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Abstract. In this paper, we introduce the notion of φ-weakly compatible
mapping for a pair of mappings. A fixed point theorem for two pairs of φ-
weakly compatible mappings satisfying a rational type contraction in a normed
space is also established. Subsequently we use our result to find existence of
solutions of variational inequalities.

1. Introduction

Let (X, ‖ · ‖) denote a normed linear space and N the set of positive integers.
For self mappings T and I on X, we recall the following :

Sessa [10] defined T and I to be weakly commuting if ‖TIx−ITx‖ ≤ ‖Tx−Ix‖
for any x ∈ X.

Jungck [6] defined T and I to be compatible mappings if limn→∞ ‖TIxn −
ITxn‖ = 0, whenever there exists a sequence {xn} in X such that limn→∞ Txn =
limn→∞ Ixn = t, for some t ∈ X.

Diviccaro et al. [4] established the a Gregus type common fixed point theorem
for pair of weakly commuting mappings. Pathak and George [7] relaxed certain
conditions on one of the pair of mapping and replaced the weakly commuting
mappings with compatible mappings and presented the following theorem.
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Theorem 1.1. Let T and I be compatible mappings of a closed convex bounded
subset C of a normed linear space X satisfying the following:

‖Tx− Ty‖p ≤ a‖Ix− Iy‖p + (1− a) max{‖Tx− Ix‖p, ‖Ty − Iy‖p}
I(C) ⊇ (1− k)I(C) + kT (C)

for all x, y ∈ C, where 0 < a < 1, p > 0 and 0 < k < 1. If, for some x0 ∈ C, the
sequence {xn} in X defined by

for all x, y ∈ C, where 0 < a < 1, p > 0 and 0 < k < 1. If, for some x0 ∈ C,
the sequence {xn} in X defined by

Ixn+1 = (1− k)Ixn + kTxn, n ∈ N∪{0}

converges to a point z ∈ C, and if I is continuous at z, then T and I have a
unique common fixed point in C. Further, if I is continuous at Tz, then T and
I have a unique common fixed point at which T is continuous.

Pathak et al. [8] introduced the concept of compatible mappings of type (T )
(type (I)) in normed spaces and showed that these mappings are equivalent to
compatible mappings under some conditions. They also proved a common fixed
point theorem of Gregus type and applied this theorem to prove the existence of
solution of variational inequalities.

Recently, Pathak et al. [9] proved the following:

Theorem 1.2. Let {S, I} and {T, J} be two pairs of coincidentally commuting
mappings of a normed space X into itself such that there exists a closed, convex
subset C of X that is invariant under I, J, S and T , where I and J are one-to-one
and the following conditions hold:

‖Sx− Ty‖p ≤ a‖Ix− Jy‖p + (1− a) max{‖Sx− Ix‖p, ‖Ty − Jy‖p}

for all x, y ∈ C, where 0 < a < 1, p > 0 and

I(C) ⊇ (1− k)I(C) + kS(C), J(C) ⊇ (1− k∗)I(C) + k∗S(C)

for all k, k∗ ∈ (0, 1). If for some x0 ∈ C, the sequence {xn} in X defined induc-
tively by

Ix2n+1 = (1− a2n)Ix2n + a2nSx2n,

Jx2n+2 = (1− a2n+1)Jx2n + a2n+1Tx2n+1, n ∈ N∪{0}

with a0 = 1, 0 < an ≤ 1 for all n > 0 and lim infan > 0, converges to a point
z of C, then I, J, S and T have a unique common fixed point Tz in C. Further,
if I and J are continuous at Tz, then I, J, S and T have a unique common fixed
point at which S and T are continuous.

The main object of this paper is to introduce φ-weakly compatible mappings
for pair of mappings and prove a Gregus type common fixed point theorem for
two pairs of such mappings. Subsequently we use our result to find iterative
solution of certain variational inequalities.
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2. Main Result

In this section, we introduce the notion of φ-weakly compatible mappings of
type (I, T ). Further we prove a common fixed point theorem for φ-weakly com-
patible mappings of type (I, T ) for the pair of mappings {I, T} in a normed
space.

