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Abstract. The Fubini theorem for the generalized Dobrakov integral in com-
plete bornological locally convex topological vector spaces is proven.

1. Introduction

It is well known, in contrast with the scalar case, that the product of two vector
measures need not always exist. This problem has been studied in several papers,
where some conditions for the existence of the product of vector measures have
been given, see [30] for further references. In [27] the problem of the existence of
the product measure in the context of locally convex spaces for bilinear integrals
is solved in general. The bornological character of the bilinear integration theory
presented therein shows the fitness of making a development of bilinear integration
theory in the context of the complete bornological locally convex spaces. Note
here the paper of Ballvé and Jiménez Guerra [2] where we can find a list of
reference papers to this problem. Also, see [8, 9, 11, 29] for further reading on
product of vector-valued measures.

Concerning the Fubini theorem, the first author in [17] generalized the Do-
brakov integral to complete bornological locally convex spaces. The sense of this
seemingly complicated theory is that, at the present, this is the only known in-
tegration theory which completely generalizes the Dobrakov integral to a class
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of non-metrizable locally convex topological vector spaces. Integration of vector
valued functions by operator-valued measures, especially the Dobrakov integra-
tion technique, has its applications e.g. in study of hybrid systems and optimal
control [1], quantum measurement [25], Wiener processes [28], etc.

This paper is, in fact, a continuation of the paper [20], where the construction
of bornological product measure is given and a Fubini-type theorem is stated. In
Section 2 we recall necessary notions from [14, 15, 16, 17]. For the purpose to
prove the general Fubini theorem for bornological product measures the questions
on existence and measurability of a partial integral are solved in Section 3. All
these results lead up to Section 4 where the complete proof of general Fubini
theorem is given.

2. Preliminaries

For basic notions of bornology and the description of the theory of complete
bornological locally convex spaces (C. B. L. C. S., for short) see [23, 24, 26].

Let X, Y, Z be Hausdorff C. B. L. C. S. over the field K of real R or complex
numbers C, equipped with the bornologies BX, BY, BZ.

One of the equivalent definitions of C. B. L. C. S. is to define these spaces as
the inductive limits of Banach spaces. We say that the basis U of bornology BX

has the vacuum vector 1 U0 ∈ U , if U0 ⊂ U for every U ∈ U . Let the bases U , W ,
V be chosen to consist of all BX-, BY-, BZ-bounded Banach disks in X, Y, Z
with vacuum vectors U0 ∈ U , U0 6= {0}, W0 ∈ W , W0 6= {0}, V0 ∈ V , V0 6= {0},
respectively. Recall that a (separable) Banach disk in X is a set U ∈ BX which is
closed, absolutely convex and the linear span XU of which is a (separable) Banach
space. So, the space X is an inductive limit of Banach spaces XU , U ∈ U , i.e.,

X = injlim
U∈U

XU ,

see [24], where U is directed by inclusion (analogously for Y and W , Z and V ,
respectively).

Since XU , U ∈ U , in the definition of C. B. L. C. S. is a Banach space, it
is enough to deal with sequences instead of nets and therefore we introduce the
following bornological convergence in the sense of Mackey. We say that a sequence
(xn)∞1 of elements from X converges bornologically (or, it is Mackey convergent)
with respect to the bornology BX with the basis U to x ∈ X, shortly U -converges,
if there exists U ∈ U , such that for every ε > 0 there exists n0 ∈ N, such that
(xn−x) ∈ εU for every n ≥ n0. We write x = U - lim

n→∞
xn. To be more precise, we

will sometimes call this the U -convergence of elements from X to show explicitly
which U ∈ U we have in the mind.

2.1. Operator spaces. On U the lattice operations are defined as follows. For
U1, U2 ∈ U we have: U1 ∧ U2 = U1 ∩ U2, and U1 ∨ U2 = acs(U1 ∪ U2), where

1in literature we can find also as terms as the ground state or marked element or fiducial
vector or mother wavelet depending on the context
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acs denotes the topological closure of the absolutely convex span of the set; anal-
ogously for W and V . For (U1,W1, V1), (U2,W2, V2) ∈ U × W × V , we write
(U1,W1, V1) � (U2,W2, V2) if and only if U1 ⊂ U2, W1 ⊃ W2, and V1 ⊃ V2.

