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ON LEBESGUE TYPE DECOMPOSITION FOR COVARIANT
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Abstract. We show that there is an affine order isomorphism between com-
pletely positive maps from a C∗-algebra A to the C∗-algebra L(H) of all
bounded linear operators on a Hilbert space H, u-covariant with respect to
a C∗-dynamical system (G, α,A) and u-covariant completely positive maps
from the crossed product A ×α G to L(H), which preserves the Lebesgue de-
composition.

1. Introduction and preliminaries

This note is motivated by the applications of the theory of completely positive
maps to quantum information theory (operator valued completely positive maps
on C∗-algebras are used as mathematical model for quantum operations [9]) and
quantum probability [8].

A completely positive map from a C∗-algebra A to the C∗-algebra L(H) of all
bounded linear operators on a Hilbert space H is a linear map ϕ : A → L(H)
such that for all positive integers n, the maps ϕ(n) : Mn(A) → L(Hn) defined by

ϕ(n)
(
[aij]

n
i,j=1

)
= [ϕ (aij)]

n
i,j=1 ,

where Mn(A) denotes the C∗-algebra of all n × n matrices over A, are positive,

that is ϕ(n)
((

[aij]
n
i,j=1

)∗
[aij]

n
i,j=1

)
≥ 0 for all [aij]

n
i,j=1 ∈ Mn(A). In [11] it is
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shown that a completely positive map ϕ : A→ L(H) is of the form

ϕ (a) = V ∗
ϕ Φϕ (a)Vϕ ,

where Φϕ is a ∗-representation of A on a Hilbert space Hϕ and Vϕ is a bounded
linear operator from H to Hϕ. The cone CP(A,H) of completely positive maps
from A to L(H) defines a natural partial order relation and this relation is char-
acterized by the Radon–Nikodým derivatives. In general, the Radon–Nikodým
derivative is not a bounded linear operator. Two completely positive maps from
A to L(H) are comparable (with respect to the order relation) if and only if
the Radon–Nikodým derivative is a bounded linear operator (see, [1, 3, 8]). But
not all completely positive maps can be compared. In [1, 3, 4, 8] is introduced
the notion of absolute continuity for completely positive maps and it is shown
that given two completely positive maps ϕ and θ from A to L(H), which are
not comparable, then ϕ is absolutely continuous with respect to θ if and only
if the Radon–Nikodým derivative of ϕ with respect to θ is a unbounded posi-
tive self-adjoint operator. In [8], Parthasarthy extended the classical Lebesgue
decomposition theorem for the unital operator valued completely positive maps
on C∗-algebras. In Section 2 of this note, we extend these results to the case of
operator valued covariant completely positive maps on C∗-algebras.

A C∗-dynamical system is a triple (G,α,A), where G is a locally compact
group, A is a C∗-algebra and α is a continuous action of G on A (this is, g 7−→ αg

is a group morphism from G to the group of automorphisms of A and the map
g 7−→ αg (a) from G to A is continuous for all a ∈ A). Let g 7−→ ug be a unitary
representation of G on a Hilbert space H. A completely positive linear map
ϕ : A → L(H) is u-covariant with respect to the C∗-dynamical system (G,α,A)
if

ϕ (αg (a)) = ugϕ (a)u∗g

for all g ∈ G and for all a ∈ A. Paulsen [7] obtained a covariant version of the
Stinespring construction. Let ϕ : A→ L(H) be a u-covariant completely positive
map. If (Φϕ, v

ϕ, Hϕ, Vϕ) is the covariant Stinespring construction associated to
ϕ, the map ϕ̂ : Cc(G,A) → L(H) defined by

ϕ̂(f) =

∫
G

ϕ(f(g))ugdg ,

where Cc(G,A) denotes the vector space of all continuous functions from G to
A with compact support and dg denotes a left Haar measure on G, extends to a
completely positive map from the crossed product A×αG of A by α to L(H), de-
noted also by ϕ̂ (see, for example, [6, 10]). Moreover, the Stinespring construction
associated with ϕ̂ is unitarily equivalent with (Φϕ × vϕ, Hϕ, Vϕ), where Φϕ × vϕ

is the integral form of the covariant representation (Φϕ, v
ϕ, Hϕ). In Section 3, we

show that the map ϕ 7→ ϕ̂ from u-covariant completely positive maps from A to
L(H) to u-covariant completely positive linear maps from A×α G to L(H) is an
affine order isomorphism, which preserves the Lebesgue decomposition.
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2. Covariant completely positive maps

Let (G,α,A) be a C∗-dynamical system and let g 7−→ ug be a unitary rep-
resentation of G on a Hilbert space H and let CP ((G,α,A) , H, u) = {ϕ ∈
CP (A,H) ;ϕ is u-covariant with respect to (G,α,A)}.

