

Banach J. Math. Anal. 5 (2011), no. 1, 29–37

BANACH JOURNAL OF MATHEMATICAL ANALYSIS ISSN: 1735-8787 (electronic) www.emis.de/journals/BJMA/

WEYL'S THEOREM FOR ALGEBRAICALLY ABSOLUTE-(p, r)-PARANORMAL OPERATORS

D. SENTHILKUMAR¹ AND P. MAHESWARI NAIK^{2*}

Communicated by M. Fujii

ABSTRACT. An operator $T \in B(H)$ is said to be absolute-(p, r)-paranormal if $|||T|^p|T^*|^rx||^r||x|| \ge |||T^*|^rx||^{p+r}$ for all $x \in H$ and for positive real number p > 0 and r > 0, where T = U|T| is the polar decomposition of T. In this paper, we discuss some properties of absolute-(p, r)-paranormal operators and show that Weyl's theorem holds for algebraically absolute-(p, r)-paranormal operators.

1. INTRODUCTION AND PRELIMINARIES

Let H be an infinite dimensional complex Hilbert space and B(H) denote the algebra of all bounded linear operators acting on H. Every operator T can be decomposed into T = U|T| with a partial isometry U, where $|T| = \sqrt{T^*T}$. In this paper, T = U|T| denotes the polar decomposition satisfying the kernel condition N(U) = N(|T|). Furuta, Ito and Yamazaki [10] introduced class A(k) and absolute-k-paranormal operators for k > 0 as generalizations of class A and paranormal operators, respectively. An operator T belongs to class A(k) if $(T^*|T|^{2k}T)^{\frac{1}{k+1}} \ge |T|^2$ and T is said to be absolute-k-paranormal if $|||T|^kTx|| \ge ||Tx||^{k+1}$ for every unit vector x. On other hand Fujii, Izumino and Nakamoto [7] introduced p-paranormal operators for p > 0 as another generalization of paranormal operators. An operator T is said to be p-paranormal if $|||T|^p U|T|^p x|| \ge |||T|^p x||^2$ for every unit vector x, where the polar decomposition of T is T = U|T|.

Date: Received: 28 December 2009; Revised: 12 April 2010; Accepted: 27 April 2010. * Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 47A13; Secondary 47A30, 47B06.

Key words and phrases. Absolute-(p, r)-paranormal operator, nilpotent, normaloid, Riesz idempotent, single valued extension property, stable index, Drazin invertible, Drazin spectrum.

Fujii, Jung, S.H. Lee, M.Y. Lee and Nakamoto [8] introduced class A(p,r) as a further generalization of class A(k). An operator $T \in A(p,r)$ for p > 0 and r > 0 if $(|T^*|^r |T|^{2p} |T^*|^r)^{\frac{r}{p+r}} \ge |T^*|^{2r}$ and class AI(p,r) is class of all invertible operators which belong to class A(p, r). Yamazaki and Yanagida [18] introduced the notion of absolute-(p, r)-paranormal operator. It is a further generalization of the classes of both absolute-k-paranormal operators and p-paranormal operators as a parallel concept of class A(p,r). An operator T is said to be absolute-(p,r)paranormal if $|||T|^p|T^*|^r x||^r \ge |||T^*|^r x||^{p+r}$ for every unit vector x or equivalently $|||T|^p|T^*|^r x||^r ||x|| > |||T^*|^r x||^{p+r}$ for all $x \in H$ and for positive real numbers p > 0and r > 0.

2. On Absolute-(p, r)-Paranormal operator

In this section, we obtain a characterization of absolute(p, r)-paranormal operators using the polar decomposition T = U|T| of T i.e., T = U|T| is absolute-(p,r)-paranormal operator for p > 0 and r > 0 if and only if $r|T|^r U^*|T|^{2p} U|T|^r - 1$ $(p+r)\lambda^p|T|^{2r} + p\lambda^{p+r}I \ge 0$ for all real λ . Using this characterization, we also obtain some properties for absolute-(p, r)- paranormal operators.

