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Abstract. The purpose of this paper is to introduce the concept of a cone
symmetric space and to investigate relationship between (cone) metric spaces
and (cone) symmetric spaces. Among other things, we shall also extend some
fixed point results from metric spaces to cone metric spaces (Theorem 3.3),
and to symmetric spaces (Theorems 3.2 and 3.5) under some new contraction
conditions.

1. Introduction and preliminaries

Ordered normed spaces and cones have applications in applied mathematics, for
instance, in using Newton’s approximation method [12, 19, 21] and in optimiza-
tion theory [5]. K-metric and K-normed spaces were introduced in the mid-20th
century ([12], see also [13, 14, 16, 18, 19, 21]) by using an ordered Banach space
instead of the set of real numbers, as the codomain for a metric. Huang and
Zhang [7] re-introduced such spaces under the name of cone metric spaces, but
went further, defining convergent and Cauchy sequences in the terms of interior
points of the underlying cone. Recently, in [1, 8, 9, 17], some common fixed point
theorems have been proved for maps on cone metric spaces. However, in [1, 7, 8]
the authors usually obtain their results for normal cones. In this paper we obtain
some of our results without using the normality condition for cones (see also [11]).
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Recall that in [20] the concept of a “symmetric” on a set X was introduced,
as a function d : X × X → R possessing all the properties of a metric except
the triangle inequality. This concept was used in some recent papers (see, e.g.,
[2, 3, 6, 10, 22]) to obtain certain fixed point results.

The purpose of this paper is to introduce the concept of a cone symmetric
space and to investigate relationship between (cone) metric spaces and (cone)
symmetric spaces. We shall also extend some fixed point results from metric
spaces to cone metric spaces (Theorem 3.3), and to symmetric spaces (Theorems
3.2 and 3.5) under some new contraction conditions. For instance, our Theorem
3.5 is a proper generalization of a result from metric spaces [4] to symmetric
spaces.

We need the following definitions and results, consistent with [5] and [7], in the
sequel.

Let E be a real Banach space. A subset P of E is called a cone if:

(i) P is closed, nonempty and P 6= {0};
(ii) a, b ∈ R, a, b ≥ 0, and x, y ∈ P imply ax + by ∈ P ;
(iii) P ∩ (−P ) = {0}.
Given a cone P ⊂ E, we define the partial ordering ≤ with respect to P by

x ≤ y if and only if y − x ∈ P . We shall write x < y to indicate that x ≤ y but
x 6= y, while x � y will stand for y − x ∈ int P (interior of P ).

There exist two kinds of cones: normal and nonnormal ones. A cone P ⊂ E is
normal if there is a number K > 0 such that for all x, y ∈ P ,

0 ≤ x ≤ y implies ‖x‖ ≤ K ‖y‖ , (1.1)

or, equivalently, if xn ≤ yn ≤ zn and

lim
n→∞

xn = lim
n→∞

zn = x imply lim
n→∞

yn = x.

The least positive number K satisfying (1.1) is called the normal constant of P .
It is clear that K ≥ 1. Most of ordered Banach spaces used in applications posses
a normal cone with the normal constant K = 1. For details see [5].

Example 1.1. [5] Let E = C1
R[0, 1] with ‖x‖ = ‖x‖∞+‖x′‖∞ and P = {x ∈ E :

x(t) ≥ 0 on [0, 1] }. This cone is not normal. Consider, for example, xn(t) =
1−sin nt

n+2
and yn(t) = 1+sin nt

n+2
. Then ‖xn‖ = ‖yn‖ = 1 and ‖xn + yn‖ = 2

n+2
→ 0.

Definition 1.2. [5, 7] Let X be a nonempty set. Suppose that a mapping d :
X ×X → E satisfies:

(d1) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
(d2) d(x, y) = d(y, x) for all x, y ∈ X;
(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X and (X, d) is called a cone metric space.

In the case of a normal cone, the concept of a cone metric space is more general
than that of a metric space. Indeed, each metric space is a cone metric space
with E = R and P = [0, +∞[ (see [7, Example 1], [17, Examples 1.2 and 2.2]).
If the cone P is nonnormal, then this is not true.
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Remark 1.3. (1) If u ≤ v and v � w, then u � w.
(2) If u � v and v ≤ w, then u � w.
(3) If u � v and v � w, then u � w.
(4) If 0 ≤ u � c for each c ∈ int P then u = 0.
(5) If a ≤ b + c for each c ∈ int P then a ≤ b.
(6) If a ≤ λa where a ∈ P and 0 < λ < 1, then a = 0.

