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Abstract. Let A be a separable unital C∗-algebra and let ΘA be the canonical
contraction from the Haagerup tensor product of A with itself to the space of
completely bounded maps on A. In our previous paper we showed that if A
satisfies (a) the lengths of elementary operators on A are uniformly bounded, or
(b) the image of ΘA equals the set of all elementary operators on A, then A is
necessarily SFT (subhomogeneous of finite type). In this paper we extend this
result; we show that if A satisfies (a) or (b) then the codimensions of 2-primal
ideals of A are also finite and uniformly bounded. Using this, we provide an
example of a unital separable SFT algebra which does not satisfy (a) nor (b).
However, if the primitive spectrum of a unital SFT algebra A is Hausdorff, we
show that such an A satisfies (a) and (b).

1. Introduction and Preliminaries

Through this paper A will denote a C∗-algebra. The center of A is denoted
by Z(A), and the set of all ideals of A is denoted by Id(A) (in this paper ideal
means closed two-sided ideal). By Prim(A) we denote the primitive spectrum of
A (i.e. the set of all primitive ideals of A), equipped with the Jacobson topology.

Let A⊗h A be the Haagerup tensor product of A with itself. If M(A) denotes
the multiplier algebra of A, and ICB(A) the space of all completely bounded
maps T : A → A which preserve every ideal of A (i.e. T (J) ⊆ J , for each
J ∈ Id(A)), there is a canonical contraction ΘA : M(A) ⊗h M(A) → ICB(A)
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182 I. GOGIĆ

given on elementary tensors by

ΘA(a⊗ b)(x) := axb (a, b ∈ M(A), x ∈ A).

The subset ΘA(M(A)⊗M(A)) of Im ΘA(=the image of ΘA) is denoted by E(A)
and its elements are called elementary operators on A. The length `(T ) of T ∈
E(A) is defined as the smallest number d such that T = ΘA(

∑d
k=1 ak ⊗ bk), for

some ak, bk ∈ M(A). If

`(E(A)) := sup{`(T ) : T ∈ E(A)} < ∞,

we say that E(A) is of finite length.

In our previous paper [10] we considered the following two conditions on A:

(a) E(A) is of finite length,
(b) Im ΘA = E(A).

In [10, 2.13] we showed that if a separable A satisfies (a) or (b) then A is nec-
essarily subhomogeneous of finite type (shorter, SFT algebra). Recall from [10]
(see also [13]) that A is said to be an n-SFT algebra if A is n-subhomogeneous
(that is, the supremum of dimensions of all irreducible representations of A equals
n < ∞) and the C∗-bundles corresponding to the homogeneous sub-quotients of
A must be of finite type. If A is an n-SFT algebra for some n then we say that
A is a SFT algebra.

We first give another description of separable SFT algebras:

Proposition 1.1. Let A be a separable C∗-algebra. Then the following conditions
are equivalent:

(i) A is a SFT algebra,
(ii) There exists m ∈ N and elements x1, . . . , xm ∈ A such that

span{x1 + P, . . . , xm + P} = A/P, for all P ∈ Prim(A).

Proof. (i) ⇒ (ii). Suppose that A is an n-SFT algebra, and let

{0} = J0 ⊆ J1 ⊆ · · · ⊆ Jp = A (1.1)

be the standard composition series of A [12, 6.2.5]. By assumption, each homoge-
neous quotient Ji/Ji−1 is of finite type. Let J := J1 (J is called the n-homogeneous
ideal of A), and first assume that p = 2. Then A/J is homogeneous (of finite
type). In this case, by [11, Section 1] there exist elements a1, . . . , ar ∈ J and

ḃ1, . . . , ḃs ∈ A/J such that

span{a1 + P, . . . , ar + P} = J/P, for all P ∈ Prim(J),

and
span{ḃ1 + Ṗ , . . . , ḃs + Ṗ} = (A/J)/Ṗ , for all Ṗ ∈ Prim(A/J).

