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ON THE EQUIVALENCE OF HERMITIAN INNER PRODUCTS
ON TOPOLOGICAL ∗-ALGEBRAS

MART ABEL1∗ AND MATI ABEL2

Communicated by M. Joita

Abstract. Sufficient conditions for a topological ∗-algebra under which sev-
eral Hermitian inner products are mutually equivalent are given.

1. Introduction

For constructing a Hermitian K-theory for topological ∗-algebras, one usually
supposes that the algebra under consideration is unital and locally m-convex (see
[7]). In this paper we obtain similar results as in [7] for the case of both unital
and non-unital topological ∗-algebras without assuming locally m-convexity.

1.1. Preliminary definitions. Throughout this paper K denotes either the set
R of all real numbers or the set C of all complex numbers. Let A be a ∗-algebra
over K and M a left A-module. HomA(M,A) stands for the set of all A-linear
maps f : M → A. Under the operations:

(f + g)(m) := f(m) + g(m), (af)(m) := f(m)a∗, (λf)(m) := λ[f(m)] (1.1)

for all f, g ∈ HomA(M,A), m ∈ M and λ ∈ K, HomA(M,A) becomes a left
A-module.

An A-valued Hermitian inner product on M is a map α : M ×M → A which
satisfies the following properties:
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(1) α is K-linear on first component, i.e., α(λx+ µy, z) = λα(x, z) + µα(y, z)
for all λ, µ ∈ K and x, y, z ∈M ;

(2) α is A-homogeneous in the first argument, i.e., α(ax, y) = aα(x, y) for
every a ∈ A and x, y ∈M ;

(3) α is Hermitian, i.e., α(x, y) = α(y, x)∗ for every x, y ∈M ;
(4) the map φ : M → HomA(M,A), x 7→ φ(x), defined by [φ(x)](y) := α(y, x),

is an isomorphism of A-modules.

Notice, that the conditions (1) and (3) together imply

(1’) α(x, λy + µz) = λ̄α(x, y) + µ̄α(x, z) for every λ, µ ∈ K and x, y, z ∈M .

Similarly, (2) and (3) imply

(2’) α(x, ay) = α(x, y)a∗ for every a ∈ A and x, y ∈M .

Hence, α is also K-sesquilinear and A-homogeneous on both arguments.
Moreover, the condition

(4a) α(x, x) = θA if and only if x = θM

implies that the map φ defined in (4) is one-to-one. (Indeed, suppose that
φ(x) = φ(y) for some x, y ∈M . Then

α(x− y, x) = [φ(x)](x− y) = [φ(y)](x− y) = α(x− y, y)

implies α(x− y, x− y) = θA. Hence, x− y = θM by 4a) and x = y.)
A Hermitian inner product α on M is said to be spectrally positive definite (for

short positive definite)1, if SpA(α(x, x)) ⊂ [0,∞) for every x ∈M .
Let B be a non-unital algebra. The set {e1, . . . , em} of elements of a B-module

M is said to be a basis of M if for every m ∈ M there exist unique elements
b1, . . . , bm ∈ B and unique numbers λ1, . . . , λm ∈ K such that

m =
m∑

i=1

biei +
m∑

i=1

λiei.

In case A is a unital algebra, the set {e1, . . . , em} of elements of an A-module
M is said to be a basis of M if for every m ∈ M there exist unique elements
a1, . . . , am ∈ A such that

m =
m∑

i=1

aiei.

2. On the existence of a Hermitian inner product

First, we show that under some conditions, which are automatically fulfilled
for Hausdorff locally C∗-algebras (see [3, Remark 1.2, p. 184]), every topological
∗-algebra admits a positive definite Hermitian inner product.

Lemma 2.1. Let A be a unital ∗-algebra for which the following conditions are
fulfilled:

(a) If a ∈ A, then aa∗ = θA if and only if a = θA.