Especially properties (1), (4) and (6) of this remark are often used (particularly
when dealing with nonnormal cones), so we give their proofs.

Proof. (1) We have to prove that w − u ∈ int P if v − u ∈ P and w − v ∈ int P .
There exists a neighborhood V of 0 in E such that w − v + V ⊂ P . Then, from
v − u ∈ P it follows that

w − u + V = (w − v) + V + (v − u) ⊂ P + P ⊂ P,

since P is convex.
(4) Since c − u ∈ int P for each c ∈ int P , it follows that 1

n
c − u ∈ int P for

each n ∈ N. Thus,

lim
n→∞

(
1

n
c− u

)
= 0− u ∈ P = P.

Hence u ∈ −P ∩ P = {0}, i.e., u = 0.
(6) The condition a ≤ λa means that λa − a ∈ P , i.e., −(1 − λ)a ∈ P . Since

a ∈ P and 1 − λ > 0, we have also (1 − λ)a ∈ P . Thus we have (1 − λ)a ∈
P ∩ (−P ) = {0}, and a = 0. �

Let (X, d) be a cone metric space and {xn} a sequence in X. Then it is said
[7] that {xn} is:

(e) a Cauchy sequence if for every c in E with 0 � c, there is a positive
integer N such that for all n, m > N , d(xn, xm) � c;

(f) a convergent sequence if for every c in E with 0 � c, there is a positive
integer N such that for all n > N , d(xn, x) � c for some fixed x in X.

A cone metric space X is said to be complete if every Cauchy sequence in X
is convergent in X.

In the case of a normal cone it is known [7] that {xn} converges to x if and
only if d(xn, x) → 0 as n → ∞, and {xn} is a Cauchy sequence if and only if
d(xn, xm) → 0 as n,m →∞.

Remark 1.4. (1) If c ∈ int P , 0 ≤ an and an → 0, then there exists a positive
integer n0 such that an � c for all n > n0.

(2) If 0 ≤ d(xn, x) ≤ bn and bn → 0, then d(xn, x) � c where xn and x are a
sequence and a given point in X, respectively.

(3) If 0 ≤ an ≤ bn and an → a, bn → b, then a ≤ b for an arbitrary cone P .

Proof. (1) Let 0 � c be given. Choose a symmetric neighborhood V such that
c+V ⊂ P . Since an → 0 there is an n0 such that an ∈ V = −V for n > n0. This
means that c± an ∈ c + V ⊂ P for n > n0; that is an � c. �
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It follows that a sequence {xn} converges to x ∈ X if d(xn, x) → 0 as n →∞
and {xn} is a Cauchy sequence if d(xn, xm) → 0 as n, m →∞. For a nonnormal
cone only one part of Lemmas 1 and 4 from [7] are valid. Also, the fact that
d(xn, yn) → d(x, y) if xn → x and yn → y cannot be applied.

2. Cone symmetric spaces

2.1. Definition and properties of cone symmetrics. In the sequel we assume
only that E is a Banach space and that P is a cone in E with int P 6= ∅ (this
assumption is necessary in order to obtain reasonable results connected with
convergence and continuity). In some situations (but not always) normality of
the cone will be also assumed. The partial ordering induced by the cone P will
be denoted by ≤.

We shall define now a new concept.

Definition 2.1. Let X be a nonempty set. Suppose that a mapping d : X×X →
E satisfies:

(s1) 0 ≤ d(x, y), for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
(s2) d(x, y) = d(y, x), for all x, y ∈ X.

Then d is called a cone symmetric on X, and (X, d) is called a cone symmetric
space.

Example 2.2. Let X = R, E = R2, P = {(a, b) : a ≥ 0, b ≥ 0} and let
d : X ×X → E be defined by

d(x, y) = (e|x−y| − 1, α(e|x−y| − 1)), α ≥ 0.

Then (X, d) is a cone symmetric space which is not a cone metric space.

