

Banach J. Math. Anal. 5 (2011), no. 1, 51–55

BANACH JOURNAL OF MATHEMATICAL ANALYSIS ISSN: 1735-8787 (electronic) www.emis.de/journals/BJMA/

TOTAL DECOMPOSITION AND BLOCK NUMERICAL RANGE

ABBAS SALEMI¹

Communicated by F. Kittaneh

ABSTRACT. Let \mathcal{H} be a separable Hilbert space and let $\mathcal{A} \in \mathcal{B}(\mathcal{H})$. In this note the notion of a total decomposition is introduced, and it is shown that sometimes the block numerical ranges corresponding to a total decomposition approximate $\sigma(A)$, sometimes not.

1. INTRODUCTION AND PRELIMINARIES

Let \mathcal{H} be a Hilbert space and let $A \in \mathcal{B}(\mathcal{H})$. The numerical range of A is defined as follows (see [1, 3]):

$$W(A) = \{x^*Ax : x \in \mathcal{H}, \|x\| = 1\}.$$

The notion of quadratic numerical range was introduced in [4] and this concept was generalized to the block numerical range in [6]. Let $\mathcal{H} = \mathcal{H}_1 \oplus \cdots \oplus \mathcal{H}_m$, where $\mathcal{H}_1, \mathcal{H}_2, \ldots, \mathcal{H}_m$ are Hilbert spaces. With respect to this decomposition, the block operator matrix \mathcal{A} on \mathcal{H} has the following representation:

$$\mathcal{A} := \begin{bmatrix} A_{11} & \cdots & A_{1m} \\ \vdots & \ddots & \vdots \\ A_{m1} & \cdots & A_{mm} \end{bmatrix}, \qquad (1.1)$$

Date: Received: 24 May 2010; Accepted: 10 June 2010.

2010 Mathematics Subject Classification. Primary 47A12; Secondary 49M27.

Key words and phrases. Block numerical range, total decomposition, spectrum.

A. SALEMI

where $A_{ij} \in \mathcal{B}(\mathcal{H}_j, \mathcal{H}_i)$ for all (i, j = 1, ..., m). For $\mathbf{x} = (x_1, ..., x_m) \in \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus \cdots \oplus \mathcal{H}_m$, define $\mathcal{A}_{\mathbf{x}} \in M_m(\mathbb{C})$ (the space of $m \times m$ matrices over \mathbb{C}) as follows:

$$\mathcal{A}_{\mathbf{x}} := \begin{bmatrix} \langle A_{11}x_1, x_1 \rangle & \cdots & \langle A_{1m}x_m, x_1 \rangle \\ \vdots & \ddots & \vdots \\ \langle A_{m1}x_1, x_m \rangle & \cdots & \langle A_{mm}x_m, x_m \rangle \end{bmatrix}$$

The block numerical range of the block operator matrix \mathcal{A} as in (1.1) is the set

$$W^m(\mathcal{A}) := \{ \lambda \in \mathbb{C} : \lambda \in \sigma(\mathcal{A}_{\mathbf{x}}), \ \mathbf{x} \in \mathcal{S}_m \},\$$

where $S_m = \{(x_1, \ldots, x_m) \in \mathcal{H}_1 \oplus \cdots \oplus \mathcal{H}_m : || x_1 || = \cdots = || x_m || = 1\}.$ In the following Lemma we state some properties. (For details see [6].)