In [7, Theorem 2.1] and [2, Theorem 4] it is given a covariant version of the
Stinespring construction. Let ϕ ∈ CP ((G,α,A) , H, u). Then there is a quadruple
(Φϕ, v

ϕ, Hϕ, Vϕ) consisting of a covariant representation (Φϕ, v
ϕ, Hϕ) of (G,α,A)

and an element Vϕ in L(H,Hϕ) such that

(1) Vϕug = vϕ
g Vϕ for all g ∈ G;

(2) ϕ (a) = V ∗
ϕ Φϕ (a)Vϕ for all a ∈ A;

(3) [Φϕ (A)VϕH] = Hϕ, where [Φϕ (A)VϕH] denotes the closed linear sub-
space of Hϕ generated by {Φϕ (a)Vϕξ; a ∈ A, ξ ∈ H}.

Moreover, the quadruple (Φϕ, v
ϕ, Hϕ, Vϕ) is unique with the properties (1)−(3)

in the sense that if (Φ, v,K, V ) is another quadruple consisting of a covariant
representation (Φ, v,K) of (G,α,A) and an element V in L(H,K), which verifies
the relations (1)− (3), then there is a unitary operator U : K → Hϕ such that

(1) Φ (a) = U∗Φϕ (a)U for all a ∈ A;
(2) vg = U∗vϕ

g U for all g ∈ G;
(3) V = U∗Vϕ.

Let ϕ, θ ∈ CP ((G,α,A) , H, u). We say that ϕ ≤ θ if θ−ϕ ∈ CP ((G,α,A) , H, u).
This relation is a partial order relation on CP ((G,α,A) , H, u). We say that ϕ
is uniformly dominated by θ, and we write ϕ ≤U θ, if there is λ > 0 such that
ϕ ≤ λθ. This relation is a partial preorder relation on CP ((G,α,A) , H, u).
Clearly, if ϕ ≤ θ, then ϕ ≤U θ.

Suppose that ϕ ≤U θ. Then there is a bounded linear operator Jθ (ϕ) : Hθ →
Hϕ such that Jθ (ϕ) (Φθ (a)Vθξ) = Φϕ (a)Vϕξ for all ξ ∈ A. Moreover,

Jθ (ϕ) Φθ (a) = Φϕ (a) Jθ (ϕ) for all a ∈ A

and

Jθ (ϕ) vθ
g = vϕ

g Jθ (ϕ) for all g ∈ G.

Let ∆θ (ϕ) = Jθ (ϕ)∗ Jθ (ϕ). Then ∆θ (ϕ) is a positive element in Φθ (A)′∩vθ (G)′

and

ϕ (a) = V ∗
θ ∆θ (ϕ) Φθ (a)Vθ for all a ∈ A.

Moreover, ∆θ (ϕ) is unique with these properties. If ϕ ≤ θ, then ∆θ (ϕ) ≤ IHθ
.

The positive linear operator ∆θ (ϕ) is called the Radon–Nikodým derivative of ϕ
with respect to θ.

In [5] it is shown that the map ϕ 7→ ∆θ (ϕ) from {ϕ ∈ CP ((G,α,A) , H, u) ;ϕ ≤
θ} to

{
T ∈ Φθ (A)′ ∩ vθ (G)′ ; 0 ≤ T ≤ IHθ

}
is an affine order isomorphism and its

inverse is given by T 7→ θT , where θT (a) = V ∗
θ TΦθ (a)Vθ for all a ∈ A.

In the same manner, it can be shown that the map ϕ 7→ ∆θ (ϕ) from {ϕ ∈
CP ((G,α,A) , H, u) ;ϕ ≤U θ} to

{
T ∈ Φθ (A)′ ∩ vθ (G)′ ; 0 ≤ T

}
is an affine order

isomorphism.
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Let ϕ, θ ∈ CP ((G,α,A) , H, u) with ϕ ≤ θ. As in the case of completely
positive maps from A to L(H) we can recover the covariant Stinesprning con-
struction of ϕ from the covariant Stinespring construction of θ (see, [3]). Since
∆θ (ϕ) ∈ Φθ (A)′ ∩ vθ (G)′ , Pker(∆θ(ϕ)), PHθ	ker(∆θ(ϕ)) ∈ Φθ (A)′ ∩ vθ (G)′ and(

Φθ|Hθ	ker(∆θ(ϕ)) , v
θ
∣∣
Hθ	ker(∆θ(ϕ))

, Hθ 	 ker (∆θ (ϕ))
)

is a covariant representa-

tion of (G,α,A). Moreover, PHθ	ker(∆θ(ϕ))∆θ (ϕ)
1
2 Vθ ∈ L(H,Hθ	ker (∆θ (ϕ)). A

simple calculus shows that

ϕ (a) =
(
PHθ	ker(∆θ(ϕ))∆θ (ϕ)

1
2 Vθ

)∗
Φθ|Hθ	ker(∆θ(ϕ)) (a)

(
PHθ	ker(∆θ(ϕ))∆θ (ϕ)

1
2 Vθ

)
for all a ∈ A and(

PHθ	ker(∆θ(ϕ))∆θ (ϕ)
1
2 Vθ

)
ug = vθ

g

∣∣
Hθ	ker(∆θ(ϕ))

(
PHθ	ker(∆θ(ϕ))∆θ (ϕ)