1Another kind of a positive element in a ∗-algebra is given in [3, p.183]. This notion of
positiveness agrees with spectrally positiveness for Hausdorff locally C∗-algebras (viz. complete
locally m-convex C∗-algebras) [3, p. 184] (see also [4, Theorem 2.5, p. 205]).
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(b) If n ∈ N and a1, . . . , an ∈ A, then SpA(
∑n

i=1 aia
∗
i ) ⊂ [0,∞).

(c) The only self-adjoint element a ∈ A with SpA(a) = {0} is the zero element
θA of A.

Moreover, let M be an A-module with basis {e1, . . . , em}. Then the map
α : M ×M → A, defined by

α(x, y) = α
( m∑

i=1

xiei,

m∑
i=1

yiei

)
:=

m∑
i=1

xiy
∗
i

for every x, y ∈M , defines an A-valued positive definite Hermitian inner product
on M .

Proof. Let x =
∑m

i=1 xiei, y =
∑m

i=1 yiei, z =
∑m

i=1 ziei be elements of M , a ∈ A
and λ, µ ∈ K. Then

α(λx+ µy, z) = α
( m∑

i=1

(λxi + µyi)ei,

m∑
i=1

ziei

)
=

m∑
i=1

(λxi + µyi)z
∗
i =

= λ
m∑

i=1

xiz
∗
i + µ

m∑
i=1

yiz
∗
i = λα(x, z) + µα(y, z),

α(ax, y) = α
( m∑

i=1

(axi)ei,
m∑

i=1

yiei

)
=

m∑
i=1

(axi)y
∗
i = a

m∑
i=1

xiy
∗
i = aα(x, y),

and

α(x, y) =
m∑

i=1

xiy
∗
i =

m∑
i=1

(yix
∗
i )
∗ =

( m∑
i=1

yix
∗
i

)∗
= α(y, x)∗.

Hence, the first 3 conditions of an A-valued Hermitian inner product are fulfilled.
This implies that the conditions (1’) and (2’) are also fulfilled.

Clearly α(θM , θM) = θA. Suppose that α(x, x) = θA for some x ∈M . Then
m∑

i=1

xix
∗
i = θA.

Hence,
m−1∑
i=1

xix
∗
i = −xmx

∗
m

and

SpA

(m−1∑
i=1

xix
∗
i

)
= SpA(−xmx

∗
m) = −SpA(xmx

∗
m).

By the condition (b), we get that

SpA

(m−1∑
i=1

xix
∗
i

)
⊂ [0,∞) and SpA(xmx

∗
m) ⊂ [0,∞).

Thus,

SpA

(m−1∑
i=1

xix
∗
i

)
= {0} = SpA(xmx

∗
m).
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Condition (c) implies that xmx
∗
m = θA from which by condition (a) follows

that xm = θA. Similarly, we get that xm−1 = θA, ..., x1 = θA. Hence, from
α(x, x) = θA it follows that x = θM . Consequently, φ : M →HomA(M,A),
defined by [φ(x)](y) = α(y, x) is one-to-one.

Take now any ψ ∈ HomA(M,A), define xi := ψ(ei)
∗ for every i ∈ {1, . . .m}

and x :=
∑m

i=1 xiei. Then x ∈M and

ψ(y) =
m∑

i=1

yiψ(ei) =
m∑

i=1

yi(ψ(ei)
∗)∗ =

m∑
i=1

yix
∗
i = α(y, x) = [φ(x)](y)

for every y ∈M . Hence, φ is also onto.
Notice, that by the properties (1), (2), (3), (1’) and (2’) of α and the condition