Lemma 1.1. Let \mathcal{A} as in (1.1) be a block operator matrix on \mathcal{H} . Then

- (1) $\sigma_p(\mathcal{A}) \subseteq W^m(\mathcal{A})$, where $\sigma_p(\mathcal{A})$ is the point spectrum of \mathcal{A} .
- (2) $\sigma(\mathcal{A}) \subset \overline{W^m(\mathcal{A})}$, where $\sigma(\mathcal{A})$ is the spectrum of \mathcal{A} .
- (3) $W^m(\mathcal{A}) \subseteq W(\mathcal{A}),$
- $(4) W^{m}(\mathcal{A}^{*}) := \{\lambda : \overline{\lambda} \in W^{m}(\mathcal{A})\}.$

Let $\mathcal{H} = \widehat{\mathcal{H}}_1 \oplus \cdots \oplus \widehat{\mathcal{H}}_{\widehat{m}} = \mathcal{H}_1 \oplus \cdots \oplus \mathcal{H}_m$. Then $\widehat{\mathcal{H}}_1 \oplus \cdots \oplus \widehat{\mathcal{H}}_{\widehat{m}}$ is a refinement of $\mathcal{H}_1 \oplus \cdots \oplus \mathcal{H}_m$, if $m \leq \widehat{m}$ and there exist $0 = i_0 < i_1 < \cdots < i_m = \widehat{m}$ such that $\mathcal{H}_j = \widehat{\mathcal{H}}_{i_{j-1}+1} \oplus \cdots \oplus \widehat{\mathcal{H}}_{i_j}, \ 1 \leq j \leq m$.

Proposition 1.2. [6, Theorem 3.5] Let $\widehat{\mathcal{H}}_1 \oplus \cdots \oplus \widehat{\mathcal{H}}_{\widehat{m}}$ be a refinement of $\mathcal{H}_1 \oplus \cdots \oplus \mathcal{H}_m$. Then $W^{\widehat{m}}(\mathcal{A}) \subseteq W^m(\mathcal{A})$.

Notice that, we consider \mathcal{A} with respect to the decompositions $\mathcal{H}_1 \oplus \cdots \oplus \mathcal{H}_m$ and $\widehat{\mathcal{H}}_1 \oplus \cdots \oplus \widehat{\mathcal{H}}_{\widehat{m}}$ to define $W^m(\mathcal{A})$ and $W^{\widehat{m}}(\mathcal{A})$ respectively.

Throughout the paper we will fix these notations: Let \mathbb{T} and \overline{D} be the unit circle and closed unit disc in the complex plane, respectively.

2. Main results

Let \mathcal{H} be a Hilbert space and let $\mathcal{A} \in \mathcal{B}(\mathcal{H})$. In this section the notion of a total decomposition of \mathcal{H} is introduced. Also, we define an estimable decomposition of \mathcal{H} for $\sigma(\mathcal{A})$. By using an estimable decomposition, we will approximate the spectrum of \mathcal{A} by block numerical ranges of \mathcal{A} .

Definition 2.1. Let \mathcal{H} be a separable Hilbert space. A *total decomposition* of \mathcal{H} is a sequence of decompositions $\{\mathcal{H} = \mathcal{H}_1^k \oplus \mathcal{H}_2^k \oplus \cdots \oplus \mathcal{H}_{n_k}^k\}_{k=1}^{\infty}$ with the $(k+1)^{th}$ being a refinement of k^{th} and there is no subspace V with dim(V) > 1 such that for all $k \in \mathbb{N}$, there exists $1 \leq l_k \leq n_k$ such that $V \subseteq \mathcal{H}_{l_k}^k$.

Lemma 2.2. Every separable Hilbert space \mathcal{H} has a total decomposition.

Proof. Let \mathcal{H} be a separable Hilbert space. Then \mathcal{H} has an orthonormal basis $\mathcal{B} = \{\alpha_1, \alpha_2, \ldots\}$. Now, we define a sequence of decompositions for the Hilbert space $\mathcal{H}, \ \left\{\mathcal{H} = \mathcal{H}_1 \oplus \cdots \oplus \mathcal{H}_m \oplus \widehat{\mathcal{H}}_{m+1}\right\}_{m=1}^{\infty}$, where \mathcal{H}_i is the subspace generated by $\{\alpha_i\}, i = 1, \ldots, m \text{ and } \widehat{\mathcal{H}}_{m+1}$ is the subspace generated by $\{\alpha_{m+1}, \alpha_{m+2}, \ldots\}$. It is readily seen that this sequence of decompositions is a total decomposition. \Box

