TOTAL DECOMPOSITION AND BLOCK NUMERICAL RANGE

ABBAS SALEMI ${ }^{1}$
Communicated by F. Kittaneh

Abstract

Let \mathcal{H} be a separable Hilbert space and let $\mathcal{A} \in \mathcal{B}(\mathcal{H})$. In this note the notion of a total decomposition is introduced, and it is shown that sometimes the block numerical ranges corresponding to a total decomposition approximate $\sigma(A)$, sometimes not.

1. Introduction and preliminaries

Let \mathcal{H} be a Hilbert space and let $A \in \mathcal{B}(\mathcal{H})$. The numerical range of A is defined as follows (see [1, 3]):

$$
W(A)=\left\{x^{*} A x: x \in \mathcal{H},\|x\|=1\right\} .
$$

The notion of quadratic numerical range was introduced in [4] and this concept was generalized to the block numerical range in [6]. Let $\mathcal{H}=\mathcal{H}_{1} \oplus \cdots \oplus \mathcal{H}_{m}$, where $\mathcal{H}_{1}, \mathcal{H}_{2}, \ldots, \mathcal{H}_{m}$ are Hilbert spaces. With respect to this decomposition, the block operator matrix \mathcal{A} on \mathcal{H} has the following representation:

$$
\mathcal{A}:=\left[\begin{array}{ccc}
A_{11} & \cdots & A_{1 m} \tag{1.1}\\
\vdots & \ddots & \vdots \\
A_{m 1} & \cdots & A_{m m}
\end{array}\right]
$$

Date: Received: 24 May 2010; Accepted: 10 June 2010.
2010 Mathematics Subject Classification. Primary 47A12; Secondary 49M27.
Key words and phrases. Block numerical range, total decomposition, spectrum.
where $A_{i j} \in \mathcal{B}\left(\mathcal{H}_{j}, \mathcal{H}_{i}\right)$ for all $(i, j=1, \ldots, m)$. For $\mathbf{x}=\left(x_{1}, \ldots, x_{m}\right) \in \mathcal{H}_{1} \oplus \mathcal{H}_{2} \oplus$ $\cdots \oplus \mathcal{H}_{m}$, define $\mathcal{A}_{\mathbf{x}} \in M_{m}(\mathbb{C})$ (the space of $m \times m$ matrices over \mathbb{C}) as follows:

$$
\mathcal{A}_{\mathbf{x}}:=\left[\begin{array}{ccc}
\left\langle A_{11} x_{1}, x_{1}\right\rangle & \cdots & \left\langle A_{1 m} x_{m}, x_{1}\right\rangle \\
\vdots & \ddots & \vdots \\
\left\langle A_{m 1} x_{1}, x_{m}\right\rangle & \cdots & \left\langle A_{m m} x_{m}, x_{m}\right\rangle
\end{array}\right]
$$

The block numerical range of the block operator matrix \mathcal{A} as in (1.1) is the set

$$
W^{m}(\mathcal{A}):=\left\{\lambda \in \mathbb{C}: \lambda \in \sigma\left(\mathcal{A}_{\mathbf{x}}\right), \mathbf{x} \in \mathcal{S}_{m}\right\}
$$

where $\mathcal{S}_{m}=\left\{\left(x_{1}, \ldots, x_{m}\right) \in \mathcal{H}_{1} \oplus \cdots \oplus \mathcal{H}_{m}:\left\|x_{1}\right\|=\cdots=\left\|x_{m}\right\|=1\right\}$.
In the following Lemma we state some properties. (For details see [6].)
Lemma 1.1. Let \mathcal{A} as in (1.1) be a block operator matrix on \mathcal{H}. Then
(1) $\sigma_{p}(\mathcal{A}) \subseteq W^{m}(\mathcal{A})$, where $\sigma_{p}(\mathcal{A})$ is the point spectrum of \mathcal{A}.
(2) $\sigma(\mathcal{A}) \subseteq \overline{W^{m}(\mathcal{A})}$, where $\sigma(\mathcal{A})$ is the spectrum of \mathcal{A}.
(3) $W^{m}(\mathcal{A}) \subseteq W(\mathcal{A})$,
(4) $W^{m}\left(\mathcal{A}^{*}\right):=\left\{\lambda: \bar{\lambda} \in W^{m}(\mathcal{A})\right\}$.