Theorem 2.1. [9] : Let $T_1 = U_1P_1$ and $T_2 = U_2P_2$ be the polar decomposition of T_1 and T_2 , respectively. Then the following are equivalent:

(1) T_1 doubly commutes with T_2 .

r

(2) U_1^*, U_1 and P_1 commutes with U_2^*, U_2 and P_2 .

(3) $[P_1, P_2] = 0, [U_1, P_2] = 0, [P_1, U_2] = 0, [U_1, U_2] = 0 \text{ and } [U_1^*, U_2] = 0.$

Theorem 2.2. [9] :Let $T_1 = U_1P_1$ and $T_2 = U_2P_2$ be the polar decomposition of T_1 and T_2 , respectively. If T_1 doubly commutes with T_2 , then $T_1T_2 = U_1U_2P_1P_2$ is also the polar decomposition of T_1T_2 , that is, U_1U_2 is partial isometry with $N(U_1U_2) = N(P_1P_2)$ and $P_1P_2 = |T_1T_2|$.

In [18], Yamazaki and Yanagida gave proof in terms of operator inequalities. Here we give the proof using polar decomposition.

Lemma 2.3. Let an operator $T \in B(H)$ have the polar decomposition T = U|T|. Then T is absolute-(p, r)-paranormal for p > 0, r > 0 if and only if

$$|T|^{r}U^{*}|T|^{2p}U|T|^{r} - (p+r)\lambda^{p}|T|^{2r} + p\lambda^{p+r}I \ge 0$$
(2.1)

for all real λ .

Proof. Suppose that (2.1) holds for all real λ . Then this inequality is equivalent to

 $|||T|^{p}U|T|^{r}x||^{2r} - 2p^{\frac{1}{2}}\lambda^{\frac{p+r}{2}}|||T|^{r}x||^{p+r} + p\lambda^{p+r} \ge 0$ for all real λ and $x \in H$. This is equivalent to $|||T|^{p}U|T|^{r}x||^{\hat{2}r} \ge |||T|^{r}x||^{2(p+r)}, x \in H$ i.e., $|||T|^p U|T|^r x ||^r \ge |||T|^r x ||^{p+r}, x \in H$

Hence T is absolute-(p, r)-paranormal.

Theorem 2.4. Let T = U|T| be invertible absolute-(p, r)-paranormal for p > 0, r > 0. Then T^{-1} is absolute-(r, p)-paranormal.

Proof. Suppose that T = U|T| is an invertible absolute-(p, r)-paranormal operator. Then $U|T|^{-r} = |T^*|^{-r}U$ and $|T^*|^{-r} = U|T|^{-r}U^*$ for all p > 0 and r > 0. Since T is absolute-(p, r)-paranormal, from Lemma 2.3, we have

$$r|T|^{r}U^{*}|T|^{2p}U|T|^{r} - (p+r)\lambda^{p}|T|^{2r} + p\lambda^{p+r}I \ge 0.$$

Since T is invertible, taking inverse,

 $\implies pI - (p+r)\lambda^{r}|T^{-1}|^{2r} - r\lambda^{(p+r)}|T^{-1}|^{r}U|T^{-1}|^{2p}U^{*}|T^{-1}|^{r} \ge 0 \\ \implies pI - (p+r)\lambda^{r}U|T^{-1}|^{2r}U^{*} - r\lambda^{p+r}U|T|^{-r}U|T|^{-2p}U^{*}|T|^{-r}U^{*} \ge 0 \\ \implies U|T|^{-r}U|T|^{-p}[p|T|^{p}U^{*}|T|^{2r}U|T|^{p} - (p+r)\lambda^{r}|T|^{2p} + r\lambda^{p+r}I]|T|^{-p}U^{*}|T|^{-r}U^{*} \\ \text{is positive for all real } \lambda. \text{ Therefore by Lemma 2.3, } T^{-1} \text{ is absolute-}(r, p)\text{-paranormal.}$

Theorem 2.5. An operator unitarily equivalent to absolute-(p, r)-paranormal operator is absolute-(p, r)-paranormal for all p > 0 and r > 0.