1
2 Vθ

)
for all g ∈ G, and since[

Φθ|Hθ	ker(∆θ(ϕ)) (A)
(
PHθ	ker(∆θ(ϕ))∆θ (ϕ)

1
2 Vθ

)
H
]

=
[
PHθ	ker(∆θ(ϕ))Φθ (A) ∆θ (ϕ)

1
2 VθH

]
=

[
PHθ	ker(∆θ(ϕ))∆θ (ϕ)

1
2 Φθ (A)VθH

]
=

[
PHθ	ker(∆θ(ϕ))∆θ (ϕ)

1
2 Hθ

]
= Hθ 	 ker (∆θ (ϕ))(

Φθ|Hθ	ker(∆θ(ϕ)) , v
θ
∣∣
Hθ	ker(∆θ(ϕ))

, Hθ 	 ker (∆θ (ϕ)) , PHθ	ker(∆θ(ϕ))∆θ (ϕ)
1
2 Vθ

)
is

the covariant Stinespring construction associated to ϕ.
Let ϕ, θ ∈ CP ((G,α,A) , H, u). We say that ϕ is uniformly equivalent to θ,

and we write ϕ ≡U θ, if ϕ ≤U θ and θ ≤U ϕ.

Proposition 2.1. Let ϕ, θ ∈ CP ((G,α,A) , H, u). If ϕ ≡U θ, then the covariant
representations

(
Φθ, v

θ, Hθ

)
and (Φϕ, v

ϕ, Hϕ) of (G,α,A) associated to θ and ϕ
are unitarily equivalent.

Proof. Since ϕ ≡U θ, Jθ (ϕ) is invertible [8]. Then ∆θ(ϕ) is invertible and so

there is a unitary operator U : Hθ → Hϕ such that Jθ (ϕ) = U∆θ(ϕ)
1
2 . Moreover,

UΦθ (a) = Φϕ (a)U for all a ∈ A [8]. Let g ∈ G. From(
Uvθ

g

) (
∆θ(ϕ)

1
2 Φθ (a)Vθξ

)
= U∆θ(ϕ)

1
2 Φθ (αg (a)) vθ

gVθξ

= Jθ (ϕ) Φθ (αg (a))Vθugξ

= Φϕ (αg (a))Vϕugξ

= vϕ
g Φϕ (a) vϕ

g−1Vϕugξ = vϕ
g Φϕ (a)Vϕξ

= vϕ
g Jθ (ϕ) Φθ (a)Vθξ

=
(
vϕ

g U
) (

∆θ(ϕ)
1
2 Φθ (a)Vθξ

)
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for all a ∈ A and for all ξ ∈ H, and taking into account that ∆θ(ϕ)
1
2 is surjective

and [Φθ (A)VθH] = Hθ, we deduce that Uvθ
g = vϕ

g U . Therefore, the covariant

representations
(
Φθ, v

θ, Hθ

)
and (Φϕ, v

ϕ, Hϕ) of (G,α,A) associated to θ and ϕ
are unitarily equivalent. �

Let ϕ, θ ∈ CP ((G,α,A) , H, u). We say that ϕ is θ-absolutely continuous, and
we write ϕ � θ, if there is an increasing sequence (ϕn)n in CP ((G,α,A) , H, u)
such that ϕn ≤U θ for all positive integers n and the sequence (ϕn (a))n converges
to ϕ (a) with respect to the strong topology on L(H) for each a ∈ A.

Lemma 2.2. Let ϕ ∈ CP (A,H) and let {ϕn}n be an increasing sequence in
CP (A,H). Then {ϕn (a)}n converges strongly to ϕ (a) for each a ∈ A if and
only if ϕn ≤ ϕ for all positive integers n and the sequence {∆ϕ (ϕn)}n converges
strongly to IH .

Proof. Let [aij]
m
i,j=1 ∈ Mm(A). It is not difficult to check that the sequence{

ϕ
(m)
n

((
[aij]

m
i,j=1

)∗
[aij]

m
i,j=1

)}
n

converges strongly to ϕ(m)
((

[aij]
m
i,j=1

)∗
[aij]

m
i,j=1

)
,

and since
{
ϕ

(m)
n

((
[aij]

m
i,j=1

)∗
[aij]

m
i,j=1

)}
n

is an increasing sequence of positive

operators, ϕ
(m)
n

((
[aij]

m
i,j=1

)∗
[aij]

m
i,j=1

)
≤ ϕ(m)

((
[aij]

m
i,j=1

)∗
[aij]

m
i,j=1

)
for all pos-

itive integers n. Therefore, ϕ − ϕn ∈ CP (A,H) and so ϕn ≤ ϕ for all positive
integers n. From

‖∆ϕ (ϕn) Φϕ (a)Vϕξ − Φϕ (a)Vϕξ‖2

= 〈(IH −∆ϕ (ϕn)) Φϕ (a)Vϕξ, (IH −∆ϕ (ϕn)) Φϕ (a)Vϕξ〉
≤ 〈(IH −∆ϕ (ϕn)) Φϕ (a)Vϕξ,Φϕ (a)Vϕξ〉
=

〈
V ∗

ϕ (IH −∆ϕ (ϕn)) Φϕ (a∗a)Vϕξ, ξ
〉

= |〈(ϕ (a∗a)− ϕn (a∗a)) ξ, ξ〉|
≤ ‖(ϕ (a∗a)− ϕn (a∗a)) ξ‖ ‖ξ‖

for all ξ ∈ H, for all a ∈ A and taking into account that [Φϕ (A)VϕH] = Hϕ, we
deduce that the sequence {∆ϕ (ϕn)}n converges strongly to IH .

