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Abstract. An operator T ∈ B(H) is said to be absolute-(p, r)-paranormal
if ‖|T |p|T ∗|rx‖r‖x‖ ≥ ‖|T ∗|rx‖p+r for all x ∈ H and for positive real number
p > 0 and r > 0, where T = U |T | is the polar decomposition of T . In this
paper, we discuss some properties of absolute-(p, r)-paranormal operators and
show that Weyl’s theorem holds for algebraically absolute-(p, r)-paranormal
operators.

1. Introduction and preliminaries

Let H be an infinite dimensional complex Hilbert space and B(H) denote the alge-
bra of all bounded linear operators acting on H. Every operator T can be decom-
posed into T = U |T | with a partial isometry U , where |T | =

√
T ∗T . In this paper,

T = U |T | denotes the polar decomposition satisfying the kernel condition N(U) =
N(|T |). Furuta, Ito and Yamazaki [10] introduced class A(k) and absolute-k-
paranormal operators for k > 0 as generalizations of class A and paranormal op-

erators, respectively. An operator T belongs to class A(k) if (T ∗|T |2kT )
1

k+1 ≥ |T |2
and T is said to be absolute-k-paranormal if ‖|T |kTx‖ ≥ ‖Tx‖k+1 for every
unit vector x. On other hand Fujii, Izumino and Nakamoto [7] introduced p-
paranormal operators for p > 0 as another generalization of paranormal opera-
tors. An operator T is said to be p-paranormal if ‖|T |pU |T |px‖ ≥ ‖|T |px‖2 for
every unit vector x, where the polar decomposition of T is T = U |T |.
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Fujii, Jung, S.H. Lee, M.Y. Lee and Nakamoto [8] introduced class A(p, r) as
a further generalization of class A(k). An operator T ∈ A(p, r) for p > 0 and

r > 0 if (|T ∗|r|T |2p|T ∗|r)
r

p+r ≥ |T ∗|2r and class AI(p, r) is class of all invertible
operators which belong to class A(p, r). Yamazaki and Yanagida [18] introduced
the notion of absolute-(p, r)-paranormal operator. It is a further generalization of
the classes of both absolute-k-paranormal operators and p-paranormal operators
as a parallel concept of class A(p, r). An operator T is said to be absolute-(p, r)-
paranormal if ‖|T |p|T ∗|rx‖r ≥ ‖|T ∗|rx‖p+r for every unit vector x or equivalently
‖|T |p|T ∗|rx‖r‖x‖ ≥ ‖|T ∗|rx‖p+r for all x ∈ H and for positive real numbers p > 0
and r > 0.

2. On absolute-(p, r)-Paranormal operator

In this section, we obtain a characterization of absolute-(p, r)-paranormal oper-
ators using the polar decomposition T = U |T | of T i.e., T = U |T | is absolute-
(p, r)-paranormal operator for p > 0 and r > 0 if and only if r|T |rU∗|T |2pU |T |r−
(p + r)λp|T |2r + pλp+rI ≥ 0 for all real λ. Using this characterization, we also
obtain some properties for absolute-(p, r)- paranormal operators.

Theorem 2.1. [9] : Let T1 = U1P1 and T2 = U2P2 be the polar decomposition of
T1 and T2, respectively. Then the following are equivalent:
(1) T1 doubly commutes with T2.
(2) U∗

1 , U1 and P1 commutes with U∗
2 , U2 and P2.

(3) [P1, P2] = 0, [U1, P2] = 0, [P1, U2] = 0, [U1, U2] = 0 and [U∗
1 , U2] = 0.

Theorem 2.2. [9] :Let T1 = U1P1 and T2 = U2P2 be the polar decomposition of
T1 and T2, respectively. If T1 doubly commutes with T2, then T1T2 = U1U2P1P2

is also the polar decomposition of T1T2, that is, U1U2 is partial isometry with
N(U1U2) = N(P1P2) and P1P2 = |T1T2|.
In [18], Yamazaki and Yanagida gave proof in terms of operator inequalities. Here
we give the proof using polar decomposition.