Proof. Let $T_1 = W|T_1|$ be absolute-(p, r)-paranormal, W be unitary and $T_2 = W^*T_1W$. Then $|T_2|^r = W^*|T_1|^rW$ and $|T_2|^{2p} = W^*|T_1|^{2p}W$ for every p > 0 and r > 0. Then by Theorem 2.1 and Theorem 2.2, we have $T_2 = W^*T_1W = W^*U|T_1|W = W^*UWW^*|T_1|W$ and $N(W^*UW) = N(W^*|T_1|W)$. Hence $T_2 = (W^*UW)(W^*|T_1|W)$ is the polar decomposition of T_2 . Thus, we have, $r|T_2|^r(W^*UW)^*|T_2|^{2p}(W^*UW)|T_2|^r - (p+r)\lambda^p|T_2|^{2r} + p\lambda^{p+r}I$ Since $|T_2|^r = W^*|T_1|^rW$ and $|T_2|^{2p} = W^*|T_1|^{2p}W$, we get $rW^*|T_1|^rU^*|T_1|^{2p}U|T_1|^rW - (p+r)\lambda^pW^*|T_1|^{2r}W + p\lambda^{p+r}I = W^*[r|T_1|^rU^*|T_1|^{2p}U|T_1|^r - (p+r)\lambda^p|T_1|^{2r} + p\lambda^{p+r}I]W = W^*[r|T_1|^rW^*|T_1|^{2p}W|T_1|^r - (p+r)\lambda^p|T_1|^{2r} + p\lambda^{p+r}I]W$

is true for all real λ . Since $T_1 = W|T_1|$ is the polar decomposition of T_1 , So T_2 is also absolute-(r, p)-paranormal.

Remark 2.6. The above theorem is not true for similarly equivalent operators.

Theorem 2.7. If $T \in A(p,r)$ then T is absolute-(p,r)-paranormal.

Proof. If $T \in A(p,r)$ for any p > 0 and r > 0, then $(|T^*|^r|T|^{2p}|T^*|^r)^{\frac{r}{p+r}} \ge |T^*|^{2r}$ for every unit vector $x \in H$ and T = U|T| is the polar decomposition of T. Then,

$$\begin{split} \||T|^{r}x\|^{p+r} &= (|T|^{r}x,x)^{p+r} \\ &= (U^{*}|T^{*}|^{r}Ux,x)^{p+r} \\ &\leq (U^{*}(|T^{*}|^{r}|T|^{2p}|T^{*}|^{r})^{\frac{r}{2(p+r)}}Ux,x)^{p+r} (\text{using the definition of class A(p, r)}). \\ &= ((U^{*}|T^{*}|^{r}|T|^{2p}|T^{*}|^{r}U)^{\frac{r}{2(p+r)}}x,x)^{p+r} (\text{By Hansen inequality}) \\ &\leq (U^{*}|T^{*}|^{r}|T|^{2p}|T^{*}|^{r}Ux,x)^{\frac{r}{2(p+r)}}(\text{using Holder's Mc carthy inequality}) \\ &\leq (U^{*}|T^{*}|^{r}|T|^{2p}U|T^{*}|^{r}Ux,x)^{\frac{r}{2}} \\ &\leq (|T|^{r}U^{*}|T|^{2p}U|T|^{r}x,x)^{\frac{r}{2}} \\ &\leq (|T|^{p}U|T|^{r},|T|^{p}U|T|^{r})^{\frac{r}{2}} \\ &= \||T|^{p}U|T|^{r}x\|^{r} \end{split}$$

Therefore T is absolute-(p, r)-paranormal.

3. Weyl's theorem for algebraically absolute-(p, r)-paranormal operators

If $T \in B(H)$, we write N(T) and R(T) for null space and range of T, respectively. Let $\alpha(T) = \dim N(T)$, $\beta(T) = \dim N(T^*)$ and let $\sigma(T)$, $\sigma_a(T)$ and $\pi_0(T)$ denote the spectrum, approximate point spectrum and point spectrum of T, respectively. An operator $T \in B(H)$ is called Fredholm if it has closed range, finite dimensional null space and its range has finite co- dimension. The index of a Fredholm operator is given by $i(T) = \alpha(T) - \beta(T)$. T is called Weyl if it Fredholm of index zero and Browder if it is Fredholm of finite ascent and descent. The essential spectrum $\sigma_e(T)$, the Weyl spectrum w(T) and the Browder spectrum $\sigma_b(T)$ of T are defined by

