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TOTAL DECOMPOSITION AND BLOCK NUMERICAL RANGE
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Abstract. Let H be a separable Hilbert space and let A ∈ B(H). In this
note the notion of a total decomposition is introduced, and it is shown that
sometimes the block numerical ranges corresponding to a total decomposition
approximate σ(A), sometimes not.

1. Introduction and preliminaries

Let H be a Hilbert space and let A ∈ B(H). The numerical range of A is
defined as follows (see [1, 3]):

W (A) = {x∗Ax : x ∈ H, ‖x‖ = 1}.

The notion of quadratic numerical range was introduced in [4] and this concept
was generalized to the block numerical range in [6]. Let H = H1 ⊕ · · · ⊕ Hm,
where H1,H2, . . . ,Hm are Hilbert spaces. With respect to this decomposition,
the block operator matrix A on H has the following representation:

A :=

 A11 · · · A1m
...

. . .
...

Am1 · · · Amm

 , (1.1)
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where Aij ∈ B(Hj,Hi) for all (i, j = 1, . . . ,m). For x = (x1, . . . , xm) ∈ H1⊕H2⊕
· · · ⊕ Hm, define Ax ∈ Mm(C) (the space of m×m matrices over C) as follows:

Ax :=

 〈A11x1, x1〉 · · · 〈A1mxm, x1〉
...

. . .
...

〈Am1x1, xm〉 · · · 〈Ammxm, xm〉

 .

The block numerical range of the block operator matrix A as in (1.1) is the set

Wm(A) := {λ ∈ C : λ ∈ σ(Ax), x ∈ Sm},
where Sm = {(x1, . . . , xm) ∈ H1 ⊕ · · · ⊕ Hm :‖ x1 ‖= · · · =‖ xm ‖= 1}.

In the following Lemma we state some properties. (For details see [6].)

Lemma 1.1. Let A as in (1.1) be a block operator matrix on H. Then

(1) σp(A) ⊆ Wm(A), where σp(A) is the point spectrum of A.

(2) σ(A) ⊆ Wm(A), where σ(A) is the spectrum of A.
(3) Wm(A) ⊆ W (A),
(4) Wm(A∗) := {λ : λ̄ ∈ Wm(A)}.

Let H = Ĥ1⊕ · · ·⊕ Ĥbm = H1⊕ · · ·⊕Hm. Then Ĥ1⊕ · · ·⊕ Ĥbm is a refinement
of H1 ⊕ · · · ⊕ Hm, if m ≤ m̂ and there exist 0 = i0 < i1 < · · · < im = m̂ such

that Hj = Ĥij−1+1 ⊕ · · · ⊕ Ĥij , 1 ≤ j ≤ m.

Proposition 1.2. [6, Theorem 3.5] Let Ĥ1 ⊕ · · · ⊕ Ĥbm be a refinement of
H1 ⊕ · · · ⊕ Hm. Then W bm(A) ⊆ Wm(A).

Notice that, we consider A with respect to the decompositions H1 ⊕ · · · ⊕ Hm

and Ĥ1 ⊕ · · · ⊕ Ĥbm to define Wm(A) and W bm(A) respectively.
Throughout the paper we will fix these notations: Let T and D be the unit

circle and closed unit disc in the complex plane, respectively.

2. Main results

Let H be a Hilbert space and let A ∈ B(H). In this section the notion of a total
decomposition of H is introduced. Also, we define an estimable decomposition
of H for σ(A). By using an estimable decomposition, we will approximate the
spectrum of A by block numerical ranges of A.

Definition 2.1. Let H be a separable Hilbert space. A total decompostion of H is
a sequence of decompositions

{
H = Hk

1 ⊕Hk
2 ⊕ · · · ⊕ Hk

nk

}∞
k=1

with the (k + 1)th

being a refinement of kth and there is no subspace V with dim(V ) > 1 such that
for all k ∈ N, there exists 1 ≤ lk ≤ nk such that V ⊆ Hk

lk
.

Lemma 2.2. Every separable Hilbert space H has a total decomposition.

Proof. Let H be a separable Hilbert space. Then H has an orthonormal basis B =
{α1, α2, . . .}. Now, we define a sequence of decompositions for the Hilbert space

H,
{
H = H1 ⊕ · · · ⊕ Hm ⊕ Ĥm+1

}∞
m=1

, where Hi is the subspace generated by

{αi} , i = 1, . . . m and Ĥm+1 is the subspace generated by {αm+1, αm+2, . . .}. It is
readily seen that this sequence of decompositions is a total decomposition. �
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Let
{
H = Hk

1 ⊕Hk
2 ⊕ · · · ⊕ Hk

nk

}∞
k=1

be a total decomposition of H and let
A ∈ B(H). Then, by Proposition 1.2, and Lemma 1.1(2,3), we have the following:

σ(A) ⊆ W nk+1(A) ⊆ W nk(A) ⊆ W (A), k ∈ N. (2.1)

Hence, σ(A) ⊆
⋂∞

k=1 W nk(A). In the following it is shown that sometimes for m

large enough W nm(A) is a good approximation of σ(A) and sometimes not.

Definition 2.3. Let H be a separable Hilbert space and A ∈ B(H). A total de-
composition

{
H = Hk

1 ⊕Hk
2 ⊕ · · · ⊕ Hk

nk

}∞
k=1

is called an estimable decomposition

of H for σ(A), if σ(A) =
⋂∞

k=1 W nk(A).

It is obvious that all total decompositions in the finite dimensional cases are
estimable decompositions.