Choose b1, . . . , bs ∈ A such that ḃi = bi + J (1 ≤ i ≤ s). Then it is easy to check
that

span{a1 + P, . . . , ar + P, b1 + P, . . . , bs + P} = A/P, for all P ∈ Prim(A).

Indeed, let P ∈ Prim(A). If J ⊆ P , then Ṗ := P/J ∈ Prim(A/J), and since
A/P ∼= (A/J)/Ṗ , we have span{b1 + P, . . . , bs + P} = A/P . If J * P then
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P ∩ J ∈ Prim(J). Since A is subhomogeneous (hence liminal), primitive ideals
of A are maximal, so A/P = (J + P )/P ∼= J/(P ∩ J). It follows that span{a1 +
P, . . . , ar + P} = A/P . If p > 2, we proceed by induction, using the same
arguments as above.

(ii) ⇒ (i) If A satisfies (ii) then A is obviously (say n-)subhomogeneous. Let p
be the length of the corresponding composition series (1.1) of A. If p = 1 then A
is homogeneous. In this case, by [11, Section 1], A is of finite type. Suppose that
p > 1 and that the conclusion holds for all separable C∗-algebras which satisfy
(ii) and whose length of the corresponding composition series equals p− 1. Note
that if J ∈ Id(A) then A/J satisfies (ii) whenever A satisfies (ii). Specifically,
if J is the n-homogeneous ideal of A then our induction hypothesis implies that
A/J is of finite type (since the length of the corresponding composition series
of A/J equals p − 1). We claim that J is also of finite type. Indeed, since A
is separable, so is the center Z(J) of J , and hence there exits a strictly positive
element z ∈ Z(J). Since Z(J) ⊆ Z(A), we have zxi ∈ J (1 ≤ i ≤ m), and since
the homogeneous C∗-algebras are quasicentral (see Remark 3.5 and the proof of
Proposition 3.7) we have z 6∈ P for all P ∈ Prim(J) ⊆ Prim(A). It follows that

span{zx1 + P, . . . , zxm + P} = J/P for all P ∈ Prim(J).

By [11, Section 1], J is of finite type. Since A is of finite type if and only if J
and A/J are of finite type, the proof is finished.

�

In this paper we shall also see that, besides the necessity of the SFT condition,
the conditions (a) and (b) are also affected by some topological obstructions on
the primitive spectrum of M(A). Since the primitive spectrum of M(A) can be
much more complicated than that of A (even if Prim(A) is Hausdorff, see [5,
Example 12]) we shall restrict ourselves to the class of unital C∗-algebras.

In Section 2 we show that if a unital C∗-algebra A satisfies (a) or (b) then the
supremum

sup{dim(A/R) : R ∈ Primal2(A)} (1.2)

is also finite, where by Primal2(A) we denote the set of all 2-primal ideals of A.
Recall, an ideal R of A is said to be 2-primal if whenever J1 and J2 are ideals
of A with zero-product, then J1 ⊆ R or J2 ⊆ R. Note that every prime (hence
primitive) ideal of A is 2-primal. By [3, 3.2], R ∈ Id(A) is 2-primal if and only if
for every two primitive ideals P1, P2 ∈ Prim(A/R) = {P ∈ Prim(A) : R ⊆ P}
there exists a net (Pα) in Prim(A) which converges simultaneously to P1 and
P2 in Prim(A). Hence, if A admits a 2-primal ideal which is not maximal then
Prim(A) is certainly non-Hausdorff. At the end of Section 2 we give an example
of a unital separable 2-SFT algebra for which the supremum (1.2) is infinite. It
follows that such A cannot satisfy (a) nor (b).