 $\sigma_e(T) = \{\lambda \in C : T - \lambda \text{ is not Fredholm } \}$

$$w(T) = \{\lambda \in C : T - \lambda \text{ is not Weyl}\}$$

 $\sigma_b(T) = \{\lambda \in C : T - \lambda \text{ is not Browder }\}, \text{ respectively } [11, 12].$

Evidently $\sigma_e(T) \subseteq w(T) \subseteq \sigma_b(T) = \sigma_e(T) \cup \operatorname{acc}\sigma(T)$, where $\operatorname{acc} K$ is accumulation points of $K \subseteq C$. Let $\pi_{00}(T) = \{\lambda \in \operatorname{iso}\sigma(T) : 0 < \alpha(T-\lambda) < \infty\}$ and $P_{00}(T) = \sigma(T) \setminus \sigma_b(T)$. We say that Weyl's theorem holds for T if $\sigma(T) \setminus w(T) = \pi_{00}(T)$ and that Browder's theorem holds for T if $\sigma(T) \setminus w(T) = P_{00}(T)$. Berkani [2] says that generalized Weyl's theorem holds for T provided $\sigma(T) \setminus \sigma_{BW}(T) = E(T)$, where E(T) and $\sigma_{BW}(T)$ denote the isolated point of the spectrum which are eigenvalues (no restriction on multiplicity) and the set of complex numbers λ for which $T - \lambda I$ fails to be Weyl, respectively. An operator $T \in B(H)$ is called B-Fredholm if there exists $n \in N$ for which the induced operator $T_n : T^n(H) \to$ $T^n(H)$ is Fredholm in the usual sense and B-Weyl if in addition T_n has index zero. Note that, if the generalized Weyl's theorem holds for T, then so does Weyl's theorem. We say T is algebraically absolute-(p, r)-paranormal if there exists a non constant complex polynomial p such that p(T) is absolute-(p, r)- paranormal.

Lemma 3.1. Let T be invertible and absolute-(p, r)-paranormal, $\lambda \in C$ and assume that $\sigma(T) = \{\lambda\}$ then $T = \lambda$.

Proof. Case (i): $\lambda = 0$ Since T is absolute-(p, r)-paranormal, T is normaloid by [18, Theorem 8]. Therefore T = 0. Case (ii): $\lambda \neq 0$ Since T is invertible and T is absolute-(p, r)-paranormal, we have T is normaloid by [18, Theorem 8]. But T^{-1} is absolute-(r, p)-paranormal by Theorem 2.4. Therefore T^{-1} is also normaloid by [18, Theorem 8]. But $\sigma(T^{-1}) = \{\frac{1}{\lambda}\}$ then $\|T\| \|T^{-1}\| = |\lambda| |\frac{1}{\lambda}| = 1$. Then by [17], T is convexoid. So $w(T) = \{\lambda\}$. Therefore $T = \lambda$.

Lemma 3.2. Let T be invertible and quasi-nilpotent algebraically absolute-(p, r)-paranormal. Then T is nilpotent.

Proof. Suppose that p(T) is absolute-(p, r)-paranormal for some non constant polynomial p. Since $\sigma(p(T)) = p(\sigma(T))$, the operator p(T) - p(0) is quasi-nilpotent. From above Lemma 3.1, we have that

 $CT^{m}(T-\lambda_{1})(T-\lambda_{2})\cdots (T-\lambda_{n}) \equiv p(T)-p(0)=0$ where $m \geq 1$. Since $T-\lambda_{i}$ is invertible for every $\lambda_{i} \neq 0$ and So therefore $T^{m}=0$.

Theorem 3.3. Let T be an invertible algebraically absolute-(p, r)-paranormal operator. Then T is isoloid.