We use Φ, Ψ, Γ to denote the classes of all functions U → W , W → V , U → V
with orders <Φ, <Ψ, <Γ defined as follows: for ϕ1, ϕ1 ∈ Φ we write ϕ1 <Φ ϕ2

whenever ϕ1(U) ⊂ ϕ2(U) for every U ∈ U (analogously for <Ψ, <Γ and W → V,
U → V , respectively).

Denote by L(X,Y) the space of all continuous linear operators L : X → Y.
We suppose L(X,Y) ⊂ Φ. Analogously, L(Y,Z) ⊂ Ψ and L(X,Z) ⊂ Γ. The
bornologies BX, BY, BZ are supposed to be stronger than the corresponding
von Neumann bornologies, i.e., the vector operations on the spaces L(X,Y),
L(Y,Z), L(X,Z) are compatible with the topologies, and the bornological con-
vergence implies the topological convergence. For a more detailed explanation
of the topological and bornological methods of functional analysis in connection
with operators see [32].

2.2. Set functions. Let T and S be two non-void sets. Let ∆ and ∇ be two
δ-rings of subsets of sets T and S, respectively. If A is a system of subsets of the
set T , then σ(A) (resp. δ(A)) denotes the σ-ring (resp. δ-ring) generated by the
system A. Set Σ = σ(∆) and Ξ = σ(∇). We use χE to denote the characteristic
function of the set E. By pU : X → [0,∞] we denote the Minkowski functional
of the set U ∈ U , i.e., pU(x) = infx∈λU |λ| (if U does not absorb x ∈ X, we put
pU(x) = +∞). Similarly, pW and pV indicate the Minkowski functionals of the
sets W ∈ W and V ∈ V , respectively.

For every (U,W ) ∈ U ×W , denote by m̂U,W : Σ → [0,∞] a (U,W )-semivaria-
tion of a charge (= finitely additive measure) m : ∆ → L(X,Y) given by

m̂U,W (E) = sup pW

(
I∑

i=1

m(E ∩ Ei)xi

)
, E ∈ Σ,

where the supremum is taken over all finite sets {xi ∈ U, i = 1, 2, . . . , I} and
all disjoint sets {Ei ∈ ∆; i = 1, 2, . . . , I}. For {Ei ∈ ∆, i = 1, 2, . . . , I} by [3,
Corollary 3 of Proposition 9, § 1] we get E∩Ei ∈ ∆ for E ∈ Σ, and hence m̂U,W (E)
is well defined. Note that this result does not hold if Σ is the σ-algebra generated
by ∆. It is well-known that m̂U,W is a submeasure, i.e., a monotone, subadditive
set function, and m̂U,W (∅) = 0. The family m̂U ,W = {m̂U,W ; (U,W ) ∈ U ×W}
is said to be the (U ,W)-semivariation of m.

For every (U,W ) ∈ U ×W , denote by ‖m‖U,W : Σ → [0,∞] a scalar (U,W )-
semivariation of a charge m : ∆ → L(X,Y) defined as

‖m‖U,W (E) = sup

∥∥∥∥∥
I∑

i=1

λim(E ∩ Ei)

∥∥∥∥∥
U,W

, E ∈ Σ,

where ‖L‖U,W = supx∈U pW (L(x)) and the supremum is taken over all finite
sets of scalars {λi ∈ K; |λi| ≤ 1, i = 1, 2, . . . , I} and all disjoint sets {Ei ∈
∆; i = 1, 2, . . . , I}. Note that the scalar (U,W )-semivariation ‖m‖U,W is also a
submeasure.
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Let X′, Y′ be the topological duals of X,Y, respectively. For every y′ ∈ Y′,
U ∈ U and E ∈ Σ we define the U-variation of the charge y′m : ∆ → X′ by the
equation