Definition 2.1. Let I and T be mappings from a normed space X into itself.
The pair of mappings {I, T} is said to be φ- weakly compatible of type (I,T) at x
in X, if for every p > 0, Ix = Tx implies

φ
(‖ITx− Ix‖p+1 + ‖ITx− TIx‖p+1

‖ITx− Ix‖+ ‖TIx− ITx‖

)
≤ ‖TIx− Tx‖p,

where φ : [0,∞) → [0,∞) is upper semi-continuous, non-decreasing and φ(t) < t
for all t > 0, and ‖ITx− Ix‖+ ‖TIx− Tx‖ 6= 0.

If φ(t) = h t, where 0 < h < 1, then the pair of mappings {I, T} is said to be
h− weakly compatible of type (I,T).

Example 2.2. Let X = [0,∞) with the Euclidean norm ‖ · ‖ and φ(t) = 1
2
t.

Define mappings I and T on X by Ix = 1+x and Tx = 1+2x. Here ‖I0−T0‖ =
0 and for this value of x, we have ‖IT0 − I0‖ = 1, ‖IT0 − TI0‖ = 1 and
‖TI0− T0‖ = 2. Thus for all p > 0,

φ
(‖IT0− I0‖p+1 + ‖IT0− TI0‖p+1

‖IT0− I0‖+ ‖TI0− IT0‖

)
≤ ‖TI0− T0‖p,

or

1

2

1p+1 + 1p+1

1 + 1
≤ 2p,

or

1 ≤ 2p+1.

Thus the pair mappings {I, T} is φ-weakly compatible of type (I, T ) at 0. On
the other hand

φ
(‖TI0− T0‖p+1 + ‖IT0− TI0‖p+1

‖IT0− I0‖+ ‖TI0− IT0‖

)
≤ ‖IT0− I0‖p,

implies

1

2

2p+1 + 1p+1

1 + 1
≤ 1p,

or

2p+1 + 1

22
≤ 1,

which does not hold for p > 1. This shows that the pair of φ-weakly compatible
type (I, T ) is not necessarily φ-weakly compatible mappings of type (T, I).

Also, here for I0 = T0 = 1, IT0 = I1 = 2, TI0 = S1 = 3, so it is not satisfied
that ITx = TIx for all x ∈ X. Thus the pair of mappings {I, T} is neither
weakly compatible nor commutative nor weakly commuting.
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Now we prove a Gregus type common fixed point theorem for pair of φ-weakly
compatible mappings of type (I, S) and (J, T ) in normed space.

Theorem 2.3. Let I, J , S and T mappings from a normed linear space X into
itself and C be a closed, convex bounded subset of X that is invariant under I, J, S
and T , where I and J are one-to-one and the following conditions hold:

‖Sx− Ty‖p

≤ φ
(a‖Ix− Jy‖p+1 + (1− a) max{‖Ix− Sx‖p+1, ‖Jy − Ty‖p+1}

‖Ix− Sx‖+ ‖Ix− Jy‖+ ‖Jy − Ty‖

)
,(2.1)

where ‖Ix− Sx‖+ ‖Ix− Jy‖+ ‖Jy − Ty‖ 6= 0.

I(C) ⊇ (1− k)I(C) + kS(C), J(C) ⊇ (1− k′)J(C) + k′T (C)

for all x, y ∈ C, where 0 < a < 1, p > 0 and k, k′ ∈ (0, 1). Suppose that for some
x0 ∈ C and y0 ∈ C, the sequences {xn} and {yn} in C defined inductively by

Ix2n+1 = (1− an)Ixn + anSxn, n ∈ N∪{0} (2.2)

Jyn+1 = (1− an)Jyn + anTyn, n ∈ N∪{0} (2.3)

where a0 = 1, 0 < an ≤ 1 for all n > 0 and lim infan > 0, converge to a point
z ∈ C. If {I, S} and {J, T} are φ-weakly compatible mappings of type (I, S) and
type (J, T ) at z, respectively and I and J are continuous at z, then S, T, I and J
have a unique common fixed point Tz in C. Further, if I and J are continuous
at Tz, then S, T, I and J have a unique common fixed point at which S and T
are continuous.

Proof. Since the mapping I and J are one-to-one so, the sequence {xn} defined
in (2.2) and (2.3) are well defined. Indeed it follows from (2.2) that

an(Sxn − Ixn) = Ixn+1 − Ixn.

