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Abstract. We define a new metric on the set of all closed linear operators
between Hilbert spaces and investigate its properties. In particular, we show
that the set of all closed operators with a closed range is an open subset of
the set of all closed operators and the map T 7→ T † is an isometry in this
metric. We also investigate the relationships between the topology induced by
this metric and the gap metric.

1. Introduction

A large number of practical problems can be modeled by the operator equation
of the type

Tx = y

where T is a bounded (or unbounded but closed) operator from a complex Hilbert
space H1 to a complex Hilbert space H2 and y is a given element in H2. Such
a problem has a unique solution and this unique solution depends continuously
on y if T has a continuous (bounded) inverse T−1 : H2 → H1. Since in practical
problems, T is known only approximately, it becomes important to know the
answer to the following perturbation problem:
If an operator S is sufficiently close to T , does it follow that S also has a bounded
inverse and S−1 is close to T−1?. This question has a satisfactory affirmative
answer because the set G of all bounded operators with bounded inverses is an
open set in the norm topology and the map T → T−1 is continuous on G.
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The situation is far from satisfactory if we consider similar question about
Moore–Penrose inverses. The need to consider Moore–Penrose inverses arises
when the operator equation Tx = y does not have a solution and we have to
consider least-square (best approximate ) solutions instead. It is well known that
the set G† of those T that have a bounded Moore–Penrose inverse T † is not an
open set in the norm topology and the map T → T † is not continuous. This is so
not only in the norm topology but also in many other topologies introduced by
several authors including the well known gap topology.

The aim of this article is to introduce a new metric on the class of closed
operators between Hilbert spaces H1 and H2 such that these deficiencies are
removed. It turns out that this new metric has some properties that are similar
to those of the gap metric.

Thus this new metric and the topology induced by it, called the carrier graph
topology is more suitable to study perturbation questions about Moore–Penrose
inverses.

Several authors [4, 8] have paid attention to study this map by defining metrics
on the space of all bounded operators between H1 and H2. As these definitions
involves operator norms, these cannot be extended to the case of unbounded
closed operators. In many cases the operators which arise in applications are
unbounded (see [7, 10, 16] for details), hence it is necessary to consider the case
of unbounded operators in a different manner. Our approach can be compared
with the approach of Labrousse and Mbekhta [12] who arrive at the same metric
but from a different view point.

This paper is organized as follows: In section 2 we set up notations and termi-
nology and also review some of the standard facts about the gap metric. In the
third section we introduce a metric η(·, ·) on the class of closed operators between
H1 and H2 and discuss some of its properties. In particular, we prove that the
set CR(H1, H2) of all closed operators between H1 and H2 with closed range is
an open set (Corollary 3.12) and the map T 7→ T † is an isometry (Theorem 3.9).
In the fourth section we study the relations between the Carrier Graph Topology,
gap metric and the norm topology on the space of bounded operators.

2. Notations and preliminary results

We denote Hilbert spaces over the complex field C by H, H1, H2 etc., and the
corresponding inner product and the norm by 〈·, ·〉 and ‖ · ‖ respectively.
If H1 and H2 are Hilbert spaces over C, then H1 × H2 is also a Hilbert space
with respect to the inner product [(x1, y1), (x2, y2)] = 〈x1, x2〉 + 〈y1, y2〉 for all
(x1, y1), (x2, y2) ∈ H1 ×H2. In this case the norm induced by this inner product

is ‖(x, y)‖ = {‖x‖2 + ‖y‖2} 1
2 for all (x, y) ∈ H1 ×H2.

C(H1, H2) := the class of closed linear operators
C(H, H) = C(H).
For T ∈ C(H1, H2), the domain, null space and range space will be denoted by
D(T ), N(T ) and R(T ) respectively.
CR(H1, H2) := {T ∈ C(H1, H2) : R(T ) is closed}.
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If T ∈ C(H1, H2), then the graph G(T ) := {(x, Tx) : x ∈ D(T )} is a closed sub-
space of H1 ×H2.
B(H1, H2) := the space of all bounded linear operators between H1 and H2.
B(H, H) = B(H)
By the closed graph theorem a closed operator T ∈ C(H1, H2) with D(T ) = H1

is bounded [17, Page 306].
If M ⊆ H, then the orthogonal complement of M is denoted by M⊥ and the
orthogonal projection onto M by PM . If u ∈ H, then the distance between u and
M is denoted by dist(u, M).
If M and N are closed subspaces of H, then their direct sum will be denoted by
M ⊕N and orthogonal direct sum by M ⊕⊥ N .
If S and T are two linear operators such that D(T ) ⊆ D(S) and Tx = Sx for all
x ∈ D(T ), then T is called a restriction of S and S is called an extension of T .
We denote this fact by T ⊆ S.