Conversely, if ϕn ≤ ϕ for all positive integers n and if the sequence {∆ϕ (ϕn)}n

converges strongly to IH , then it is easy to verify that {ϕn (a)}n converges strongly
to ϕ (a) for each a ∈ A. �

Remark 2.3. Let ϕ, θ ∈ CP ((G,α,A) , H, u). Then ϕ is θ-absolutely continuous
if and only if there is an increasing sequence {ϕn}n in CP ((G,α,A) , H, u) such
that ϕn ≤U θ and ϕn ≤ ϕ for all positive integers n and the sequence {∆ϕ (ϕn)}n

converges strongly to IH .

As in the case of completely positive maps on C∗-algebras [3, Theorem 2.11]
or [8], we have the following theorem.

Theorem 2.4. Let ϕ, θ ∈ CP ((G,α,A) , H, u) and let
(
Φθ, v

θ, Hθ, Vθ

)
be the

Stinespring construction associated to θ. Then ϕ is θ-absolutely continuous if
and only if there is a unique positive selfadjoint linear operator ∆θ (ϕ) in Hθ such
that
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(1) ∆θ (ϕ) is affiliated with Φθ (A)′ and vθ (G)′ ;

(2) Φθ (A)VθH is a core for ∆θ (ϕ)
1
2 ;

(3) ∆θ (ϕ)
1
2 Vθ ∈ L (H,Hθ) ;

(4) ϕ (a) =
(
∆θ (ϕ)

1
2 Vθ

)
Φθ (a)

(
∆θ (ϕ)

1
2 Vθ

)
for all a ∈ A.

Proof. By [3, Theorem 2.11], there is a unique positive selfadjoint linear operator
∆θ (ϕ) in Hθ such that

(1) ∆θ (ϕ) is affiliated with Φθ (A)′ ;

(2) Φθ (A)VθH is a core for ∆θ (ϕ)
1
2 ;

(3) ∆θ (ϕ)
1
2 Vθ ∈ L (H,Hθ) ;

(4) ϕ (a) =
(
∆θ (ϕ)

1
2 Vθ

)
Φθ (a)

(
∆θ (ϕ)

1
2 Vθ

)
for all a ∈ A.

To prove the theorem, it remains to show that ∆θ (ϕ) is affiliated with vθ (G)′.

By the proof of Theorem 7.13 [3], ∆θ (ϕ) = ∆ρ (θ)−
1
2 ∆ρ (ϕ) ∆ρ (θ)−

1
2 , where

ρ = ϕ + θ and ∆ρ (θ) is supposed to be injective. Then, modulo a unitary

equivalence, Hθ = Hρ and vθ = vρ. From vρ
g∆ρ (θ)

1
2 = ∆ρ (θ)

1
2 vρ

g for all g ∈ G,

we deduce that ∆ρ (θ)−
1
2 vρ

g∆ρ (θ)
1
2 = vρ

g for all g ∈ G, and then

vθ
g∆θ (ϕ)

(
∆ρ (θ)

1
2 Φρ (a)Vρξ

)
= vθ

g∆ρ (θ)−
1
2 ∆ρ (ϕ) ∆ρ (θ)−

1
2 ∆ρ (θ)

1
2 Φρ (a)Vρξ

= vρ
g∆ρ (θ)−

1
2 ∆ρ (ϕ) Φρ (a)Vρξ

= ∆ρ (θ)−
1
2 ∆ρ (ϕ) vρ

gΦρ (a)Vρξ

= ∆ρ (θ)−
1
2 ∆ρ (ϕ) ∆ρ (θ)−

1
2 vρ

g∆ρ (θ)
1
2 Φρ (a)Vρξ

= ∆θ (ϕ) vρ
g

(
∆ρ (θ)

1
2 Φρ (a)Vρξ

)
for all a ∈ A, for all ξ ∈ H and for all g ∈ G. Therefore, ∆θ (ϕ) is affiliated with
vθ (G)′ and the theorem is proved. �

Let ϕ, θ ∈ CP ((G,α,A) , H, u). We say that ϕ is θ-singular if the only ψ ∈
CP ((G,α,A) , H, u) such that ψ ≤ ϕ and ψ ≤ θ is 0.

The following theorem extends [3, Theorem 3.1].

Theorem 2.5. Let ϕ, θ ∈ CP ((G,α,A) , H, u). Then there are ϕac and ϕs in
CP ((G,α,A) , H, u) such that

(1) ϕac is θ-absolutely continuous and ϕs is θ-singular;
(2) ϕ = ϕac + ϕs ;
(3) ϕac is maximal in the sense that if ψ is θ-absolutely continuous and ψ ≤

ϕac, then ψ = ϕac.