Define α = lim inf an. Then there exists a positive integer N such that n ≥ N
implies that an > α

2
. Thus from (2.2), for n ≥ N

‖Sxn − Ixn‖ ≤ | 2
α
|‖Ix2n+1 − Ixn‖,

since I is continuous at z, we have limn→∞ Sxn = limn→∞ Ixn = Iz.
Now using (2.3), we have

anTyn = Jyn+1 − (1− an)Jyn

Again, since J is continuous at z, so taking n →∞, we have

lim
n→∞

Jyn = lim
n→∞

Tyn = Jz.

Let Iz 6= Jz. Putting x = xn and y = yn (n ∈ N∪{0}) in (2.1), we have

‖Sxn − Tyn‖p

≤ φ
(a‖Ixn − Jyn‖p+1 + (1− a) max{‖Ixn − Sxn‖p+1, ‖Jyn − Tyn‖p+1}

‖Ixn − Sxn‖+ ‖Ixn − Jyn‖+ ‖Jyn − Tyn‖

)
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or

‖Sxn − Tyn‖p

<
a‖Ixn − Jyn‖p+1 + (1− a) max{‖Ixn − Sxn‖p+1, ‖Jyn − Tyn‖p+1}

‖Ixn − Sxn‖+ ‖Ixn − Jyn‖+ ‖Jyn − Tyn‖
or

‖Sxn − Tyn‖p[‖Ixn − Sxn‖+ ‖Ixn − Jyn‖+ ‖Jyn − Tyn‖
]

< a‖Ixn − Jyn‖p+1 + (1− a) max{‖Ixn − Sxn‖p+1, ‖Jyn − Tyn‖p+1}.
We obtain, on taking lim inf on left side and lim sup on the other, in above

‖Iz − Jz‖p ≤ a‖Iz − Jz‖p+1

‖Iz − Jz‖
= a‖Iz − Jz‖p < a‖Iz − Jz‖p,

which is a contradiction. Hence Iz = Jz.
Let Iz 6= Tz, putting x = xn and y = z in (2.1), we have

‖Sxn − Tz‖p

≤ φ
(a‖Ixn − Jz‖p+1 + (1− a) max{‖Ixn − Sxn‖p+1, ‖Jz − Tz‖p+1}

‖Ixn − Sxn‖+ ‖Ixn − Jz‖+ ‖Jz − Tz‖

)
or

‖Sxn − Tz‖p

<
a‖Ixn − Jz‖p+1 + (1− a) max{‖Ixn − Sxn‖p+1, ‖Jz − Tz‖p+1}

‖Ixn − Sxn‖+ ‖Ixn − Jz‖+ ‖Jz − Tz‖
or

‖Sxn − Tz‖p[‖Ixn − Sxn‖+ ‖Ixn − Jz‖+ ‖Jz − Tz‖
]

< a‖Ixn − Jz‖p+1

+(1− a) max{‖Ixn − Sxn‖p+1, ‖Jz − Tz‖p+1}.
We obtain, on taking lim inf on left side and lim sup on the other, in above

‖Iz − Tz‖p ≤ (1− a)‖Iz − Tz‖p+1

‖Iz − Tz‖
< (1− a)‖Iz − Tz‖p,

which is a contradiction again. Hence Iz = Tz = Jz.
Similarly, on putting x = z, y = yn and taking lim in similar manner, we have

‖Iz − Sz‖p ≤ (1− a)‖Sz − Iz‖p+1

‖Sz − Iz‖
< (1− a)‖Iz − Sz‖p,

a contradiction, so Iz = Sz. Thus we have

Sz = Tz = Iz = Jz. (2.4)

Now from (2.1) and (2.4), we have

‖SSz − Tz‖p

≤ φ
(a‖ISz − Jz‖p+1 + (1− a) max{‖SSz − ISz‖p+1, ‖Tz − Jz‖p+1}

‖ISz − SSz‖+ ‖ISz − Jz‖+ ‖Jz − Tz‖

)
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or

‖SIz − Sz‖p ≤ φ
(b

[
‖ISz − Iz‖p+1 + ‖SIz − ISz‖p+1

]
‖ISz − SIz‖+ ‖ISz − Iz‖

)
,

where b = max{a, 1 − a} < 1. Since I and S are φ-weakly compatible of type
(I, S) at z, it follows that