Definition 2.1. [2, Pages 308, 310] Let T ∈ L(H1, H2). If D(T ) = H1, then T is
called densely defined. The subspace C(T ) := D(T )∩N(T )⊥ is called the carrier
of T .
We denote the graph of the restriction operator T |C(T ) by GC(T ). Thus GC(T ) :=
{(x, Tx) : x ∈ C(T )}. We call this the carrier graph of T .

If A ∈ C(H1, H2) is densely defined, then I + A∗A and I + AA∗ have bounded

inverse (see [6, 7, 18] for details). We define Ǎ := (I + A∗A)−1 and Â := (I +
AA∗)−1.

Note 2.2. If T ∈ C(H1, H2), then D(T ) = N(T )⊕⊥ C(T ) [2, Page 340].

Definition 2.3. (Moore–Penrose Inverse) [2, Pages 314, 318-320]
Let T ∈ C(H1, H2) be densely defined. Then there exists a unique densely defined
operator T † ∈ C(H2, H1) with domain D(T †) = R(T ) ⊕⊥ R(T )⊥ and has the
following properties:

(1) TT †y = PR(T ) y, for all y ∈ D(T †).

(2) T †Tx = PN(T )⊥ x, for all x ∈ D(T ).

(3) N(T †) = R(T )⊥.

This unique operator T † is called the Moore–Penrose inverse of T .
The following property of T † is also well known. For every y ∈ D(T †), let

L(y) :=
{

x ∈ D(T ) : ‖Tx− y‖ ≤ ‖Tu− y‖ for all u ∈ D(T )
}

.

Here any u ∈ L(y) is called a least square solution of the operator equation
Tx = y. The vector T †y ∈ L(y), ‖T †y‖ ≤ ‖x‖ for all x ∈ L(y) and it is called
the least square solution of minimal norm. A different treatment of T † is given
in [2, Pages 336, 339, 341], where it is called “the Maximal Tseng generalized
Inverse”.

Definition 2.4. Let T ∈ C(H1, H2) be densely defined. Then

γ(T ) := inf {‖Tx‖ : x ∈ C(T ), ‖x‖ = 1}
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is called the reduced minimum modulus of T and

m(T ) := inf {‖Tx‖ : x ∈ H1, ‖x‖ = 1}

is called the minimum modulus of T .

Definition 2.5 (spectrum). [18, Page 346] Let T ∈ C(H) be densely defined.
The resolvent of T is defined by

ρ(T ) := {λ ∈ C : T − λI : D(T ) → H is bijective and (T − λI)−1 ∈ B(H)}

and the spectrum σ(T ) is the complement of ρ(T ) in C.

Proposition 2.6. Let T ∈ C(H) be self-adjoint. Then m(T ) = inf {|λ| : λ ∈ σ(T )}.

Proof. The proof goes along similar lines to that of [13, Theorem 3.5]. �

Proposition 2.7. [13, Proposition 2.12] Let T ∈ C(H1, H2) be densely defined.
Then the following statements are equivalent.

(1) T ∈ CR(H1, H2).
(2) γ(T ) > 0.

(3) T † is bounded and ‖T †‖ =
1

γ(T )
.

(4) T ∗ ∈ CR(H2, H1).

Remark 2.8. Since (T †)† = T ([2, Theorem 2, Page 341]), by Proposition 2.7, T
is bounded if and only if R(T †) is closed.

First we give some preliminary definitions and results which will be used sub-
sequently.

Definition 2.9. (Gap between subspaces) [10, Page 197] Let H be a Hilbert
space and M, N be closed subspaces of H. Let SM be the unit sphere of M .
Define

δ(M, N) : =

 sup
u∈SM

dist(u, N), if M 6= {0},

0, otherwise.

and

δ̂(M, N) : = max {δ(M, N), δ(N, M)}.

The quantity δ̂(M, N) is called the gap between the subspaces M and N .

Note 2.10. The following result is proved in [1, Page 70].

δ̂(M, N) = ‖PM − PN‖ = max
{
‖PM(I − PN)‖, ‖PN(I − PM)‖

}
.