In Section 3, we consider the central Haagerup tensor product A ⊗Z,h A of a
unital SFT algebra A. By definition, A ⊗Z,h A is the quotient of the Haagerup
tensor product A ⊗h A by the closure of the linear span of tensors of the form
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az ⊗ b − a ⊗ zb, where a, b ∈ A and z ∈ Z(A). We now introduce the notion of
central Haagerup rank of A:

Definition 1.2. For t ∈ A⊗h A we define a central Haagerup rank of t, denoted
by rankZ,h(t), as the smallest nonnegative integer m for which there exists a
rank m tensor u ∈ A ⊗ A such that tZ = uZ in A ⊗Z,h A (here, as usual, tZ
denotes the canonical image of t in A⊗Z,h A). If such m does not exist we define
rankZ,h(t) := ∞. The central Haagerup rank of A is defined as

rankZ,h(A) := sup{rankZ,h(t) : t ∈ A⊗h A} ∈ N ∪ {∞}. (1.3)

If a unital separable C∗-algebra A satisfies rankZ,h(A) < ∞ then obviously A
satisfies (a) and (b) as well (since the canonical contraction ΘA factorizes through
A ⊗Z,h A), and hence, by [10, 2.13] such A is necessarily SFT. We also give an
example which shows that the converse does not hold in general. However, if
the primitive spectrum of a unital (not necessarily separable) SFT algebra A is
Hausdorff we show that rankZ,h(A) < ∞.

2. Another reduction

We now show that if a unital C∗-algebra A satisfies Im ΘA = E(A) or `(E(A)) <
∞ then the supremum (1.2) is also finite. Moreover, if a separable A satisfies
Im ΘA = E(A) we show that the set Prim(A) in Proposition 1.1 (ii) can be
replaced by the larger set Primal2(A).

To do this, we first recall the following two facts. Let J ∈ Id(A) and let
qJ : A → A/J be the quotient map. Then by [1, 2.8] the induced contraction
qJ ⊗ qJ : A ⊗h A → (A/J) ⊗h (A/J) is in fact a (complete) quotient map with
kernel

ker(qJ ⊗ qJ) = J ⊗h A + A⊗h J.

Thus, we have

(A⊗h A)/(J ⊗h A + A⊗h J) ∼= (A/J)⊗h (A/J)

(completely) isometrically. Also, by [14, Corollary 6] we have the following de-
scription of the kernel of ΘA:

ker ΘA =
⋂
{R⊗h A + A⊗h R : R ∈ Primal2(A)}. (2.1)

The proof of the next lemma is omitted since it is almost identical to that of
[10, 2.5].

Lemma 2.1. Let A be a C∗-algebra. Let (ak), (bk), and (ek) be sequences in A
such that e∗k = ek for all k ∈ N, and such that the series

∑∞
k=1 aka

∗
k,
∑∞

k=1 b∗kbk

and
∑∞

k=1 e2
k are norm convergent. Let t and u be the tensors in A⊗h A defined

by t :=
∑∞

k=1 ek ⊗ ek and u :=
∑∞

k=1 ak ⊗ bk. If t−u ∈ J ⊗h A + A⊗h J for some
J ∈ Id(A) then

span{ek + J : k ∈ N} ⊆ span{bk + J : k ∈ N},
where span denotes the closed linear span.

We also introduce the following notation. For m ∈ N by A
m
⊗ A we denote the

set of all tensors in A⊗ A of rank at most m.
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Lemma 2.2. Let A be a C∗-algebra and let F ⊆ Id(A) be some non void family
of ideals of A. Let

Λ(F) :=
⋂
{J ⊗h A + A⊗h J : J ∈ F} ∈ Id(A⊗h A).

Suppose that A satisfies one of the following two conditions:

(i) There exists m ∈ N such that A
m
⊗ A + Λ(F) = A⊗ A + Λ(F),

(ii) A⊗h A + Λ(F) = A⊗ A + Λ(F).

Then sup{dim(A/J) : J ∈ F} < ∞. Moreover, if a separable A satisfies (ii)
then there exist m ∈ N and elements x1, . . . , xm ∈ A such that

span{x1 + J, . . . , xm + J} = A/J, for all J ∈ F .

Proof. The proof of (i) and (ii) is also omitted since it is almost identical to that
of [10, 2.6] (here Prim(A) should be replaced by F , and instead of using [10, 2.5]
we use Lemma 2.1).