Let $\mathcal{H}=\widehat{\mathcal{H}}_{1} \oplus \cdots \oplus \widehat{\mathcal{H}}_{\widehat{m}}=\mathcal{H}_{1} \oplus \cdots \oplus \mathcal{H}_{m}$. Then $\widehat{\mathcal{H}}_{1} \oplus \cdots \oplus \widehat{\mathcal{H}}_{\widehat{m}}$ is a refinement of $\mathcal{H}_{1} \oplus \cdots \oplus \mathcal{H}_{m}$, if $m \leq \widehat{m}$ and there exist $0=i_{0}<i_{1}<\cdots<i_{m}=\widehat{m}$ such that $\mathcal{H}_{j}=\widehat{\mathcal{H}}_{i_{j-1}+1} \oplus \cdots \oplus \widehat{\mathcal{H}}_{i_{j}}, 1 \leq j \leq m$.
Proposition 1.2. [6, Theorem 3.5] Let $\widehat{\mathcal{H}}_{1} \oplus \cdots \oplus \widehat{\mathcal{H}}_{\widehat{m}}$ be a refinement of $\mathcal{H}_{1} \oplus \cdots \oplus \mathcal{H}_{m}$. Then $W^{\widehat{m}}(\mathcal{A}) \subseteq W^{m}(\mathcal{A})$.

Notice that, we consider \mathcal{A} with respect to the decompositions $\mathcal{H}_{1} \oplus \cdots \oplus \mathcal{H}_{m}$ and $\widehat{\mathcal{H}}_{1} \oplus \cdots \oplus \widehat{\mathcal{H}}_{\widehat{m}}$ to define $W^{m}(\mathcal{A})$ and $W^{\widehat{m}}(\mathcal{A})$ respectively.

Throughout the paper we will fix these notations: Let \mathbb{T} and \bar{D} be the unit circle and closed unit disc in the complex plane, respectively.

2. Main Results

Let \mathcal{H} be a Hilbert space and let $\mathcal{A} \in \mathcal{B}(\mathcal{H})$. In this section the notion of a total decomposition of \mathcal{H} is introduced. Also, we define an estimable decomposition of \mathcal{H} for $\sigma(\mathcal{A})$. By using an estimable decomposition, we will approximate the spectrum of \mathcal{A} by block numerical ranges of \mathcal{A}.

Definition 2.1. Let \mathcal{H} be a separable Hilbert space. A total decompostion of \mathcal{H} is a sequence of decompositions $\left\{\mathcal{H}=\mathcal{H}_{1}^{k} \oplus \mathcal{H}_{2}^{k} \oplus \cdots \oplus \mathcal{H}_{n_{k}}^{k}\right\}_{k=1}^{\infty}$ with the $(k+1)^{t h}$ being a refinement of $k^{\text {th }}$ and there is no subspace V with $\operatorname{dim}(V)>1$ such that for all $k \in \mathbb{N}$, there exists $1 \leq l_{k} \leq n_{k}$ such that $V \subseteq \mathcal{H}_{l_{k}}^{k}$.
Lemma 2.2. Every separable Hilbert space \mathcal{H} has a total decomposition.
Proof. Let \mathcal{H} be a separable Hilbert space. Then \mathcal{H} has an orthonormal basis $\mathcal{B}=$ $\left\{\alpha_{1}, \alpha_{2}, \ldots\right\}$. Now, we define a sequence of decompositions for the Hilbert space $\mathcal{H},\left\{\mathcal{H}=\mathcal{H}_{1} \oplus \cdots \oplus \mathcal{H}_{m} \oplus \widehat{\mathcal{H}}_{m+1}\right\}_{m=1}^{\infty}$, where \mathcal{H}_{i} is the subspace generated by $\left\{\alpha_{i}\right\}, i=1, \ldots m$ and $\widehat{\mathcal{H}}_{m+1}$ is the subspace generated by $\left\{\alpha_{m+1}, \alpha_{m+2}, \ldots\right\}$. It is readily seen that this sequence of decompositions is a total decomposition.