For the properties of δ(·, ·) and δ̂(·, ·) we refer to [10, Pages 197, 200, 201].
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2.1. The gap between closed operators. For S, T ∈ C(H1, H2), G(T ), G(S) ⊆
H1 ×H2 are closed subspaces. Define

δ(T, S) = δ(G(T ), G(S)), δ̂(T, S) = δ̂(G(T ), G(S)) = max[δ(T, S), δ(S, T )].

Then δ̂(T, S) is called the gap between T and S. The function δ̂(·, ·) defines a
metric on C(H1, H2) called the gap metric and the topology induced by this metric
is called the Gap topology. For a deeper discussion on these concepts we refer
to [10, Chapter IV]. In the following theorem we collect some of the important
properties of the gap metric on C(H1, H2).

Theorem 2.11. [10, Pages 202-205] Let S, T ∈ C(H1, H2) be densely defined.
Then

(1) If T is bounded and δ̂(S, T ) <
1

(1 + ‖T‖2)
1
2

, then S is bounded.

(2) δ̂(S, T ) = δ̂(S∗, T ∗).
(3) B(H1, H2) is an open subset of C(H1, H2) with respect to the gap topology.

(4) If S, T are one-to-one, then δ̂(S, T ) = δ̂(S−1, T−1).
(5) C(H1, H2) is not complete with respect to the gap metric.

(6) If T−1 ∈ B(H2, H1) and S is such that δ̂(S, T ) <
1√

1 + ‖T−1‖2
, then S is

invertible and S−1 ∈ B(H2, H1).

Theorem 2.12. [14, Theorem 2.5] Let A, B ∈ B(H1, H2). Then

‖A−B‖
(1 + ‖A‖2)

1
2 (1 + ‖B‖2)

1
2

≤ δ̂(A, B) ≤ ‖A−B‖.

In particular, the relative topology induced by the gap topology on B(H1, H2) co-
incides with the norm topology.

Theorem 2.13. [9, Theorem 3.5] Let A, B ∈ C(H1, H2) be densely defined. Then

the operators BB̌
1
2 Ǎ

1
2 , B̂

1
2 AǍ

1
2 , AǍ

1
2 B̌

1
2 and Â

1
2 BB̌

1
2 are bounded and

δ̂(A, B) = max
{
‖BB̌

1
2 Ǎ

1
2 − B̂

1
2 AǍ

1
2‖, ‖AǍ

1
2 B̌

1
2 − Â

1
2 BB̌

1
2‖

}
.

3. The carrier graph topology

First we consider two examples to illustrate that the map T 7→ T † is not
continuous in the gap metric and the set CR(H1, H2) is not open in the gap
topology.

Example 3.1. Let Tn :=

(
1 0
0 1

n

)
and T :=

(
1 0
0 0

)
. Then Tn → T in the

norm topology of B(R2). Since for B(R2), the convergence in the norm topology
and the convergence in the gap metric are same (Theorem 2.12), Tn → T in the
gap metric.

But T †
n :=

(
1 0
0 n

)
is not a Cauchy sequence. Thus the map T 7→ T † is not

continuous.
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Example 3.2. Let T : `2 → `2 be given by

T (x1, x2, x3, . . . ) = (x1,
x2

2
,
x3

3
, . . . ) for all (x1, x2, x3, . . . ) ∈ `2.

Then R(αT ) is not closed for each α 6= 0. But δ̂(αT, 0) ≤ ‖αT − 0‖ = |α‖|T‖ ≤
|α|. In other words, we can find an operator with non closed range in every
neighbourhood of 0, which has a closed range. Thus CR(H1, H2) is not open in
the gap topology.

Next, we define a new metric η(·, ·) on C(H1, H2) and show that with respect to
this metric η(·, ·), the set CR(H1, H2) is open in C(H1, H2) and the map T 7→ T †

is an isometry between C(H1, H2) and C(H2, H1). We also show that this metric

η(·, ·) has properties similar to those of δ̂(·, ·) given in Theorem 2.11.

Lemma 3.3. Let T ∈ C(H1, H2) be densely defined. Then C(T ) = N(T )⊥.

Proof. By definition C(T ) ⊆ N(T )⊥. For the converse, let x ∈ N(T )⊥. Choose
{xn} ⊆ D(T ) such that xn → x. Then by Note 2.2, xn = un + vn, where
un ∈ N(T ), vn ∈ C(T ) and 〈un, vn〉 = 0, for all n. By the Pythagorean property,

un → u ∈ N(T ) and vn → v ∈ C(T ). Hence x = u + v. That is u = x − v ∈
N(T )⊥. Thus u = 0, concluding x = v ∈ C(T ). �

Definition 3.4. Let T ∈ C(H1, H2) be densely defined. Define the Carrier Graph
of T by

GC(T ) := {(x, Tx) : x ∈ C(T )} ⊆ H1 ×H2.