Proof. Let $\lambda \in iso\sigma(T)$ and let $P = \frac{1}{2\pi i} \int_{\partial D} (\mu - T)^{-1} d\mu$ be the associated Riesz idempotent, where D is a closed disk centered at λ which contains no other points of $\sigma(T)$. We can then represent T as the direct sum $T = \begin{pmatrix} T_1 & 0 \\ 0 & T_2 \end{pmatrix}$ where $\sigma(T_1) = \{\lambda\}$ and $\sigma(T_2) = \sigma(T)/\{\lambda\}$. Since T is algebraically absolute-(p, r)paranormal, p(T) is absolute-(p, r)-paranormal for some non constant polynomial p. since $\sigma(T_1) = \{\lambda\}$, we must have $\sigma(p(T_1)) = p(\sigma(T_1)) = \{p(\lambda)\}$. Therefore $p(T_1) - p(\lambda)$ is quasi-nilpotent.

Since $p(T_1)$ is absolute-(p, r)-paranormal, it follows from Lemma 3.1, that $p(T_1) - p(\lambda) = 0$. Put $q(z) = p(z) - p(\lambda)$. Then $q(T_1) = 0$ and hence T_1 is algebraically absolute-(p, r)-paranormal. Since $T_1 - \lambda$ is quasi-nilpotent and algebraically absolute-(p, r)-paranormal, it follows from Lemma 3.2, that $T_1 - \lambda$ is nilpotent. Therefore $\lambda \in \pi_0(T_1)$ and hence $\lambda \in \pi_0(T)$. This shows that T is isoloid.

Lemma 3.4. Let T be an algebraically absolute-(p, r)-paranormal operator. Then T has SVEP (the single-valued extension property).

Proof. We first show that if T is absolute-(p, r)-paranormal, then T has SVEP. Suppose that T is absolute-(p, r)-paranormal. If $\pi_0(T) = \phi$, then clearly T has SVEP. Suppose that $\pi_0(T) \neq \phi$. Let $\Delta(T) = \{\lambda \in \pi_0(T) : N(T - \lambda) \subseteq N(T^* - \overline{\lambda})\}$. Since T is absolute-(p, r)-paranormal and $\pi_0(T) \neq \phi$, $\Delta(T) \neq \phi$. Let Mbe the closed linear span of the subspaces $N(T - \lambda)$ with $\lambda \in \Delta(T)$. Then Mreduces T, and so we can write T as $T_1 \oplus T_2$ on $H = M \oplus M^{\perp}$. Clearly, T_1 is normal and $\pi_0(T_2) = \phi$. Since T_1 and T_2 have both SVEP, T has SVEP. Suppose now that T is algebraically absolute-(p, r)-paranormal. Then p(T) is absolute-(p, r)-paranormal for some non constant polynomial p. Since p(T) has SVEP, it follows from [14, Theorem 3.3.9] that T has SVEP.

Let $H(\sigma(T))$ be the set of all analytic functions in an open neighborhood of $\sigma(T)$.

Theorem 3.5. Let T be an algebraically absolute-(p, r)-paranormal operator. Then Weyl's theorem holds for T.

Proof. Suppose that $\lambda \in \sigma(T) \setminus w(T)$. Then $T - \lambda$ is Weyl and not invertible. We claim that $\lambda \in \partial \sigma(T)$. Assume that λ is an interior point of $\sigma(T)$. Then there exists a neighborhood U of λ , such that $\dim N(T-\mu) > 0$ for all $\mu \in U$. It follows from [6, Theorem 10] that T does not have SVEP. On the other hand, Since p(T) is absolute-(p, r)-paranormal for some non constant polynomial p, it follows from

Lemma 3.4 that T has SVEP. It is a contradiction. Therefore, $\lambda \in \partial \sigma(T) \setminus w(T)$ and it follows from the punctured neighborhood theorem that $\lambda \in \pi_{00}(T)$. Conversely, suppose that $\lambda \in \pi_{00}(T)$. Using the Riesz idempotent $E = \frac{1}{2\pi i} \int_{\partial D} (\mu - \mu) d\mu$

 $T)^{-1}d\mu$ for λ , we can represent T as the direct sum $T = \begin{pmatrix} T_1 & 0 \\ 0 & T_2 \end{pmatrix}$, where $\sigma(T_1) = \{\lambda\}$ and $\sigma(T_2) = \sigma(T) \setminus \{\lambda\}$. Now we consider two cases:

Case(i) : $\lambda = 0$: Then T_1 is algebraically absolute-(p, r)-paranormal and quasinilpotent. It follows from Lemma 3.2 that T_1 is nilpotent. We claim that $\dim R(E) < \infty$. For, if $N(T_1)$ is infinite dimensional, then $0 \notin \pi_{00}(T)$. It is a contradiction. Therefore T_1 is an operator on the finite dimensional space R(E). So it follows that T_1 is Weyl. But since T_2 is invertible, we can conclude that T is Weyl. Therefore $0 \in \sigma(T) \setminus w(T)$.