Lemma 2.3. Let an operator T ∈ B(H) have the polar decomposition T = U |T |.
Then T is absolute-(p, r)-paranormal for p > 0, r > 0 if and only if

r|T |rU∗|T |2pU |T |r − (p + r)λp|T |2r + pλp+rI ≥ 0 (2.1)

for all real λ.

Proof. Suppose that (2.1) holds for all real λ. Then this inequality is equivalent
to

‖|T |pU |T |rx‖2r − 2p
1
2 λ

p+r
2 ‖|T |rx‖p+r + pλp+r ≥ 0

for all real λ and x ∈ H. This is equivalent to
‖|T |pU |T |rx‖2r ≥ ‖|T |rx‖2(p+r), x ∈ H
i.e., ‖|T |pU |T |rx‖r ≥ ‖|T |rx‖p+r, x ∈ H

Hence T is absolute-(p, r)-paranormal. �
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Theorem 2.4. Let T = U |T | be invertible absolute-(p, r)-paranormal for p > 0,
r > 0. Then T−1 is absolute-(r, p)-paranormal.

Proof. Suppose that T = U |T | is an invertible absolute-(p, r)-paranormal oper-
ator. Then U |T |−r = |T ∗|−rU and |T ∗|−r = U |T |−rU∗ for all p > 0 and r > 0.
Since T is absolute-(p, r)-paranormal, from Lemma 2.3, we have

r|T |rU∗|T |2pU |T |r − (p + r)λp|T |2r + pλp+rI ≥ 0 .

Since T is invertible, taking inverse,
=⇒ pI − (p + r)λr|T−1|2r − rλ(p+r)|T−1|rU |T−1|2pU∗|T−1|r ≥ 0
=⇒ pI − (p + r)λrU |T−1|2rU∗ − rλp+rU |T |−rU |T |−2pU∗|T |−rU∗ ≥ 0
=⇒ U |T |−rU |T |−p[p|T |pU∗|T |2rU |T |p−(p+r)λr|T |2p +rλp+rI]|T |−pU∗|T |−rU∗

is positive for all real λ. Therefore by Lemma 2.3, T−1 is absolute-(r, p)-paranormal.
�

Theorem 2.5. An operator unitarily equivalent to absolute-(p, r)-paranormal op-
erator is absolute-(p, r)-paranormal for all p > 0 and r > 0.

Proof. Let T1 = W |T1| be absolute-(p, r)-paranormal, W be unitary and T2 =
W ∗T1W . Then |T2|r = W ∗|T1|rW and |T2|2p = W ∗|T1|2pW for every p > 0
and r > 0. Then by Theorem 2.1 and Theorem 2.2, we have T2 = W ∗T1W =
W ∗U |T1|W = W ∗UWW ∗|T1|W and N(W ∗UW ) = N(W ∗|T1|W ). Hence T2 =
(W ∗UW )(W ∗|T1|W ) is the polar decomposition of T2. Thus, we have,
r|T2|r(W ∗UW )∗|T2|2p(W ∗UW )|T2|r − (p + r)λp|T2|2r + pλp+rI
Since |T2|r = W ∗|T1|rW and |T2|2p = W ∗|T1|2pW , we get

rW ∗|T1|rU∗|T1|2pU |T1|rW − (p + r)λpW ∗|T1|2rW + pλp+rI
= W ∗[r|T1|rU∗|T1|2pU |T1|r − (p + r)λp|T1|2r + pλp+rI]W
= W ∗[r|T1|rW ∗|T1|2pW |T1|r − (p + r)λp|T1|2r + pλp+rI]W

is true for all real λ. Since T1 = W |T1| is the polar decomposition of T1, So T2 is
also absolute-(r, p)-paranormal. �

Remark 2.6. The above theorem is not true for similarly equivalent operators.

Theorem 2.7. If T ∈ A(p, r) then T is absolute-(p, r)-paranormal.