‖SIz − Sz‖p < ‖SIz − Sz‖p

or
‖STz − Tz‖p < ‖STz − Tz‖p,

which implies that ‖STz − Tz‖p = 0 and so STz = Tz; i.e. SIz = Iz. Again
using φ-weakly compatibility of type (I, S) at z,

φ
(‖ISz − Iz‖p+1 + ‖SIz − ISz‖p+1

‖ISz − SIz‖+ ‖ISz − Iz‖

)
≤ ‖SIz − Sz‖p = 0,

which implies that

SIz = ISz = ITz = STz = Tz

and so Tz is a common fixed point of I and S.
Similarly interchanging the roles of pairs I, S and J, T , we get

TTz = JTz = Tz

and thus Tz is also a common fixed point of J and T . Therefore, Tz is a common
fixed point of I, J, S and T .

Next, let {vn} be an arbitrary sequence in C with the limit Tz = z1. Then,
using (2.1), we have

‖Svn − Tz1‖p

≤ φ
(a‖Ivn − Jz1‖p+1 + (1− a) max{‖Svn − Ivn‖p+1, ‖Tz1 − Jz1‖p+1}

‖Ivn − Jz1‖+ ‖Svn − Ivn‖+ ‖Tz1 − Jz1‖

)
.

Since I and J are continuous at Tz = z1, we have

‖Svn − Sz1‖p = ‖Svn − Tz1‖p ≤ (1− a)‖Svn − Iz1‖p + ε

for sufficiently large n and ε > 0. Thus limn→∞ Svn = Sz1, implies that S is
continuous at Tz. Similarly, we have

‖Tz1 − Tvn‖p = ‖Sz1 − Tvn‖p ≤ (1− a)‖Tvn − Jz1‖p + ε

for sufficiently large n and ε > 0. Thus limn→∞ Tvn = Tz1, and so T is also
continuous at Tz.

For uniqueness of fixed point, let u and w be distinct fixed points of S, T, I and
J . Then using (2.1), we have

‖Su− Tw‖p

≤ φ
(a‖Iu− Jw‖p+1 + (1− a) max{‖Su− Iu‖p+1, ‖Tw − Jw‖p+1}

‖Iu− Su‖+ ‖Iu− Jw‖+ ‖Jw − Tw‖

)
= φ

(a‖Iu− Jw‖p+1

‖Iu− Jw‖

)
,
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or

‖u− w‖p < a‖u− w‖p,

a contradiction. Hence u = w is the unique common fixed point of S, T, I and J .
This completes the proof. �

If we put φ(t) = h t (0 < h < 1) and p = 1 in Theorem 2.3, we have the
following:

Corollary 2.4. Let I, J , S and T mappings from a normed linear space X into
itself and C be a closed, convex bounded subset of X that is invariant under I, J, S
and T , where I and J are one-to-one and the following conditions hold:

‖Sx− Ty‖ ≤ h
a‖Ix− Jy‖2 + (1− a) max{‖Ix− Sx‖2, ‖Jy − Ty‖2}

‖Ix− Sx‖+ ‖Ix− Jy‖+ ‖Jy − Ty‖

)
whenever ‖Ix− Sx‖+ ‖Ix− Jy‖+ ‖Jy − Ty‖ 6= 0.

I(C) ⊇ (1− k)I(C) + kS(C), J(C) ⊇ (1− k′)J(C) + k′T (C)

for all x, y ∈ C, where 0 < a < 1, p > 0 and k, k′ ∈ (0, 1). Suppose that for some
x0 ∈ C and y0 ∈ C, the sequences {xn} and {yn} in C defined inductively by

Ixn+1 = (1− an)Ixn + anSxn, n ∈ N∪{0}
Jyn+1 = (1− an)Jyn + anTyxn, n ∈ N∪{0}

where a0 = 1, 0 < an ≤ 1 for all n > 0 and lim inf an > 0, converge to a point
z ∈ C. If {I, S} and {J, T} are φ-weakly compatible mappings of type (I, S) and
type (J, T ) at z, respectively and I and J are continuous at z, then S, T, I and J
have a unique common fixed point Tz in C. Further, if I and J are continuous
at Tz, then S, T, I and J have a unique common fixed point at which S and T
are continuous.