Case(ii) : $\lambda \neq 0$: Then by the proof of Theorem 3.3, $T_1 - \lambda$ is nilpotent. Since $\lambda \in \pi_{00}(T)$, $T_1 - \lambda$ is an operator on the finite dimensional space R(E). So $T_1 - \lambda$ is Weyl. Since $T_2 - \lambda$ is invertible, $T - \lambda$ is Weyl.

By Case (i) and Case (ii), Weyl's theorem holds for T. This completes the proof. \Box

Theorem 3.6. Let T be an algebraically absolute-(p, r)-paranormal operator. Then Weyl's theorem holds for f(T) for every $f \in H(\sigma(T))$.

Proof. Let $f \in H(\sigma(T))$. Since it generally holds $w(f(T)) \subseteq f(w(T))$, it suffices to show that $f(w(T)) \subseteq w(f(T))$. Suppose $\lambda \notin w(f(T))$, then $f(T) - \lambda$ is Weyl and

$$f(T) - \lambda = c(T - \alpha_1)(T - \alpha_2)(T - \alpha_3) \cdots (T - \alpha_n)g(T)$$
(3.1)

where $c, \alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n \in C$ and g(T) is invertible. Since the operators in the right side of (3.1) commute, every $T - \alpha_i$ is Fredholm. Since T is algebraically absolute-(p, r)-paranormal, T has SVEP by Lemma 3.4. It follows from [1, Theorem 2.6] that $\operatorname{ind}(T - \alpha_i) \leq 0$ for each $i = 1, 2, 3, \dots n$. Therefore $\lambda \notin f(w(T))$ and hence f(w(T)) = w(f(T)).

Now by [16], that if T is isoloid, then

 $f(\sigma(T)\setminus\pi_{00}(T)) = \sigma(f(T))\setminus\pi_{00}(f(T))$ for every $f \in H(\sigma(T))$

Since T is isoloid by Theorem 3.3 and Weyl's theorem holds for T by Theorem 3.5,

 $\sigma(f(T)) \setminus \pi_{00}(f(T)) = f(\sigma(T) \setminus \pi_{00}(T)) = f(w(T)) = w(f(T))$

which imples that Weyl's theorem holds for f(T). This completes the proof. \Box

Theorem 3.7. Let T be an algebraically absolute-(p, r)-paranormal operator. Then generalized Weyl's theorem holds for T.

Proof. Assume that $\lambda \in \sigma(T) \setminus \sigma_{BW}(T)$. Then $T - \lambda I$ is *B*-Weyl and not invertible. We claim that $\lambda \in \partial \sigma(T)$. Assume to the contrary that λ is an interior point of $\sigma(T)$. Then there exists a neighborhood *U* of λ such that $\dim(T - \mu) > 0$ for all $\mu \in U$. It follows from [6, Theorem 10], that *T* does not have SVEP. On the other hand, since p(T) is absolute-(p, r)-paranormal for non constant polynomial *p*, it follows from Lemma 3.4 that p(T) has SVEP. Hence by [14, Theorem 3.3.9], *T* is SVEP, a contradiction. Therefore $\lambda \in \partial \sigma(T)$. Conversely, assume that $\lambda \in E(T)$, then λ is isolated in $\sigma(T)$. From [13, Theorem 7.1], we have $X = M \oplus N$, where M, N are closed subspaces of X, $U = (T - \lambda I)|_N$ is an invertible operator and $V = (A - \lambda I)|_N$ is a quasi- nilpotent operator. Since T is algebraically absolute-(p, r)-paranormal, V is also algebraically absolute-(p, r)-paranormal, from Lemma 3.2, V is nilpotent. Therefore $T - \lambda I$ is Drazin invertible [5, Proposition 19] and [15, Corollary 2.2]. By [3, Lemma 4.1], $T - \lambda I$ is a B-Fredholm operator of index 0.

