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Abstract. The notion of amalgamation of product systems has been intro-
duced in [7] which generalizes the concept of Skeide product, introduced by
Skeide, of two product systems via a pair of normalized units. In this paper we
show that amalgamation leads to a setup where a product system is generated
by two subsystems and conversely whenever a product system is generated
by two subsystems, it could be realized as an amalgamated product. We pa-
rameterize all contractive morphism from a Type I product system to another
Type I product system and compute index of amalgamated product through
contractive morphisms.

1. introduction

Arveson [1] associated to every E0 semigroup, a product system of Hilbert
spaces. He showed that this association classifies E0 semigroups up to cocycle
conjugacy. In the context of product system of Hilbert modules, Skeide [14]
introduced spatial product of product systems as there is no natural tensor prod-
uct operation on product system of Hilbert modules and index is additive under
spatial product. At the 2002 AMS summer conference on ‘Advances in Quan-
tum Dynamics’ held at Mount Holyoke, R.T. Powers posed the following prob-
lem : Let B(H) and B(K) be algebras of all bounded operators on two Hilbert
spaces H and K. Suppose φ = {φt : t ≥ 0} and ψ = {ψt : t ≥ 0} are two
E0 semigroups on B(H) and B(K) respectively and U = {Ut : t ≥ 0} and
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V = {Vt : t ≥ 0} are two strongly continuous semigroups of isometries which
intertwine φt and ψt respectively. Consider the CP semigroup τt on B(H ⊕ K)

defined by τt

(
X Y
Z W

)
=

(
φt(X) UtY V

∗
t

VtZU
∗
t ψt(W )

)
. How is the minimal dilation

(in the sense of [3],[4]) of τ related to φ and ψ? In fact, Powers was interested in
a more specific question. It is the following. Since the minimal dilation is unique
we might say that we are associating a product system to a given contractive CP
semigroup [3]. (This can also be done more directly as in [8]). The question was
‘What is the product system of the Powers’ sum τ in terms of the product systems
of φ and ψ. Is it the tensor product?’ Still during the workshop, Skeide [13] iden-
tified the product system as a spatial product through normalized units. It turns
out that though the index of product system of τ is sum of indices of φ and ψ, it
is not the tensor product but the spatial product [10]. Definition of Powers’ sum
easily extends to CP semigroups and the product system of Powers’ sum in that
case also is the spatial product of the product systems of summands ([6],[14]).
In [7], amalgamated product of two product systems of Hilbert space through
general contractive morphism has been introduced which generalizes the spatial
product for product system of Hilbert spaces. The spatial product of product
system of Hilbert spaces may be viewed as amalgamated product through the
contractive morphism defined through normalized units. This answers Powers’
problem for the Powers’ sum obtained from non necessarily isometric intertwining
semigroups.

To begin with we briefly recapitulate the notion of inclusion systems introduced
in [7]. They were also introduced by Shalit and Solel, under the name subproduct
systems [12]. These are parameterized families of Hilbert spaces exactly like
product systems except that now unitaries are replaced by isometries. Every
inclusion system generates a product system via inductive limit procedure [8].
To every CP semigroup, an inclusion system can be associated and we have,
the product system associated to the minimal dilation of the CP semigroup is
isomorphic to product system generated by the inclusion system. Basic properties
of the product systems such as existence/non-existence of units, structure of
morphisms etc. can be defined at the level of inclusion systems and there is
a bijective correspondence with those in generated product system. Given two
inclusion systems and a contractive morphism between them, there is a natural
way to amalgamate them to get a new inclusion system. On product systems
level, this is called the amalgamated product of two product systems. All these
constructions can be found [7]. Loosely speaking amalgamation is nothing but
’the construction of a product system which is generated by two given product
subsystems.’ This is a kind of universality result (See Theorem 2.7). We use
this to show in Theorem 2.9, that under the assumption of separability, the
amalgamated product of type I parts is the type I part of the amalgamated
product.

In the last section, we parameterize all contractive morphisms from a type I
product system to another type I product system. In [7], the index of the amalga-
mated product through contractive units has been calculated. Here in Theorem
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3.8, we compute the index of amalgamated product of two spatial product systems
via a general contractive morphism. This is our main result.

We recall some results from [7]. From now on our product systems are algebraic
with no measurability conditions.

Definition 1.1. An inclusion system (E, β) is a family of Hilbert spaces E =
{Et, t ∈ (0,∞)} together with isometries βs,t:Es+t → Es ⊗ Et, for s, t ∈ (0,∞),
such that ∀ r, s, t ∈ (0,∞), (βr,s ⊗ 1Et)βr+s,t = (1Er ⊗ βs,t)βr,s+t. It is said to be a
product system if further every βs,t is a unitary.

Consider an inclusion system (E, β). For t ∈ R+, let Jt = {(tn, tn−1, . . . , t1) :
ti > 0,

∑n
i=1 ti = t, n ≥ 1}.

For s = (sm, sm−1, . . . , s1) ∈ Js, and t = (tn, tn−1, . . . , t1) ∈ Jt we define s ^ t :=
(sm, sm−1, . . . , s1, tn, tn−1, . . . , t1) ∈ Js+t. Now fix t ∈ R+. On Jt define a partial
order t ≥ s = (sm, sm−1, . . . , s1) if for each i, (1 ≤ i ≤ m) there exists (unique)
si ∈ Jsi

such that t = sm ^ sm−1 ^ · · ·^ s1. For t = (tn, tn−1, . . . t1) in Jt define
Et = Etn ⊗ Etn−1 ⊗ · · · ⊗ Et1 . For s = (sm, . . . , s1) ≤ t = (sm ^ · · · ^ s1) in Jt,
define βt,s : Es → Et by βt,s = βsm,sm ⊗ βsm−1,sm−1 ⊗ · · · ⊗ βs1,s1 where we define
βs,s : Es → Es inductively as follows: Set βs,s = idEs . For s = (sm, sm−1, . . . , s1),
βs,s is the composition of maps:

(βsm,sm−1 ⊗ I)(βsm+sm−1,sm−2 ⊗ I) · · · (βsm+···+s3,s2 ⊗ I)βsm+···+s2,s1 .

Theorem 1.2. Suppose (E, β) is an inclusion system. Let Et = indlimJtEs be
the inductive limit of Es over Jt for t > 0. Then E = {Et : t > 0} has the structure
of a product system of Hilbert spaces.

Definition 1.3. Given an inclusion system (E, β), the product system (E , B)
constructed as in the theorem above is called the product system generated by the
inclusion system (E, β).