Note that for T ∈ C(H1, H2), GC(T ) is a closed subspace of H1 × H2. For
S, T ∈ C(H1, H2), define

η(T, S) = δ̂(GC(T ), GC(S)).

Note that if N(T ) = {0} = N(S), then C(T ) = H1 = C(S). Hence GC(T ) =

G(T ), GC(S) = G(S), thus η(T, S) = δ̂(T, S).

Proposition 3.5. The function η(·, ·) : C(H1, H2)×C(H1, H2) → R defined above
is a metric on C(H1, H2).

Proof. It suffices to prove that if η(T, S) = 0, then T = S. If η(T, S) = 0, then
GC(T ) = GC(S). Hence C(T ) = C(S) and Tx = Sx for all x ∈ C(T ). Now

C(T ) = C(S) ⇒ C(T ) = C(S) ⇒ N(S)⊥ = N(T )⊥ ⇒ N(S) = N(T ).

Since S, T ∈ C(H1, H2), D(T ) = N(T )⊕⊥C(T ) = N(S)⊕⊥C(S) = D(S). Hence
for x ∈ D(T ), x = u + v, u ∈ N(T ) and v ∈ C(T ). Then Tx = Tv = Sv = Sx.

All the other axioms of the metric follow from the fact that δ̂(·, ·) is a metric
on the set of all closed subspaces of H1 ×H2 [10, Page 197]. �

Remark 3.6. Let Tn, T ∈ C(H1, H2) be densely defined. We say Tn → T in the

metric η(·, ·), if η(Tn, T ) → 0 as n →∞. We denote this by Tn
η−→ T .
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Remark 3.7. The function η(·, ·) satisfies all the properties of δ̂(·, ·) mentioned in
[10, Pages 197, 200, 201]. In general, it is not complete as the following example
shows.

Let H1 = H2 = H and consider Tn = nI. Then C(Tn) = H, thus G(Tn) =

GC(Tn) and η(Tn, Tm) = δ̂(Tn, Tm). It is known that in the metric δ̂(·, ·), Tn is a
Cauchy sequence, but not convergent ([10, Remark 2.10, page 202]).

Definition 3.8. The topology induced by the metric η(·, ·) on C(H1, H2) is called
the Carrier Graph Topology.

Theorem 3.9. Let S, T ∈ C(H1, H2) be densely defined. Then η(T †, S†) =

η(T, S). In other words, the map µ :
(
C(H1, H2), η(·, ·)

)
→

(
C(H2, H1), η(·, ·)

)
given by µ(T ) = T † is continuous in the carrier graph topology. In fact, it is an
isometry.

Proof. The map U : H1 × H2 → H2 × H1 given by (x, y) 7→ (y, x) is an onto
isometry, it preserves the gap between closed subspaces. Further, C(T †) = R(T ).
Hence (x, Tx) ∈ GC(T ) ⇔ x ∈ C(T ), Tx ∈ R(T ) ⇔ (Tx, x) = (Tx, T †Tx) ∈
GC(T †). Thus, U(GC(T )) = GC(T †). Similarly, U(GC(S)) = GC(S†). Therefore

η(T †, S†) = δ̂(GC(T †), GC(S†)) = δ̂(U(GC(T )), U(GC(S))) = δ̂(GC(T ), GC(S)) =
η(T, S). �

Here is an immediate consequence of Theorem 3.9.

Theorem 3.10. Let Tn, T ∈ C(H1, H2) be densely defined. Then the following
statements are equivalent.

(1) Tn
η−→ T .

(2) T †
n

η−→ T †.

Next, we prove a very important Theorem about the Carrier Graph Topology.
It makes use of the concept of the reduced minimum modulus (See Definition 2.4
and Proposition 2.7).

Theorem 3.11. Let S, T ∈ C(H1, H2) be densely defined. If T ∈ CR(H1, H2),
then

1√
1 + ‖T †‖2

≤ η(S, T ) + γ(S)(1 + η(S, T )).

Further, if η(S, T ) <
1√

1 + ‖T †‖2
, then S ∈ CR(H1, H2) and

‖S†‖ ≤ (1 + ‖T †‖2)
1
2 (η(T, S) + 1)

1− (1 + ‖T †‖2)
1
2 η(T, S)

.