Let $\{\mathcal{H} = \mathcal{H}_1^k \oplus \mathcal{H}_2^k \oplus \cdots \oplus \mathcal{H}_{n_k}^k\}_{k=1}^{\infty}$ be a total decomposition of \mathcal{H} and let $\mathcal{A} \in \mathcal{B}(\mathcal{H})$. Then, by Proposition 1.2, and Lemma 1.1(2,3), we have the following:

$$\sigma(\mathcal{A}) \subseteq \overline{W^{n_{k+1}}(\mathcal{A})} \subseteq \overline{W^{n_k}(\mathcal{A})} \subseteq \overline{W(\mathcal{A})}, \ k \in \mathbb{N}.$$
(2.1)

Hence, $\sigma(\mathcal{A}) \subseteq \bigcap_{k=1}^{\infty} W^{n_k}(\mathcal{A})$. In the following it is shown that sometimes for m large enough $\overline{W^{n_m}(\mathcal{A})}$ is a good approximation of $\sigma(\mathcal{A})$ and sometimes not.

Definition 2.3. Let \mathcal{H} be a separable Hilbert space and $\mathcal{A} \in \mathcal{B}(\mathcal{H})$. A total decomposition $\{\mathcal{H} = \mathcal{H}_1^k \oplus \mathcal{H}_2^k \oplus \cdots \oplus \mathcal{H}_{n_k}^k\}_{k=1}^{\infty}$ is called an *estimable decomposition* of \mathcal{H} for $\sigma(\mathcal{A})$, if $\sigma(\mathcal{A}) = \bigcap_{k=1}^{\infty} \overline{W^{n_k}(\mathcal{A})}$.

It is obvious that all total decompositions in the finite dimensional cases are estimable decompositions.

Let $\mathcal{A} \in \mathcal{B}(\mathcal{H})$. Equivalently, a total decomposition of \mathcal{H} is an estimable decomposition for $\sigma(\mathcal{A})$, if

$$\forall \varepsilon > 0, \exists M > 0 \ni \mathbf{d} \left(\sigma(\mathcal{A}), \overline{W^{n_m}(\mathcal{A})} \right) < \varepsilon, \forall m \ge M,$$

where, **d** is the Hausdorff metric [2, page 117] for compact subsets of the complex plane \mathbb{C} .

Theorem 2.4. Let S_+ be the unilateral shift operator on a separable infinite dimensional Hilbert space \mathcal{H} . All total decompositions of \mathcal{H} are estimable for $\sigma(S_+)$.

Proof. We know that $\sigma(\mathcal{S}_+) = \overline{D}$ and $\overline{W(\mathcal{S}_+)} = \overline{D}$, (see [2, 5]). By Lemma 1.1(2), $\sigma(\mathcal{S}_+) \subseteq \overline{W^k(\mathcal{S}_+)} \subseteq \overline{W(\mathcal{S}_+)}$. Then, $\sigma(\mathcal{S}_+) = \bigcap_{k=1}^{\infty} \overline{W^k(\mathcal{S}_+)} = \overline{D}$, and hence all total decompositions of \mathcal{H} are estimable for $\sigma(\mathcal{S}_+)$.

In the following Theorem we show that for the bilateral shift operator S, there exists a total decomposition which is not estimable for $\sigma(S)$.

Theorem 2.5. Let S be the bilateral shift operator on a separable infinite dimensional Hilbert space \mathcal{H} . Then, there exists a total decomposition of \mathcal{H} , which is not estimable for $\sigma(S)$.