varU(y′m, E) = sup
I∑

i=1

|(y′m)(E ∩ Ei)xi| ,

where the supremum is taken over all finite pairwise disjoint sets Ei ∈ ∆ and
over all finite sets of elements xi ∈ U , i = 1, 2, . . . , I. Note that the (U,W )-
semivariation of m : ∆ → L(X,Y) may be expressed in the form

m̂U,W (E) = sup
y′∈W 0

varU(y′m, E), E ∈ Σ, (2.1)

where W 0 ∈ Y′ denotes the absolute polar of the set W ∈ W , see [14].
Analogously, we may define a (W,V )-semivariation n̂W,V : Ξ → [0,∞], and a

scalar (W,V )-semivariation ‖n‖W,V : Ξ → [0,∞] of a charge n : ∇ → L(Y,Z).
For a more detailed description of the basic L(X,Y)-measure set structures when
both X and Y are C. B. L. C. S. see [14].

Let ν : A → [0,∞] be a set function on a system A of subsets of a non-empty
set Ω. We say that ν is continuous on A if ν(En) → 0 for any sequence (En)∞1 of
sets from A, such that En ↘ ∅ (i.e., En ⊃ En+1 for each n ∈ N and

⋂
n∈N

En = ∅).

Definition 2.1. Let (U,W ) ∈ U ×W . Denote by

(a) ∆U,W the greatest δ-subring of ∆ of subsets of finite (U,W )-semivariation
m̂U,W and ∆U ,W = {∆U,W ; (U,W ) ∈ U × W} the lattice with the order
given with inclusions of U ∈ U and W ∈ W , respectively;

(b) ∆u
U,W the greatest δ-subring of ∆ on which the restriction mU,W : ∆u

U,W →
L(XU ,YW ) of the measure m : ∆ → L(X,Y) is uniformly countable ad-
ditive with mU,W (E) = m(E) for E ∈ ∆u

U,W and ∆u
U ,W = {∆u

U,W ; (U,W ) ∈
U × W} the lattice with the order given with inclusions of U ∈ U and
W ∈ W , respectively;

(c) ∆c
U,W the greatest δ-subring of ∆ where m̂U,W is continuous and ∆c

U ,W =
{∆c

U,W ; (U,W ) ∈ U ×W} the lattice with the order given with inclusions
of U ∈ U and W ∈ W , respectively.

Analogously for (W,V ) ∈ W × V we define ∇W,V , ∇u
W,V , ∇c

W,V , and ∇W,V ,
∇u
W,V , ∇c

W,V . Clearly, the lattices ∆c
U ,W , ∆u

U ,W are sublattices of ∆U ,W . Concern-
ing the continuity on ∆U,W , ∇W,V , see [31].

Denote by ∆U,W ⊗ ∇W,V the smallest δ-ring containing all rectangles A × B,
A ∈ ∆U,W , B ∈ ∇W,V , where (U,W ) ∈ U × W , (W,V ) ∈ W × V . If D1, D2

are two δ-rings of subsets of T , S, respectively, then obviously σ(D1 ⊗ D2) =
σ(D1)⊗ σ(D2). For every E ∈ δ(D1⊗D2) there exist A ∈ D1, B ∈ D2, such that
E ⊂ A×B. For E ⊂ T × S, s ∈ S, put

Es = {t ∈ T ; (t, s) ∈ E}.
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2.3. Basic convergences of functions. Let βU ,W be a lattice of submeasures
βU,W : Σ → [0,∞], (U,W ) ∈ U ×W , where the lattice operations ∧, ∨ are defined
as follows

βU2,W2 ∧ βU3,W3 = βU2∧U3,W2∨W3 ,

βU2,W2 ∨ βU3,W3 = βU2∨U3,W2∧W3 ,

for (U2,W2), (U3,W3) ∈ U ×W , (e.g. βU ,W = m̂U ,W).
For (U,W ) ∈ U ×W denote by O(βU,W ) = {N ∈ Σ; βU,W (N) = 0}. The set

N ∈ Σ is called βU ,W-null if there exists a couple (U,W ) ∈ U × W , such that
N ∈ O(βU,W ). We say that an assertion holds βU ,W-almost everywhere, shortly
βU ,W-a.e., if it holds everywhere except in a βU ,W-null set. A set E ∈ Σ is said to
be of finite submeasure βU ,W if there exists a couple (U,W ) ∈ U ×W , such that
βU,W (E) < +∞.