Now suppose that a separable A satisfies (ii). Let (ek) be a sequence of norm
one self-adjoint elements of A whose linear span is dense in A. We define a tensor
t ∈ A⊗h A by

t :=
∞∑

k=1

1

k2
ek ⊗ ek =

∞∑
k=1

1

k
ek ⊗

1

k
ek.

By assumption, there exist the elements a1, . . . , am, b1, . . . , bm ∈ A such that for
u :=

∑m
i=1 ai ⊗ bi we have t− u ∈ Λ(F). By Lemma 2.2 we have

span{ek + J : k ∈ N} ⊆ span{bi + J : 1 ≤ i ≤ m} (2.2)

for all J ∈ F . Since the linear span of (ek) is dense in A, so is the linear span of
(ek + J) in A/J . Hence, (2.2) implies

span{bi + J : 1 ≤ i ≤ m} = A/J, for all J ∈ Id(A).

Letting xi := bi (1 ≤ i ≤ m) we obtain the desired elements. �

Theorem 2.3. Let A be a unital separable C∗-algebra.

(i) If Im ΘA = E(A) then there exists m ∈ N and the elements x1, . . . , xm ∈ A
such that

span{x1 + R, . . . , xm + R} = A/R, for all R ∈ Primal2(A). (2.3)

(ii) If `(E(A)) < ∞ then A is SFT and

sup{dim(A/R) : R ∈ Primal2(A)} < ∞. (2.4)

Remark 2.4. Note that (by Proposition 1.1) the condition (2.3) immediately im-
plies that A is a SFT algebra.

Proof. (i). Using the same notation as in Lemma 2.2, (2.1) implies ker ΘA =
Λ(Primal2(A)). Then the condition Im ΘA = E(A) may be rewritten in the fol-
lowing form

(A⊗h A) + Λ(Primal2(A)) = A⊗ A + Λ(Primal2(A)).

Now the conclusion follows from Lemma 2.2.
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(ii). By Corollary [10, 2.13] A is a SFT algebra. Furthermore, by (2.1), the
condition k := `(E(A)) < ∞ is equivalent to

A⊗ A + Λ(Primal2(A)) = A
k
⊗ A + Λ(Primal2(A)).

Again, the conclusion now follows from Lemma 2.2. �

Remark 2.5. It is still unknown to us if the conditions `(E(A)) < ∞ and Im ΘA =
E(A) are in fact equivalent. It would be also interesting to know whether the
SFT condition together with (2.4) implies the existence of elements x1, . . . , xm

for which (2.3) holds.

We now give an example of a unital separable 2-SFT algebra which contains
2-primal ideals of arbitrarily large codimensions. First recall that if A is a unital
C∗-algebra and J ∈ Max(Z(A)) (the maximal spectrum of the center Z(A)) then
the Glimm ideal of A generated by J is the proper (closed two-sided) ideal JA
(which is indeed closed by Cohen’s factorization theorem). Since JA∩Z(A) = J ,
the mapping J 7→ JA defines a bijection from Max(Z(A)) onto the set Glimm(A)
of all Glimm ideals of A.

Example 2.6. Let (xk) be a strictly increasing convergent sequence in R with
limit x0, and define

X :=
∞⊔

k=1

[x2k−1, x2k] ∪ {x0},

which is a compact subset of R. For every k ∈ N let Nk := {1, . . . , k}, and define
m(k) :=

(
k
2

)
. Let φk be some bijection from Nm(k) onto the set of all 2-element

subsets of Nk, and let φk(i) = {φ1,k(i), φ2,k(i)}, where φ1,k(i) < φ2,k(i) (1 ≤ i ≤
m(k)). For every k ∈ N let us fix some distinct points s1,k, . . . , sm(k),k from the
interval (x2k−1, x2k). We define A to be a C∗-subalgebra of B := C(X, M2(C))
consisting of all functions a ∈ B for which there exist complex numbers {λi,k(a)}
(k ∈ N, 1 ≤ i ≤ k) and λ(a) such that

a(si,k) =

[
λφ1,k(i)(a) 0

0 λφ2,k(i)(a)

]
(k ∈ N, 1 ≤ i ≤ m(k)),

and

a(x0) =

[
λ(a) 0

0 λ(a)

]
.