Let $\left\{\mathcal{H}=\mathcal{H}_{1}^{k} \oplus \mathcal{H}_{2}^{k} \oplus \cdots \oplus \mathcal{H}_{n_{k}}^{k}\right\}_{k=1}^{\infty}$ be a total decomposition of \mathcal{H} and let $\mathcal{A} \in \mathcal{B}(\mathcal{H})$. Then, by Proposition 1.2, and Lemma 1.1(2,3), we have the following:

$$
\begin{equation*}
\sigma(\mathcal{A}) \subseteq \overline{W^{n_{k+1}}(\mathcal{A})} \subseteq \overline{W^{n_{k}}(\mathcal{A})} \subseteq \overline{W(\mathcal{A})}, k \in \mathbb{N} \tag{2.1}
\end{equation*}
$$

Hence, $\sigma(\mathcal{A}) \subseteq \bigcap_{k=1}^{\infty} \overline{W^{n_{k}}(\mathcal{A})}$. In the following it is shown that sometimes for m large enough $\overline{W^{n_{m}}(\mathcal{A})}$ is a good approximation of $\sigma(A)$ and sometimes not.

Definition 2.3. Let \mathcal{H} be a separable Hilbert space and $\mathcal{A} \in \mathcal{B}(\mathcal{H})$. A total decomposition $\left\{\mathcal{H}=\mathcal{H}_{1}^{k} \oplus \mathcal{H}_{2}^{k} \oplus \cdots \oplus \mathcal{H}_{n_{k}}^{k}\right\}_{k=1}^{\infty}$ is called an estimable decomposition of \mathcal{H} for $\sigma(\mathcal{A})$, if $\sigma(\mathcal{A})=\bigcap_{k=1}^{\infty} \overline{W^{n_{k}}(\mathcal{A})}$.

It is obvious that all total decompositions in the finite dimensional cases are estimable decompositions.

Let $\mathcal{A} \in \mathcal{B}(\mathcal{H})$. Equivalently, a total decomposition of \mathcal{H} is an estimable decomposition for $\sigma(\mathcal{A})$, if

$$
\forall \varepsilon>0, \exists M>0 \ni \mathbf{d}\left(\sigma(\mathcal{A}), \overline{W^{n_{m}}(\mathcal{A})}\right)<\varepsilon, \forall m \geq M
$$

where, \mathbf{d} is the Hausdorff metric [2, page 117] for compact subsets of the complex plane \mathbb{C}.

Theorem 2.4. Let \mathcal{S}_{+}be the unilateral shift operator on a separable infinite dimensional Hilbert space \mathcal{H}. All total decompositions of \mathcal{H} are estimable for $\sigma\left(\mathcal{S}_{+}\right)$.

Proof. We know that $\sigma\left(\mathcal{S}_{+}\right)=\bar{D}$ and $\overline{W\left(\mathcal{S}_{+}\right)}=\bar{D}$, (see [2, 5]). By Lemma 1.1(2), $\sigma\left(\mathcal{S}_{+}\right) \subseteq \overline{W^{k}\left(\mathcal{S}_{+}\right)} \subseteq \overline{W\left(\mathcal{S}_{+}\right)}$. Then, $\sigma\left(\mathcal{S}_{+}\right)=\bigcap_{k=1}^{\infty} \overline{W^{k}\left(\mathcal{S}_{+}\right)}=\bar{D}$, and hence all total decompositions of \mathcal{H} are estimable for $\sigma\left(\mathcal{S}_{+}\right)$.

In the following Theorem we show that for the bilateral shift operator \mathcal{S}, there exists a total decomposition which is not estimable for $\sigma(\mathcal{S})$.

Theorem 2.5. Let \mathcal{S} be the bilateral shift operator on a separable infinite dimensional Hilbert space \mathcal{H}. Then, there exists a total decomposition of \mathcal{H}, which is not estimable for $\sigma(\mathcal{S})$.

