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Abstract. Let A be any n-by-n normal matrix and let k > 0 be an integer. By
using the concept of the joint numerical range W (A,A2, · · · , Ak), an analytic
description of V k(A) for normal matrices will be presented. Additionally, new
proof for Theorem 2.2 of Davis, Li and Salemi [Linear Algebra Appl., 428
(2008), pp. 137-153] is given.

1. Introduction and preliminaries

The notion of polynomial numerical hull of a matrix A ∈ Mn of order k, was
first introduced by O.Nevanlinna [9] in 1993 as follows.

V k(A) = {ξ ∈ C : |p(ξ)| ≤ ‖p(A)‖ for all p(z) ∈ Pk[C]},
where Pk[C] is the set of complex polynomials with degree at most k. By the
result in [3] (see also [5, 6])

V k(A) = {ζ ∈ C : (ζ, . . . , ζk) ∈ conv W (A, . . . , Ak)},
where conv X denotes the convex hull of X ⊆ Ck and the joint numerical range
of (A1, A2, . . . , Am) ∈ Mn × · · · ×Mn is denoted by

W (A1, A2, . . . , Am) = {(x∗A1x, x∗A2x, . . . , x∗Amx) : x ∈ Cn, x∗x = 1}.
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Similar to some other kinds of numerical range (see [10]), polynomial numerical
hull of non-normal matrices have applications in approximating spectrum. More-
over, it has uses in ideal GMRES (see [5, 6, 7, 11]), but in the case of normal
matrices we could not find any remarkable application. By the result in [6]it is
proved that when A is a normal matrix

V k(A) = {ζ ∈ C : (ζ, . . . , ζk) ∈ W (A, . . . , Ak)}.

After that, V 2(A) for some special normal matrices was discussed by C.Davis
and A.Salemi[4] but in the next work as a joint effort with C.K.Li [3] they could
completely characterized V 2(A) for any normal matrix A.

Next, in [2], we characterized V 3(A) for some special matrices, and the rela-
tionship between V k(A) and ”kth roots of a convex set”. Recently, in [1], we
present a way of characterizing polynomial numerical hull of any order of each
normal matrix by using new curves ”polynomial inverse image of order k ”. In
the following we state the definition.

Definition 1.1. Let q be a polynomial of degree k and let S ⊆ C. The set
{z ∈ C : Im (q(z)) ∈ S} is called a polynomial inverse image of order k of S and
is abbreviated by PIIk (S).

In the above definition if S = {0}, then PIIk ({0}) is called polynomial inverse
image of order k.

However, there is still an open problem in the notion of polynomial numerical
hull, such as

Problem 1.2. Let A ∈ Mn be a normal matrix with at least 2k distinct eigen-
values and V k(A) be finite. Is V k(A) = σ(A)?

To extend the characterization method of V 2(A) in [3], at first we prove an
extended version of [3, Theorem 2.5]. By this theorem, the recent problem is
simplified and it suffices to solve it for A ∈ M2k. After that, we simplify finding
of V k(A) when it is finite, A ∈ M2k and σ(A) lies on exactly one polynomial
inverse image of order k. finally, we present new algebraic proof for [3, Theorem
2.2] that can be useful if one wants to extend the method of characterizing in [3].

2. Main results

In the following lemma we give an extended version of [3, remark 2.4 (c)].

Lemma 2.1. Let A be a normal matrix and µ ∈ ∂V k(A). Then
(
µ, µ2, · · · , µk

)
∈

∂W
(
A, A2, · · · , Ak

)
Proof. Assume if possible

(
µ, µ2, · · · , µk

)
∈ intW

(
A, A2, · · · , Ak

)
, so there exists

d > 0 such that

|ε1|2 + · · ·+ |εk|2 < d ⇒
(
µ + ε1, · · · , µk + εk

)
∈ W

(
A, · · · , Ak

)
(2.1)
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(
n
j

) (
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)
|εk+1|n−j <

√
d
k

⇒ |(µ + εk+1)
n − µn| <

√
d
k
.