If we put S = T and I = J in Theorem 2.3, we have the following:

Corollary 2.5. Let I and T be mappings from a normed linear space X into
itself and C be a closed, convex bounded subset of X that is invariant under I
and T , where the following conditions are satisfied :

‖Tx− Ty‖p ≤ φ
(a‖Ix− Iy‖p+1 + (1− a) max{‖Ix− Tx‖p+1, ‖Iy − Ty‖p+1}

‖Ix− Tx‖+ ‖Ix− Iy‖+ ‖Iy − Ty‖

)
whenever ‖Ix− Tx‖+ ‖Ix− Iy‖+ ‖Iy − Ty‖ 6= 0.

I(C) ⊇ (1− k)I(C) + kT (C)

for all x, y ∈ C, where 0 < a < 1, p > 0 and k ∈ (0, 1). Suppose that for some
x0 ∈ C, the sequence {xn} in C defined by

Ixn+1 = (1− an)Ixn + anTxn, n ∈ N∪{0}
where a0 = 1, 0 < an ≤ 1 for all n > 0 and lim infan > 0, converge to a point
z ∈ C. If I and T are φ-weakly compatible mappings of type (I, T ) at z and I is
continuous at z, then T and I have a unique common fixed point in C. Further,
if I is continuous at Tz, then T and I have a unique common fixed point at which
T is continuous.
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For I = IX (the identity mapping on X) in above corollary, we have the following:

Corollary 2.6. Let (T ) be a mapping from normed linear space X into itself and
C be a closed, convex bounded subset of X that is invariant under T and satisfies
the following conditions:

‖Tx− Ty‖p ≤ φ
(a‖x− y‖p+1 + (1− a) max{‖x− Tx‖p+1, ‖y − Ty‖p+1}

‖x− Tx‖+ ‖x− y‖+ ‖y − Ty‖

)
whenever ‖x− Tx‖+ ‖x− y‖+ ‖y − Ty‖ 6= 0.

C ⊇ (1− k)C + kT (C)

for all x, y ∈ C, where 0 < a < 1, p > 0 and k ∈ (0, 1). Suppose that for some
x0 ∈ C, the sequence {xn} in C defined by

xn+1 = (1− an)xn + anTxn, n ∈ N∪{0}
where a0 = 1, 0 < an ≤ 1 for all n > 0 and lim infan > 0, converge to a point
z ∈ C. Then T has a unique fixed point at which T is continuous.

The following theorem is an immediate consequence of Theorem 2.3.

Theorem 2.7. Let I, J and Tn(n = 1, 2, . . .) be mappings from a normed linear
space X into itself and C be a closed, convex bounded subset of X that is invariant
under I, J and Tn(n = 1, 2, . . .). Suppose that the pairs (I, T2n−1) and (J, T2n)
are φ-weakly compatible mappings of type (I, T2n−1) and type (J, T2n), respectively
satisfying the following :

‖T2n−1x− T2ny‖p ≤ φ
(
a‖Ix− Jy‖p+1 + (1− a) max{‖Ix− T2n−1x‖p+1,

‖Jy − T2ny‖p+1}[‖Ix− T2n−1x‖+ ‖Ix− Jy‖

+‖Jy − T2ny‖]−1
)

I(C) ⊇ (1− k)I(C) + kT2n−1(C), J(C) ⊇ (1− k′)J(C) + k′T2n(C)

for all x, y ∈ C, n ∈ N, 0 < a < 1, p > 0 and k, k′ ∈ (0, 1). Suppose that for some
x0 ∈ C and y0 ∈ C, the sequences {xm,n} and {ym,n} in C defined inductively by

Ixm+1,n = (1− am,n)Ixm,n + am,nT2n−1xm,n, m ∈ N∪{0}, n ∈ N
Jym+1,n = (1− am,n)Jym,n + am,nT2nym,n, m ∈ N∪{0}, n ∈ N

where a0,n = 1, 0 < am,n ≤ 1 for each n ∈ N, m ∈ N∪{0} and lim infam,n > 0
for each n ∈ N, converge to a point z ∈ C. If I and J are continuous at z, then
I, J and Tn(n = 1, 2, . . .) have a unique common fixed point Iz in C.