Definition 2.2. Let E ∈ Σ, R ∈ U and (U,W ) ∈ U×W . We say that a sequence
(fn : T → X)∞1 of functions (R,E)-converges βU,W -a.e. to a function f : T → X
if lim

n→∞
pR(fn(t)− f(t)) = 0 for every t ∈ E \N , where N ∈ O(βU,W ).

We say that a sequence (fn : T → X)∞1 of functions (U , E)-converges βU ,W-
a.e. to a function f : T → X if there exist R ∈ U , (U,W ) ∈ U × W , such
that the sequence (fn)∞1 of functions (R,E)-converges βU,W -a.e. to f . We write
f = U - lim

n→∞
fn βU ,W-a.e.

Definition 2.3. Let E ∈ Σ, R ∈ U and (U,W ) ∈ U×W . We say that a sequence
(fn : T → X)∞1 of functions (R,E)-converges uniformly to a function f : T → X,
if lim

n→∞
‖fn − f‖E,R = 0, where ‖f‖E,R = sup

t∈E
pR(f(t)).

We say that a sequence (fn : T → X)∞1 of functions (R,E)-converges βU,W -
almost uniformly to a function f : T → X if for every ε > 0 there exists a set
N ∈ Σ, such that βU,W (N) < ε and the sequence (fn)∞1 of functions (R,E \N)-
converges uniformly to f .

We say that a sequence (fn : T → X)∞1 of functions (U , E)-converges βU ,W-
almost uniformly to a function f : T → X, if there exist R ∈ U , (U,W ) ∈ U ×W ,
such that the sequence (fn)∞1 of functions (R,E)-converges βU,W -almost uniformly
to f .

For a more detail explanation of described convergences of functions in C. B.
L. C. S. and relations among them see [13].

2.4. Measure structures. For (U,W ) ∈ U ×W we say that a charge m is of
σ-finite (U,W )-semivariation if there exist sets En ∈ ∆U,W , n ∈ N, such that T =⋃∞

n=1En. For ϕ ∈ Φ we say that a charge m is of σϕ-finite (U ,W)-semivariation
if for every U ∈ U the charge m is of σ-finite (U,ϕ(U))-semivariation.

Definition 2.4. We say that a charge m is of σΦ-finite (U ,W)-semivariation if
there exists a function ϕ ∈ Φ, such that m is of σϕ-finite (U ,W)-semivariation.

Let W ∈ W . We say that a charge µ : Σ → Y is a (W,σ)-additive vector
measure if µ is a YW -valued (countable additive) vector measure.
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Definition 2.5. We say that a charge µ : Σ → Y is a (W , σ)-additive vector
measure if there exists W ∈ W , such that µ is a (W,σ)-additive vector measure.

Let W ∈ W and (νn : Σ → Y)∞1 be a sequence of (W,σ)-additive vector
measures. If for every ε > 0, E ∈ Σ with pW (νn(E)) < +∞ for each n ∈ N, and
Ei ∈ Σ, Ei ∩ Ej = ∅, i 6= j, i, j ∈ N, there exists J0 ∈ N, such that for every
J ≥ J0,

pW

(
νn

(
∞⋃

i=J+1

Ei ∩ E

))
< ε

uniformly for every n ∈ N, then we say that the sequence of measures (νn)∞1 is
uniformly (W,σ)-additive on Σ, see [17].

Definition 2.6. We say that the family of measures νn : Σ → Y, n ∈ N, is
uniformly (W , σ)-additive on Σ if there exists W ∈ W , such that the family of
measures νn, n ∈ N, is uniformly (W,σ)-additive on Σ.

The following definition generalizes the notion of the σ-additivity of an operator-
valued measure in the strong operator topology in Banach spaces, see [4], to C.
B. L. C. S.