Let $\sigma_{BF}(T) = \{\lambda \in C : T - \lambda I \text{ is not a } B\text{-Fredholm operator}\}$ be the *B*-Fredholm spectrum of *T* and $\rho_{BF}(T) = C \setminus \sigma_{BF}(T)$, the resolvent set of *T*.

Definition 3.8. Let $T \in B(H)$, we say that T is of stable index if for each $\lambda, \mu \in \rho_{BF}(T)$, $\operatorname{ind}(T - \lambda I)$, $\operatorname{ind}(T - \mu I)$ have the same sign index.

Lemma 3.9. Let $T \in B(H)$ be absolute-(p, r)-paranormal, then T is of stable index.

Proof. If T is absolute-(p, r)-paranormal, then $|||T|^p|T^*|^r x||^r||x|| \ge |||T^*|^r x||^{p+r}$ for all $x \in H$. So $N(T) \subset N(T^*) = R(T)^{\perp}$. Since $N(T^2)/N(T) \approx N(T) \cap R(T)$, implies that $N(T^2) = N(T)$. Moreover, if T is also B- Fredholm, then there exists an integer n, such that $R(T^n)$ is closed and such that $T_n : R(T^n) \to R(T^n)$ is a Fredholm operator. We have,

$$ind(T) = ind(T_n)$$

= $dimN(T) \cap R(T^n) - dimR(T^n)/R(T^{n+1})$
= $-dimR(T^n)/R(T^{n+1}).$

Hence it follows that $\operatorname{ind}(T) \leq 0$.

Further, if $\lambda \in \rho_{BF}(T)$, then $T - \lambda I$ is a *B*-Fredholm operator and $T - \lambda I$ is also absolute-(p, r)- paranormal. By the same way as above, we have $\operatorname{ind}(T - \lambda I) \leq 0$. Therefore *T* is of stable index.

Theorem 3.10. Let T be an invertible algebraically absolute-(p, r)-paranormal operator. Then generalized Weyl's theorem holds for f(T) for every function f analytic on a neighborhood of $\sigma(T)$.

Proof. Assume that T be an algebraically absolute-(p, r)-paranormal operator. We prove that $f(\sigma_{BW}(T)) = \sigma_{BW}(f(T))$ for every function f analytic on a neighborhood of $\sigma(T)$. Let f be an analytic function on a neighborhood of $\sigma(T)$. Since $\sigma_{BW}(f(T)) \subseteq f(\sigma_{BW}(T))$ with no restriction on T, it is sufficient to prove that $f(\sigma_{BW}(T)) \subseteq \sigma_{BW}(f(T))$.

Assume that $\lambda \notin \sigma_{BW}(f(T))$. Then $f(T) - \lambda$ is B-Weyl and

 $f(T) - \lambda = C(T - \alpha_1 I)(T - \alpha_2 I) \cdots (T - \alpha_n I)g(t)$

where $c, \alpha_1, \alpha_2, \dots, \alpha_n \in C$ and g(T) is invertible. Since $f(T) - \lambda I$ is a *B*-Fredholm operator from [2, Theorem 3.4], it follows that for each $i, 1 \leq i \leq n$, $T - \alpha_i I$ is a *B*-Fredholm operator. Moreover, since $\operatorname{ind}(f(T) - \lambda I) = 0$ and *T* is of stable sign index by Lemma 3.9, from [3, Theorem 3.2], we have for each