Definition 1.4. Let (E, β) and (F, γ) be two inclusion systems. Let A = {At :
t > 0} be a family of linear maps At : Et → Ft, satisfying ‖At‖ ≤ etk for some
k ∈ R. Then A is said to be a morphism or a weak morphism from (E, β) to
(F, γ) if

As+t = γ∗s,t(As ⊗ At)βs,t ∀s, t > 0.

It is said to be a strong morphism if

γs,tAs,t = (As ⊗ At)βs,t ∀s, t > 0.

Definition 1.5. Let (E, β) be an inclusion system. Let u = {ut : t > 0} be a
family of vectors with ut ∈ Et, for all t > 0, such that ‖ut‖ ≤ etk for some k ∈ R
and u ≡/0. Then u is said to be a unit or a weak unit if

us+t = β∗s,t(us ⊗ ut) ∀s, t > 0.

It is said to be a strong unit if

βs,tus+t = us ⊗ ut ∀s, t > 0.
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Theorem 1.6. Let (E, β) be an inclusion system and let (E , B) be the product
system generated by it. Then the canonical map it : Et → Et, t > 0 is an
isometric strong morphism of inclusion systems. Further i∗ is an isomorphism
between units of (E , B) and units of (E, β).

Theorem 1.7. Let (E, β), (F, γ) be two inclusion systems generating two prod-
uct systems (E , B), (F , C) respectively. Let i, j be the respective inclusion maps.
Suppose A : (E, β) → (F, γ) is a weak morphism then there exists a unique mor-

phism Â : (E , B) → (F , C) such that As = j∗s Âsis for all s. This is a one to one

correspondence of weak morphisms. Further more, Â is isometric/unitary if A is
isometric/unitary.

2. universality of amalgamation

Suppose H and K are two Hilbert spaces and D : K → H is a linear contrac-
tion. Define a semi inner product on H ⊕K by〈 (

u1

v1

)
,

(
u2

v2

) 〉
D

=
〈
u1, u2

〉
+

〈
u1, Dv2

〉
+

〈
Dv1, u2

〉
+

〈
v1, v2

〉
=

〈 (
u1

v1

)
, D̃

(
u2

v2

) 〉
,

where D̃ :=

[
I D
D∗ I

]
. Note that as D is contractive, D̃ is positive definite.

Take

N = {
(
u
v

)
:
〈 (

u
v

)
,

(
u
v

) 〉
D

= 0}.

Then N is the kernel of bounded operator D̃ and hence it is a closed subspace of
H ⊕K. Set G as completion of (H ⊕K)/N ) with respect to norm of

〈
., .

〉
D
. We

denote G by H⊕DK and further denote the image of vector

(
u
v

)
by

[
u
v

]
for

u ∈ H and v ∈ K. Now〈 [
u1

0

]
,

[
u2

0

] 〉
D

=
〈
u1, u2

〉
H

;
〈 [

0
v1

]
,

[
0
v2

] 〉
D

=
〈
v1, v2

〉
K
.

So H and K are naturally embedded in H ⊕D K and their closed liner span is
H ⊕D K but they need not be orthogonal. We call H ⊕D K as the amalgamation
of H and K through D. It is to be noted that if range (D̃) is closed, then no
completion is needed in the construction, and every vector of G is of the form[
u
v

]
for u ∈ H and v ∈ K.

In the converse direction, if H and K are two closed subspaces of a Hilbert
space G. Then by a simple application of Riesz representation theorem for Hilbert
space, there exists unique contraction D : K → H such that for u ∈ H, v ∈ K〈

u, v
〉

G
=

〈
u,Dv

〉
.

Now we consider amalgamation at the level of inclusion systems. Let (E, β)
and (F, γ) be two inclusion systems. Let D = {Ds : s > 0} be a weak contractive
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morphism from F to E. Define Gs := Es⊕Ds Fs and δs,t := is,t(βs,t⊕D γs,t) where
is,t : (Es ⊗ Et)⊕Ds⊗Dt (Fs ⊗ Ft) → Gs ⊗Gt is the map defined by

is,t

[
u1 ⊗ u2

v1 ⊗ v2

]
=

[
u1

0

]
⊗

[
u2

0

]
+

[
0
v1

]
⊗

[
0
v2

]
,

and (βs,t ⊕D γs,t) : Es+t ⊕Ds+t Fs+t → Es ⊗Et ⊕Ds⊗Dt Fs ⊗ Ft is the map defined
by

(βs,t ⊕D γs,t)

[
u
v

]
=

[
βs,t(u)
γs,t(v)

]
Lemma 2.1. The maps is,t : (Es⊗Et)⊕Ds⊗Dt (Fs⊗Ft) → Gs⊗Gt and (βs,t⊕D

γs,t) : Es+t ⊕Ds+t Fs+t → (Es ⊗ Et)⊕Ds⊗Dt (Fs ⊗ Ft) are well defined isometries.

Proof. Proof can be found in [7], Section 3. �

Proposition 2.2. Let (G, δ) = {Gs, δs,t : s, t > 0} be defined as above. Then
{G, δ} forms an inclusion system

Proof. Proof can be found in [7], Section 3. �

Definition 2.3. The inclusion system (G, δ) constructed above is called the amal-
gamation of inclusion systems (E, β) and (F, γ) via the morphism D. If (E , B),
(F , C), and (G, L) are product systems generated respectively by (E, β), (F, γ), and
(G, δ), then (G, L) is said to be the amalgamated product of (E , B) and (F , C) via
D and is denoted by G =: E ⊗D F .

Remark 2.4. In this terminology, we have defined amalgamation of inclusion
system via contractive morphism to be an operation on the category of inclusion
systems. On the other hand, amalgamated product is an operation on the cat-
egory of product systems. More precisely, Given two product systems (E ,W E)
and (F ,WF) and a contractive morphism D, first we form the inclusion sys-
tem (G, δ) which is the amalgamation of inclusion systems (E ,W E) and (F ,WF)
via the morphism D. Then the product system generated by the inclusion system
(G, δ) is the amalgamated product E ⊗D F of (E ,W E) and (F ,WF).

Definition 2.5. Suppose (E, β) is an inclusion system. Then a family of Hilbert
spaces F = (Ft)t>0 is said to be an inclusion subsystem of (E, β) if Ft ⊂ Et is
closed for every t > 0, and βs,t|Fs+t(Fs+t) ⊂ Fs ⊗ Ft for every s, t > 0.