Definition 2.7. Let ϕ ∈ Φ. We say that a charge m : ∆ → L(X,Y) is a
σϕ-additive measure if m is of σϕ-finite (U ,W)-semivariation, and for every A ∈
∆U,ϕ(U) the charge m(A ∩ ·)x : Σ → Y is a (ϕ(U), σ)-additive measure for every
x ∈ XU , U ∈ U . We say that a charge m : ∆ → L(X,Y) is a σΦ-additive measure
if there exists ϕ ∈ Φ such that m is a σϕ-additive measure.

In what follows m : ∆ → L(X,Y) and n : ∇ → L(Y,Z) are supposed to be
operator-valued σΦ- and σΨ-additive measures, respectively.

2.5. An integral in C. B. L. C. S.. We use M∆,U to denote the space of all
(∆,U)-measurable functions, i.e., the largest vector space of functions f : T → X
with the property: there exists R ∈ U such that for every U ∈ U , U ⊃ R, and
δ > 0

{t ∈ T ; pU(f(t)) ≥ δ} ∈ Σ.

Definition 2.8. A function f : T → X is called ∆-simple if f(T ) is a finite set
and f−1(x) ∈ ∆ for every x ∈ X \ {0}. Let S denote the space of all ∆-simple
functions.

For (U,W ) ∈ U × W a function f : T → X is said to be ∆U,W -simple if

f =
∑I

i=1 xiχEi
, where xi ∈ XU , Ei ∈ ∆U,W , such that Ei ∩ Ej = ∅, for i 6= j,

i, j = 1, 2, . . . , I. The space of all ∆U,W -simple functions is denoted by SU,W .
A function f ∈ S is said to be ∆U ,W-simple if there exists a couple (U,W ) ∈

U ×W , such that f ∈ SU,W . The space of all ∆U ,W-simple functions is denoted
by SU ,W .

It may be proved thatM∆,U ⊃ F∆, where F∆ is the set of functions f : T → X,
such that there exists a sequence (fn)∞1 of ∆U ,W-simple functions U -converging
on T to f . Elements of F∆ are called ∆U ,W-measurable functions (or measurable
in the sense of Dobrakov, see [4]).
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Let (U,W ) ∈ U ×W . For every E ∈ Σ and f ∈ SU,W , as usual, we define the
integral by the formula ∫

E

f dm =
I∑

i=1

m(E ∩ Ei)xi,

where f =
∑I

i=1 xiχEi
, xi ∈ XU and Ei ∈ ∆U,W , Ei ∩ Ej = ∅, i 6= j, i, j =

1, 2, . . . , I. Note that for the function f ∈ SU,W the integral
∫
· f dm is a (W,σ)-

additive measure on Σ.

Theorem 2.9. ([17, Theorem 3.8]) Let m be a σ-additive measure and f ∈M∆,U .
If there exists a sequence (fn)∞1 of ∆U ,W-simple functions, such that

(a) U- lim
n→∞

fn = f m̂U ,W-a.e.,

(b) the integrals
∫
· fn dm, n ∈ N, are uniformly (W , σ)-additive measures on

Σ,

then the limit ν(E, f) = W- lim
n→∞

∫
E

fn dm exists uniformly in E ∈ Σ.

Definition 2.10. A function f ∈ M∆,U is said to be ∆U ,W-integrable if there
exists a sequence (fn)∞1 of ∆U ,W-simple functions, such that

(a) U - lim
n→∞

fn = f m̂U ,W-a.e.,

(b)
∫
· fn dm, n ∈ N, are uniformly (W , σ)-additive measures on Σ.

Let IU ,W,∆ denote the family of all ∆U ,W-integrable functions. Then the integral
of a function f ∈ IU ,W,∆ on a set E ∈ Σ is defined by the equality

yE =

∫
E

f dm = W- lim
n→∞

∫
E

fn dm.

Theorem 2.11. ([17, Theorem 4.2]) Let ν(E, f) =
∫

E
f dm, E ∈ Σ and f ∈

IU ,W,∆. Then ν(·, f) : Σ → Y is a (W , σ)-additive measure.

The following theorem gives a criterium of integrability of a (∆,U)-measurable
function.