(1.1) of the operations on HomA(M,A), we have

[φ(ax)](y) = α(y, ax) = α(y, x)a∗ = [aφ(x)](y),

[φ(x+ z)](y) = α(y, x+ z) = α(y, x) + α(y, z) = [φ(x)](y) + [φ(z)](y),

and

[φ(λx)](y) = α(y, λx) = λα(y, x) = [λφ(x)](y)

for every a ∈ A, x, y, z ∈ M and λ ∈ K. Hence, φ(ax) = aφ(x),
φ(x+ z) = φ(x) + φ(z) and φ(λx) = λφ(x) for every a ∈ A, λ ∈ K and x, z ∈M .
Therefore, φ is an isomorphism of A-modules. Thus, α is an A-valued Hermitian
inner product on M . Condition (b) implies that α is also positive definite. �

Corollary 2.2. Let B be a non-unital ∗-algebra for which the following conditions
are fulfilled:

(a) If b ∈ B, then bb∗ = θB if and only if b = θB.
(b) If n ∈ N, b1, . . . , bn ∈ B and λ1, . . . , λn ∈ K, then

SpB×K

( n∑
i=1

(bi, λi)(bi, λi)
∗
)
⊂ [0,∞).

(c) The only self-adjoint element (b, λ) ∈ B ×K with SpB×K((b, λ)) = {0} is
the zero element (θB, 0) of B ×K.

Moreover, let M be a B-module with basis {e1, . . . , em}. Then the map
α : M ×M → B ×K, defined by

α(x, y) = α
( m∑

i=1

(xiei + λiei),
m∑

i=1

(yiei + µiei)
)

:=
m∑

i=1

(xi, λi)(yi, µi)
∗

for every x, y ∈ M , defines a (B × K)-valued positive definite Hermitian inner
product on M .

Proof. Remind, that every B-module with basis {e1, . . . , em} is also a
(B × K)-module with the same basis and that every B-linear map is also
(B × K)-linear (see [2, Proof of Corollary 3, p. 162]). Moreover, suppose
that (b, λ)(b, λ)∗ = (θB, 0). Then we have (bb∗ + λ∗b + λb∗, λλ∗) = (θB, 0) (λ∗

stands for the conjugate of λ ∈ K). Since λλ∗ =| λ |2, we get λ = 0. Hence,
(b, λ)(b, λ)∗ = (θB, 0) if and only if bb∗ = θB. By condition (a) we see that
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(b, λ)(b, λ)∗ = (θB, 0) if and only if (b, λ) = (θB, 0). Thus, taking A := B ×K, we
are in the situation of Lemma 2.1. Hence, the claim follows from Lemma 2.1. �

3. On the matrix associated with a Hermitian inner product

Suppose again that A is a unital algebra. With every Hermitian inner product
α on an A-module M with basis {e1, . . . , em} (i.e., M is a free A-module of rank
m), we can associate its matrix Mα as follows:

Mα := (mi,j), where mi,j = α(ei, ej) for every i, j ∈ {1, . . . ,m}.
It is known that for a ∗-algebra A and A-valued square matrix M = (mi,j),
one defines M∗ = (ni,j), where ni,j = m∗

j,i for every i ∈ {1, . . . ,m} and every
j ∈ {1, . . . ,m}. Since for a Hermitian inner product α we have
α(ei, ej) = α(ej, ei)

∗ for every i ∈ {1, . . . ,m} and every j ∈ {1, . . . ,m}, then
it is clear that M∗

α = Mα, i.e., Mα is Hermitian (alias, self-adjoint). From the
condition (4) of a Hermitian inner product, it follows by [5, Proposition 12, p.
385] (see also [6, Proposition 6.1, p. 465 together with Proposition 4.16, p. 456]),
that Mα is invertible. Moreover, for any

x =
m∑

i=1

xiei and y =
m∑

i=1

yiei

we have α(x, y) = (x1 x2 . . . xm)Mα(y∗1 y∗2 . . . y∗m)T , where (z1 z2 . . . zm)T

denotes the transpose matrix of the matrix (z1 z2 . . . zm) with one row and m
columns, i.e., (z1 z2 . . . zm)T is a matrix with m rows and 1 column.