Therefore

|(µ + εk+1)− µ|2 + · · ·+
∣∣∣(µ + εk+1)

k − µk
∣∣∣2 < d

so by (2.1): (
µ + εk+1, · · · , (µ + εk+1)

k
)
∈ W

(
A, · · · , Ak

)
and proof is completed. �

Remark 2.2. [8] Let {bj}m
j=1 ⊂ Rn and x be a boundary point of conv

(
{bj}m

j=1

)
,

then x is a convex combination of at most n points of {bj}m
j=1.

Now, we present the extended version of [3, theorem 2.5]).

Theorem 2.3. Let A = diag (a1, a2, · · · , an) has distinct eigenvalues. Then, the
following results emerge

a) ∂V k (A) ⊂ S =
⋃ {

V k (diag (aj1 , · · · , aj2k
)) : 1 6 j1 6 · · · 6 j2k 6 n

}
b) V k (A) = S ∪ {x : x enclosed by the closed curves in S}

Proof. a) Let µ ∈ ∂V k (A). It follows from Lemma 2.1 that
(
µ, · · · , µk

)
∈

∂W
(
A, · · · , Ak

)
. We can deduce from Remark 2.2 that there exists {j1, · · · , j2k} ∈

{1, · · · , n} such that(
<µ,=µ, · · · ,<

(
µk

)
,=

(
µk

))
∈ conv


(
< (aj1) ,= (aj1) , · · · ,<

(
ak

j1

)
,=

(
ak

j1

))
,(

< (aj2) ,= (aj2) , · · · ,<
(
ak

j2

)
,=

(
ak

j2

))
,

...(
< (aj2k

) ,= (aj2k
) , · · · ,<

(
ak

j2k

)
,=

(
ak

j2k

))


and so µ ∈ V k (diag (aj1 , aj2 , · · · , aj2k
)) .

b) By [4, Lemma 3.5] it suffices to prove that

intV k (A) ⊂ {x : x enclosed by the closed curves in S} .
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We know that C is partitioned by S into some connected regions. Since S ⊂
V k (A) ⊂ W (A) there is one unbounded region, U. Suppose that v ∈ U ∩
intV k (A) and let v 6= w ∈

(
V k (A)

)C
. Assume that there is a path M =

{(x, f (x)) : f : [0, 1] → C} from v to w, that M ⊂ U.
Let α = sup

{
z ∈ [0, 1] : f (z) ∈ V k (A)

}
. By continuity of f and that V k (A)

is closed, f (α) ∈ V k (A) . Again, consider continuity of f ; so we have f (α) ∈
∂V k (A) ⊂ S that contradicts with M ⊂ U. �

By the recent theorem, we see that in order to solve Problem 1.2 it suffices
to concentrate on matrices that have 2k distinct eigenvalues. By the following
theorem we simplify finding polynomial numerical hull of order k of A ∈ M2k

when V k(A) is finite, in one of its special cases.

Theorem 2.4. Assume that A = diag (a1, · · · , a2k) be such that exactly one
polynomial inverse image of order k passes through σ (A). Therefore, if V k (A)

be a finite set, then V k (A) =
2k⋃
i=1

V k (Ai) in which Ai = diag (σ (A) \ {ai}) .

Proof. Suppose that µ ∈ V k (A) \σ (A) . Then there exist λi ≥ 0, i = 1, . . . , 2k
such that 

λ1 + λ2 + · · ·+ λ2k = 1
λ1a1 + λ2a2 + · · ·+ λ2ka2k = µ
...
λ1a

k
1 + λ2a

k
2 + · · ·+ λ2ka

k
2k = µk

Assume if possible λi > 0, 1 ≤ i ≤ 2k, then by [1, Theorem 3.2] there ex-
ists non constant polynomials p1, · · · , p2k such that ∀j, λj = Im (pj (µ)) and

V k (A) =
2k⋂
i=1

{
z : (Impi)

−1 [0,∞)
}
. But for any i, (Impi)

−1 (0,∞) is a nonempty

open set, and hence
2k⋂
i=1

{
z : (Impi)

−1 (0,∞)
}

is a nonempty open set, which is a

contradiction. �

In [3, Theorem 2.2] Davis et al. proved a key theorem for determining V 2 (A)
for normal matrices. Their proof was based on geometric view. In the following,
we present an Algebraic proof for it.