 $i, 1 \leq i \leq n, \operatorname{ind}(T - \alpha_i I) = 0.$ So for each $i, 1 \leq i \leq n, \alpha_i \notin \sigma_{BW}(T)$. If $\lambda \in f(\sigma_{BW}(T))$, there exists $\alpha \in \sigma_{BW}(T)$ such that $\lambda = f(\alpha)$. Hence $0 = f(\alpha) - \lambda = (\alpha - \alpha_1)(\alpha - \alpha_2) \cdots (\alpha - \alpha_n)g(\alpha)$. This implies that $\alpha \in \{\alpha_1, \alpha_2, \cdots, \alpha_n\}$. Hence, there exists $i, 1 \leq i \leq n$, such that $\alpha_i \in \sigma_{BW}(T)$, contradiction. Hence $\lambda \notin f(\sigma_{BW}(T))$. It is known [4, Lemma 2.9] that if T is isoloid then $f(\sigma(T) \setminus E(T)) = \sigma(f(T)) \setminus E(f(T))$

 $f(\mathcal{O}(\mathbf{r}), \mathcal{D}(\mathbf{r})) = \mathcal{O}(f(\mathbf{r})) \setminus \mathcal{D}(f(\mathbf{r}))$

for every analytic function on a neighborhood of $\sigma(T)$. Since T is isoloid, by Theorem 3.3, and generalized Weyl's theorem holds for T by Theorem 3.5,

$$\sigma(f(T)) \setminus E(f(T)) = f(\sigma(T) \setminus E(T))$$

 $= f(\sigma_{BW}(T)) = \sigma_{BW}(f(T))$ by [4, Theorem 2.10].

References

- P. Aiena and O. Monsalve, Operators which do not have the single values extension property, J. Math. Anal. Appl. 250 (2000), 435–448.
- M. Berkani, Index of B-Fredholm operators and generalization of a Weyl theorem, Proc. Amer. Math. Soc. 130 (2002), 1717–1723.
- M. Berkani, Index of B-Fredholm operators and poles of the resolvant, J. Math. Anal. Appl. 272 (2002), 596–603.
- M. Berkani and A. Arround, Generalized Weyl's theorem and hyponormal operators, J. Austra. Math. Soc. 76 (2004), 291–302.
- L.A. Coburn, Weyl's theorem for non-normal operators, Michigan Math. J. 13 (1966), 285–288.
- J.K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), 61–69.
- M. Fujii, S. Izumino and R. Nakamoto, Classes of operators determined by the Heinz-Kato-Furuta inequality and the Holder-Mc. Carthy inequality, Nihonkai Math. J. 5 (1994), no. 1, 61-67.
- M. Fujii, D. Jung, S.H. Lee, M.Y. Lee and R. Nakamoto, Some classes of operators related to paranormal and log-hyponormal operators, Math. Japon. 51 (2000), no. 3, 395–402.
- T. Furuta, On the polar decomposition of an operators, Acta. Sci. Math (szeged) 46 (1983), no. 1-4, 261–268.
- T. Furuta, M. Ito and T. Yamazaki, A subclass of paranormal operators including class of log-hyponormal and several related classes, Sci. Math. 1 (1998), no. 3, 389–403.
- R.E. Harte and Fredholm, Weyl and Browder theory, Proc. Royal Irish Acad. 85 (1985), 151–176.
- 12. R.E. Harte, *Invertibility and singularity for bounded linear operators*, Dekker, New york, 1988.
- 13. J.J. koliha, A generalized Drazin inverse, Glasgow Math. J. 38 (1996), 367–381.
- K.B. Laursen and M.M. Neumann, An introduction to Local spectral theory, London Mathematical Society Monographs. New Series, 20. The Clarendon Press, Oxford University Press, New York, 2000.
- D.C. Lay, Spectral analysis using ascent, descent, nullity and defect, Math. Ann. 184 (1970), 197–214.
- W.Y. Lee and S.H. Lee, A spectral mapping theorem for the Weyl spectrum, Glasgow Math. J. 38 (1996), 61–64.
- 17. W. Mlak, Hyponormal contractions, Colloq. Math. 18 (1967), 137–141.
- T. Yamazaki and M. Yanagida, A further generalization of paranormal operators, Sci. Math. 3 (2000), no. 1, 23–31.

 1 Department of Mathematics, Government Arts College, Coimbatore-641 018, Tamil Nadu, India.

E-mail address: senthilsenkumhari@gmail.com

 2 Department of Mathematics, Government Arts College, Coimbatore-641 018,
Tamil Nadu, India.

E-mail address: maheswarinaik210gmail.com