Definition 2.6. Suppose (E ,W ) is a product system. A family of Hilbert spaces
F = (Ft)t>0 is said to be a product subsystem of E if Ft ⊂ Et is closed for every
t > 0, and W |Fs+t is a unitary from Fs+t onto Fs ⊗Ft for every s, t > 0.

Suppose H is a Hilbert space and let M and N be two closed subspaces of H.
We denote by M ∨ N, the smallest closed subspace of H containing M and N.
i.e.

M ∨N = span{x+ y : x ∈M, y ∈ N}
Suppose G is a product system and let E and F be two product subsystem of G.
Then we denote by E

∨
F , the smallest product system containing E and F . The
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product system E
∨
F having the fiber: for each t > 0,

(E
∨
F)t = span{x1

t1
⊗· · ·⊗xn

tn :
n∑
i

ti = t, xi
ti
∈ Eti or Fti , i = 1, 2, · · ·n, n ≥ 1}

Note that for t > 0, Et ∨ Ft 6= (E
∨
F)t.

Theorem 2.7. Suppose (E ,W E) and (F ,WF) are two product systems and let
C : (F ,WF) → (E ,W E) be a contractive morphism. Suppose (G,W G) is the
amalgamated product of (E ,W E) and (F ,WF). i.e. G = E ⊗C F . Then there are
isometric product system morphism I : E → G and J : F → G such that the
following holds:

(i) 〈Is(x), Js(y)〉 = 〈x,Csy〉 for all x ∈ Es and y ∈ Fs.
(ii) G = I(E)

∨
J(F).

Conversely, suppose E and F are two product subsystems of a product system
(H,W ). Then there is a contraction morphism C : F → E such that the amal-
gamated product G of E and F via C is isomorphic via φ to the product system
generated by E and F . i.e. E ⊗C F ∼ E

∨
F which is canonical in the sense that

φ(

[
a
b

]
) = a+ b , a ∈ E , b ∈ F (2.1)

Proof. Let (G, δ) be the amalgamation as inclusion system of (E ,W E) and (F,WF).
Let is : Es → Gs and js : Fs → Gs be the maps

is(a) =

[
a
0

]
, a ∈ Es

and

js(b) =

[
0
b

]
, b ∈ Fs

Let gs : Gs → Gs be the canonical map. Set Is = gsis and Js = gsjs. As i, j and
g are isometries so are I and J. Suppose for a ∈ Es+t, W

E
s,t(a) =

∑
r xr ⊗ yr. Now

W G
s,tIs+t(a) = W G

s,tgs+tis+t(a)

= (gs ⊗ gt)δs,tis+t(a)

= (gs ⊗ gt)is,t(W
E
s,t ⊕C W

F
s,t)

[
a
0

]
= (gs ⊗ gt)

∑
r

is,t

[
xr ⊗ yr

0

]
= (gs ⊗ gt)

∑
r

[
xr

0

]
⊗

[
yr

0

]
= (gs ⊗ gt)

∑
r

is(xr)⊗ it(yr)

= (gs ⊗ gt)(is ⊗ it)W
E
s,t(a)

= (Is ⊗ It)W
E
s,t(a).
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So I is an isometric morphism of product systems. Similarly Js : Fs → Gs is
an isometric morphism of product systems. For a ∈ Es+t, Now for x ∈ Es and
y ∈ Fs,

〈Is(x), Js(y)〉 = 〈
[
x
0

]
,

[
0
y

]
〉

= 〈x,Csy〉.

So (i) is verified. As I(E) ⊂ G and J(F) ⊂ G, it implies that I(E)
∨
J(F) ⊂ G.

On the other hand, I and J maps E and F into I(E)
∨
J(F) isometrically and

(i) is satisfied. So from universal property of amalgamated product Proposition

18, [7], there is an isometric morphism At : Gt → (I(E)
∨
J(F))t by Atgt

[
a
b

]
=

It(a) + Jt(b). For a ∈ Et and b ∈ Ft, It(a) = gtit(a) and Jt(b) = gtjt(b) implies
Atgt(it(a) + jt(b)) = gt(it(a) + jt(b)). We get that At is the inclusion morphism
from Gt into (I(E)

∨
J(F))t, for every t > 0. So G ⊂ I(E)

∨
J(F).

Now for the converse, let for every t > 0, P Et and PFt be the projections onto
Et and Ft respectively in Ht. Then P E = {P Et : t > 0} and PF = {PFt : t > 0}
are projection morphisms on (H,W ). Define for every t > 0, Ct = P EtPFt|Ft .
Then clearly C = {Ct : t > 0} is a contraction morphism from F to E . Now set
for every t >, 0 Gt = Et ⊕Ct Ft.

Claim 1 : E ∨ F := (Et ∨ Ft,W |Et∨Ft) is an inclusion subsystem of (H,W )
which generates the product system E

∨
F .

Proof of claim 1 : The first part of the claim is easy. Indeed for every s, t > 0,
Es+t∨Fs+t ⊂ Es⊗Et∨Fs⊗Ft ⊂ (Es∨Fs)⊗(Et∨Ft). For the second part, let G ′ be
the generated product system. As E ⊂ G ′ and F ⊂ G ′, we have E

∨
F ⊂ G ′. On

the other hand, Et ⊂ (E
∨
F)t and Ft ⊂ (E

∨
F)t, implies the inclusion system

E ∨F is an inclusion subsystem of E
∨
F . So G ′ is a product subsystem of E

∨
F ,

proving the claim.

Define lt : Gt → Et ∨ Ft by lt

[
u
v

]
= u+ v.

Claim 2 : l : G→ E ∨ F is a unitary morphism of inclusion systems.
Proof of claim 2 : Clearly lt is a unitary for each t > 0. To prove that it is

a morphism, consider

[
a
b

]
∈ Gs+t. Decomposing Ws,t(a) =

∑
k xk ⊗ yk and

Ws,t(b) =
∑

r ur ⊗ vr, (ls ⊗ lt)δs,t

[
a
b

]
= (ls ⊗ lt)is,t

[ ∑
k xk ⊗ yk∑
r ur ⊗ vr

]
=

∑
k(ls ⊗

lt)

[
xk

0

]
⊗

[
yk

0

]
+

∑
r(ls ⊗ lt)

[
0
ur

]
⊗

[
0
vr

]
=

∑
k xk ⊗ yk +

∑
r ur ⊗ vr =

Ws,t(a) + Ws,t(b) = Ws,tls+t

[
a
b

]
, proving claim 2. Let φ : G → E

∨
F be the

lift of l. Then (2.1 ) is satisfied. This proves the converse part. �

The theorem means that the amalgamation of two product systems is nothing
but a construction of a large product system containing the two product systems
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as subsystems such that it is generated by those product subsystems and the two
subsystems sit inside the amalgamated product by the defining condition (i) of
the theorem. So from now on we will always assume that E and F are subsystems
of E ⊗C F . This construction may lead to a non separable product system even if
the individual components are separable. If we choose our contractive morphism
to be a zero morphism, then the amalgamated product is always non separable
product system as the following lemma shows.