Proof. There exists a sequence (xn) ⊆ C(S) with ‖xn‖ = 1, for all n such that
‖Sxn‖ → γ(S) as n →∞.
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Let ε > 0. Then
(xn, Sxn)

(1 + ‖Sxn‖2)
1
2

∈ GC(S) and its norm is one. There exists

(un, Tun) ∈ GC(T ) such that∣∣∣∣∣∣ (xn, Sxn)

(1 + ‖Sxn‖2)
1
2

− (un, Tun)
∣∣∣∣∣∣ ≤ η(S, T ) + ε.

Let βn := (1 + ‖Sxn‖2)
1
2 . Then βn → (1 + γ(S)2)

1
2 as n → ∞. Also, from the

above inequality, ‖(xn − βnun, Sxn − βnTun)‖ ≤ βn(η(S, T ) + ε). That is

‖xn − βnun‖2 + ‖Sxn − βnTun‖2 ≤ β2
n(η(S, T ) + ε)2.

Note that since un ∈ C(T ), we have T †Tun = un.
Now

1 = ‖xn‖2 ≤
(
‖xn − βnun‖+ ‖βnun‖

)2

≤
(
‖xn − βnun‖+ ‖βnT

†Tun‖
)2

≤
(
‖xn − βnun‖+ ‖T †‖ ‖βnTun‖

)2

≤ (1 + ‖T †‖2)
(
‖xn − βnun‖2 + ‖βnTun‖2

)
≤ (1 + ‖T †‖2)

(
‖xn − βnun‖2 + (‖Sxn − βnTun‖+ ‖Sxn‖)2

)
≤ (1 + ‖T †‖2)

(
‖xn − βnun‖2 + ‖Sxn − βnTun‖2 + ‖Sxn‖2

+ 2 ‖Sxn‖ ‖Sxn − βnTun‖
)
.

1 ≤ (1 + ‖T †‖2)
[
β2

n(η(S, T ) + ε)2 + ‖Sxn‖2 + 2 ‖Sxn‖
(
βn(η(S, T ) + ε

)]
.

Letting n →∞, we get

1 ≤ (1+‖T †‖2)
[
(1+γ(S)2)(η(S, T )+ε)2+γ(S)2+2 γ(S)(1+γ(S)2)

1
2

(
η(S, T )+ε

)]
.

Since ε was arbitrary, we have

1 ≤ (1 + ‖T †‖2)
[
(1 + γ(S)2)η(S, T )2 + γ(S)2 + 2 γ(S)(1 + γ(S)2)

1
2 η(S, T )

]
= (1 + ‖T †‖2)

[
(1 + γ(S)2)

1
2 η(S, T ) + γ(S)

]2

.

By taking square root and noting that (1 + γ(S)2)
1
2 ≤ 1 + γ(S), we obtain,

1 ≤ (1 + ‖T †‖2)
1
2

[(
1 + γ(S)

)
η(S, T ) + γ(S)

]
.

Thus
1√

1 + ‖T †‖2
≤ η(S, T ) + γ(S)

(
1 + η(S, T )

)
.
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Hence, if η(S, T ) <
1√

1 + ‖T †‖2
, then

γ(S) ≥
1− η(S, T )

√
1 + ‖T †‖2√

1 + ‖T †‖2(1 + η(S, T ))
> 0.

That is R(S) is closed and

‖S†‖ =
1

γ(S)
≤

√
1 + ‖T †‖2(1 + η(S, T ))

1− η(S, T )
√

1 + ‖T †‖2
. �

Corollary 3.12. The set CR(H1, H2) is open in C(H1, H2) with respect to the
carrier graph topology.

Remark 3.13. Note that in Example 3.2, since C(0) = {0}, GC(0) = {(0, 0)}. For

α 6= 0, GC(αT ) 6= {(0, 0)}. Hence η(αT, 0) = δ̂(GC(αT ), GC(0)) = 1. Thus even
for small non zero α, αT is not close to 0 in the carrier graph topology.

Remark 3.14. If T ∈ C(H1, H2) \ {0}, then η(T, 0) = 1. Hence

η(T, 0) < 1 ⇔ T = 0.

In other words, 0 is an isolated point in
(
C(H1, H2), η(·, ·)

)
.

Corollary 3.15. Let S ∈ C(H) be such that η(S, I) < 1√
2
, then R(S) is closed.