Proof. Let $\left\{\alpha_{0}, \alpha_{ \pm 1}, \ldots\right\}$ be an orthonormal basis and let $S \alpha_{i}=\alpha_{i+1} \quad(i=$ $0, \pm 1, \ldots)$. We consider \mathcal{H}_{0}, the subspace generated by $\left\{\alpha_{0}\right\}$, and for all $|i| \geq 1$, $\mathcal{H}_{ \pm i}$, the subspace generated by $\left\{\alpha_{ \pm i}\right\}$, and $\widehat{\mathcal{H}}_{ \pm i}$, the subspace generated by $\left\{\alpha_{ \pm i}, \alpha_{ \pm(i+1)}, \ldots\right\}$. Then

$$
\mathcal{H}=\widehat{\mathcal{H}}_{-m} \oplus \mathcal{H}_{-m+1} \oplus \cdots \oplus \mathcal{H}_{-1} \oplus \mathcal{H}_{0} \oplus \mathcal{H}_{1} \oplus \cdots \oplus \mathcal{H}_{m-1} \oplus \widehat{\mathcal{H}}_{m}, m \in \mathbb{N}
$$

It is readily seen that this sequence of decompositions is a total decomposition. Now, we consider the $(2 m+1) \times(2 m+1)$ block operator matrix $\mathcal{S}=\left(S_{i j}\right)_{i, j=-m}^{m}$ with respect to the above decomposition. It is easy to show that the block entry $S_{m m}$ is a unilateral shift operator and by [6, Corollary 3.2], $W\left(S_{m m}\right) \subseteq W^{2 m+1}(\mathcal{S})$ for all $m \geq 1$. We know that $\sigma(\mathcal{S})=\mathbb{T}$, and $W\left(S_{m m}\right)=\bar{D}, m \geq 1$, (see [1, 2]). Thus, $\sigma(\mathcal{S})=\mathbb{T} \nsubseteq \bar{D} \subseteq \bigcap_{m=1}^{\infty} \overline{W^{2 m+1}(\mathcal{S})}$ and hence this total decomposition is not estimable for $\sigma(\mathcal{S})$.

In the following Theorem we show that for any separable infinite dimensional Hilbert space \mathcal{H} there exist $T \in \mathcal{B}(\mathcal{H})$ and two total decompositions, which one of them is estimable for $\sigma(T)$ and the other is not.

Theorem 2.6. Let \mathcal{H} be a separable infinite dimensional Hilbert space. Then there exists an operator $T \in \mathcal{B}(\mathcal{H})$ such that \mathcal{H} have two total decompositions which one of them is estimable for $\sigma(T)$ and the other is not.

Proof. Let $\mathcal{B}=\left\{\alpha_{1}, \alpha_{2}, \ldots\right\}$ be an orthonormal basis for \mathcal{H}. We define $T \in$ $\mathcal{B}(\mathcal{H})$ such that the representation of T with respect to \mathcal{B} is of the form $[T]_{\mathcal{B}}=$ $\operatorname{diag}\left(e^{i r_{1}}, e^{i r_{2}}, \ldots\right)$, where $\left\{r_{k}\right\}_{k=1}^{\infty}$ be a sequence of all rational numbers in $[0,2 \pi)$. Now, we consider two total decompositions which one of them is estimable for $\sigma(T)$ and the other is not.

First, we consider a total decomposition,

$$
\left\{\mathcal{H}=<\alpha_{1}>\oplus \cdots \oplus<\alpha_{m-1}>\oplus<\alpha_{m}, \alpha_{m+1}, \ldots>\right\}_{m=2}^{\infty}
$$

where $\langle S\rangle$ is the subspace generated by S. It is clear that this sequence of decompositions is a total decomposition of \mathcal{H}. With respect to these decompositions, T have representations of the forms $T=\left[e^{i r_{1}}\right] \oplus \cdots \oplus\left[e^{i r_{m-1}}\right] \oplus \operatorname{diag}\left(e^{i r_{m}}, \ldots\right), 1<$ $m<\infty$. Since for any $m>1$, the set $\left\{e^{i r_{m}}, e^{i r_{m+1}}, \ldots\right\}$ is a dense subset of the unit circle in the complex plane, we obtain that, $W(T)=W\left(\operatorname{diag}\left(e^{i r_{m}}, \ldots\right)\right)=$ $\bar{D}, m>1$. Also, by [6, Corollary 3.2], $W\left(\operatorname{diag}\left(e^{i r_{m}}, \ldots\right)\right) \subseteq W^{m}(T)$. Therefore, $\sigma(T)=\mathbb{T} \nsubseteq \bar{D} \subseteq \bigcap_{m=1}^{\infty} W^{m}(T)$ and hence this total decomposition is not estimable for $\sigma(T)$.