Proof. By [3, Theorem 3.1], there are ϕac, ϕs ∈ CP (A,H) such that ϕ = ϕac

+ ϕs , ϕac is θ-absolutely continuous and maximal, in the sense that if σ is a
completely positive map from A to L(H), θ-absolutely continuous and σ ≤ ϕac,
then σ = ϕac, and ϕs is θ-singular. Moreover,

ϕac (a) = V ∗
ρ ∆ρ (ϕ)PHρ	ker ∆ρ(ϕ)Φρ (a)Vρ
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and

ϕs (a) = V ∗
ρ Pker ∆ρ(ϕ)Φρ (a)Vρ

for all a ∈ A, where ρ = ϕ+ θ. Then

ϕac (αg (a)) = V ∗
ρ ∆ρ (ϕ)PHρ	ker∆ρ(ϕ)Φρ (αg (a))Vρ

= V ∗
ρ ∆ρ (ϕ)PHρ	ker∆ρ(ϕ)v

ρ
gΦρ (a) vρ

g−1Vρ

= V ∗
ρ v

ρ
g∆ρ (ϕ)PHρ	ker ∆ρ(ϕ)Φρ (a) vρ

g−1Vρ

= ugV
∗
ρ ∆ρ (ϕ)PHρ	ker ∆ρ(ϕ)Φρ (a)Vρug−1 = ugϕac (a)ug−1

and

ϕs (αg (a)) = V ∗
ρ Pker∆ρ(ϕ)Φρ (αg (a))Vρ = V ∗

ρ Pker∆ρ(ϕ)v
ρ
gΦρ (a) vρ

g−1Vρ

= V ∗
ρ v

ρ
gPker ∆ρ(ϕ)Φρ (a) vρ

g−1Vρ

= ugV
∗
ρ Pker∆ρ(ϕ)Φρ (a)Vρug−1 = ugϕs (a)ug−1

for all g ∈ G and for all a ∈ A. Therefore, ϕac, ϕs ∈ CP ((G,α,A) , H, u) .
Let ψ ∈ CP ((G,α,A) , H, u) such that ψ is θ-absolutely continuous and ψ ≤

ϕac. Then, by [3, Theorem 3.1], ψ = ϕab and the theorem is proved. �

Let ϕ, θ ∈ CP ((G,α,A) , H, u). The decomposition ϕ = ϕac + ϕs is called the
θ-Lebesgue decomposition of ϕ, ϕac is called the absolutely continuos part and
ϕs is the singular part of ϕ with respect to θ.

As in the case of completely positive maps on C∗-algebras [3], we have

Corollary 2.6. Let ϕ, ψ, θ ∈ CP ((G,α,A) , H, u). If ϕ = ϕac + ϕs and ψ = ψac

+ ψs are the θ-Lebesgue decomposition of ϕ and θ. Then

(1) ϕ is θ-singular if and only if ϕac = 0
(2) ϕ is θ-absolutely continuous if and only if ϕs = 0
(3) (tϕ)ac = tϕac for each positive number t
(4) ϕac + ψac ≤ (ϕ+ ψ)ac, where (ϕ+ ψ)ac is the absolutely continuous part

of ϕ+ ψ with respect to θ
(5) If ψ ≤ ϕ, then ψac ≤ ϕac.

3. Covariant completely positive maps and crossed products

Let ϕ ∈ CP ((G,α,A) , H, u). If (Φϕ, v
ϕ, Hϕ, Vϕ) is the covariant Stinespring

construction associated to ϕ, the map ϕ̂ : Cc(G,A) → L(H) defined by

ϕ̂(f) =

∫
G

ϕ(f(g))ugdg ,

where Cc(G,A) denotes the vector space of all continuous functions from G to
A with compact support, extends to a completely positive map from A ×α G to
L(H), denoted also by ϕ̂ (see, for example, [6, 10]). Moreover, the Stinespring
construction associated with ϕ̂ is unitarily equivalent with (Φϕ × vϕ, Hϕ, Vϕ),
where Φϕ × vϕ is the integral form of the covariant representation (Φϕ, v

ϕ, Hϕ).

Proposition 3.1. Let θ ∈ CP ((G,α,A) , H, u).
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(1) The map ϕ→ ϕ̂ is an affine order isomorphism from {ϕ ∈ CP((G,α,A) ,

H, u); ϕ ≤ θ} to {ρ ∈ CP ((A×α G) , H) ; ρ ≤ θ̂}.
(2) The map ϕ→ ϕ̂ is an affine order isomorphism from {ϕ ∈ CP((G,α,A) ,

H, u); ϕ ≤U θ} to {ρ ∈ CP ((A×α G) , H) ; ρ ≤U θ̂}.