Theorem 2.12. ([17, Theorem 4.3]) A function f ∈ M∆,U is ∆U ,W-integrable if
and only if there exists a sequence (fn)∞1 of ∆U ,W-simple functions, such that

(a) (U , E)-converges m̂U ,W-a.e. to f , and
(b) the limit W- lim

n→∞

∫
E

fn dm = ν(E) exists for every E ∈ Σ.

In this case
∫

E
f dm = W- lim

n→∞

∫
E

fn dm for every set E ∈ Σ and this limit is

uniform on Σ.

On integrable functions and further results related to the generalized Dobrakov
integral in C. B. L. C. S. see [18] and [19].

Definition 2.13. A function h : T → X is said to be m̂U ,W-null if there exists
a m̂U ,W-null set N ∈ Σ such that {t ∈ T ;h(t) 6= 0} ⊂ N .

A function f : T → X is said to be m̂U ,W-essentially ∆U ,W-measurable (resp.
m̂U ,W-essentially ∆U ,W-integrable) if f = g + h, where g is ∆U ,W-measurable
(resp. ∆U ,W-integrable) and h is m̂U ,W-null. In the case f is a m̂U ,W-essentially
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∆U ,W-integrable function, we extend the integral of f defining
∫

E
f dm =

∫
E

g dm
for each E ∈ Σ.

Clearly, this integration theory extends with obvious modifications to m̂U ,W-
essentially ∆U ,W-measurable (integrable) functions. Note that the range of an
m̂U ,W-null (hence also of an m̂U ,W-essentially ∆U ,W-measurable) function need
not be separable.

2.6. Bornological product measures. A bornological product measure was
introduced in [20]. Here we recall its definition.

Definition 2.14. We say that a (bornological) product measure of a σΦ-additive
measure m : ∆ → L(X,Y) and σΨ-additive measure n : ∇ → L(Y,Z) exists on
∆ ⊗ ∇ (we write m ⊗ n : ∆ ⊗ ∇ → L(X,Z)) if there exists one and only one
σΓ-additive measure m⊗ n : ∆⊗∇ → L(X,Z), such that

(m⊗ n)(A×B)x = n(B)m(A)x

for every x ∈ XU , A ∈ ∆U,W , B ∈ ∇W,V , where there exists γ ∈ Γ, ϕ ∈ Φ, ψ ∈ Ψ,
such that γ = ψ ◦ ϕ and V ⊆ ψ(W ), W ⊆ ϕ(U), γ(U) ⊂ ψ(ϕ(U)).

For more results on bornological product measures and related Fubini-type
theorem see [20] and [21].

3. Measurability of the partial integral

Let (U,W, V ) ∈ U×W×V. According to the example before [6, Theorem 6] it is
clear that in the general Fubini theorem we must assume that for a ∆U,W ⊗∇W,V -
measurable function f : T × S → XU the function t 7→ f(t, s), t ∈ T , must
be ∆U,W -integrable for all s ∈ S. Since a ∆U,W ⊗ ∇W,V -measurable function
is a pointwise (bornological) limit of ∆U,W ⊗ ∇W,V -simple functions, from [12,
Theorem A, § 34] and from the fact that ∆U,W -measurable functions are from
the closure of pointwise bornological limits it follows that the function f(·, s) is
∆U,W -measurable for each s ∈ S. This guarantees that f : T × S → XU is
∆U,W ⊗∇W,V -measurable.

Recall now the following useful notion, see [19].

Definition 3.1. Let (U,W ) ∈ U × W . If g : T → XU is a ∆U,W -measurable
function, then the L1

U,W -gauge of the function g on the set E ∈ Σ, denoted
by m̂U,W (g, E), is a non-negative not necessarily finite number defined by the
equality

m̂U,W (g, E) = sup

{
pW

(∫
E

f dm

)}
,

where the supremum is taken over all f ∈ SU,W , such that pU(f(t)) ≤ pU(g(t))
for each t ∈ E. The L1

U,W -gauge of the function g is then defined by

m̂U,W (g, T ) = sup
E∈Σ

m̂U,W (g, E).
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Let us denote by L1
U,W (m) the space of all ∆U,W -integrable functions with the

bounded and continuous seminorm m̂U,W (·, E). Analogously, for (W,V ) ∈ W×V
we define the L1

W,V -gauge n̂W,V (·, F ) and the space L1
W,V (n).