Take any Hermitian invertible (m × m)-matrix H = (hi,j) and define a map
β : M ×M → A by setting

β

( m∑
i=1

aiei,
m∑

i=1

biei

)
:= (a1 a2 . . . am)H(b∗1 b

∗
2 . . . b∗m)T .

Then it is clear that β is A-homogeneous and K-sesquilinear. Next we show that
the map φ : M → HomA(M,A), defined by[

φ

( m∑
i=1

aiei

)]( m∑
i=1

biei

)
:= β

( m∑
i=1

biei,
m∑

i=1

aiei

)
is a bijection.

Suppose that

φ(ma) = φ

( m∑
i=1

aiei

)
= φ

( m∑
i=1

biei

)
= φ(mb)

for some ma,mb ∈M . Then
m∑

i=1

h1,ia
∗
i = [φ(ma)](e1) = [φ(mb)](e1) =

m∑
i=1

h1,ib
∗
i ,

m∑
i=1

h2,ia
∗
i = [φ(ma)](e2) = [φ(mb)](e2) =

m∑
i=1

h2,ib
∗
i ,

. . . ,
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m∑
i=1

hm,ia
∗
i = [φ(ma)](em) = [φ(mb)](em) =

m∑
i=1

hm,ib
∗
i .

Hence,
m∑

i=1

hji(a
∗
i − b∗i ) = θA

for every j ∈ {1, . . . ,m}. If we denote by Hi the i-th column of the matrix H,
then we get

m∑
i=1

Hi(a
∗
i − b∗i ) = (θA θA . . . θA)T .

If a∗i − b∗i 6= θA for at least one value of i, then the columns of H are linearly
dependent and H can not be invertible. Since H was assumed to be invertible,
we must have a∗i − b∗i = θA for every i ∈ {1, . . . ,m} from which ma = mb and φ
is one-to-one.

Take any ψ ∈ HomA(M,A). Since H is invertible, H−1 exists. Take

x :=
m∑

i=1

xiei,

where (x1 x2 ... xm)T := H−1(ψ(e1)
∗ ψ(e2)

∗ . . . ψ(em)∗)T . Then [φ(x)](y) = ψ(y)
for every y ∈M . Hence, φ is onto. Consequently, φ is a bijection.

Thus, β, defined above, is a Hermitian inner product. Moreover, the matrix of
β is actually H, i. e., Mβ = H.

By the facts we just obtained, we have the following result.

Lemma 3.1. Let A be a unital ∗-algebra and M a free A-module of rank m.
Then there exists a bijection between the sets of Hermitian inner products on M
and A-valued Hermitian invertible (m×m)-matrices.

By Lemma 3.1, we have the following result.

Corollary 3.2. Let B be a non-unital ∗-algebra and M a free B-module of rank
m. Then there exists a bijection between the sets of Hermitian inner products on
M and (B ×K)-valued Hermitian invertible (m×m)-matrices.

Proof. Since every B-module is also a (B×K)-module with the same basis, then
taking A := B ×K, we are in the situation of Lemma 3.1. �

Notice, that for the Hermitian inner product α, defined in Lemma 2.1 or Corol-
lary 2.2, the matrix Mα, associated with α, is an identity matrix.

Definition 3.3. Let A be a unital ∗-algebra and M a free A-module of rank m.
We say that two Hermitian inner products, α and β on M , are equivalent, if there
exists an invertible (m×m)-matrix N such that Mα = N∗MβN .

Notice, that if for any Hermitian inner product β there exists a Hermitian
invertible matrix N such that Mβ = NN = N2, then β is equivalent to α defined
in Lemma 2.1.
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4. On the equivalence of Hermitian inner products

Let A be a topological algebra. A sequence (xn)n∈N in A is a Mackey–Cauchy
sequence if there exists a bounded and balanced set U in A such that for every
ε > 0 there exists Nε ∈ N such that xn − xm ∈ εU whenever n,m > Nε.