Proof. Let $\{\alpha_0, \alpha_{\pm 1}, \ldots\}$ be an orthonormal basis and let $S\alpha_i = \alpha_{i+1}$ $(i = 0, \pm 1, \ldots)$. We consider \mathcal{H}_0 , the subspace generated by $\{\alpha_0\}$, and for all $|i| \ge 1$, $\mathcal{H}_{\pm i}$, the subspace generated by $\{\alpha_{\pm i}\}$, and $\hat{\mathcal{H}}_{\pm i}$, the subspace generated by $\{\alpha_{\pm i}, \alpha_{\pm (i+1)}, \ldots\}$. Then

$$\mathcal{H} = \widehat{\mathcal{H}}_{-m} \oplus \mathcal{H}_{-m+1} \oplus \cdots \oplus \mathcal{H}_{-1} \oplus \mathcal{H}_0 \oplus \mathcal{H}_1 \oplus \cdots \oplus \mathcal{H}_{m-1} \oplus \widehat{\mathcal{H}}_m, \ m \in \mathbb{N}.$$

It is readily seen that this sequence of decompositions is a total decomposition. Now, we consider the $(2m + 1) \times (2m + 1)$ block operator matrix $\mathcal{S} = (S_{ij})_{i,j=-m}^m$ with respect to the above decomposition. It is easy to show that the block entry S_{mm} is a unilateral shift operator and by [6, Corollary 3.2], $W(S_{mm}) \subseteq W^{2m+1}(\mathcal{S})$ for all $m \geq 1$. We know that $\sigma(\mathcal{S}) = \mathbb{T}$, and $W(S_{mm}) = \overline{D}$, $m \geq 1$, (see [1, 2]). Thus, $\sigma(\mathcal{S}) = \mathbb{T} \notin \overline{D} \subseteq \bigcap_{m=1}^{\infty} \overline{W^{2m+1}(\mathcal{S})}$ and hence this total decomposition is not estimable for $\sigma(\mathcal{S})$.

A. SALEMI

In the following Theorem we show that for any separable infinite dimensional Hilbert space \mathcal{H} there exist $T \in \mathcal{B}(\mathcal{H})$ and two total decompositions, which one of them is estimable for $\sigma(T)$ and the other is not.

Theorem 2.6. Let \mathcal{H} be a separable infinite dimensional Hilbert space. Then there exists an operator $T \in \mathcal{B}(\mathcal{H})$ such that \mathcal{H} have two total decompositions which one of them is estimable for $\sigma(T)$ and the other is not.

Proof. Let $\mathcal{B} = \{\alpha_1, \alpha_2, \ldots\}$ be an orthonormal basis for \mathcal{H} . We define $T \in \mathcal{B}(\mathcal{H})$ such that the representation of T with respect to \mathcal{B} is of the form $[T]_{\mathcal{B}} = \text{diag}(e^{ir_1}, e^{ir_2}, \ldots)$, where $\{r_k\}_{k=1}^{\infty}$ be a sequence of all rational numbers in $[0, 2\pi)$. Now, we consider two total decompositions which one of them is estimable for $\sigma(T)$ and the other is not.

First, we consider a total decomposition,

$$\{\mathcal{H} = <\alpha_1 > \oplus \cdots \oplus <\alpha_{m-1} > \oplus <\alpha_m, \alpha_{m+1}, \ldots >\}_{m=2}^{\infty},$$

where $\langle S \rangle$ is the subspace generated by S. It is clear that this sequence of decompositions is a total decomposition of \mathcal{H} . With respect to these decompositions, T have representations of the forms $T = [e^{ir_1}] \oplus \cdots \oplus [e^{ir_{m-1}}] \oplus \text{diag}(e^{ir_m}, \ldots), 1 <$ $m < \infty$. Since for any m > 1, the set $\{e^{ir_m}, e^{ir_{m+1}}, \ldots\}$ is a dense subset of the unit circle in the complex plane, we obtain that, $W(T) = W(\text{diag}(e^{ir_m}, \ldots)) =$ $\overline{D}, m > 1$. Also, by [6, Corollary 3.2], $W(\text{diag}(e^{ir_m}, \ldots)) \subseteq W^m(T)$. Therefore, $\sigma(T) = \mathbb{T} \notin \overline{D} \subseteq \bigcap_{m=1}^{\infty} \overline{W^m(T)}$ and hence this total decomposition is not estimable for $\sigma(T)$.