Proof. (1) Let
(
Φθ, v

θ, Hθ, Vθ

)
be the covariant Stinespring construction associ-

ated to θ and let ϕ ∈ CP ((G,α,A) , H, u) with ϕ ≤ θ. Then

ϕ̂(m)
((

[fij]
m
i,j=1

)∗
[fij]

m
i,j=1

)
=

[
ϕ̂

(
m∑

k=1

f#
ik ∗ fkj

)]m

i,j=1

=

[∫
G

ϕ

((
m∑

k=1

f#
ik ∗ fkj

)
(g)

)
ugdg

]m

i,j=1

=

[∫
G

V ∗
θ ∆θ (ϕ) Φθ

((
m∑

k=1

f#
ik ∗ fkj

)
(g)

)
Vθugdg

]m

i,j=1

=

[∫
G

V ∗
θ ∆θ (ϕ) Φθ

((
m∑

k=1

f#
ik ∗ fkj

)
(g)

)
vθ

gVθdg

]m

i,j=1

=

[
V ∗

θ ∆θ (ϕ)

∫
G

Φθ

((
m∑

k=1

f#
ik ∗ fkj

)
(g)

)
vθ

gVθdg

]m

i,j=1

=

[
V ∗

θ ∆θ (ϕ)
(
Φθ × vθ

)( m∑
k=1

f#
ik ∗ fkj

)
Vθ

]m

i,j=1

=

[
m∑

k=1

(
∆θ (ϕ)

(
Φθ × vθ

)
(fik)Vθ

)∗ (
Φθ × vθ

)
(fkj)Vθ

]m

i,j=1

=
([(

Φθ × vθ
)
(fij)Vθ

]m
i,j=1

)∗
[δij∆θ (ϕ)]mi,j=1

[(
Φθ × vθ

)
(fij)Vθ

]m
i,j=1

≤
([(

Φθ × vθ
)
(fij)Vθ

]m
i,j=1

)∗ [(
Φθ × vθ

)
(fij)Vθ

]m
i,j=1

=

[
V ∗

θ

m∑
k=1

((
Φθ × vθ

)
(fik)

)∗ (
Φθ × vθ

)
(fkj)Vθ

]m

i,j=1

=

[
V ∗

θ

(
Φθ × vθ

)( m∑
k=1

f#
ik ∗ fkj

)
Vθ

]m

i,j=1

=

[
θ̂

(
m∑

k=1

f#
ik ∗ fkj

)]m

i,j=1

= θ̂(m)
((

[fij]
m
i,j=1

)∗
[fij]

m
i,j=1

)m

i,j=1

for all [fij]
n
i,j=1 ∈ Mm (Cc(G,A)) and so θ̂ − ϕ̂ ∈ CP ((A×α G) , H). Therefore,

the map ϕ→ ϕ̂ is well defined.
Clearly,

ϕ̂+ σ = ϕ̂+ σ̂
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and

λ̂ϕ = λϕ̂

for all ϕ, σ ∈ CP ((G,α,A) , H, u) and for all positive numbers λ.
Let ϕ ∈ CP ((G,α,A) , H, u). If ϕ̂ = 0, then

V ∗
ϕ (Φϕ × vϕ) (x)∗ (Φϕ × vϕ) (x)Vϕ = ϕ̂ (x∗x) = 0

for all x ∈ G×α A and so (Φϕ × vϕ) (x)Vϕ = 0 for all x ∈ G×α A. But

ϕ (a) ξ = V ∗
ϕ Φϕ(a)Vϕξ = V ∗

ϕ lim
i

(Φϕ × vϕ) (eiiA (a))Vϕξ = 0 ,

where {ei}i is an approximate unit for A×αG and iA is a non-degenerate faithful
homomorphism from A to the multiplier algebra of A×α G, (iA(a)f) (g) = af(g)
for all g ∈ G and for all f ∈ Cc(G,A) (see, for example, [12, Proposition 2.40]),
for all a ∈ A and for all ξ ∈ H. Therefore ϕ = 0, and so the map ϕ → ϕ̂ from
CP ((G,α,A) , H, u) to CP ((A×α G) , H) is injective.

To prove the assertion (1) it remains to show that the map ϕ→ ϕ̂ is surjective.

Let ρ ∈ CP ((A×α G) , H) , ρ ≤ θ̂. Then

ρ (x) = V ∗
θ ∆bθ (ρ)

(
Φθ × vθ

)
(x)Vθ

for all x ∈ G×α A. Consider the map ϕ : A→ L(H) defined by

ϕ (a) = V ∗
θ ∆bθ (ρ) Φθ(a)Vθ.