Then A is a (unital separable) 2-SFT algebra such that

sup{dim(A/R) : R ∈ Primal2(A)} = ∞.

Hence, by Theorem 2.3, `(E(A)) = ∞ and E(A) ( Im ΘA. Moreover, Im ΘA is
not even cb-closed.

Proof. Note that the 2-homogeneous ideal J of A is of the form

J = {a ∈ A : a(s) = 0, for all s ∈ X \ U} = C0(U, M2(C)),

where
U := X \ ({si,k : k ∈ N, 1 ≤ i ≤ m(k)} ∪ {x0}).
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Since A/J is commutative, A is a 2-SFT algebra. Since U is dense in X, the
center Z(A) of A consists of all elements a ∈ A where a(s) is a multiple of the
identity (and hence λi,k(a) does not depend on i). Let F be a quotient space
obtained from X under the equivalence relation x ∼ y if and only if x = y or
(x = si,k and y = sj,k), for some k ∈ N, 1 ≤ i, j ≤ m(k). Then Z(A) is canonically
isomorphic to the C∗-algebra C(F ) of all continuous complex-valued functions on
F , and the space Glimm(A) can be identified with F . In particular, every ideal
Gk :=

⋂
1≤i≤k ker λi,k is Glimm ideal of A, and we have the following description

of Glimm(A):

Glimm(A) = {ker πs : s ∈ U} ∪ {Gk : k ∈ N} ∪ {ker λ},

where λi,k : A → C (k ∈ N, 1 ≤ i ≤ k), λ : A → C and πs : A → M2(C) (s ∈ U)
are irreducible representations of A defined respectively by λi,k : a 7→ λi,k(a),
λ : a 7→ λ(a), and πs : a 7→ a(s). Since A/J is commutative, it is also easy to
check that every irreducible representation of A is (up to the equivalence) in one
of this form, hence

Prim(A) = {ker πs : s ∈ U} ∪ {ker λi,k : k ∈ N, 1 ≤ i ≤ k} ∪ {ker λ}.

We claim that every Glimm ideal Gk is 2-primal. Let k ∈ N be arbitrary. We
have to show that for every P, Q ∈ Prim(A/Gk) there exists a net in Prim(A)
which converges simultaneously to P and Q. Since all primitive ideals of A/Gk

are of the form ker λi,k (1 ≤ i ≤ k), there are 1 ≤ p, q ≤ k such that P = ker λp,k

and Q = ker λq,k. We may assume that p < q and let 1 ≤ i ≤ m(k) such
that φ(i) = {p, q}. If (sα) is an arbitrary net in [x2k−1, x2k] \ {si,k : 1 ≤ i ≤
m(k)} which converges to si,k, then it is not difficult to see that (ker πsα) is a
net in Prim(J) ⊆ Prim(A) which converges simultaneously to ker λp,k = P and
ker λq,k = Q. Thus, Gk ∈ Primal2(A), for all k ∈ N. Since dim(A/Gk) = k,
we have sup{dim(A/Gk) : k ∈ N} = ∞, so `(E(A)) = ∞ and E(A) ( Im ΘA,
by Theorem 2.3. Moreover, using [15, 10.1] (see also [4]) we also conclude that
Im ΘA is not even closed in ICB(A). �

3. C∗-algebras of finite central Haagerup rank

Recall from the introduction that for a unital C∗-algebra A we defined the cen-
tral Haagerup rank (denoted by rankZ,h(A)) of A by (1.3). As already observed,
rankZ,h(A) < ∞ obviously implies `(E(A)) < ∞ and Im ΘA = E(A). To show
that the converse does not hold in general, we start with the following fact:

Proposition 3.1. Let A be a unital C∗-algebra. If rankZ,h(A) < ∞ then

sup{dim(A/G) : G ∈ Glimm(A)} < ∞. (3.1)

Proof. Let JA be the closed two-sided ideal of A⊗h A generated by tensors of the
form az ⊗ b − a ⊗ zb, where a, b ∈ A and z ∈ Z(A). By definition, A ⊗Z,h A =
(A⊗h A)/JA. Note that A satisfies rankZ,h(A) < ∞ if and only if

A⊗h A + JA = A
m
⊗ A + JA
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for some m ∈ N. By [14, Theorem 1] we have

JA =
⋂
{G⊗h A + A⊗h G : G ∈ Glimm(A)} = Λ(Glimm(A))

(using the same notation as in Lemma 2.2). Hence, by Lemma 2.2, (3.1) holds. �

Example 3.2. Let A be the C∗-algebra from [9, 6.1] which consists of all elements
a ∈ C([0,∞], M2(C)) such that

a(n) =

[
λn(a) 0

0 λn+1(a)

]
(n ∈ N),

for some convergent sequence (λn(a)) of complex numbers. Then rankZ,h(A) =
∞, but Im ΘA = E(A) and `(E(A)) < ∞.

Proof. It is easy to check that

Z(A) =

{
z =

[
f 0
0 f

]
: f ∈ C([0,∞]), f |N is constant

}
.

If J is the maximal ideal of Z(A) consisting of all z ∈ Z(A) with z|N = 0, then
the corresponding Glimm ideal G := JA is of the form

G = {a ∈ A : a|N = 0}.
Obviously, dim(A/G) = ∞, and hence by Proposition 3.1 rankZ,h(A) = ∞. On
the other hand, it was shown in [9, 6.6] that Im ΘA = E(A) and `(E(A)) < ∞. �

We now show that every unital SFT algebra with Hausdorff primitive spectrum
has finite central Haagerup rank.

To show this, we introduce the following (rather standard) notation. For an
operator space X ⊆ B(H) we define

R∞(X) =

{
x := [x1 x2 . . .] : xi ∈ X and

∞∑
i=1

xix
∗
i converges in norm

}
,

C∞(X) =

{
y := [y1 y2 . . .]τ : yi ∈ X and

∞∑
i=1

y∗i yi converges in norm

}
.

If n ∈ N we identify Rn(X) with the subspace of R∞(X) which consists of all
[x1 x2 . . .] such that xi = 0, for all i > n. Similarly, we identify Cn(X) with
the corresponding subspace of C∞(X). For x := [x1 x2 . . .] ∈ R∞(X) and y :=
[y1 y2 . . .]τ ∈ C∞(X) we put

‖x‖ :=

∥∥∥∥∥
∞∑
i=1

xix
∗
i

∥∥∥∥∥
1
2

, ‖y‖ :=

∥∥∥∥∥
∞∑
i=1

y∗i yi

∥∥∥∥∥
1
2

and

x� y :=
∞∑
i=1

xi ⊗ yi ∈ X ⊗h X.

There is also a natural operator space structure on R∞(X) and C∞(X), but we
shall not need it. For n ∈ N ∪ {∞} we also put M∞,n(X) := C∞(Rn(X)) and
Mn,∞(X) := R∞(Cn(X)).
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Lemma 3.3. Let A be a C∗-algebra. Suppose that there exists m ∈ N such that
for every y := [y1 y2 . . .]τ ∈ C∞(A) there exists x := [x1 . . . xm]τ ∈ Cm(A) and a
matrix of central elements Z := [zi,j] ∈ M∞,m(Z(A)) such that Zx = y. If A is
unital then rankZ,h(A) ≤ m.