The algebra A is sequentially Mackey complete (one could also use the term
Mackey σ-complete) if every Mackey–Cauchy sequence in A converges in A.

Proposition 4.1. Let m ∈ N and A be a sequentially Mackey complete topological
algebra. Then the algebra Mm(A) of all (m×m)-matrices with elements from A
is also sequentially Mackey complete2.

Proof. The topology in the algebra Mm(A) of all A-valued (m ×m)-matrices is
induced by a product topology, i.e., a basis of this topology consists of sets

UO1,...,Om2 = {M = (mij) ∈Mm(A) : mij ∈ O(i−1)m+j},

where O1, . . . , Om2 vary in a basis of the topology of A.
Take any Mackey–Cauchy sequence (Mn)n∈N = ((mn

ij))n∈N inMm(A). Then the

sequence (mn
ij)n∈N is a Mackey–Cauchy sequence in A for each fixed

i, j ∈ {1, . . . ,m}. Indeed, let U be a bounded and balanced set in Mm(A) such
that for every ε > 0 there exists Nε ∈ N with Mk −Ml ∈ εU whenever k, l > Nε.
For each i, j ∈ {1, . . . ,m} take Vi,j := {mij ∈ A : (mij) ∈ U}. Then all sets Vi,j

are balanced and bounded in A because U is balanced and bounded in Mm(A).
Now it is clear that mk

ij − ml
ij ∈ εVi,j whenever k, l > Nε. Hence, there exists

balanced and bounded sets Vi,j and numbers Nε for every ε > 0 such that the
conditions of Mackey–Cauchy sequence are fulfilled.

Since (mn
ij)n∈N is a Mackey–Cauchy sequence in A for each i, j ∈ {1, . . . ,m} and

A is sequentially Mackey complete, then (mn
ij)n∈N converges in A to some element

sij ∈ A for each i, j ∈ {1, . . . ,m}. Take S := (sij) ∈ Mm(A). Then (Mn)n∈N
converges to S in Mm(A). Hence, Mm(A) is sequentially Mackey complete as
well. �

Let us recall, that for an element a in a topological algebra A its radius of
boundedness is defined as

β(a) := inf

{
λ > 0 :

{(
a

λ

)n

: n ∈ N
}

is bounded in A

}
.

We recall also that the terms ”a is Hermitian” and ”a is self-adjoint” are syn-
onyms. In [1, Corollary 2.8], it was proved the following.

Theorem 4.2. Let A be a unital sequentially Mackey complete topological algebra.
If a ∈ A satisfies the condition β(a− eA) < 1, then there exists an element b ∈ A
such that b2 = a. In particular, when A is a unital sequentially Mackey complete
topological ∗-algebra with continuous involution and a is self-adjoint, then b is
also self-adjoint.

2It is clear that if A is unital, then also Mm(A) is unital because the unit element in Mm(A)
is the identity matrix.
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Let A be a topological algebra and m ∈ N. For every i, j ∈ {1, . . . ,m} define
the projections pi,j : Mm(A) → A by pi,j(M) = mij for every
M = (mij) ∈ Mm(A). A map f : Mm(A) → Mm(A) is continuous if and only if
all of its projections are continuous, i.e., f is continuous if and only if pi,j ◦ f is
continuous for every i, j ∈ {1, . . . ,m}.

For the next result, see also [3, Lemma 5.3, p. 196], where the continuity of
the involution of a locally m-convex ∗-algebra is inherited to the algebra of all
infinite matrices with finite support and entries from A.

Lemma 4.3. Let A be a topological ∗-algebra and m ∈ N. The involution on
Mm(A) is continuous if and only if the involution is continuous on A.