Second, let $\{\mathcal{H} = H_1^m \oplus H_2^m \oplus \cdots \oplus H_{2^m}^m\}_{m=1}^\infty$ be a total decomposition, where H_j^m be the subspace generated by $\{\alpha_k : r_k \in \left[\frac{2(j-1)\pi}{2^m}, \frac{2j\pi}{2^m}\right) \cap \mathbb{Q}\}$, where $\{\alpha_k, e^{ir_k}\}$ is an eigenpair of T. For $m \in \mathbb{N}$, define

$$T_j^m := \operatorname{diag}\left(e^{ir_k} : r_k \in \left[\frac{2(j-1)\pi}{2^m}, \frac{2j\pi}{2^m}\right) \cap \mathbb{Q}\right), \ 1 \le j \le 2^m.$$

Hence $\overline{W(T_j^m)} = \operatorname{conv}\left(\left\{e^{ir}: r \in \left[\frac{2(j-1)\pi}{2^m}, \frac{2j\pi}{2^m}\right]\right\}\right)$, where $\operatorname{conv}(X)$ is the convex hull of X. Since $T = T_1^m \oplus T_2^m \oplus \cdots \oplus T_{2^m}^m$ for all $m \in \mathbb{N}$, we obtain that $\overline{W^{2^m}(T)} = \overline{W(T_1^m)} \cup \overline{W(T_2^m)} \cup \cdots \cup \overline{W(T_{2^m}^m)}$ is the region between the regular polygon of degree 2^m and it's circumscribed unit circle \mathbb{T} . Then, for all $\varepsilon > 0$, there exists M > 0 such that $1 - \cos\left(\frac{1}{2^{m+1}}\right) < \varepsilon$, m > M. So, $\mathbf{d}\left(\overline{W^{2^m}(T)}, \mathbb{T}\right) < \varepsilon$, for all m > M. Therefore, $\sigma(T) = \mathbb{T} = \bigcap_{m=1}^{\infty} \overline{W^{2^m}(T)}$, and hence, this total decomposition of \mathcal{H} for $\sigma(T)$ is estimable.

It would be nice to solve the following conjecture.

Conjecture. Let \mathcal{H} be a separable Hilbert space. For any $\mathcal{A} \in \mathcal{B}(\mathcal{H})$ there exits an estimable decomposition of \mathcal{H} for $\sigma(\mathcal{A})$.

Acknowledgement. This research has been partially supported by Mahani Mathematical Research Center, Kerman, Iran.

References

- 1. K. Gustafson and K.M. Rao, Numerical Range, Springer-Verlag, New York, 1997.
- 2. P.R. Halmos, A Hilbert space problem book, Springer-Verlag, New York, 1974.
- 3. R. Horn and C. Johnson, *Topics in Matrix Analysis*, Cambridge University Press, NewYork, 1991.
- H.Langer and C. Tretter, Spectral decomposition of some nonselfadjoint block operator matrices, J. Operator Theory 39 (1998), no. 2, 339–359.
- 5. W. Rudin, Functional Analysis, Mc-Graw Hill, Inc., 1973.
- C. Tretter and M. Wagenhofer, The block numerical range of an n×n block operator matrix, SIAM J. Matrix Anal. Appl. 22, 4, (2003), 1003-1017.

¹ DEPARTMENT OF MATHEMATICS, SHAHID BAHONAR UNIVERSITY OF KERMAN, KERMAN, IRAN. THE SBUK CENTER OF EXCELLENCE IN LINEAR ALGEBRA AND OPTIMIZATION, KERMAN, IRAN.

E-mail address: salemi@mail.uk.ac.ir