Proof. Let t ∈ A ⊗h A. By [7, 1.5.6], there exist a := [a1 a2 . . .] ∈ R∞(A) and
b := [b1 b2 . . .]τ ∈ C∞(A) such that t = a � b. By assumption, we can find
x := [x1 x2 . . . xm]τ ∈ Cm(A) and Z := [zi,j] ∈ M∞,m(Z(A)) such that Zx = b.
For 1 ≤ j ≤ m let zj be the j-th column of the matrix Z. Then zj ∈ C∞(Z(A)),
so the series

∑∞
i=1 aizi,j = azj is norm convergent. Then in A⊗Z,h A we have

tZ = lim
k→∞

k∑
i=1

ai ⊗Z bi = lim
k→∞

(
k∑

i=1

ai ⊗Z

(
m∑

j=1

zi,jxj

))

= lim
k→∞

(
m∑

j=1

k∑
i=1

zi,jai ⊗Z xj

)
=

m∑
j=1

lim
k→∞

(
k∑

i=1

zi,jai

)
⊗Z xj

=
m∑

j=1

azj ⊗Z xj.

Thus, rankZ,h(A) ≤ m. �

Let us introduce the following auxiliary definition:

Definition 3.4. We say that a C∗-algebra A has property (P) if A satisfies the
condition of Lemma 3.3.

Remark 3.5. Note that every C∗-algebra which satisfies (P) is quasicentral, that
is A as a Banach module over its center Z(A) is nondegenerate (see [2] of [9] for
another descriptions). Furthermore, if A is quasicentral and m ∈ N, then it is
easy to see that M∞,m(A) is also a nondegenerate Banach Z(A)-module, under
the natural action

z · [ai,j] := [zai,j] (z ∈ Z(A), [ai,j] ∈ M∞,m(A)).

In particular, using Cohen’s factorization theorem, we see that every matrix a ∈
M∞,m(A) can be factorized in the form a = z · b, for some z ∈ Z(A) and b ∈
M∞,m(A).

Lemma 3.6. Let A be a C∗-algebra which satisfies (P). Then every quasicentral
ideal J of A satisfies (P).

Proof. Let a ∈ C∞(J). By Remark 3.5 there exist z ∈ Z(J) and b ∈ C∞(J)
such that a = z · b. Since A satisfies (P), there exists m ∈ N and the matrices
Z ∈ M∞,m(Z(A)), x ∈ Cm(A) such that Zx = b. Choose any factorization
z = z1z2, where z1, z2 ∈ Z(J). Since Z(J) is an ideal of Z(A), we have

a = z · b = z · (Zx) = (z1 · Z)(z2 · x),

where z1 · Z ∈ M∞,m(Z(J)) and z2 · x ∈ Cm(J). Hence, J satisfies (P). �

Proposition 3.7. Let A be an n-homogeneous C∗-algebra of finite type. Then A
satisfies (P).
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Proof. By [8, 3.2], there exists a locally trivial C∗-bundle E over the (locally
compact Hasudorff) space ∆ := Prim(A) whose fibers are isomorphic to Mn(C)
such that A ∼= Γ0(E) (Γ0(E) stands for the C∗-algebra of all continuous sections
of E which vanish at ∞). Using the local triviality of E it is easy to see that A is
quasicentral. Since by [11, 3.3] M(A) is also n-homogeneous, Lemma 3.6 implies
that it is sufficient to prove the claim when A is already unital. In this case ∆ is
compact and we identify A with Γ(E). Choose a finite open covering {Uj}1≤j≤m

of ∆ such that every restriction bundle E|Uj
is trivial. Using a finite partition

of unity argument, it is sufficient to prove the claim when E is already trivial.
Then A = C(∆, Mn(C)), and let (Ei,j) be the standard matrix units of Mn(C)
considered as constant elements of C(∆, Mn(C)). Let [a1 a2 . . .]τ ∈ C∞(A). Then

ak =
n∑

i,j=1

fk,i,jEi,j,

for some functions fk,i,j ∈ C(∆) ∼= Z(A). To show that A satisfies (P), it is
sufficient to check that the series of functions