Proof. If T ∈ A(p, r) for any p > 0 and r > 0, then (|T ∗|r|T |2p|T ∗|r)
r

p+r ≥ |T ∗|2r

for every unit vector x ∈ H and T = U |T | is the polar decomposition of T . Then,

‖|T |rx‖p+r = (|T |rx, x)p+r

= (U∗|T ∗|rUx, x)p+r

≤ (U∗(|T ∗|r|T |2p|T ∗|r)
r

2(p+r) Ux, x)p+r(using the definition of class A(p, r)).

= ((U∗|T ∗|r|T |2p|T ∗|rU)
r

2(p+r) x, x)p+r(By Hansen inequality)

≤ (U∗|T ∗|r|T |2p|T ∗|rUx, x)
r

2(p+r)
.(p+r)(using Holder’s Mc carthy inequality)

≤ (U∗|T ∗|r|T |2p|T ∗|rUx, x)
r
2

≤ (|T |rU∗|T |2pU |T |rx, x)
r
2

≤ (|T |pU |T |r, |T |pU |T |r)
r
2

= ‖|T |pU |T |rx‖r
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Therefore T is absolute-(p, r)-paranormal. �

3. Weyl’s theorem for algebraically absolute-(p, r)-paranormal
operators

If T ∈ B(H), we write N(T ) and R(T ) for null space and range of T , respectively.
Let α(T )=dim N(T ), β(T )=dim N(T ∗) and let σ(T ), σa(T ) and π0(T ) denote the
spectrum, approximate point spectrum and point spectrum of T , respectively. An
operator T ∈ B(H) is called Fredholm if it has closed range, finite dimensional
null space and its range has finite co- dimension. The index of a Fredholm
operator is given by i(T ) = α(T )−β(T ). T is called Weyl if it Fredholm of index
zero and Browder if it is Fredholm of finite ascent and descent. The essential
spectrum σe(T ), the Weyl spectrum w(T ) and the Browder spectrum σb(T ) of T
are defined by

σe(T ) = {λ ∈ C : T − λ is not Fredholm }
w(T ) = {λ ∈ C : T − λ is not Weyl }
σb(T ) = {λ ∈ C : T − λ is not Browder }, respectively [11, 12].

Evidently σe(T ) ⊆ w(T ) ⊆ σb(T ) = σe(T )∪ accσ(T ), where accK is accumulation
points of K ⊆ C. Let π00(T ) = {λ ∈ isoσ(T ) : 0 < α(T −λ) < ∞} and P00(T ) =
σ(T )\σb(T ). We say that Weyl’s theorem holds for T if σ(T )\w(T ) = π00(T )
and that Browder’s theorem holds for T if σ(T )\w(T ) = P00(T ). Berkani [2] says
that generalized Weyl’s theorem holds for T provided σ(T )\σBW (T ) = E(T ),
whereE(T ) and σBW (T ) denote the isolated point of the spectrum which are
eigenvalues (no restriction on multiplicity) and the set of complex numbers λ for
which T − λI fails to be Weyl, respectively. An operator T ∈ B(H) is called B-
Fredholm if there exists n ∈ N for which the induced operator Tn : T n(H) →
T n(H) is Fredholm in the usual sense and B-Weyl if in addition Tn has index
zero. Note that, if the generalized Weyl’s theorem holds for T , then so does Weyl’s
theorem. We say T is algebraically absolute-(p, r)-paranormal if there exists a
non constant complex polynomial p such that p(T ) is absolute-(p, r)- paranormal.

Lemma 3.1. Let T be invertible and absolute-(p, r)-paranormal, λ ∈ C and
assume that σ(T ) = {λ} then T = λ.

Proof. Case (i): λ = 0
Since T is absolute-(p, r)-paranormal, T is normaloid by [18, Theorem 8]. There-
fore T = 0.
Case (ii): λ 6= 0
Since T is invertible and T is absolute-(p, r)-paranormal, we have T is normaloid
by [18, Theorem 8]. But T−1 is absolute-(r, p)-paranormal by Theorem 2.4.
Therefore T−1 is also normaloid by [18, Theorem 8]. But σ(T−1) = { 1

λ
} then

‖T‖‖T−1‖ = |λ|| 1
λ
| = 1. Then by [17], T is convexoid. So w(T ) = {λ}. Therefore