Proof. Follows by taking T = I and noting that I† = I. �

Lemma 3.16. [5, 6, 15] Let T ∈ C(H1, H2) be densely defined. Then

(1) Ť ∈ B(H1), T̂ ∈ B(H2)

(2) T̂ T ⊆ T Ť , ‖T Ť‖ ≤ 1

2
and Ť T ∗ ⊆ T ∗T̂ , ‖T ∗T̂‖ ≤ 1

2
.

Proposition 3.17. Let T ∈ C(H) be densely defined unbounded symmetruc op-

erator (i.e., T ⊆ T ∗). Then δ̂(T, nI) =
1√

1 + n2
. If T is one-to-one, then

η(T, nI) =
1√

1 + n2
.

Proof. We use the formula of 2.13. Let S = nI. Then Š
1
2 =

1√
1 + n2

I and

SŠ
1
2 =

n√
1 + n2

I. Now SŠ
1
2 Ť

1
2 − Ŝ

1
2 T Ť

1
2 =

1√
1 + n2

(
nŤ

1
2 −T Ť

1
2

)
and T Ť

1
2 Š

1
2 −

T̂
1
2 SŠ

1
2 =

1√
1 + n2

(
T Ť

1
2 − nT̂

1
2

)
. Let A := nŤ

1
2 − T Ť

1
2 and B := T Ť

1
2 − nT̂

1
2 .
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Then δ̂(T, nI) =
1√

1 + n2
max{‖A‖, ‖B‖}. To find ‖A‖, consider

A∗A =
(
nŤ

1
2 − T ∗T̂

1
2

)(
nŤ

1
2 − T Ť

1
2

)
= n2Ť − nT Ť − nT ∗T̂

1
2 Ť

1
2 + T ∗T̂

1
2 T Ť

1
2

= n2Ť − nT Ť − nT ∗T̂
1
2 Ť

1
2 + Ť

1
2 T ∗T Ť

1
2

= n2Ť − nT Ť − nT ∗T̂
1
2 Ť

1
2 + Ť

1
2 TT Ť

1
2 (since T ⊆ T ∗)

= (n2I + T ∗T )Ť − 2nT Ť .

Hence

‖A‖2 = supx∈H, ‖x‖=1‖(n2I + T ∗T )Ť x‖ − infx∈H, ‖x‖=1‖2nT Ťx‖
= ‖(n2I + T ∗T )Ť‖ −m

(
2nT Ť

)
= ‖(n2I + T ∗T )Ť‖ −m

(
4n2T ∗T Ť 2

) 1
2

= sup
{n2 + λ

1 + λ
: λ ∈ σ(T ∗T )

}
−

(
inf

{ 4n2µ

(1 + µ)2
: µ ∈ σ(T ∗T )

}) 1
2

= 1.

Similarly we can show that ‖B‖ = 1. Hence δ̂(T, nI) =
1√

1 + n2
.

If T is one-to-one, we have η(T, nI) = δ̂(T, nI). �

Example 3.18. Let H = L2[0, 1], relative to Lebesgue measure. Let

D(T1) = {f ∈ H : f is absolutely continuous and f ′ ∈ H}
D(T2) = D(T1) ∩ {f : f(0) = 0 = f(1)}.

Define Tkf = i f ′ for f ∈ D(Tk), k = 1, 2. It can be shown that Tk (k = 1, 2) is
densely defined closed operator such that T ∗

1 = T2. That is T2 is symmetric. Also
R(Tk) (k = 1, 2) is closed (see [18, Example 13.4, page 331] for details). Also
note that T2 is one-to-one. Hence by Proposition 3.17,

η(T1, 2I) = η(T2, 2I) = δ̂(T2, 2I) = δ̂(T1, 2I) =
1√
5

<
2√
5

=
1√

1 + ‖(2I)†‖2
.

We have γ(2I) = 2. Hence T2 and 2I satisfy hypotheses in Theorem 3.11 and it
can be shown that all the estimtes in Theorem 3.11 are true. On the other hand,
η(T1, I) = η(T2, I) = 1√

2
. This shows that the condition in Theorem 3.11 is not

necessary.

Theorem 3.19. Let S, T ∈ C(H1, H2) be densely defined. Then

η(S, T ) =

∥∥∥∥[
T †T Ť − S†SŠ T ∗T̂ − S∗Ŝ

T Ť − SŠ T̂ − Ŝ

]∥∥∥∥ .