Hence, we have the following diagram

cone metric spaces −→ cone symmetric spaces

↑ ↑
metric spaces −→ symmetric spaces

where arrows stand for inclusions. The inverse inclusions do not hold. It is
clear that there exists a symmetric (resp. cone symmetric) space which is not a
metric (resp. cone metric) space. For vertical arrows see [7, Example 1] (resp.
our Example 2.2).

Definitions of convergent and Cauchy sequences are the same as for cone metric
spaces.

Similarly as for symmetric spaces ([3, 22]) we have the following possible axioms
for cone symmetric spaces:

(W3) For each sequence {xn} in X, and x, y ∈ X, xn → x and xn → y (as
n →∞) imply x = y or, equivalently, if for each c, 0 � c, there exists n0

such that d(xn, x) � c and d(xn, y) � c for all n > n0, then x = y.
(W4) For sequences {xn}, {yn} in X and x ∈ X, d(xn, x) � c and d(xn, yn) � c

imply d(yn, x) � c, as n →∞.
(H.E) For sequences {xn}, {yn} in X and x ∈ X, d(xn, x) � c and d(yn, x) � c

imply d(xn, yn) � c, as n →∞.
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(HE) For sequences {xn}, {yn} in X and x ∈ X, d(xn, x) � c and d(yn, y) � c
imply d(xn, yn) � c, as n →∞.

(C.C) For a sequence {xn} in X and x, y ∈ X, xn → x implies d(xn, y) → d(x, y),
as n →∞.

Remark 2.3. We shall show that every cone metric space satisfies (W3), (W4) and
(H.E) if int P 6= ∅ (hence, possibly without normality property).

(W3): Let 0 � c be given. According to the triangle inequality it follows

d(x, y) ≤ d(x, xn) + d(xn, y) � c

2
+

c

2
= c,

i.e., d(x, y) � c. Hence, by Remark 1.3.(4), d(x, y) = 0, that is x = y.
(W4): Similarly, d(yn, x) ≤ d(yn, xn) + d(xn, x) � c

2
+ c

2
= c.

(H.E): Again, d(xn, yn) ≤ d(xn, x) + d(x, yn) � c
2

+ c
2

= c.
If (X, d) is a cone metric space with a normal cone P then it also satisfies (HE)

and (C.C), [7, Lemma 5]. Evidently, (C.C) is the special case of (HE) where
yn = y for each n ∈ N.

2.2. Topologies td and tD. Let d be a cone symmetric on a nonempty set X.
For x ∈ X and c ∈ P , 0 � c, let Kc(x) = {y ∈ X : d(x, y) � c}. The topology
td on X is defined as follows: U ∈ td if and only if for each x ∈ U , there exists
c ∈ P , 0 � c, such that Kc(x) ⊂ U . A subset S of X is a neighborhood of x ∈ X
if there exists U ∈ td such that x ∈ U ⊂ S.

A cone symmetric d is a cone semi-metric if for each x ∈ X and each c ∈ P ,
0 � c, Kc(x) is a td-neighborhood of x.

For the given cone symmetric space (X, d) one can construct a symmetric space
(X, D) where “symmetric” D : X ×X → R is given by D(x, y) = ‖d(x, y)‖.

Definition 2.4. The space (X, D) is called the symmetric space associated with
the cone symmetric space (X, d).

In the case of cone metric spaces with normal cones, the triangle inequality
d(x, y) ≤ d(x, z) + d(z, y) for each x, y, z ∈ X, implies that the symmetric D
satisfies the condition

D(x, y) = ‖d(x, y)‖ ≤ K‖d(x, z) + d(z, y)‖ ≤ K(D(x, z) + D(z, y)),

where K ≥ 1 is the normal constant of the cone P . So, the symmetric D satisfies

(s3) for each x, y, z ∈ X

D(x, y) ≤ K(D(x, z) + D(z, y)),

Hence, in this case the symmetric space (X, D) is “almost” a metric space.
If the cone P is nonnormal then the symmetric D satisfies only (s1) and (s2).

Remark 2.5. If (X, d) is a cone metric space with a normal cone P , then (X, D)
is a symmetric space which satisfies all the axioms from [3], that is (W3)–(C.C),
in the setting of symmetric spaces.