T = λ. �

Lemma 3.2. Let T be invertible and quasi-nilpotent algebraically absolute-(p, r)-
paranormal. Then T is nilpotent.
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Proof. Suppose that p(T ) is absolute-(p, r)-paranormal for some non constant
polynomial p. Since σ(p(T )) = p(σ(T )), the operator p(T ) − p(0) is quasi-
nilpotent. From above Lemma 3.1, we have that

CTm(T − λ1)(T − λ2) · · · .(T − λn) ≡ p(T )− p(0) = 0
where m ≥ 1. Since T − λi is invertible for every λi 6= 0 and So therefore
Tm = 0. �

Theorem 3.3. Let T be an invertible algebraically absolute-(p, r)-paranormal op-
erator. Then T is isoloid.

Proof. Let λ ∈ isoσ(T ) and let P = 1
2πi

∫
∂D

(µ − T )−1dµ be the associated Riesz

idempotent, where D is a closed disk centered at λ which contains no other points

of σ(T ). We can then represent T as the direct sum T =

(
T1 0
0 T2

)
where

σ(T1) = {λ} and σ(T2) = σ(T )/{λ}. Since T is algebraically absolute-(p, r)-
paranormal, p(T ) is absolute-(p, r)-paranormal for some non constant polynomial
p. since σ(T1) = {λ}, we must have σ(p(T1)) = p(σ(T1)) = {p(λ)}. Therefore
p(T1)− p(λ) is quasi-nilpotent.
Since p(T1) is absolute-(p, r)-paranormal, it follows from Lemma 3.1, that p(T1)−
p(λ) = 0. Put q(z) = p(z) − p(λ). Then q(T1) = 0 and hence T1 is alge-
braically absolute-(p, r)-paranormal. Since T1 − λ is quasi-nilpotent and alge-
braically absolute-(p, r)-paranormal, it follows from Lemma 3.2, that T1 − λ is
nilpotent. Therefore λ ∈ π0(T1) and hence λ ∈ π0(T ). This shows that T is
isoloid. �

Lemma 3.4. Let T be an algebraically absolute-(p, r)-paranormal operator. Then
T has SVEP (the single-valued extension property).

Proof. We first show that if T is absolute-(p, r)-paranormal, then T has SVEP.
Suppose that T is absolute-(p, r)-paranormal. If π0(T ) = φ, then clearly T has
SVEP. Suppose that π0(T ) 6= φ. Let 4(T ) = {λ ∈ π0(T ) : N(T − λ) ⊆ N(T ∗ −
λ)}. Since T is absolute-(p, r)-paranormal and π0(T ) 6= φ, 4(T ) 6= φ. Let M
be the closed linear span of the subspaces N(T − λ) with λ ∈ 4(T ). Then M
reduces T , and so we can write T as T1 ⊕ T2 on H = M ⊕ M⊥. Clearly, T1 is
normal and π0(T2) = φ. Since T1 and T2 have both SVEP, T has SVEP. Suppose
now that T is algebraically absolute-(p, r)-paranormal. Then p(T ) is absolute-
(p, r)-paranormal for some non constant polynomial p. Since p(T ) has SVEP, it
follows from [14, Theorem 3.3.9] that T has SVEP. �

Let H(σ(T )) be the set of all analytic functions in an open neighborhood of σ(T ).

Theorem 3.5. Let T be an algebraically absolute-(p, r)-paranormal operator.
Then Weyl’s theorem holds for T .

Proof. Suppose that λ ∈ σ(T )\w(T ). Then T −λ is Weyl and not invertible. We
claim that λ ∈ ∂σ(T ). Assume that λ is an interior point of σ(T ). Then there
exists a neighborhood U of λ, such that dimN(T−µ) > 0 for all µ ∈ U . It follows
from [6, Theorem 10] that T doesnot have SVEP. On the other hand, Since p(T )
is absolute-(p, r)-paranormal for some non constant polynomial p, it follows from
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Lemma 3.4 that T has SVEP. It is a contradiction. Therefore, λ ∈ ∂σ(T )\w(T )
and it follows from the punctured neighborhood theorem that λ ∈ π00(T ).
Conversely, suppose that λ ∈ π00(T ). Using the Riesz idempotent E = 1