∑∞
k=1 |fk,i,j|2 converge uniformly on

∆, for all 1 ≤ i, j ≤ n. Indeed, since

a∗kak =
n∑

i,j=1

n∑
p=1

fk,p,jfk,p,iEi,j,

and since the series
∑∞

k=1 a∗kak is norm convergent if and only if its matrix values
converge uniformly on ∆, we conclude that the series

∑∞
k=1

∑n
p=1 |fk,p,j|2 converge

uniformly on ∆, for all 1 ≤ j ≤ n. Since |fk,i,j|2 ≤
∑n

p=1 |fk,p,j|2, it follows that

the series
∑∞

k=1 |fk,i,j|2 also converge uniformly on ∆. �

Lemma 3.8. Let A and B be C∗-algebras and let φ : A → B be a surjective
∗-homomorphism. If m ∈ N then the induced map

φ∞,m : M∞,m(A) → M∞,m(B), φ∞,m([ai,j]) = [φ(ai,j)]

is also surjective

Proof. It is sufficient to prove this when m = 1. In this case M∞,1(A) = C∞(A)
and M∞,1(B) = C∞(B) can be considered as the standard Hilbert C∗-modules
HA and HB (see [17, Section 15]). Using the same notation as in [6, Section 2],
φ∞ := φ∞,1 is a φ-morphism between HA and HB. Since φ is surjective, note
that the image of φ∞ is dense in HB. But [6, 2.5] implies that the image of φ∞
is closed, so that φ∞ is indeed surjective. �

Theorem 3.9. Let A be a unital SFT algebra with Hausdorff primitive spec-
trum. Then A has a finite central Haagerup rank. In particular, Im ΘA = E(A),
`(E(A)) < ∞ and E(A) is closed in the operator norm.

Proof. Suppose that A is n-subhomogeneous and let (1.1) the standard compo-
sition series of A of length p. If p = 1 then A is n-homogeneous (of finite type),
so the claim follows from Proposition 3.7. Let p > 2 and suppose that the result
holds for all unital SFT algebras with Hausdorff primitive spectrum whose length
of the corresponding composition series equals p−1. Let J be the n-homogeneous
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ideal of A and let qJ : A → A/J be the quotient map. Choose an arbitrary el-
ement a ∈ C∞(A). Then obviously ȧ = (qJ)∞,1(a) ∈ C∞(A/J). By induction
hypothesis (applied to A/J), there exists m ∈ N (which depends only on A/J)

and matrices Ż1 ∈ M∞,m(Z(A/J)), ẋ1 ∈ Cm(A/J) such that Ż1ẋ1 = ȧ. Since
Prim(A) is Hausdorff, [16, Corollary 1] implies that qJ maps Z(A) surjectively

onto Z(A/J). By Lemma 3.8, matrices Ż1 and ẋ1 can be respectively lifted to
the matrices Z1 ∈ M∞,m(Z(A)) and x1 ∈ Cm(A) such that

b := a− Z1x1 ∈ C∞(J). (3.2)

Similarly, since J is homogeneous C∗-algebra of finite type, by invoking Propo-
sition 3.7 we find k ∈ N (which depends only on J) and the matrices Z2 ∈
M∞,k(Z(J)), x2 ∈ Ck(J) such that Z2x2 = b. Since Z(J) ⊆ Z(A), we have

Z :=
[

Z1 Z2

]
∈ M∞,m+k(Z(A)) and x :=

[
x1

x2

]
∈ Cm+k(A),

and (3.2) implies that a = Zx. By Lemma 3.3, rankZ,h(A) ≤ m + k < ∞. In
particular, Im ΘA = E(A) and `(E(A)) < ∞. The claim that E(A) is closed in
the operator norm follows from [9, 6.2] and [15, 10.1] (or [14, Theorem 4]). �

Remark 3.10. We also note that rankZ,h(A) < ∞ does not imply that Prim(A)
is Hausdorff. For example, let A be a C∗-subalgebra of B := C([0, 1], M2(C))
consisting of all a ∈ B such that a(0) is diagonal. Then it is easy to see that
rankZ,h(A) < ∞, even though Prim(A) is not Hausdorff.
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