Lemma 2.8. Let G be a product system. Let E ,F be nonzero subsystems of G
with the property that

〈x, y〉 = 0 , for all x ∈ E , y ∈ F

Then G is a non separable product system.

Proof. Choose et ∈ Et and ft ∈ Ft with ‖et‖ = ‖ft‖ = 1 for all t > 0. Consider the
uncountable set {gs := es⊗ft−s : 0 < s < t} ⊂ Gt. Now for 0 < s < s′ < t, we have
gs ∈ Es ⊗Ft−s and gs′ ∈ Es′ ⊗Ft−s′ . Decomposing Es ⊗Ft−s = Es ⊗Fs′−s ⊗Ft−s′

and Es′ ⊗ Ft−s′ = Es ⊗ Es′−s ⊗ Ft−s′ . Now it follows from the hypothesis that
〈gs, gs′〉 = 0, for all 0 < s < s′ < t. Hence the lemma follows. �

Similar problem arises in dilation theory of CP semigroups. There are CP
semigroups which are not strongly continuous at 0, for which the minimal E
dilations act on non-separable Hilbert spaces. Though in this paper, we are not
concerned about solving the problem of classifying all contractive morphisms for
which the amalgamated product is a separable product system. As for most of
our examples, amalgamated product is always separable.

For a product system G, let UG and GI denote the set of all units and the type
I part of G respectively. i.e.

GI = span{u1
t1
⊗ ...⊗ un

tn : ui ∈ UG, 1 ≤ i ≤ n,
∑

i

ti = t, n ≥ 1}

Theorem 2.9. Let E and F be two spatial product systems and C : F → E be
a contractive morphism such that E ⊗C F is a separable product system. Then
(E ⊗C F)I = EI ⊗C F I .

Proof. Part of this theorem has been proved in [7],Theorem 24. Let G = (E⊗CF).
As units of E and of F are units of the amalgamated product, it follows that EI

and F I are contained in GI . So the smallest product system generated by EI and
F I is contained in GI . Hence right hand side is contained in left hand side. Now
for the converse, Choose any unit w ∈ G. Denoting P E and PF the projection
morphism respectively on E and F , separability assumption on G implies that
P Ew and PFw are nonzero hence they are units of E and F , hence units of G.
From the Theorem 2.7, we get

IG =
∨
{P ε1

tn ⊗ ...P εn
t1

: t = (tn, ...t1) ∈ Jt, εi = {E ,F}, 1 ≤ i ≤ n, n ≥ 1}.

Now w = IGw ∈ span{zt1 ⊗ ..ztn : t = (t1, ..., tn) ∈ Jt, n ≥ 1, z = P Ew,PFw} ∈
EI

∨
F I = EI ⊗C F I . Hence the theorem is proved. �
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Proposition 2.10. Let E and F be two product systems and C : F → E be a
contractive morphism. Then for every t > 0, P Et and PFt commute in B((E ⊗C

F)t) if and only if C is a morphism of partial isometries.

Proof. From the Theorem 2.7, we know that for every t > 0, Ct = P EtPFt|Ft :
Ft → Et. If P

Et and PFt commute, then for every t > 0, C∗
t Ct = P Et∧PFt = P Et∧Ft

as a projection on Ft and CtC
∗
t = P Et ∧ PFt = P Et∧Ft as a projection on Et,

implying C to be a morphism of partial isometry between F to E . Conversely,
assume C is a morphism of partial isometry. Then for every t > 0, PFtP EtPFt|Ft

and P EtPFtP Et|Et are projections on Ft and Et respectively. It implies easily that
PFtP EtPFt and P EtPFtP Et are projections on Gt. Now for every t > 0, writing
P Et and PFt as a matrix decomposing it as PFt and I(E⊗CF)t − PFt ,

P Et =

(
At Bt

B∗
t Ct

)
, PFt =

(
IFt 0
0 0

)
,

we get that PFtP EtPFt =

(
At 0
0 0

)
. It implies A2

t = At, for all t > 0. From the

first matrix we get, for every A2
t +BtB

∗
t = At, for all t > 0, which imply Bt = 0,

for all t > 0. Hence for ever t > 0, P Et and PFt commute. �

3. contractive morphisms

In this Section we will mainly concentrate on the category of product systems
as defined by Arveson [1],page 68. In particular, all Hilbert spaces are separable
and the product system has a measurable structure. By a contractive morphism,
we mean a contractive morphism of product systems in that category i.e. the
family of maps is a measurable family. We will call this category as category
of Arveson’s product systems. Contractive morphisms on product systems have
been studied since long time ago. Arveson [1], Theorem 8.8, characterized all
unitary morphisms on CCR flows. All positive contractive morphisms and pro-
jection morphisms on CCR flows have been parameterized in Bhat [5], Theorem
7.5. A complete characterization of morphisms on time ordered Fock modules has
been done in [2], Theorem 5.2.1. Here we give a complete parametrization of all
contractive morphisms from a type I product system to another type I product
system.

Let Dt be a contractive morphism from a type I product system F to a type I
product system E . Thanks to Arveson, without loss of generality we may assume
Et = Γsym(L2[0, t], K1) and Ft = Γsym(L2[0, t], K2) for some separable Hilbert
spaces K1 and K2 with corresponding unitaries

W E
s,te(f)⊗ e(g) = e(g + S1

t f), f, g ∈ L2([0, t], K1)

and
WF

s,te(f)⊗ e(g) = e(g + S2
t f), f, g ∈ L2([0, t], K2)

where S1 and S2 are usual shift semigroup respectively on L2([0,∞), K1) and
L2([0,∞), K2) defined below. For f ∈ L2([0, t], K1) and g ∈ L2([0, t], K2),

S1
t f(x) =

{
f(x− t) if t ≤ x

0 otherwise
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and

S2
t g(x) =

{
g(x− t) if t ≤ x

0 otherwise

Any unit has the form u(t) = e−pte(yχt]) for some (p, y) ∈ C ×Ki, i = 1, 2. We
know that the morphisms D and D∗ sends units to units.