Proof. (W3): According to (s3) we have

D(x, y) ≤ K(D(x, xn) + D(xn, y)) → K · (0 + 0) = 0,
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and thus x = y.
(W4): Again using (s3) we obtain

D(yn, x) ≤ K(D(yn, xn) + D(xn, x)) → K · (0 + 0) = 0,

wherefrom it follows that D(yn, x) → 0 as n →∞.
(H.E): In this case

D(xn, yn) ≤ K(D(xn, x) + D(x, yn)) → K · (0 + 0) = 0,

which means that this axiom is satisfied, as well.
(HE) and C.C are proved in the similar way. �

It follows that the space (X, D) satisfies the conditions of [10, Theorems 2.1–
2.3], [2, Theorem 1, Corollary], as well as conditions of [3, Theorems 3.1–3.5].

Now, for x ∈ X and ε > 0 let Kε(x) = {y ∈ X : D(y, x) < ε}. Let tD be the
topology on X generated by the balls of the form Kε(x), x ∈ X, ε > 0.

Example 2.6. Let (X, d1) be a symmetric space which is not semi-metric (see,
e.g., [10, p. 353]). Then there exists a cone symmetric on X, d : X × X → E,
E = R2, P = {(x, y) : x ≥ 0, y ≥ 0} such that d(x, y) = (d1(x, y), αd1(x, y)),
α ≥ 0. It is easy to check that (X, d) is a cone symmetric space which is not a
cone semi-metric, so that the associated symmetric space (X, D) = (X, ‖d(x, y)‖)
is not a semi-metric symmetric space.

For cone metric spaces we have

Theorem 2.7. Let (X, d) be a cone metric space with a normal cone P and let
D be the associated symmetric. Then td = tD; moreover, d is a cone semi-metric
and D is a semi-metric.

Proof. Let Kc(x) = {y ∈ X : d(y, x) � c} and Kε(x) = {y ∈ X : D(y, x) < ε}
be, respectively, a d- and a D-ball with the center x. Since for every ε > 0 there
exists c ∈ int P such that K‖c‖ < ε, it is Kc(x) ⊂ Kδ(x) for δ = K‖c‖, i.e.,
tD ≤ td.

Conversely, suppose that the ball Kc(x), for fixed x ∈ X and c ∈ int P , contains
no ball of the form K ε(x), i.e., that

Kε(x)  Kc(x);

in particular that K 1
n
(x)  Kc(x) for each positive integer n. Then, there exists

a sequence of points xn ∈ K 1
n
(x) such that xn /∈ Kc(x). Thus, d(xn, x) < 1

n
and

d(xn, x) 
 c which is a contradiction because d(xn, x) → 0 implies d(xn, x) � c.
To prove that d is a cone semi-metric, we have to prove that for each c ∈ int P

and each x ∈ X, the d-ball Kc(x) = {y ∈ X : d(y, x) � c} is a td-neighborhood
of the point x. Take an arbitrary point z ∈ Kc(x), z 6= x; we shall prove that
Kc−d(z,x)(z) ⊂ Kc(x). Let y ∈ Kc−d(z,x)(z). Then d(y, z) � c−d(z, x), wherefrom,
using the triangle inequality, it follows that d(y, x) ≤ d(y, z) + d(z, x) � c −
d(z, x) + d(z, x) = c, i.e., y ∈ Kc(x). This proves that the cone metric d is also
a cone semi-metric; moreover, each d-ball is td-open. All these facts have been
proved without using the normality property of the cone.
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Now, using the normality of the cone, we have a previously proved inclusion
Kc(x) ⊂ Kε(x), ε = K · ‖c‖ and so Kc(x) is a td = tD-neighborhood of each of its
points. Hence, the symmetric D is a semi-metric (under the assumption of the
normality of the cone). �

Fixed point problems on symmetric spaces which need not be metric, have
been investigated intensively in the last few years. To compensate the lack of
the triangle inequality, symmetrics which are semi-metrics have often been used.
The previous theorem shows that the frame of cone metric spaces, introduced in
[7], is a good resource for obtaining such symmetrics.

3. Fixed point theorems for cone symmetric spaces

3.1. Fixed points of contractions and D-contractions.

Definition 3.1. Let (X, d) be a cone metric space and (X, D) the associated
symmetric space. The self-map f : X → X is called a contraction [7] if for some
λ ∈ (0, 1) and for all x, y ∈ X

d(fx, fy) ≤ λd(x, y).

holds true. The map f is called a quasicontraction [8] if for some λ ∈ (0, 1) and
for all x, y ∈ X there exists

u(x, y) ∈ {d(x, y), d(x, fx), d(y, fy), d(x, fy), d(y, fx)}

such that

d(fx, fy) ≤ λ · u(x, y).