Proof. Suppose, that the involution iA : A → A, defined by iA(a) = a∗ for
every a ∈ A, is continuous. Consider the involution im : Mm(A) → Mm(A)
defined by im(M) = M∗ for every M ∈ Mm(A). Then (pi,j ◦ im)(M) = m∗

j,i

for every M = (mi,j) ∈ Mm(A). Let T : Mm(A) → Mm(A) be the transpose
function, i.e., T (M) = T ((mi,j)) = (mj,i) = MT for every M ∈ Mm(A). Then
(iA ◦ pi,j ◦ T )(M) = m∗

j,i for every M = (mi,j) ∈ Mm(A). Hence,
pi,j ◦ im = iA ◦ pi,j ◦ T .

The tranpose function is continuous because for any neighbourhoods of zeroOi,j

in A there exist neighbourhoods Ui,j = Oj,i of zero in A such that if
M ∈ UU1,1,U1,2...,Ui,m,U2,1,...Um,m we get T (M) ∈ UO1,1,O1,2...,Oi,m,O2,1,...Om,m . The pro-
jections pi,j are also continuous. Hence, iA ◦ pi,j ◦ T is continuous for every
i, j ∈ {1, . . . ,m} as a composition of continuous maps. Therefore, pi,j ◦ im is
continuous for every i, j ∈ {1, . . . ,m}. It means that im is continuous.

Suppose that im is continuous. Take any neighbourhood O of zero in A. Then
P = UO1,...,Om2 with O1 = O2 = · · · = Om2 = O is a neighbourhood of zero
in Mm(A). Since the involution is continuous in Mm(A), then there exists a
neighbourhood V = UV1,...,Vm2 of zero in Mm(A) such that im(M) ∈ P for every
M ∈ V . Take

W :=
⋂

1≤i≤m2

Vi

and Z = UZ1,...,Zm2 with Z1 = Z2 = · · · = Zm2 = W . Then im(M) ∈ P also
for every M ∈ Z. Now, it is clear that iA(a) ∈ O for every a ∈ W because
iA(a) = p1,1 ◦ im(Ma), where Ma is a matrix having all its elements equal to a.
Hence, iA is continuous as well. �

For m ∈ N, Im ≡ I denotes the identity matrix in Mm(A). Using Theorem 4.2,
we get the following result.

Theorem 4.4. Let A be a unital sequentially Mackey complete topological
∗-algebra with continuous involution, M a free A-module of rank m and
α : M×M → A a Hermitian inner product on M . If the matrix Mα ∈Mm(A) as-
sociated with α fulfils the condition β(Mα− I) < 1, then there exists a Hermitian
inner product γ : M ×M → A such that Mα = Mγ

2.

Proof. By assumption, m is a free A-module of rank m. Consider the ∗-algebra
Mm(A). By Proposition 4.1, Mm(A) is a unital sequentially Mackey complete
topological algebra. The involution in Mm(A) is continuous by Lemma 4.3.
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Let α : M ×M → A be a Hermitian inner product on M and let its matrix
Mα fulfil the condition β(Mα − I) < 1. Then, by the first part of Theorem 4.2,
there exists a matrix N ∈Mm(A) such that N2 = Mα.

Since the involution on Mm(A) is continuous and Mα is a Hermitian matrix, N
is Hermitian, by the second part of Theorem 4.2. Moreover, sinceMα is invertible,
N must be also invertible (its inverse is N−1 = M−1

α N). Now, by Lemma 3.1, we
get that N is actually a matrix of some Hermitian inner product γ : M×M → A,
i.e., N = Mγ. Hence, Mα = Mγ

2 for some Hermitian inner product γ. �

Using Lemma 2.1, we get the following result.

Theorem 4.5. Let A be a unital sequentially Mackey complete topological
∗-algebra with continuous involution for which the following conditions are ful-
filled:

(a) If a ∈ A, then aa∗ = θA if and only if a = θA.
(b) If n ∈ N and a1, . . . , an ∈ A, then SpA(

∑n
i=1 aia

∗
i ) ⊂ [0,∞).