Hence for y ∈ K2, and z ∈ K1,

Dte(yχt]) = e−pyte(Byχt])

D∗
t e(zχt]) = e−qzte(Czχt])

for some (py, By) ∈ C ×K1 and (qz, Cz) ∈ C ×K2. We claim that y 7→ By − B0

and z 7→ Cz − C0 are linear. We have

〈e(zχt]), Dte(yχt])〉 = e−pyt+〈z,By〉t

= 〈D∗
t e(zχt]), e(yχt])〉

= 〈e−qzte(Czχt]), e(yχt])〉
= e−qzte〈Cz ,y〉t.

Hence

−py + 〈z, By〉 = −qz + 〈Cz, y〉.
Put y = z = 0 to get p0 = q̄0. Putting only y = 0 gives −p0 + 〈z, B0〉 = −qz.
Putting only z = 0 gives −py = −p0 + 〈C0, y〉. Hence we have the following

〈z, By −B0〉 = 〈Cz − C0, y〉. (3.1)

Now for y, w ∈ K2 and a ∈ C,

〈z, Bay+w −B0〉 = 〈Cz − C0, ay + w〉
= a〈Cz − C0, y〉+ 〈Cz − C0, w〉
= a〈z, By −B0〉+ 〈z, Bw −B0〉
= 〈z, a(By −B0) + (Bw −B0)〉.

This shows that the map y 7→ By − B0 is linear from K2 to K1. Set Ay =
By − B0, for y ∈ K2. Take u = B0, x = C0, q = p0. So q = q0 and from (3.1 ),
A∗z = Cz − C0. Hence

Dte(yχt]) = e−qt+〈x,y〉te(Ayχt] + uχt]) (3.2)

D∗
t e(zχt]) = e−q̄t+〈u,z〉te(A∗zχt] + xχt])

Now for y ∈ K2, ‖Dte(yχt])‖2 ≤ ‖e(yχt])‖2. This yields

e−(q+q̄)t+〈y,x〉t+〈x,y〉te〈Ay+u,Ay+u〉t ≤ e〈y,y〉t,

which imply q + q̄ − ‖u‖2 − 〈y, A∗u + x〉 − 〈A∗u + x, y〉 + 〈y, (I − A∗A)y〉 ≥ 0.
With little bit of calculation this imply the following matrix(

q + q̄ − ‖u‖2 −(A∗u+ x)∗

−(A∗u+ x) I − A∗A

)
≥ 0 (3.3)
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Now from [5] this matrix is positive if and only if A is a contraction, A∗u + x ∈
Range(I − A∗A)1/2, q + q̄ ≥ ‖u‖2 + q0(A, x, u) where q0(A, x, u) = inf{‖a‖2 :
A∗x+ u = (I − A∗A)1/2a}.

Define C(K2, K1) ⊂ C×K2×K1×B(K2, K1) as the set of all tuples (q, x, u, A)
such that (3.3 ) holds. For (q, x, u, A) ∈ C(K2, K1), define [q, x, u, A]t on the set
{e(f) : f ∈ L2([0, t], K2)} by

[q, x, u, A]te(f) = e−qt+〈xχ|t],f〉e(Af + uχt]),

where Af ∈ L2([0, t], K1) is defined by (Af)(s) = Af(s). From the fact that
{e(f) : f ∈ L2([0, t], K2)} is total in Γsym(L2[0, t], K2), and are linearly indepen-
dent. we extend linearly [q, x, u, A]t to all of Γsym(L2[0, t], K2). Now we will show
that it is contractive which in turn shows that the extension is contractive. For
this we need the notion of conditionally positive definiteness.

Definition 3.1. An n × n matrix B = [bij] is said to be conditionally positive
definite if it is self-adjoint and

∑n
i,j=1 cicjbij ≥ 0 for all c1, c2, · · · , cn ∈ C with∑

ci = 0.

Lemma 3.2. For n× n complex matrix B, the following are equivalent
[1] [etbij ] ≥ 0, for all t ≥ 0 ;
[2] B is conditionally positive definite;
[3] bij = b+ bi + bj + cij, for some b ∈ R, b1, b2, · · · , bn ∈ C and C = [cij] ≥ 0.
Suppose B is conditionally positive definite then for any matrix D, [etbij ] ≤

[etdij ] for all t if and only if B ≤ D.

Proof. See [9], [11] for equivalence of [1] to [3]. For the last statement, suppose
[etbij ] ≤ [etdij ] for all t. Let J be the matrix with all of its entries equal to 1. Then
we get, for every t ≥ 0,

1

t
([etbij ]− J) ≤ 1

t
([etdij ]− J).

taking limit as t ↓ 0, we get B ≤ D. For the converse,

[etdij − etbij ] = [etbij ] · [et(dij−bij) − J ]

where · indicate the Schur product or entry wise product of two matrices. Letting
C = D−B ≥ 0.We get [et(dij−bij)−J ] = tC+(t2/2!)C ·C+(t3/3!)C ·C ·C+· · · ≥ 0.
Now as B is conditionally positive, [etbij ] ≥ 0. The result now follows as Schur
product of two positive matrices is positive. �

Proposition 3.3. Suppose D is a contractive morphism from the product system
Γ(L2[0, t], K2) to the product system Γ(L2(0, t), K1). Then there exists (q, x, u, A) ∈
C(K2, K1) such that Dt = [q, x, u, A]t. Conversely, for any tuple (q, x, u, A) ∈
C(K2, K1), [q, x, u, A]t defines a contractive morphism from Γ(L2(0, t), K2) to
Γ(L2(0, t), K1).

Proof. We have shown in the previous section that a contractive morphism Dt :
Γ(L2[0, t], K2) → Γ(L2[0, t], K1) is of the formDt = [q, x, u, A]t for some (q, x, u, A) ∈
C(K2, K1). Conversely, for {q, x, u, A} ∈ C(K2, K1), consider [q, x, u, A]t. We
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will show that it is contractive, indeed for c1, c2, · · · , cn ∈ C, f1, f2, · · · , fn ∈
L2([0, t], K2),

‖[q, x, u, A]t
∑

i

cie(fi)‖2

=
∑
i,j

cicje
−(q+q−‖u‖2)t+〈(x+A∗u)χt],fi〉+〈fj ,(x+A∗u)χt]〉+〈fi,A

∗Afj〉

Now from Lemma 3.2,

‖[q, x, u, A]t
∑

i

cie(fi)‖2 ≤ ‖
∑

i

cie(fi)‖2

is equivalent to [aij(t)] ≥ 0, where

aij(t) = (q+ q−‖u‖2)t−〈(x+A∗u)χt], fi〉− 〈fj, (x+A∗u)χt]〉+ 〈fi, (I−A∗A)fj〉

Set

bij(s) = (q+q−‖u‖2)−〈(x+A∗u), fi(s)〉−〈fj(s), (x+A
∗u)〉+〈fi(s), (I−A∗A)fj(s)〉

From (3.3 ), we have [bij(s)] ≥ 0, for every 0 ≤ s ≤ t. Then

aij(t) =

∫ t

0

bij(s)ds.