We call f a D-contraction if for some λ ∈ (0, 1) and for x, y ∈ X

D(fx, fy) ≤ λD(x, y). (3.1)

f is a D-quasicontraction if for some λ ∈ (0, 1) and for all x, y ∈ X

D(fx, fy) ≤ λ ·max{D(x, y), D(x, fx), D(y, fy), D(x, fy), D(y, fx)}.

It follows from [7] and [9] that each contraction (quasicontraction) in a complete
cone metric space has a unique fixed point if the cone is normal.

In the proof of the following fixed point theorem for D-contractions we have to
use the normality of the cone, opposite to the situation with contractions where
it is sufficient to assume that the cone has nonempty interior, see Theorem 3.3
below.

Theorem 3.2. Let f be a D-contraction with the coefficient λ, on a complete
cone metric space (X, d). If λ < 1/K, where K is the normal constant of the
cone, then f has a unique fixed point, e.g., p. Moreover, for each x ∈ X the
sequence {fnx} of Picard iterations converges to p and the estimate

D(fnx, p) ≤ Kλn

1− λK
D(x, fx)

holds.
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Proof. Using condition (3.1) for the D-contraction and induction, we obtain that
D(fmx1, f

mx2) ≤ λmD(x1, x2) for the m-th iteration fm of the map f . Using the
relation

d(x1, x2) ≤ d(x1, fx1) + d(fx1, fx2) + d(fx2, x2),

the fact that the cone is normal and (3.1) we obtain

D(x1, x2) ≤
K

1− λK
(D(x1, fx1) + D(x2, fx2)). (3.2)

In terms of [15] this is the “fundamental contraction inequality” for the D-
contraction f on the symmetric space (X,D) associated with the cone metric
space (X, d). This implies the following: if x1 and x2 are two fixed points of
a D-contraction, then they coincide. In other words, similarly as in [15], a D-
contraction can have at most one fixed point.

Let now x ∈ X be arbitrary. Replacing x1 and x2 in (3.2) with fnx and fmx,
and using (3.1), we obtain

D(fnx, fmx) ≤ K

1− λK
(D(fnx, fn(fx)) + D(fmx, fm(fx)))

≤ K

1− λK
(λn + λm)D(x, fx) → 0, (3.3)

when m,n →∞. Hence, the sequence {fnx} is a D-Cauchy sequence for fixed x ∈
X. Since D- and d-Cauchy sequences are the same, and since the given cone
metric space is complete, it follows that there exists p ∈ X such that fnx → p
when n → ∞. Obviously, p is a fixed point of the D-contraction f , since it is
D-continuous and so d-continuous (which is equivalent with tD = td-continuous).

Letting m → ∞ with n fixed in (3.3), we obtain the estimate D(fnx, p) ≤
λnK

1−λK
D(x, fx), which is consistent with the respective estimate in metric spaces.

The theorem is proved. �

We can conclude that the elegant Palais’ proof [15] of the Banach Contraction
Principle can be applied to D-contractions, but in the case of the symmetric
space (X, D) associated with the given cone metric space (X, d). In the case of
arbitrary symmetric spaces additional assumptions are needed [2, 3, 10, 22].

The Banach Contraction Principle was in the case of cone metric spaces proved
in [7] using normality of the cone, and then in [17] without this assumption. The
only assumption in the next theorem will be that int P 6= ∅. Besides, we shall
obtain an estimate that, to the best of our knowledge, appears for the first time
in this context.

Theorem 3.3. Each contraction f on a complete cone metric space (X, d) with
a cone having the nonempty interior, has a unique fixed point, e.g., p. Moreover,
for each x ∈ X, the sequence {fnx} of Picard iterations converges to p and the
following estimate is valid

d(fnx, p) ≤ λn

1− λ
d(x, fx). (3.4)
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Proof. If x ∈ X is an arbitrary point, then, similarly as in the proof of Theorem
3.2, we have

d(fnx, fmx) ≤ λn + λm

1− λ
d(x, fx). (3.5)

Since λn+λm

1−λ
d(x, fx) → 0, m, n → ∞, in the Banach norm, then by Remark 1.4

λn+λm

1−λ
d(x, fx) � c for each c ∈ int P . Then, by Remark 1.3.(1), d(fnx, fmx) � c,

which means that {fnx} is a Cauchy sequence. Thus, it converges to a unique
point p. Since f is a continuous mapping (the proof of that fact can be deduced
without using normality of the cone), p is also the fixed point of f .