Since ∆bθ (ρ) ∈
(
Φθ × vθ

)
(G×α A)′ and since

(
Φθ × vθ

)
(A×α G)′ = Φθ (A)′ ∩

vθ(G)′, ∆bθ (ρ) ∈ Φθ (A)′ and so ϕ ∈ CP (A,H). Moreover,

ϕ (αg (a)) = V ∗
θ ∆bθ (ρ) Φθ(αg (a))Vθ = V ∗

θ ∆bθ (ρ) vθ
gΦθ(a)

(
vθ

g

)∗
Vθ

= V ∗
θ v

θ
g∆bθ (ρ) Φθ(a)

(
vθ

g

)∗
Vθ = ugV

∗
θ ∆bθ (ρ) Φθ(a)Vθu

∗
g = ugϕ(a)u∗g

for all a ∈ A and for all g ∈ G. Therefore, ϕ ∈ CP ((G,α,A) , H, u), and ϕ ≤ θ.
Moreover,

ϕ̂ (f) =

∫
G

ϕ(f(g))ugdg =

∫
G

V ∗
θ ∆bθ (ρ) Φθ(f(g))Vθugdg

= V ∗
θ ∆bθ (ρ)

∫
G

Φθ(f(g))vθ
gVθdg

= V ∗
θ ∆bθ (ρ)

(
Φθ × vθ

)
(f)Vθ = ρ (f)

for all f ∈ Cc(G,A), and so the map ϕ → ϕ̂ from {ϕ ∈ CP ((G,α,A) , H, u) ;

ϕ ≤ θ} to {ρ ∈ CP ((A×α G) , H) ; ρ ≤ θ̂} is surjective.
(2) It follows in the same manner as assertion (1). �

Corollary 3.2. Let ϕ, θ ∈ CP ((G,α,A) , H, u) such that ϕ ≤ θ or ϕ ≤U θ. Then
∆bθ (ϕ̂) = ∆θ (ϕ).

Corollary 3.3. Let ϕ, θ ∈ CP ((G,α,A) , H, u). Then ϕ =U θ if and only if

ϕ̂ =U θ̂.
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Let f ∈ Cc(G,A) and g ∈ G. Then the map fg : G → A defined by fg (t) =
f (g−1t) is an element in Cc(G,A).

A completely positive map ρ : A ×α G → L(H) is u-covariant if ρ (αg ◦ fg) =
ugρ (f) for all f ∈ Cc(G,A) and for all g ∈ G (see [10]).

Let CP ((A×α G) , H, u) = {ρ ∈ CP ((A×α G) , H) ; ρ is u-covariant}. In [10]
it is shown that there is an isomorphism between the unital completely positive
maps from a unital C∗-algebra A to L(H), u-covariant with respect to the C∗-
dynamical system (G,α,A) and the normalized u-covariant completely positive
maps from A ×αG to L(H). In the following theorem we extend this result.

Theorem 3.4. The map ϕ→ ϕ̂ is an affine order isomorphism from {CP((G,α,
A), H, u); ≤} to {CP ((A×α G) , H, u) ;≤} respectively from {CP ((G,α,A) , H, u) ;
≤U} to {CP ((A×α G) , H, u) ;≤U}.

Proof. Let ϕ ∈ CP ((G,α,A) , H, u) , f ∈ Cc(G,A) and g ∈ G. Then

ϕ̂ (αg ◦ fg) =

∫
G

ϕ (αg (fg (s)))usds =

∫
G

ugϕ
(
f
(
g−1s

))
ug−1usds

= ug

∫
G

ϕ (f (t))utdt = ugϕ̂ (f) .

Therefore, the map ϕ→ ϕ̂ is well defined.
According to Proposition 3.1, to prove the theorem it is sufficient to show that

the map is surjective. Let ρ ∈ CP ((A×α G) , H, u) and let (Φρ, Hρ, Vρ) be the
Stinespring construction associated to ρ. By [12, Proposition 2.40] there is a
covariant representation (Φ, v,Hρ) of (G,α,A) such that Φ× v = Φρ.

Consider the map ϕ : A→ L (H) defined by

ϕ (a) = V ∗
ρ Φ (a)Vρ.

Clearly, ϕ is completely positive. To show that ϕ is u-covariant with respect to
(G,α,A) it is sufficient to show that Vρug = vgVρ for all g ∈ G, since

ϕ (αg (a)) = V ∗
ρ Φ (αg (a))Vρ = V ∗

ρ vgΦ (a) vg−1Vρ

= ugV
∗
ρ Φ (a)Vρug−1 = ugϕ (a)ug−1 .

By the Stinesprig construction, Hρ is the completion of the pre-Hilbert space
(A×α G)⊗alg H with the pre-innner product given by

〈x⊗ ξ, y ⊗ η〉 = 〈ρ (y∗x) ξ, η〉 .

Moreover, V ∗
ρ (x⊗ ξ +N ) = ρ (x) ξ, where N = {x ⊗ ξ ∈ (A×α G) ⊗alg H;

〈x⊗ ξ, x⊗ ξ〉 = 0}, and Φρ (x) (y ⊗ ξ +N ) = xy ⊗ ξ +N for all x, y ∈ A ×α G
and for all ξ ∈ H.