3. Application

Variational inequalities arise in optimal stochastic control [2] as well as in other
problems in mathematical physics, for example, deformation of elastic bodies
steched over solid obstacles, elasto-plastic torsion etc. [5]. The iterative method
for solutions of discrete variational inequalities is very suitable for implementation
on parallel computers with single instruction, multiple-data architecture, partic-
ularly on massively parallel processors. In this section, we apply Corollary 2.4 to
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show the existence of solution of variational inequalities as in the recent work of
Belbas and Mayergoyz [1].

The variational inequality problem is to find a function u such that{
max{Lu− f, u− φ} = 0 on Ω,

u = 0 on Ω.

Where Ω is a bounded open convex subset of RN with smooth boundary, L is an
elliptic operator defined on Ω by

L = −aij(x)∂2/∂xi∂xj + bi(x)∂/∂xi + c(x)IN ,

where summation with respect to repeated indices is implied, c(x) ≥ 0, [aij(x)] is
a strictly positive definite matrix, uniformly in x, for x ∈ Ω, f and φ are smooth
functions defined in Ω and φ satisfies the condition : φ(x) ≥ 0 for x ∈ Ω.
A problem related to above is the two-obstacle variational inequality. Given two
functions φ and µ defined on Ω such that φ ≤ µ in Ω, φ ≤ 0 ≤ µ on ∂Ω, the
corresponding variational inequality is as follows :{

max{min[(Lu− f, u− φ), u− µ]} = 0 on Ω,
u = 0 on Ω.

The above problem arises in stochastic game theory.
Let A be an N×N matrix corresponding to the finite difference discretizations

of the operator L. We make the following assumption of the matrix A:

Aii = 1,
∑
j:j 6=i

Aij > −1, Aij < 0 for i 6= j. (3.1)

These assumptions are related to the definitions of “M − matrices”; matrices
arising from the finite difference discretizations of continuous elliptic operators
will have the property (3.1) under some appropriate conditions and Q denotes
the set of all discretized vectors (see[3],[11]).
Let B = IN − A. Then the corresponding property for the matrix B will be

Bii = 0,
∑
j:j 6=i

Bij < 1, Bij > 0 for i 6= j. (3.2)

Let q = maxi

∑
j Bij and A∗ be an N × N matrix such that A∗

ii = 1 − q and
A∗

ij = −q for i 6= j. Then we have B∗ = IN − A∗.
Now, we are ready to show the existence of iterative solutions of variational

inequalities :
Consider the following simultaneous discrete variational inequalities mentioned
above :

max[min{A(x− A∗ · ‖Ix− Sx‖ − f, x− A∗ · ‖Ix− Sx‖ − φ}, (3.3)

x− A∗ · ‖Ix− Sx‖ − µ] = 0,

max[min{A(x− A∗ · ‖Jx− Tx‖ − f, x− A∗ · ‖Jx− Tx‖ − φ}, (3.4)

x− A∗ · ‖Jx− Tx‖ − µ] = 0,
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where I and J are one-to-one and S, I and T, J are the pairs of weakly compatible
operators of type (S, I) and (T, J), respectively with index 1 at x, where x is
implicitly defined in RN by

Sx = min[max{BIx + A(1−B∗) · ‖Ix− Sx‖+ f,

(1−B∗) · ‖Ix− Sx‖+ φ}, (1−B∗) · ‖Ix− Sx‖+ µ],

Tx = min[max{BJx + A(1−B∗) · ‖Jx− Tx‖+ f,

(1−B∗) · ‖Jx− Tx‖+ φ}, (1−B∗) · ‖Jx− Tx‖+ µ],

for all x ∈ Q. Then (3.3) and (3.4) are equivalent to the common fixed point
problem :

x = Sx = Tx = Ix = Jx. (3.5)

Now assume that Q is invariant under I, J, S and T and

I(Q) ⊇ (1− k)I(Q) + kS(Q), J(Q) ⊇ (1− k′)J(Q) + k′T (Q), (3.6)

where 0 < k, k′ < 1. Suppose there exists x(0) ∈ Ω and y(0) ∈ Ω such that the
sequences {x(n)} and {y(n)} in RN defined inductively as given below :

Ix(n+1) = (1− an)Ix(n) + anSx(n), n ∈ N∪{0}, (3.7)

Jy(n+1) = (1− an)Jy(n) + anTy(n), n ∈ N∪{0}, (3.8)

where a0 = 1, 0 < an ≤ 1 for all n > 0, lim inf an > 0 converge to a z ∈ Ω and I
and J are continuous at z.