Hence [aij(t) ≥ 0].
Now we prove that [q, x, u, A]t : Γsym(L2[0, t], K2) → Γsym(L2[0, t], K1) is a mor-
phism of product system, indeed, for f ∈ L2([0, s], K2) and g ∈ L2([0, t], K2),

[q, x, u, A]s+t WF
s,t (e(f)⊗ e(g))

= [q, x, u, A]s+te(g + Stf)

= e−q(s+t)+〈xχ|s+t],(g+Stf)〉e(A(g + Stf) + uχs+t])

= e−qt+〈xχ|t],g〉e−qs〈xχ|s],f〉e((Ag + uχt]) + St(Af + uχs]))

= W E
s,te

−qs+〈xχ|s],f〉e(Af + uχs])⊗ e−qt+〈xχ|t],g〉e(Ag + uχt])

= W E
s,t([q, x, u, A]se(f)⊗ [q, x, u, A]te(g)).

�

We wish to compute the index of the amalgamated products of product sys-
tems. As noted before, to define index, we need separability and measurability
structure on the product system. A priori it is not clear whether the amalga-
mated product system has any measurable structure even if the components are
Arveson’s product systems. We will handle this technical problem by restricting
ourselves into a subclass where the amalgamated product is an Arveson’s prod-
uct system. Recalling Theorem 2.7, this is equivalent to the following assumption
that there is a big Arveson’s product system H which contains the two systems
E and F as subsystems. So now on we will always assume this setup.
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Let UE denote the units of a product system E . Then the measurability ensures
the existence a function

γ : UE × UE → C

called the covariance function satisfying:

〈ut, vt〉 = etγ(u,v) ∀t,

for units u, v. The function γ is a conditionally positive definite function [1],
Proposition 4.5. If Z is a non-empty subset of UE , we may do the usual GNS
construction for the kernel γ restricted to Z × Z to obtain a Hilbert space HZ ,
which we call as the Arveson Hilbert space associated to Z. Note that the index
of the product system E is nothing but the dimension of K := HUE (Arveson
Hilbert space of UE). In [1], Theorem 4.7, it is shown that there exists a bijection
u 7→ (λ(u), µ(u)) ∈ C×K, between UE and C×K, satisfying

γ(u, u′) = λ(u) + λ(u′) + 〈µ(u), µ(u′)〉.

In the following, for simplicity of notation, though we have different product
systems, we will be using same λ and µ for the corresponding bijections. This
shouldn’t cause any confusion. We need couple of lemmas before we state our
main theorem.

For an operator A on a Hilbert space H, we denote N(A) = dim {x ∈ H :
Ax = 0}.

Lemma 3.4. Let X be a linear operator from a Hilbert space H into K. Then

rank of the operator Z :=

(
IK X
X∗ IH

)
: (K ⊕ H) → (K ⊕ H) is dim(K) +

dim(H)−N(I −X∗X).

Proof. If dim H or dim K is infinite dimensional then clearly the rank of Z is
infinite. So Assume dim H , dim K <∞. First assume H = K and dim H = n.
Then by polar decomposition of X = U |X|, where U is a unitary we get,

Z =

(
IH U |X|

|X|U∗ IH

)
=

(
U 0
0 IH

) (
IH |X|
|X| IH

) (
U∗ 0
0 IH

)
.

Which implies that the rank of Z is same as the rank of

(
IH |X|
|X| IH

)
.

By spectral theorem we write |X| = V DV ∗, where V is a unitary and D =
diag{x1, x2, · · · , xn}. Then(

IH |X|
|X| IH

)
=

(
V 0
0 V

) (
IH D
D IH

) (
V ∗ 0
0 V ∗

)
.

So the rank of Z is same as the rank of

(
IH D
D IH

)
. Conjugating by sequence

of permutation matrices we get that the rank of

(
IH D
D IH

)
is same as the rank
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of 
B1 0 . . . 0
0 B2 . . . 0
. . . . . .
. . . . . .
0 . . . Bn1 0
0 . . . 0 Bn

 ,

where Bi =

(
1 xi

xi 1

)
, for i = 1, 2, · · · , n. Now rank (Bi) = 2 if and only if

xi 6= 1, for each i = 1, 2, · · · , n and {] i : xi = 1} = N(I − |X|), As (I + |X|) is
invertible, we have N(I − |X|) = N(I −X∗X).

So we have rank (Z) = 2n−N(I −X∗X). Now for different Hilbert spaces H
and K, consider

Z̃ =


IK 0 0 X
0 IH 0 0
0 0 IK 0
X∗ 0 0 IH

 .

So by what we have proved, rank (Z̃) = 2 dim (H) + 2 dim (K)−N(I −X∗X).
Clearly Z̃ is conjugate via permutation matrices to Z 0 0

0 IH 0
0 0 IK

 .

Hence rank (Z) = dim (H) + dim (K)−N(I −X∗X). �

Lemma 3.5. Let X be a positive linear operator of rank k on a finite Hilbert space

H. Let x ∈ H and α ∈ C be fixed. Define a linear operator [α, x,X] :=

(
α x∗

x X

)
on C⊕H via (

α x∗

x X

) (
β
h

)
=

(
αβ + 〈x, h〉
βx+Xh

)
.