Second, let $\left\{\mathcal{H}=H_{1}^{m} \oplus H_{2}^{m} \oplus \cdots \oplus H_{2^{m}}^{m}\right\}_{m=1}^{\infty}$ be a total decomposition, where H_{j}^{m} be the subspace generated by $\left.\left\{\alpha_{k}: r_{k} \in\left[\frac{2(j-1) \pi}{2^{m}}, \frac{2 j \pi}{2^{m}}\right) \cap \mathbb{Q}\right)\right\}$, where $\left\{\alpha_{k}, e^{i r_{k}}\right\}$ is an eigenpair of T. For $m \in \mathbb{N}$, define

$$
T_{j}^{m}:=\operatorname{diag}\left(e^{i r_{k}}: r_{k} \in\left[\frac{2(j-1) \pi}{2^{m}}, \frac{2 j \pi}{2^{m}}\right) \cap \mathbb{Q}\right), 1 \leq j \leq 2^{m} .
$$

Hence $\overline{W\left(T_{j}^{m}\right)}=\operatorname{conv}\left(\left\{e^{i r}: r \in\left[\frac{2(j-1) \pi}{2^{m}}, \frac{2 j \pi}{2^{m}}\right]\right\}\right)$, where $\operatorname{conv}(X)$ is the convex hull of X. Since $T=T_{1}^{m} \oplus T_{2}^{m} \oplus \cdots \oplus T_{2^{m}}^{m}$ for all $m \in \mathbb{N}$, we obtain that $\overline{W^{2^{m}}(T)}=\overline{W\left(T_{1}^{m}\right)} \cup \overline{W\left(T_{2}^{m}\right)} \cup \cdots \cup \overline{W\left(T_{2^{m}}^{m}\right)}$ is the region between the regular polygon of degree 2^{m} and it's circumscribed unit circle \mathbb{T}. Then, for all $\varepsilon>0$, there exists $M>0$ such that $1-\cos \left(\frac{1}{2^{m+1}}\right)<\varepsilon, m>M$. So, $\mathbf{d}\left(\overline{W^{2^{m}}(T)}, \mathbb{T}\right)<\varepsilon$, for all $m>M$. Therefore, $\sigma(T)=\mathbb{T}=\bigcap_{m=1}^{\infty} \overline{W^{2^{m}}(T)}$, and hence, this total decomposition of \mathcal{H} for $\sigma(T)$ is estimable.

It would be nice to solve the following conjecture.
Conjecture. Let \mathcal{H} be a separable Hilbert space. For any $\mathcal{A} \in \mathcal{B}(\mathcal{H})$ there exits an estimable decomposition of \mathcal{H} for $\sigma(\mathcal{A})$.

Acknowledgement. This research has been partially supported by Mahani Mathematical Research Center, Kerman, Iran.

References

1. K. Gustafson and K.M. Rao, Numerical Range, Springer-Verlag, New York, 1997.
2. P.R. Halmos, A Hilbert space problem book, Springer-Verlag, New York, 1974.
3. R. Horn and C. Johnson, Topics in Matrix Analysis, Cambridge University Press, NewYork, 1991.
4. H.Langer and C. Tretter, Spectral decomposition of some nonselfadjoint block operator matrices, J. Operator Theory 39 (1998), no. 2, 339-359.
5. W. Rudin, Functional Analysis, Mc-Graw Hill, Inc., 1973.
6. C. Tretter and M. Wagenhofer, The block numerical range of an $n \times n$ block operator matrix, SIAM J. Matrix Anal. Appl. 22, 4, (2003), 1003-1017.

1 Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran. The SBUK Center of Excellence in Linear Algebra and Optimization, Kerman, Iran.

E-mail address: salemi@mail.uk.ac.ir

