q+l+1]M
(
exp[l] r, f

) ≥ �f (p, q)�g (m,n) .

Thus the fourth part of the theorem is proved.
Now in view of (3.29) of Case II and (3.31) of Case III we get for all sufficiently
large values of r that

log[p+m−q−1]M(exp[n−1] r, f ∘ g)

log[p+1]M
(
exp[l] r, f

) ≥ r(�g(m,n)−") +O(1)

log r +O(1)

i.e., lim inf
r→∞

log[p+m−q−1]M(exp[n−1] r, f ∘ g)

log[p+1]M
(
exp[l] r, f

) = ∞,

from which the fifth part of the theorem follows.
Again from (3.29) of Case II and (3.32) of Case IV we have for all sufficiently large
values of r that

log[p+m−q−1]M(exp[n−1] r, f ∘ g)

log[p−q+l+1]M
(
exp[l] r, f

) ≥ r(�g(m,n)−") +O(1)

log r +O(1)

i.e., lim inf
r→∞

log[p+m−q−1]M(exp[n−1] r, f ∘ g)

log[p−q+l+1]M
(
exp[l] r, f

) = ∞

i.e., lim
r→∞

log[p+m−q−1]M(exp[n−1] r, f ∘ g)

log[p−q+l+1]M
(
exp[l] r, f

) = ∞.

This proves the sixth part of the theorem .
Thus the theorem follows.
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