Let f : T × S → XU be a ∆U,W ⊗∇W,V -measurable function and let f(·, s) be
∆U,W -integrable for each s ∈ S. In this part of paper we investigate the theory
of ∇W,V -measurability and the n̂W,V -essential ∇W,V -measurability of the partial
integral gE,

gE(s) =

∫
Es

f(·, s) dm, s ∈ S, E ∈ σ(∆U,W ⊗∇W,V ).

In this part we also obtain results for ∇W,V -measurability of the function hE,

hE(s) = m̂U,W (f(·, s), Es), s ∈ S,
and other results which will be important for the proof of general Fubini theorem
in Section 4. In what follows gE and hE always denote the above stated functions.

Theorem 3.2. Let (U,W, V ) ∈ U×W×V and f : T×S → XU be a ∆c
U,W⊗∇W,V -

measurable function. Then for each E ∈ σ(∆U,W ⊗ ∇W,V ) the function hE is
∇W,V -measurable.

Proof. Let E ∈ σ(∆U,W ⊗ ∇W,V ) and let (fn)∞1 be a sequence of ∆c
U,W ⊗ ∇W,V -

simple functions, such that fn(t, s) → f(t, s) and pU(fn(t, s)) ↗ pU(f(t, s)) for
each (t, s) ∈ T × S. According to [5, Theorem 4] we get

m̂U,W (f(·, s), Es) = sup
y′∈W 0

∫
Es

pU(f(·, s)) dvarU(y′m, ·)

for each s ∈ S. The same equality also holds for each fn, n ∈ N. Then the Fatou
lemma yields

m̂U,W (f(·, s), Es) = lim
n→∞

m̂U,W (fn(·, s), Es)

for each s ∈ S. Therefore it is enough to prove that the theorem holds for each
∆c

U,W ⊗∇W,V -simple function f : T × S → XU .
Let f : T × S → XU be a ∆c

U,W ⊗ ∇W,V -simple function of the form f =∑r
i=1 xiχEi

, where xi ∈ XU , Ei ∈ ∆c
U,W ⊗ ∇W,V , Ei ∩ Ej = ∅, i 6= j, i, j =

1, 2, . . . , r, and let E ∈ σ(∆U,W ⊗∇W,V ). Since ∆c
U,W ⊗∇W,V ∩σ(∆U,W ⊗∇W,V ) =

∆c
U,W ⊗∇W,V , and since Ei ∈ ∆c

U,W ⊗∇W,V , i = 1, 2, . . . , r, then we may suppose
without loss of generality that E ∈ ∆c

U,W ⊗∇W,V .
Choose A ∈ ∆c

U,W and B ∈ ∇W,V , such that E ⊂ A × B. Let x ∈ U ,
and k : T → XU be a ∆c

U,W -simple function defined by k = (
∑r

i=1 pU(xi)) · xχA.

Obviously, k ∈ L1
U,W (m), cf. [19, Theorem 3.8(c)]. Let us denote byR a ring of all

finite unions of pairwise disjoint rectangles C ×D, C ∈ ∆c
U,W , D ∈ ∇W,V , cf. [12,

Theorem E, § 33]. If Fi ∈ R∩ (A×B) for i = 1, 2, . . . , r, then for g =
∑r

i=1 xiχFi

the function s 7→ m̂U,W (g(·, s), A), s ∈ S, is clearly ∇W,V -measurable.
Denote by M1 a class of all sets F1 ∈ ∆c

U,W ⊗ ∇W,V ∩ (A × B) for which
the function s 7→ m̂U,W (g(·, s), A), s ∈ S, is ∇W,V -measurable provided g =∑r

i=1 xiχFi
and F2, . . . , Fr ∈ R ∩ (A × B). Then R ∩ (A × B) ⊂ M1 and since

pU(g(t, s)) ≤ pU(g0(t)) for each (t, s) ∈ T × S, then M1 is a monotone class of
sets by the Lebesgue dominated convergence theorem, see [5, Theorem 17].
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So, M1 = ∆c
U,W ⊗ ∇W,V ∩ (A × B) by [12, Theorem B, § 6]. Similarly, if

M2 is a class of all sets F2 ∈ ∆c
U,W ⊗ ∇W,V ∩ (A × B) for which the function

s 7→ m̂U,W (g(·, s), A), s ∈ S, is ∇W,V -measurable provided g =
∑r

i=1 xiχFi
,

F1 ∈ M1 and F3, . . . , Fr ∈ R ∩ (A × B), then M2 = ∆c
U,W ⊗ ∇W,V ∩ (A × B).