2πi

∫
∂D

(µ−

T )−1dµ for λ, we can represent T as the direct sum T =

(
T1 0
0 T2

)
, where

σ(T1) = {λ} and σ(T2) = σ(T )\{λ}. Now we consider two cases:
Case(i) : λ = 0: Then T1 is algebraically absolute-(p, r)-paranormal and quasi-
nilpotent. It follows from Lemma 3.2 that T1 is nilpotent. We claim that
dimR(E) < ∞. For, if N(T1) is infinite dimensional, then 0 /∈ π00(T ). It is
a contradiction. Therefore T1 is an operator on the finite dimensional space
R(E). So it follows that T1 is Weyl. But since T2 is invertible, we can conclude
that T is Weyl. Therefore 0 ∈ σ(T )\w(T ).

Case(ii) : λ 6= 0: Then by the proof of Theorem 3.3, T1 − λ is nilpotent. Since
λ ∈ π00(T ), T1−λ is an operator on the finite dimensional space R(E). So T1−λ
is Weyl. Since T2 − λ is invertible, T − λ is Weyl.
By Case (i) and Case (ii), Weyl’s theorem holds for T . This completes the
proof. �

Theorem 3.6. Let T be an algebraically absolute-(p, r)-paranormal operator.
Then Weyl’s theorem holds for f(T ) for every f ∈ H(σ(T )).

Proof. Let f ∈ H(σ(T )). Since it generally holds w(f(T )) ⊆ f(w(T )), it suffices
to show that f(w(T )) ⊆ w(f(T )). Suppose λ /∈ w(f(T )), then f(T )− λ is Weyl
and

f(T )− λ = c(T − α1)(T − α2)(T − α3) · · · .(T − αn)g(T ) (3.1)

where c, α1, α2, α3, · · ·αn ∈ C and g(T ) is invertible. Since the operators in the
right side of (3.1) commute, every T − αi is Fredholm. Since T is algebraically
absolute-(p, r)-paranormal, T has SVEP by Lemma 3.4. It follows from [1, The-
orem 2.6] that ind(T − αi) ≤ 0 for each i = 1, 2, 3, · · ·n. Therefore λ /∈ f(w(T ))
and hence f(w(T )) = w(f(T )).
Now by [16], that if T is isoloid, then

f(σ(T )\π00(T )) = σ(f(T ))\π00(f(T )) for every f ∈ H(σ(T ))
Since T is isoloid by Theorem 3.3 and Weyl’s theorem holds for T by Theorem
3.5,

σ(f(T ))\π00(f(T )) = f(σ(T )\π00(T )) = f(w(T )) = w(f(T ))
which imples that Weyl’s theorem holds for f(T ). This completes the proof. �

Theorem 3.7. Let T be an algebraically absolute-(p, r)-paranormal operator.
Then generalized Weyl’s theorem holds for T .

Proof. Assume that λ ∈ σ(T )\σBW (T ). Then T−λI is B-Weyl and not invertible.
We claim that λ ∈ ∂σ(T ). Assume to the contrary that λ is an interior point of
σ(T ). Then there exists a neighborhood U of λ such that dim(T − µ) > 0 for all
µ ∈ U . It follows from [6, Theorem 10], that T doesnot have SVEP. On the other
hand, since p(T ) is absolute-(p, r)-paranormal for non constant polynomial p, it
follows from Lemma 3.4 that p(T ) has SVEP. Hence by [14, Theorem 3.3.9], T is
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SVEP, a contradiction. Therefore λ ∈ ∂σ(T ). Conversely, assume that λ ∈ E(T ),
then λ is isolated in σ(T ). From [13, Theorem 7.1], we have X = M ⊕N , where
M , N are closed subspaces of X, U = (T − λI)|N is an invertible operator and
V = (A− λI)|N is a quasi- nilpotent operator. Since T is algebraically absolute-
(p, r)-paranormal,V is also algebraically absolute-(p, r)-paranormal, from Lemma
3.2, V is nilpotent. Therefore T − λI is Drazin invertible [5, Proposition 19] and
[15, Corollary 2.2]. By [3, Lemma 4.1], T −λI is a B-Fredholm operator of index
0. �

Let σBF (T ) = {λ ∈ C : T −λI is not a B-Fredholm operator} be the B-Fredholm
spectrum of T and ρBF (T ) = C\σBF (T ), the resolvent set of T .