(c) The only self-adjoint element a ∈ A with SpA(a) = {0} is the zero element
θA of A.

Moreover, let M be a free A-module of rank m. Then all Hermitian inner products
δ : M × M → A, with matrices Mδ such that β(Mδ − I) < 1, are mutually
equivalent.

Proof. Let δ be a Hermitian inner product for which β(Mδ − I) < 1. By The-
orem 4.4, there exists a Hermitian inner product γ : M × M → A such that
Mγ

2 = Mδ. By Lemma 2.1, we know that there exists an inner product
α : M×M → A with Mα = I. Since Mγ is Hermitian, then M∗

γ = Mγ. Therefore,

Mδ = Mγ
2 = M∗

γMγ = M∗
γ IMγ = M∗

γMαMγ. Hence, the Hermitian inner prod-
ucts δ and α are equivalent.

Let κ : M ×M → A be another Hermitian inner product with β(Mκ − I) < 1.
As before, we can now show that κ and α are equivalent. Hence, κ is equivalent
to δ. Therefore, all such Hermitian inner products δ with β(Mδ − I) < 1 are
mutually equivalent. �

Let B be a non-unital algebra, m ∈ N and J denote the identity matrix in
the algebra Mm(B × K). Suppose that the involution iB : B → B, defined by
iB(b) := b∗ for every b ∈ B, is continuous on B. Take any neighbourhood O of
zero in B × K. Then there exist neighbourhoods of zero U in B and V in K
such that U × V ⊂ O. Since involution is continuous on B and K, there exist
neighbourhoods of zero W in B and Z in K such that iB(b) ∈ U for every b ∈ W
and iK(λ) ∈ V for every λ ∈ Z (here iK denotes the involution on K). Denote
the involution in B×K by iB×K. Since P := U ×V is a neighbourhood of zero in
B ×K and since iB×K((b, λ)) ∈ O for every (b, λ) ∈ P , then the involution iB×K
in B ×K is also continuous.

From the last two Theorems we can have the following results in nonunital
case.

Corollary 4.6. Let B be a non-unital sequentially Mackey complete topolog-
ical ∗-algebra with continuous involution, M a free B-module of rank m and
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α : M × M → B × K a Hermitian inner product on M . If the matrix
Mα ∈ Mm(B × K), associated with α, fulfils the condition β(Mα − J) < 1, then
there exists a Hermitian inner product γ : M×M → B×K such that Mα = Mγ

2.

Proof. Since K is complete, it is also Mackey complete. By assumption, B is
sequentially Mackey complete, so B × K, endowed with the product topology,
turns to be Mackey complete. For the latter, one can argue as in the proof of
Proposition 4.1, that B ×K is Mackey complete. Since every B-module with m
elements in its basis is also a (B × K)-module with the same basis, then we are
in the context of Theorem 4.4, if we take A := B ×K. Hence, the claim follows
by Theorem 4.4. �

Corollary 4.7. Let B be a non-unital sequentially Mackey complete topological
∗-algebra with continuous involution for which the following conditions are satis-
fied:

(a) If b ∈ B, then bb∗ = θB if and only if b = θB.
(b) If n ∈ N, b1, . . . , bn ∈ B and λ1, . . . , λn ∈ K, then

SpB×K

( n∑
i=1

(bi, λi)(bi, λi)
∗
)
⊂ [0,∞).

(c) The only self-adjoint element (b, λ) ∈ B ×K with SpB×K((b, λ)) = {0} is
the zero element (θB, 0) of B ×K.

Moreover, let M be a free B-module of rank m. Then all Hermitian inner products
δ : M ×M → B × K with matrices Mδ such that β(Mδ − J) < 1 are mutually
equivalent.

Proof. Using the same argumentation as in the proofs of Corollaries 2.2 and 4.6,
we see that by taking A := B ×K, we are in the situation of Theorem 4.5, thus
the assertion follows. �
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