Theorem 2.5. Let A = diag (1,−1, x3 + iy3, x4 + iy4) , x3 < x4, 0 < y3 ≤ y4 be
such that σ (A) is not contained in two perpendicular lines. Suppose R ⊆ C ≡ R2

is a rectangular hyperbola that is a union of 2 branches ,R = R1 ∪ R2, such that
−1, 1 ∈ R1 and a3 = x3 + iy3, a4 = x4 + iy4 ∈ R2. Then V 2 (A) ∩ R1 can be
determined as follows.

V 2 (A) ∩R1 = {(x, y) ∈ R1 : x ∈ (−1, 1) ∩ [x3, x4] , y > 0} ∪ {(−1, 0) , (1, 0)}

Proof. Step (I)- left-to-right inclusion. Assume that (x, y) ∈ V 2 (A)∩R1 then by

[3, Theorem 2.1]

∃λ3, λ4 ≥ 0 s.t.

{
(3) : λ3y3 + λ4y4 = y
(4) : λ3x3y3 + λ4x4y4 = xy

(2.2)
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and hence y ≥ 0. If y = 0, (x, y) ∈ R1 shows that x = ±1 but if y > 0 by (2.2)
at least one of λ3, λ4 are positive, and if one of them is positive and another is
zero then x ∈ {x3, x4} . So assume that both of λ3, λ4 are positive. Then (2.2)
shows that

λ4y4 (x4 − x) = λ3y3 (x− x3)

and so x ∈ (x3, x4).
Finally, note that any straight line intersects non-degenerate hyperbola in at

most 2 points, so R1 ∩W (A) = {(x, y) ∈ R1 : x ∈ [−1, 1]} and proof of step(I) is
completed.
Step (II)- right-to-left inclusion. Assume that (x, y) ∈ R1, x ∈ (−1, 1) ∩ [x3, x4]

and y > 0. By [3, Theorem 2.1] it suffices to find nonnegative solution {λi}4
i=1 for

the following system of equations:
λ1 + λ2 + λ3 + λ4 = 1
λ1 − λ2 + λ3x3 + λ4x4 = x
λ3y3 + λ4y4 = y
λ3x3y3 + λ4x4y4 = xy

We have λ3 = y(x4−x)
y3(x4−x3)

≥ 0, λ4 = y(x−x3)
y4(x4−x3)

≥ 0 and

2λ1 = x + 1− λ3 (x3 + 1)− λ4 (x4 + 1)
= 1

y3y4(x4−x3)

(
y3y4 (x4 − x3) (x + 1)− yy4 (x4 − x) (x3 + 1)

−yy3 (x− x3) (x4 + 1)
)

= 1
(x4−x3)y3y4

(
(x− x3) (y4 − y) (1 + x4) y3 + (x4 − x) (y3 − y) (1 + x3) y4

)
= (x−x3)(x4−x)

(x4−x3)y3y4

( (
y4−y
x4−x

)
(1 + x4) y3 −

(
y3−y
x3−x

)
(1 + x3) y4

)
= (x−x3)(x4−x)

(x4−x3)y3y4

(
(1+x)y3−(1+x3)y

x−x3
y4 − (1+x4)y−(1+x)y4

x4−x
y3

)
≥ (x−x3)(x4−x)

(x4−x3)y3y4
(yy4 − yy3) ≥ 0

and similarly

2λ2 = (x−x3)(x4−x)
(x4−x3)y3y4

( (
y4−y
x4−x

)
(1− x4) y3 −

(
y3−y
x3−x

)
(1− x3) y4

)
= (x−x3)(x4−x)

(x4−x3)y3y4

(
(1−x)y4−(1−x4)y

x4−x
y3 −

{(
y3−y
x3−x

)
(1− x3) + y3

}
y4

)
(∗)
≥ (x−x3)(x4−x)

(x4−x3)y3y4
(yy3 − 0y4)

≥ 0

For inequality (*) notice that if we let

β =

(
y3 − y

x3 − x

)
(1− x3) + y3

we can see that β < y. So the point (x, y) is in the segment whose vertices are
(x3, y3) and (1, β). But we know that R1 creates 2 regions in the Cartesian plane,
so the point (1, β) has to be in the lower region and so we have β < 0. �
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