Proof. Let (x1, x2) ∈ H1×H2 and P := PGC(T ). Then P (x1, x2) ∈ GC(T ). Hence
there exists a z ∈ C(T ) such that P (x1, x2) = (z, Tz). Now (x1 − z, x2 − Tz) ∈
(GC(T ))⊥.
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Note that GC(T )⊥ = {(−T ∗y + u, y) : y ∈ D(T ∗), u ∈ N(T )}. Hence (x1 −
z, x2 − Tz) = (−T ∗y + u, y) for some y ∈ D(T ∗) and u ∈ N(T ). That is

z = x1 + T ∗y − u

Tz = x2 − y.

Since Ť ∈ B(H1) and T̂ ∈ B(H2), we have

Ť z = Ť x1 + Ť T ∗y − Ť u

T̂Tz = T̂ x2 − T̂ y. (3.1)

From Equation 3.1, we can get that

T ∗T̂ T z = T ∗T̂ x2 − T ∗T̂ y.

By Lemma 3.16, T̂ Tx = T Ťx for all x ∈ D(T ), the above equation can be written
as

T ∗T Ť z = T ∗T̂ x2 − T ∗T̂ y

= T ∗T̂ x2 − Ť T ∗y

z = Ť x1 + T ∗T̂ x2 − Ť u.

Hence Tz = T Ťx1 + TT ∗T̂ x2.
Since z ∈ C(T ), we have T †Tz = z. Hence

z = T †T Ťx1 + T †TT ∗T̂ x2 − T †T Ťu

= T †T Ťx1 + T †TT ∗T̂ x2 − T †Ť Tu

= T †T Ťx1 + T †TT ∗T̂ x2.

Hence the matrix of P is given by

P =

[
T †T Ť T †TT ∗T̂

T Ť TT ∗T̂

]
=

[
T †T Ť T ∗T̂

T Ť TT ∗T̂

]
. (3.2)

Similarly if Q := PG(S), then we have

Q =

[
S†SŠ S∗Ŝ

SŠ SS∗Ŝ

]
.

Hence

P −Q =

[
T †T Ť − S†SŠ T ∗T̂ − S∗Ŝ

T Ť − SŠ T̂ − Ŝ

]
and

η(T, S) = ‖P −Q‖ =

∥∥∥∥[
T †T Ť − S†SŠ T ∗T̂ − S∗Ŝ

T Ť − SŠ T̂ − Ŝ

]∥∥∥∥ . �
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Remark 3.20. We note that the metric f(·, ·) defined by Labrousse and Mbekhta
(see [12] for details) on C(H1, H2) is the same as the metric η(·, ·) above. To see
this, let

FT :=

[
Ť − PN(T ) T ∗T̂

T Ť I − T̂

]
.

Then the metric f(·, ·) is defined by f(T, S) := ‖FT − FS‖. First we note that
FT is the same as P in Equation 3.2 above. To see this it is enough to show
that Ť − PN(T ) = T †T Ť . For z ∈ H1, write z = x + y such that x ∈ N(T ) and
y ∈ N(T )⊥. Then

T †T Ť z = T †T Ťx + T †T Ťy

= T †T̂ Tx + T †T Ťy

= T †T Ťy

= PN(T⊥)Ť y

= (I − PN(T ))Ť (z − x)

= Ť z − PN(T )z.

Thus FT = P . Similarly FS = Q. Hence f(T, S) = ‖FT − FS‖ = ‖P − Q‖ =
η(T, S).

Since the metrics η(·, ·) and f(·, ·) are equal, Theorems 3.9 and 3.10 can be
proved using the properties of f(·, ·) (see [12] for details).

Let T ∈ C(H1, H2) be densely defined. Then G(T ) = GC(T )⊕⊥J(N(T )), where
J : H1 → H1 × {0} is the isometry given by J(x) = (x, 0) for all x ∈ H1. Since
isometry preserves the distances, it preserves the gap between two subspaces.

Theorem 3.21. Let T, S ∈ C(H1, H2) be densely defined. Then

|η(T, S)− δ̂(N(T ), N(S))| ≤ δ̂(T, S) ≤ η(T, S) + δ̂(N(T ), N(S)).

Proof. The proof follows from Remark 2.8 of [12]. �

Remark 3.22. If R(T ) = R(S), then N(T †) = N(S†). Hence δ̂(T †, S†) = η(T †, S†).

Now by Theorem 3.9, it follows that δ̂(T †, S†) = η(T, S).

4. Bounded operators

In this section, we obtain some results for bounded operators from the point
of view of the Carrier Graph Topology .