Let f ∈ Cc(G,A), g ∈ G, ξ ∈ H and {ei}i∈I an approximate unit for A×α G.
Then (

ugV
∗
ρ

)
(f ⊗ ξ +N ) = ugρ (f) ξ
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and (
V ∗

ρ vg

)
(f ⊗ ξ +N ) = V ∗

ρ

(
lim

i
Φρ (eiiG (g)) (f ⊗ ξ +N )

)
= V ∗

ρ

(
lim

i
eiiG (g) f ⊗ ξ +N

)
= V ∗

ρ

(
lim

i
ei (αg ◦ fg)⊗ ξ +N

)
= V ∗

ρ (αg ◦ fg ⊗ ξ +N ) = ρ (αg ◦ fg) ξ ,

where iG is an injective strictly continuous homomorphism from G to the unitary
group from the multiplier algebra of A ×α G such that iG (g) f = αg ◦ fg for all
f ∈ Cc(G,A) (see, for example, [12, Proposition 2.40]). But

ρ (αg ◦ fg) ξ = ugρ (f) ξ

and so ugV
∗
ρ = V ∗

ρ vg. Therefore, Vρug = vgVρ for all g ∈ G, and so ϕ ∈
CP ((G,α,A) , H, u). Moreover,

ϕ̂ (f) =

∫
G

ϕ (f (g))ugdg =

∫
G

V ∗
ρ Φ (f (g))Vρugdg

=

∫
G

V ∗
ρ Φ (f (g)) vgVρdg = V ∗

ρ (Φ× v) (f)Vρ

= V ∗
ρ Φρ (f)Vρ = ρ (f)

for all f ∈ Cc (G,A). Therefore, ϕ̂ = ρ and the map ϕ→ ϕ̂ from CP( (G,α,A) ,
H, u) to CP((A×α G) , H, u) is surjective. �

Theorem 3.5. Let ϕ, θ ∈ CP ((G,α,A) , H, u). Then

(1) ϕ is θ-absolutely continuous if and only if ϕ̂ is θ̂-absolutely continuous;

(2) ϕ is θ-singular if and only if ϕ̂ is θ̂-singular.

Proof. (1) First, we suppose that ϕ is θ-absolutely continuous. Then, by Re-
mark 2.3, there is an increasing sequence {ϕn}n in CP ((G,α,A) , H, u) such that
ϕn ≤U θ and ϕn ≤ ϕ for all positive integers n and the sequence {∆ϕ (ϕn)}n

converges strongly to IH . By Proposition 3.1, {ϕ̂n}n is an increasing sequence

in CP (A×α G,H) such that ϕ̂n ≤U θ̂ and ϕ̂n ≤ ϕ̂ for all positive integers n.
But, for each positive integer n, ∆ϕ (ϕn) = ∆bϕ (ϕ̂n) (Corollary 3.2), and then the
sequence {ϕ̂n (x)}n converges strongly to ϕ̂ (x) for all x ∈ G×α A. Therefore, ϕ̂

is θ̂-absolutely continuous.

Conversely, suppose that ϕ̂ is θ̂-absolutely continuous. Then there is an in-

creasing sequence {ρn}n in CP (A×α G,H) such that ρn ≤U θ̂ and ρn ≤ ϕ̂ for all
positive integers n, and the sequence {∆ϕ (ρn)}n converges strongly to IH . Since
{ρn}n is an increasing sequence in CP (A×α G,H), by Proposition 3.1, there is
an increasing sequence {ϕn}n in CP ((G,α,A) , H, u) such that ϕ̂n = ρn for all
positive integers n. Moreover, ϕn ≤U θ and ϕn ≤ ϕ for all positive integers n,
and since ∆ϕ (ϕn) = ∆bϕ (ϕ̂n) = ∆bϕ (ρn) for all positive integers n, the sequence
{∆ϕ (ϕn)}n converges strongly to IH . Therefore, ϕ is θ-absolutely continuous.
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(2) Suppose that ϕ is θ-singular. Let ρ ∈ CP (A×α G,H) such that ρ ≤ ϕ̂, θ̂.
Then ρ ∈ CP (A×α G,H, u) and there is ψ ∈ CP ((G,α,A) , H, u) such that

ψ̂ = ρ. By Theorem 3.4, ψ ≤ ϕ, θ and then ψ = 0 and so ρ = 0.

Conversely, suppose that ϕ̂ is θ̂-singular. If ψ ≤ ϕ, θ, then ψ̂ ≤ ϕ̂, θ̂, whence it

follows that ψ̂ = 0 and so ψ = 0. �

Corollary 3.6. The map ϕ→ ϕ̂ from CP ((G,α,A) , H, u) to CP ((A×α G) , H, u)
preserves the Lebesgue decomposition.

Proof. Let ϕ, θ ∈ CP ((G,α,A) , H, u) and let ϕ = ϕac + ϕs be the Lebesgue
decomposition of ϕ with respect to θ. Then ϕ̂ = ϕ̂ac + ϕ̂s and moreover,

ϕ̂ac is θ̂-absolutely continuous. Let ρ ∈ CP ((A×α G) , H), θ̂-absolutely con-
tinuous such that ρ ≤ ϕ̂ac . Then ρ ∈ CP ((A×α G) , H, u) and so there is a

ψ ∈ CP ((G,α,A) , H, u) such that ψ̂ = ρ. By Theorem 3.5, ψ is θ-absolutely
continuous and ψ ≤ ϕac and by the uniqueness of the Lebesgue decomposition,
ψ = ϕac. Therefore, ρ = ϕ̂ac and then ϕ̂ac = ϕ̂ac and the corollary is proved. �
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