If n is a fixed positive integer and p the fixed point of f , i.e., the limit of the
sequence {fmx} (for some given x), then we have

d(fnx, p) ≤ d(fnx, fmx) + d(fmx, p),

for each m ∈ N. Applying (3.5) we obtain

d(fnx, p) ≤ λn + λm

1− λ
d(x, fx) + d(fmx, p)

=
λn

1− λ
d(x, fx) +

λm

1− λ
d(x, fx) + d(fmx, p)

=
λn

1− λ
d(x, fx) + vm,

where vm = λm

1−λ
d(x, fx) + d(fmx, p). It follows that vm � c for each interior

point c. Indeed, the first summand tends to zero in the Banach space E, so by
Remark 1.4.(1) it is λm

1−λ
d(x, fx) � c

2
for m sufficiently large and d(fmx, p) � c

2

follows by definition since fmx → p. Since n, x, p, λ are fixed and vm � c for
each interior point c of the cone P , Remark 1.3.(5) implies estimate (3.4) and the
theorem is proved. �

Remark 3.4. Taking E = R, P = [0, +∞[, ‖·‖ = |·| in Theorem 3.3 we obtain
a proper generalization of the Banach Contraction Principle (including the esti-
mate, as a crucial part), and also a supplement of the Palais’ proof of the same
principle in the setting of cone metric spaces.

3.2. Fixed points of D-quasicontractions. In this subsection we shall prove
a theorem on fixed points of D-quasicontractions defined on a cone metric space
with a normal cone.

Theorem 3.5. Let (X, d) be a complete cone metric space over a normal cone P ,
with the normal constant K ≥ 1, and let f : X → X. If for some λ ∈ (0, 1/K2)
and each x, y ∈ X,

D(fx, fy) ≤ λ ·max{D(x, y), D(x, fx), D(y, fy), D(x, fy), D(y, fx)},
then f has a unique fixed point, say p. Moreover, for each x ∈ X, the sequence
{fnx} of Picard iterations converges to p and for each n ∈ N the estimate

D(fnx, p) ≤ λnK

1− λK
D(x, fx).

holds.
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In order to prove the theorem we shall need some lemmas. The orbit of a
selfmap f : X → X at a point x ∈ X shall be denoted as Of (x;∞) = {fnx : n =
0, 1, 2, . . . }. Of (x; n) shall stand for {x, fx, f2x, . . . , fnx}.

Lemma 3.6. Let f be a D-quasicontraction on a cone metric space (X, d) with a
normal cone P having the normal constant K ≥ 1, and let λ < 1/K. If Of (x;∞)
is the orbit of f at a point x ∈ X, then

diam Of (x;∞) ≤ K

1− λK
D(x, fx). (3.6)

Proof. Observe first that for 1 ≤ i, j ≤ n,

D(f ix, f jx) = D(ff i−1x, ff j−1x)

≤ λ ·max{D(f i−1x, f j−1x), D(f i−1x, f ix),

D(f j−1x, f jx), D(f i−1x, f jx), D(f j−1x, f jx)}.

Since f i−1x, f ix, f j−1x, f jx ∈ Of (x; n) we have for 1 ≤ i, j ≤ n

D(f ix, f jx) ≤ λ · diam Of (x; n) < diam Of (x; n).

Therefore, for some k ≤ n, diam Of (x; n) = D(x, fkx). From the inequality

d(x, fkx) ≤ d(x, fx) + d(fx, fkx),

using normality of the cone, it follows that∥∥d(x, fkx)
∥∥ ≤ K(

∥∥d(x, fx) + d(fx, fkx)
∥∥),

i.e.,

D(x, fkx) ≤ KD(x, fx) + KD(fx, fkx), and so

diam Of (x; n) ≤ KD(x, fx) + Kλ · diam Of (x; n).