Theorem 4.1. Let S ∈ C(H1, H2) be densely defined. If T ∈ B(H1, H2), then

1√
1 + ‖T‖2

≤ η(S, T ) + γ(S†)(1 + η(S, T )).

Further, if η(S, T ) <
1√

1 + ‖T‖2
, then S ∈ B(H1, H2) and

‖S‖ ≤ (1 + ‖T‖2)
1
2 (η(T, S) + 1)

1− (1 + ‖T‖2)
1
2 η(T, S)

.
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Proof. Let T ∈ B(H1, H2) and S ∈ C(H1, H2) be such that η(S, T ) <
1

(1 + ‖T‖2)
1
2

.

Let A = T †. Since A† = T is bounded, R(A) is closed. Now by Theorem 3.9,

η(A, S†) = η(T, S) <
1

(1 + ‖A†‖)2
. Hence by Theorem 3.11, R(S†) is closed.

Hence S is bounded by Remark 2.8.
Replacing S†, T † by S, T respectively in Theorem 3.11 and using the fact that

η(S, T ) = η(S†, T †), we can obtain the bound for ‖S‖. �

Corollary 4.2. B(H1, H2) is an open subset of C(H1, H2) with respect to the
Carrier Graph Topology.

The following example shows that unlike the gap topology, the relative topology
induced by η(·, ·) on B(H1, H2) is different from the norm topology on B(H1, H2).

Example 4.3. Let Tn and T be as in Example 3.1. We can note N(Tn) =
{0}. Hence C(Tn) = C2. Now G(Tn) = {(x1, x2, x1, x2/n) : x1, x2 ∈ C} ⊆ C4,
dim GC(Tn) = 2. Also N(T ) = {(0, x2) : x2 ∈ C}, C(T ) = {(x1, 0) : x1 ∈ C},
GC(T ) = {(x1, 0, x1, 0) : x1 ∈ C}, dim GC(T ) = 1. Therefore η(Tn, T ) = 1 for all
n by [10, Page 200, Corollary 2.6]. Then η(T †

n, T †) = 1 for all n by Theorem 3.9.
Note that Tn → T in norm and also in the gap topology but not in the Carrier
Graph Topology. Also η(Tn, Tm) ≤ ‖Tn−Tm‖ ≤ | 1

n
− 1

m
| (since N(Tn) = N(Tm)).

Thus {Tn} is a Cauchy sequence but not convergent.

Theorem 4.4. Let S, T ∈ B(H1, H2). Then

(i)

‖T − S‖√
1 + ‖T‖2

√
1 + ‖S‖2

− δ̂(N(T ), N(S)) ≤ η(S, T ) ≤ ‖T −S‖+ δ̂(N(S), N(T )) .

(ii) If R(T ) is closed and ‖T−S‖+ δ̂(N(S), N(T )) <
1√

1 + ‖T †‖2
, then R(S)

is closed and ‖S†‖ ≤
(1 + ‖T †‖2)

1
2

(
η(T, S) + 1

)
1− (1 + ‖T †‖2)

1
2 η(T, S)

.

(iii) If Tn ∈ B(H1, H2) be such that ‖Tn − T‖ + δ̂(N(Tn), N(T )) → 0, then
η(T †

n, T †) → 0.

Proof. We know by Theorem 2.12 that ‖T −S‖ ≤
√

1 + ‖T‖2
√

1 + ‖S‖2 δ̂(S, T ).

Now by Theorem 3.21, δ̂(S, T ) ≤ η(S, T )+ δ̂(N(S), N(T )). Combining these two

relations we obtain
‖T − S‖√

1 + ‖T‖2
√

1 + ‖S‖2
− δ̂(N(T ), N(S)) ≤ η(S, T ). The

second part of the inequality follows from Theorem 3.21 and Theorem 2.12.

Assume that R(T ) is closed and ‖T − S‖ + δ̂(N(S), N(T )) <
1√

1 + ‖T †‖2
.

Making use of (i), we get η(S, T ) <
1√

1 + ‖T †‖2
. The conclusion follows from

Theorem 3.11.
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If Tn ∈ B(H1, H2) be such that ‖Tn − T‖ + δ̂(N(Tn), T ) → 0, it follows that
η(Tn, T ) → 0. Hence by Theorem 3.9, η(T †

n, T †) → 0. �

Remark 4.5. The statement (ii) of Theorem 4.4 is similar to that of Ding and
Huang [3, Theorem 3.1].
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