Then

rank [α, x,X] =

 k if and only if x ∈ range(X) and α = 〈x, y〉,
where Xy = x.

k + 1 otherwise

Proof. If x /∈ range(X) then clearly rank of [α, x,X] is greater than the rank of X.
Suppose that rank of [α, x,X] = k. It implies that x = Xy, for some y ∈ H. So the

rank of the linear operator (x,X) : C⊕H → H is k. Now

(
α
x

)
is in the range

of (x,X)∗ means there exists z ∈ H such that (x,X)∗z =

(
α
x

)
which implies

〈x, z〉 = α andXz = x. Now if y, z ∈ H such thatXy = Xz = x. ThenX(y−z) =
0Rightarrowy − z ∈ range (X)⊥Rightarrow〈x, y − z〉 = 0Rightarrow〈x, y〉 =
〈x, z〉. Conversely suppose x = Xy for some y ∈ H and α = 〈x, y〉. Consider
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the operators

(
(Xy)∗

X

)
: H → C ⊕ H and

(
〈Xy, y〉
Xy

)
: C → C ⊕ H. As(

(Xy)∗

X

)
(y) =

(
〈Xy, y〉
Xy

)
(1). We conclude the rank of [α, x,X] is equal to

the rank of

(
(Xy)∗

X

)
which is equal to the rank of X as x ∈ range(X). �

Lemma 3.6. Let E be a spatial product system and Z ⊂ UE be a subset of the
set of all units in E . Let HZ be the Arveson Hilbert space associated to Z. Then
dimHZ = ind E if and only if span{u1

t1
⊗ u2

t2
⊗ ...⊗ uk

tk
: 1 ≤ i ≤ k,

∑
i ti = t, ui ∈

Z, k ≥ 1} = EI
t .

Proof. [7, Lemma 23] �

Lemma 3.7. Let γ be the covariance kernel on the set of all units in a spatial
product system E . Let Z ⊂ UE be such that span{u1

t1
⊗ u2

t2
⊗ ... ⊗ uk

tk
: 1 ≤ i ≤

k,
∑

i ti = t, ui ∈ Z, k ≥ 1} = EI
t . Suppose there is a function a : Z → C such that

the function L : Z ×Z → C defined by L(x, y) = γ(x, y)− a(x)− a(y), x, y ∈ UE

is positive definite, then

rank L := maximum rank{(L(xi, xj))n×n : xi, xj ∈ Z, n ≥ 1} = ind (E)

if and only if L is a non-constant function on Z × Z. Further if L is a constant
function on Z × Z, then ind (E) = 0.

Proof. Without loss of generality we may assume E to be type I as index (EI) =
index (E). We then represent our product system on Fock space. Then Z can
be identified with a subset of C×HUE and γ((λ, x), (α, y)) = λ+ α + 〈x, y〉. Set
A = {x ∈ HUE : (λ, x) ∈ Z}. Fix x0 ∈ A. Now define φ : C0Z := {f : Z →
C : f is zero all but finitely many points ,

∑
u∈Z f(u) = 0} → span(A − x0) by

φ(f) =
∑

λ,x f(λ, x)(x−x0). Then φ induces a unitary fromHZ onto span (A−x0).

This implies dim HZ = dim span(A−x0). Now from Lemma 3.6, we get ind (E) =
dim span (A− x0). Hence dim HUE = dim span (A− x0). From positivity of the
function L we get that L((λ, x), (α, y)) = b + 〈x, y〉 for some b ≥ 0. Now L is
a constant function if and only if A = {y0} for some y0 ∈ HUE . Consequently
ind (E) = dim span (A − y0) = 0. On the other hand if L is not a constant
function, then rank (L) = dim span (A). Hence rank (L) = ind (E). �

Theorem 3.8. Suppose E and F are two spatial Arveson product systems of index
k1 and k2 respectively. Let D : F → E be a contractive morphism such that E⊗DF
is an Arveson product system. Then D|FI : F I → EI is a contractive morphism.
So they can be represented as EI

t = Γsym(L2[0, t], K1) and F I
t = Γsym(L2[0, t], K2).

Then Dt|FI
t

= [q, x, y, A]t for some (q, x, y, A) ∈ C(K2, K1) and

ind (E ⊗D F) =



∞ if k1 or k2 is ∞

k1 + k2 −N(I − A∗A) if q + q − ‖y‖2 = 〈x+ A∗y, a〉
where (I − A∗A)a = x+ A∗y

k1 + k2 −N(I − A∗A) + 1 otherwise
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Proof. From the universality Theorem 2.7, we may assume that E and F are
product subsystems of E ⊗D F . Now from Theorem 2.9, we know that every unit
in the amalgamated product can be generated by units of E and of F . So from
Lemma 3.6, to compute the index of the amalgamated product, it is enough to
compute the index on the set UE ⋃

UF . For u, u′ ∈ UE and v, v′ ∈ UF ,

γ(u, u′) = λ(u) + λ(u′) + 〈µ(u), µ(u′)〉

γ(v, v′) = λ(v) + λ(v′) + 〈µ(v), µ(v′)〉
Now

〈ut, vt〉(E⊗DF)t = 〈ut, Dtvt〉Et

= 〈eλ(u)te(µ(u)χ|t]), e−qt+λ(v)t+〈x,µ(v)〉te((y + Aµ(v))χ|t])〉

= e−qt+(λ(u)+λ(v))t+〈x,µ(v)〉t+〈µ(u),y+Aµ(v)〉t

Hence

γ(u, v) = λ(u) + λ(v)− q + 〈x, µ(v)〉+ 〈µ(u), y + Aµ(v)〉
Now take Y = UE ∪ UF and define a : Y → C by

a(u) = λ(u) + 〈y, µ(u)− 1

2
y〉 if u ∈ UE .

and

a(v) = λ(v)− q + 〈x, µ(v)〉+ 〈y, 1
2
y + Aµ(v)〉 if v ∈ UF .

We will show that a : Y → C is well defined. Fix t > 0. For x ∈ Et and y ∈ Ft, we
have ‖x−y‖2

(E⊗DF)t
= ‖x−Dty‖2+‖y‖2−‖Dty‖2 ≥ ‖x−Dty‖2. From this it follows

that x and y are identified in (E ⊗D F)t if and only if x = Dty and ‖y‖ = ‖Dty‖.
So w ∈ UE ∩ UF if and only if there are u ∈ UE and v ∈ UF such that for every
t > 0, ut = Dtvt and ‖vt‖ = ‖Dtvt‖. Equating λ(u) = λ(Dv) and µ(u) = µ(Dv),
we get λ(u) = −q+ 〈x, µ(v)〉+λ(v) and µ(u) = y+Aµ(v). Plugging those values,
we get a(u) = λ(u)+〈y, µ(u)− 1

2
y〉 = −q+〈x, µ(v)〉+λ(v)+〈y, y+Aµ(v)− 1

2
y〉 =

λ(v)− q + 〈x, µ(v)〉+ 〈y, 1
2
y +Aµ(v)〉 = a(v). This shows that a : Y → C is well

defined. Now define L : Y × Y → C by

L(z, w) = γ(z, w)− a(z)− a(w).