Let A ∈ B(H). Equivalently, a total decomposition of H is an estimable
decomposition for σ(A), if

∀ε > 0,∃ M > 0 3 d
(
σ(A), W nm(A)

)
< ε,∀m ≥ M,

where, d is the Hausdorff metric [2, page 117] for compact subsets of the complex
plane C.

Theorem 2.4. Let S+ be the unilateral shift operator on a separable infinite
dimensional Hilbert space H. All total decompositions of H are estimable for
σ(S+).

Proof. We know that σ(S+) = D and W (S+) = D, (see [2, 5]). By Lemma 1.1(2),

σ(S+) ⊆ W k(S+) ⊆ W (S+). Then, σ(S+) =
⋂∞

k=1 W k(S+) = D, and hence all
total decompositions of H are estimable for σ(S+). �

In the following Theorem we show that for the bilateral shift operator S, there
exists a total decomposition which is not estimable for σ(S).

Theorem 2.5. Let S be the bilateral shift operator on a separable infinite dimen-
sional Hilbert space H. Then, there exists a total decomposition of H, which is
not estimable for σ(S).

Proof. Let {α0, α±1, . . .} be an orthonormal basis and let Sαi = αi+1 (i =
0,±1, . . .). We consider H0, the subspace generated by {α0}, and for all |i| ≥ 1

,H±i, the subspace generated by {α±i}, and Ĥ±i, the subspace generated by
{α±i, α±(i+1), . . .}. Then

H = Ĥ−m ⊕H−m+1 ⊕ · · · ⊕ H−1 ⊕H0 ⊕H1 ⊕ · · · ⊕ Hm−1 ⊕ Ĥm, m ∈ N.

It is readily seen that this sequence of decompositions is a total decomposition.
Now, we consider the (2m + 1)× (2m + 1) block operator matrix S = (Sij)

m
i,j=−m

with respect to the above decomposition. It is easy to show that the block entry
Smm is a unilateral shift operator and by [6, Corollary 3.2], W (Smm) ⊆ W 2m+1(S)
for all m ≥ 1. We know that σ(S) = T, and W (Smm) = D, m ≥ 1, (see [1, 2]).

Thus, σ(S) = T * D ⊆
⋂∞

m=1 W 2m+1(S) and hence this total decomposition is
not estimable for σ(S). �
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In the following Theorem we show that for any separable infinite dimensional
Hilbert space H there exist T ∈ B(H) and two total decompositions, which one
of them is estimable for σ(T ) and the other is not.

Theorem 2.6. Let H be a separable infinite dimensional Hilbert space. Then
there exists an operator T ∈ B(H) such that H have two total decompositions
which one of them is estimable for σ(T ) and the other is not.

Proof. Let B = {α1, α2, . . .} be an orthonormal basis for H. We define T ∈
B(H) such that the representation of T with respect to B is of the form [T ]B =
diag(eir1 , eir2 , . . .), where {rk}∞k=1 be a sequence of all rational numbers in [0, 2π).
Now, we consider two total decompositions which one of them is estimable for
σ(T ) and the other is not.

First, we consider a total decomposition,

{H =< α1 > ⊕ · · ·⊕ < αm−1 > ⊕ < αm, αm+1, . . . >}∞m=2 ,

where < S > is the subspace generated by S. It is clear that this sequence of de-
compositions is a total decomposition ofH. With respect to these decompositions,
T have representations of the forms T = [eir1 ]⊕· · ·⊕ [eirm−1 ]⊕diag(eirm , . . .), 1 <
m < ∞. Since for any m > 1, the set {eirm , eirm+1 , . . .} is a dense subset of the
unit circle in the complex plane, we obtain that, W (T ) = W (diag(eirm , . . .)) =
D, m > 1. Also, by [6, Corollary 3.2], W (diag(eirm , . . .)) ⊆ Wm(T ). There-

fore, σ(T ) = T * D ⊆
⋂∞

m=1 Wm(T ) and hence this total decomposition is not
estimable for σ(T ).

Second, let {H = Hm
1 ⊕Hm

2 ⊕ · · · ⊕Hm
2m}∞m=1 be a total decomposition, where

Hm
j be the subspace generated by {αk : rk ∈

[
2(j−1)π

2m , 2jπ
2m

)
∩Q)}, where {αk, e

irk}
is an eigenpair of T . For m ∈ N, define

Tm
j := diag

(
eirk : rk ∈

[
2(j − 1)π

2m
,
2jπ

2m

)
∩Q

)
, 1 ≤ j ≤ 2m.

Hence W (Tm
j ) = conv

({
eir : r ∈

[
2(j−1)π

2m , 2jπ
2m

]})
, where conv(X) is the convex

hull of X. Since T = Tm
1 ⊕ Tm

2 ⊕ · · · ⊕ Tm
2m for all m ∈ N, we obtain that

W 2m(T ) = W (Tm
1 ) ∪ W (Tm

2 ) ∪ · · · ∪ W (Tm
2m) is the region between the regular

polygon of degree 2m and it’s circumscribed unit circle T. Then, for all ε > 0,

there exists M > 0 such that 1−cos
(

1
2m+1

)
< ε, m > M. So, d

(
W 2m(T ), T

)
< ε,

for all m > M . Therefore, σ(T ) = T =
⋂∞

m=1 W 2m(T ), and hence, this total
decomposition of H for σ(T ) is estimable. �

It would be nice to solve the following conjecture.

Conjecture. Let H be a separable Hilbert space. For any A ∈ B(H) there exits
an estimable decomposition of H for σ(A).
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