Definition 3.8. Let T ∈ B(H), we say that T is of stable index if for each
λ, µ ∈ ρBF (T ), ind(T − λI), ind(T − µI) have the same sign index.

Lemma 3.9. Let T ∈ B(H) be absolute-(p, r)-paranormal, then T is of stable
index.

Proof. If T is absolute-(p, r)-paranormal, then ‖|T |p|T ∗|rx‖r‖x‖ ≥ ‖|T ∗|rx‖p+r

for all x ∈ H. So N(T ) ⊂ N(T ∗) = R(T )⊥. Since N(T 2)/N(T ) ≈ N(T ) ∩ R(T ),
implies that N(T 2) = N(T ). Moreover, if T is also B- Fredholm, then there
exists an integer n, such that R(T n) is closed and such that Tn : R(T n) → R(T n)
is a Fredholm operator. We have,

ind(T ) = ind(Tn)

= dimN(T ) ∩R(T n)− dimR(T n)/R(T n+1)

= −dimR(T n)/R(T n+1).

Hence it follows that ind(T ) ≤ 0.
Further, if λ ∈ ρBF (T ), then T −λI is a B-Fredholm operator and T −λI is also
absolute-(p, r)- paranormal. By the same way as above, we have ind(T −λI) ≤ 0.
Therefore T is of stable index. �

Theorem 3.10. Let T be an invertible algebraically absolute-(p, r)-paranormal
operator. Then generalized Weyl’s theorem holds for f(T ) for every function f
analytic on a neighborhood of σ(T ).

Proof. Assume that T be an algebraically absolute-(p, r)-paranormal operator.
We prove that f(σBW (T )) = σBW (f(T )) for every function f analytic on a neigh-
borhood of σ(T ). Let f be an analytic function on a neighborhood of σ(T ). Since
σBW (f(T )) ⊆ f(σBW (T )) with no restriction on T , it is sufficient to prove that
f(σBW (T )) ⊆ σBW (f(T )).
Assume that λ /∈ σBW (f(T )). Then f(T )− λ is B-Weyl and

f(T )− λ = C(T − α1I)(T − α2I) · · · (T − αnI)g(t)
where c, α1, α2, · · · , αn ∈ C and g(T ) is invertible. Since f(T ) − λI is a B-
Fredholm operator from [2, Theorem 3.4], it follows that for each i, 1 ≤ i ≤ n,
T − αiI is a B-Fredholm operator. Moreover, since ind(f(T ) − λI) = 0 and T
is of stable sign index by Lemma 3.9, from [3, Theorem 3.2], we have for each
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i, 1 ≤ i ≤ n, ind(T − αiI) = 0. So for each i, 1 ≤ i ≤ n, αi /∈ σBW (T ). If
λ ∈ f(σBW (T )), there exists α ∈ σBW (T ) such that λ = f(α). Hence 0 = f(α)−
λ = (α − α1)(α − α2) · · · (α − αn)g(α). This implies that α ∈ {α1, α2, · · · , αn}.
Hence, there exists i, 1 ≤ i ≤ n, such that αi ∈ σBW (T ), contradiction. Hence
λ /∈ f(σBW (T )). It is known [4, Lemma 2.9] that if T is isoloid then

f(σ(T )\E(T )) = σ(f(T ))\E(f(T ))
for every analytic function on a neighborhood of σ(T ). Since T is isoloid, by
Theorem 3.3, and generalized Weyl’s theorem holds for T by Theorem 3.5,

σ(f(T ))\E(f(T )) = f(σ(T )\E(T ))
= f(σBW (T )) = σBW (f(T )) by [4, Theorem 2.10]. �
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