Hence, diam Of (x; n) ≤ K
1−λK

D(x, fx), wherefrom, passing to the supremum in
n, (3.6) follows. �

Observe that it follows from the given proof that a D-quasicontraction has a
bounded orbit at each point of a cone metric space, which is consistent with the
results from [4, 9, 11] for metric and cone metric spaces.

Lemma 3.7. The sequence {fnx} of Picard iterations of a D-quasicontraction
defined on a cone metric space (X, d) with a normal cone (for an arbitrary point x)
is a Cauchy sequence in that space, provided that λ < 1/K.

Proof. Let m, n ∈ N, m > n. Then

D(fnx, fmx) = D(ffn−1x, fm−n+1fn−1x)

≤ λ · diam {fn−1x, fnx, . . . , fm−n+1x}
< diam {fn−1x, fnx, . . . , fm−n+1x}
= D(fn−1x, fk1fn−1x),
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for some k1 ≤ m− n + 1. Furthermore,

D(fn−1x, fk1fn−1x) = D(ffn−2x, fk1+1fn−2x)

≤ λ · diam {fn−2x, fn−1x, . . . , f (n−2)+k1+1x}
≤ λ · diam {fn−2x, fn−1x, . . . , f (n−2)+m−n+2x}.

Now

D(fnx, fmx) ≤ λ · diam {fn−1x, fnx, . . . , fm−n+1x}
≤ λ2 · diam {fn−2x, fn−1x, . . . , f (n−2)+m−n+2x}.

In a similar way we obtain the inequality

D(fnx, fmx) ≤ λ · diam {fn−1x, fnx, . . . , fm−n+1x}
≤ · · · ≤ λndiam {x, fx, . . . , fmx}.

Using Lemma 3.6 we obtain that

D(fnx, fmx) ≤ λnK

1− λK
D(x, fx),

which means that the sequence {fnx} of Picard iterations is a D-Cauchy sequence,
and so also a d-Cauchy sequence by Theorem 2.7. �

Lemma 3.8. If for some point x of a cone metric space (X, d) with a normal
cone the sequence {fnx} of Picard iterations of a D-quasi-contraction f : X → X
converges to a point p ∈ X, then p is its fixed point, provided that λ < 1/K2.

Proof. For the limit point p and its image fp we have

D(p, fp) ≤ KD(p, fn+1x) + KD(fn+1x, fp)

≤ KD(p, fn+1x) + λK max{D(fnx, p), D(fnx, fn+1x),

D(p, fp), D(fnx, fp), D(p, fn+1x)},
Passing to the limit when n →∞ we obtain that

D(p, fp) ≤ K ·0+λ ·K max{0, 0, D(p, fp), K ·(0+D(p, fp)), 0} = λ ·K2D(p, fp).

It follows that fp = p. �

Proof of Theorem 3.5.
Let x ∈ X be an arbitrary point. By Lemma 3.7, the sequence {fnx} of

Picard iterations is a D-Cauchy sequence, and so also a d-Cauchy sequence. Since
(X, d) is a complete cone metric space, this sequence converges to a point p ∈ X.
According to Lemma 3.8, the point p is a fixed point of the D-quasi-contraction f .
By Lemma 3.6,

D(fnx, fmx) ≤ λnK

1− λK
D(x, fx),

wherefrom, passing to the limit when m →∞ (and using that D is a continuous
function in each of its variables, i.e., that it satisfies the axiom (HE)) we obtain
that

D(fnx, p) ≤ λnK

1− λK
D(x, fx).



QUASI-CONTRACTIONS ON CONE SYMMETRIC SPACES 49

This proves the stated estimate.
We conclude with an example of a D-quasicontraction which is not a D-

contraction.

Example 3.9. Let X = {1, 2, 3}, E = R2, P = {(x, y) : x ≥ 0, y ≥ 0} and
f : X → X with f1 = 2, f2 = 2, f3 = 1. Furthermore, let d : X × X → E
with d(1, 2) = d(2, 1) = d(2, 3) = d(3, 2) = (1, 1); d(1, 3) = d(3, 1) = (2, 2) and
d(x, x) = 0 for x ∈ X. (X, d) is a cone metric space. By a careful calculations one
can get that f is not a D-contraction. On the other hand, for 1

2
≤ λ < 1, f is a D-

quasicontraction and all the conditions of Theorem 3.5 (which is a generalization
of Theorem 3.2) are fulfilled. The point x = 2 is the fixed point of the map f .
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