Then by direct computation: For u, u′ ∈ UE and v, v′ ∈ UF ,

L(u, u′) = 〈µ(u)− y, µ(u′)− y〉.

L(u, v) = 〈µ(u)− y, Aµ(v)〉.

L(v, v′) = q + q̄ − ‖y‖2 − 〈x+ A∗y, µ(v′)〉 − 〈µ(v), x+ A∗y〉+ 〈µ(v), µ(v′)〉.
If one of the product system has infinite index then it easily follows that the
amalgamated product has infinite index. So let us assume that ind E < ∞,
ind F <∞.

We claim that L : Y × Y → C is a positive kernel and rank L = rank C. Set
K̃ = K1 ⊕ C⊕K2. Define C : K̃ → K̃ by
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C =

 IK1 0 A
0 q + q̄ − ‖y‖2 −(x+ A∗y)∗

A∗ −(x+ A∗y) IK2

 .

Now

C =

 I 0 A
0 0 0
A∗ 0 A∗A

 +

 0 0 0
0 q + q̄ − ‖y‖2 −(A∗y + x)∗

0 −(A∗y + x) I − A∗A

 .

It follows from Equation (3.3 ) that C is positive. For any finite choices of
{u1, u2, · · · , ul} ∈ UE and {v1, v2, · · · , vm} ∈ UF , set ai = µ(ui)− y ⊕ 0⊕ 0 ∈ K̃
for i = 1, 2, · · · , l and aj = 0⊕ 1⊕µ(vj) ∈ K̃ for j = l+ 1, l+ 2, · · · , l+m. Then(

((L(ui, uj)))l×l ((L(ui, vj)))l×m

((L(vj, ui)))m×l ((L(vi, vj)))m×m

)
(l+m)×(l+m)

= ((〈ai, Caj〉))(l+m)×(l+m).

This implies L is a positive definite kernel and rank (L) ≤ rank (C). Choose
ui ∈ UE , 1 ≤ i ≤ l and vj ∈ UF , 1 ≤ j ≤ m + 1 such that {µ(u1) − y, µ(u2) −
y, · · · , µ(ul)− y} is a basis of K1 and {µ(v2), µ(v3), · · · , µ(vm+1)} is a basis of K2

and choose v1 such that µ(v1) = 0. Let ai, 1 ≤ i ≤ l+m+ 1 be defined as above.
Then {a1, a2, · · · , al+m+1} is a basis of K̃. So we have

rank (L) ≥

rank

(
((L(ui, uj)))l×l ((L(ui, vj)))l×(m+1)

((L(vj, ui)))(m+1)×l ((L(vi, vj)))(m+1)×(m+1)

)
(l+m+1)×(l+m+1)

= rank (C) .

So the claim is proved. Observe that L is constant implies K1 = {0}, K2 =
{0}, q + q̄ = 0. So x = 0, y = 0, A = 0, µ(u) = 0 for all u ∈ UE , µ(v) = 0 for

all v ∈ UF . Hence L is identically zero. So γ(x, y) = a(x) + a(y). Consequently,
HUE⊗DF = {0}. In this special case, E and F are two type I0 product systems and
D = {Dt = [q, 0, 0, 0]t}t>0 is a contractive morphism. Then ind (E ⊗D F) = 0
if and only if q + q̄ = 0. Now assume L is a non-constant function. Then from
Lemma 3.7, it is enough to calculate the rank of L. Now rank of L is same as
the rank of the matrix C. Clearly C is conjugate via permutation matrix to the
following matrix,

C ′ =

 q + q̄ − ‖y‖2 0 −(x+ A∗y)∗

0 IK1 A
−(x+ A∗y) A∗ IK2


Invoking Lemma 3.5,

rank (C ′) =


rank (Z) if 0⊕−(x+ A∗y) ∈ range (Z) and

q + q − ‖y‖2 = 〈0⊕−(x+ A∗y), e⊕ f〉,
where Z(e⊕ f) = 0⊕−(x+ A∗y)

rank (Z) + 1 otherwise

(3.4)
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where Z =

(
IK1 A
A∗ IK2

)
. From Lemma 3.4, we know

rank (Z) = k1 + k2 −N(I − A∗A). (3.5)

Solving the equation,

(
IK1 A
A∗ IK2

) (
e
f

)
=

(
0

x+ A∗y

)
, we get Af = −e

and A∗e + f = −(x + A∗y), which imply (I − A∗A)(−f) = x + A∗y. Now this
holds as {q, x, y, A} ∈ C(K2, K1) and range (I−A∗A)1/2 = range (I−A∗A). Now
it follows from equations (3.4 ) and (3.5 ) that rank (L) = rank (C) = rank (C ′) =
k1+k2−N(I−A∗A) if q+q−‖y‖2 = 〈x+A∗y,−f〉 where (I−A∗A)(−f) = x+A∗y.
Setting a = −f our theorem follows. �

The following corollary has been proved in [7], Theorem 24, which answers that
the index of the amalgamated product through strictly contractive units is one
more than that of through normalized units.

Corollary 3.9. Suppose E and F are two spatial product systems of index k1

and k2 respectively. Let u0 and v0 be two units of E and F respectively such that
‖u0

t‖, ‖v0
t ‖ ≤ 1 for all t > 0. Set Dt = |u0

t 〉〈v0
t |. Then Dt : Ft → Et is a contractive

morphism and

ind (E ⊗D F) =

{
k1 + k2 if ‖ut‖ = ‖vt‖ = 1 for all t > 0

k1 + k2 + 1 otherwise

Proof. Let (λ, y) ∈ C×K1 and (µ, x) ∈ C×K2 be the parametrization of u0 and
v0 respectively. Then Dt is given by Dt = [−λ−µ, x, y, 0]. Now ‖u0

t‖ = 1 implies
λ+ λ̄+‖y‖2 = 0. Similarly ‖v0

t ‖ = 1 implies µ+ µ̄+‖x‖2 = 0. So by the previous
theorem, ind (E ⊗D F) = k1 + k2. �

Corollary 3.10. Suppose E and F are two spatial product systems of index k1

and k2 respectively. Suppose D : F → E is a morphism of partial isometries.
Then

ind (E ⊗D F) = k1 + k2 −N(I − A∗A)

Proof. As DD∗ and D∗D are projection morphisms, it follows that (I − A∗A) is
a projection and q+ q̄−‖y‖2 = ‖x+A∗y‖2. So (I −A∗A)(x+A∗y) = (x+A∗y).
So the Corollary follows. �
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