Theorem 3.1. Under the assumptions (3.1), (3.2), (3.6), (3.7) and (3.8), a
solution of (3.5) exists.

Proof. Let (Ty)i = h M−1[(1 − B∗
ij) · ‖Jyi − Tyi‖2 + µi] for any y ∈ Q and any

i, j = 1, 2, . . . , N. Now, since (Sx)i ≤ h M−1[(1 − B∗
ij) · ‖Ixj − Sxj‖2 + µi], for

any x ∈ Q where

M = sup
x,y∈Q

{
‖Ix− Sx‖+ ‖Ix− Jy‖+ ‖Jy − Ty‖

}
6= 0,

we have

(Sx)i − (Ty)i ≤ h M−1[(1−B∗
ij) · [‖Ixj − Sxj‖2 − ‖Jyj − Tyj‖2],

or

(Sx)i − (Ty)i ≤ h M−1(1−B∗
ij) · (3.9)

max{‖Jyi − Tyj‖2, ‖Jyj − Tyj‖2}.

If

(Ty)i = max
{

h [BijJyj + (1−B∗
ij) · ‖Jyj − Tyj‖2 + fi]M

−1,

h [(1−B∗
ij) · ‖Jyj − Tyj‖2 + φi]M

−1
}

,
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then we introduce the one sided operators:

T+x = h max
{

[BJx + A(1−B∗) · ‖Jx− Tx‖2 + f ]M−1,

[(1−B∗) · ‖Jx− Tx‖2 + φ]M−1
}

,

S+x = h max
{

[BIx + A(1−B∗) · ‖Ix− Sx‖2 + f ]M−1,

[(1−B∗) · ‖Ix− Sx‖2 + φ]M−1
}

.

Therefore, we have (Ty)i = (T+y)i.
Now, since (Sx)i = (S+x)i, we have

(Sx)i − (Ty)i ≤ (S+x)i − (T+y)i. (3.10)

Now, if (Sx)i = h M−1[BijIxj + Aij(1 − B∗
ij) · ‖Ixj − Sxj‖2 + fi], then since

(Ty)i ≥ h M−1[BijJyj + Aij(1−B∗
ij) · ‖Jyj − Tyj‖2 + fi], we have from (3.10),

(S+x)i − (T+y)i ≤ h M−1[Bij‖Ixi − Jyi‖+ (1−B∗
ij) · (3.11)

max{‖Ixj − Sxj‖2, ‖Jyj − Tyj‖2}].

If (Sx)i = h M−1[(1− B∗
ij) · ‖Ixj − Sxj‖2 + φi], then since (Ty)i ≥ h M−1[(1−

B∗
ij) · ‖Jyj − Tyj‖2 + φi], we have

(Sx)i − (Ty)i ≤ h M−1[(1−B∗
ij) · (3.12)

max{‖Ix− Sx‖2, ‖Jy − Ty‖2}].

Hence, from (3.9)-(3.12), we have

(Sx)i − (Ty)i ≤ h M−1[q · ‖Ix− Jy‖ (3.13)

+(1− q) ·max{‖Ix− Sx‖2, ‖Jy − Ty‖2}].

By interchanging the roles of (I, S) and (J, T ) considering x and y be arbitrarily
chosen, we have

(Ty)i − (Sx)i ≤ h M−1[q · ‖Ix− Jy‖ (3.14)

+(1− q) ·max{‖Ix− Sx‖2, ‖Jy − Ty‖2}].

Hence, from (3.13) and (3.14), it follows that

‖Sx− Ty‖ ≤ h M−1[q · ‖Ix− Jy‖+ (1− q) ·max{‖Ix− Sx‖2, ‖Jy − Ty‖2}],

which further implies

‖Sx− Ty‖ ≤ h
q · ‖Ix− Jy‖+ (1− q) ·max{‖Ix− Sx‖2, ‖Jy − Ty‖2}

‖Ix− Sx‖+ ‖Ix− Jy‖+ ‖Jy − Ty‖
.

Thus the condition (2.1) is satisfied for p = 1. Therefore, Corollary 2.4 ensures
the existence of a solution of (3.5). Hence the result. �
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