Continuing in this way we get

Mr = ∆c
U,W ⊗∇W,V ∩ (A×B),

which completes the proof of theorem. �
Recall that A ⊂ W 0 is called norming set for YW if pU(y) = supy′⊂A |〈y,y′〉|

for each y ∈ YW , W ∈ W , cf. [22, Definition 2.8.1]. Note that separable Banach
spaces and their duals have countable norming sets.

Theorem 3.3. Let (U,W, V ) ∈ U×W×V and f : T×S → XU be a ∆U,W⊗∇W,V -
measurable function. Then for each E ∈ σ(∆U,W ⊗ ∇W,V ) the function hE is
∇W,V -measurable.

Proof. Let y′n ∈ W 0, n ∈ N, be a countable norming set and let E ∈ σ(∆U,W ⊗
∇W,V ). Then by [5, Theorem 4] holds

hE(s) = m̂U,W (f(·, s), Es) = sup
n∈N

∫
Es

pU(f(·, s)) dvarU(y′nm, ·)

for each s ∈ S. Therefore by [12, Theorem A, § 20] it is enough to prove ∆U,W -
measurability of the function

s 7→
∫

E

pU(f(·, s)) dvarU(y′nm, ·), s ∈ S,

for each n ∈ N. But it follows directly from Theorem 3.2 since by assumption
the function f is ∆U,W ⊗∇W,V -measurable and varU(y′nm, ·) is a σ-additive finite
measure on ∆U,W for each n ∈ N. �

Theorem 3.4. Let (U,W, V ) ∈ U×W×V. If f : T×S → XU is a ∆U,W ⊗∇W,V -
measurable function and f(·, s) ∈ L1

U,W (m) for each s ∈ S, then for each E ∈
σ(∆U,W ⊗∇W,V ) the functions gE and hE are ∇W,V -measurable. Moreover, if the
product measure mU,W ⊗ nW,V exists on ∆U,W ⊗ ∇W,V and if hT×S ∈ L1

W,V (n),

then f ∈ L1
U,V (m⊗ n).

Proof. Let (fn)∞1 be a sequence of ∆U,W ⊗∇W,V -simple functions on T × S, such
that fn(t, s) → f(t, s) and pU(fn(t, s)) ↗ pU(f(t, s)) for each (t, s) ∈ T × S. Then
clearly fn(·, s) ∈ L1

U,W (m) for each n ∈ N and each s ∈ S. Thus, f is ∆c
U,W⊗∇W,V -

measurable. Then by Theorem 3.2 the function hE is ∇W,V -measurable for each
E ∈ σ(∆U,W ⊗∇W,V ). Further, by the Lebesgue dominated convergence theorem,
see [5, Theorem 17], we have

m̂U,W (f(·, s)− fn(·, s), T ) → 0

for each s ∈ S. Let E ∈ σ(∆U,W ⊗∇W,V ) and put

gn,E(s) =

∫
Es

fn(·, s) dm, s ∈ S, n ∈ N.
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According to [21, Lemma 2.5(i)] the functions gn,E, n ∈ N, are ∇W,V -measurable.
Using [19, Lemma 3.13] we get

pW (gn,E(s)− gE(s)) ≤ m̂U,W (fn(·, s)− f(·, s), T ) → 0

as n→∞. So, gn,E(s) → gE(s) for each s ∈ S, which proves ∇W,V -measurability
of gE, because ∇W,V -measurable functions are closed with respect to bornological
limits of sequences.

For the second statement we have to prove that L1
U,V -gauge (m̂⊗ n)U,V (f , ·) is

continuous on σ(∆U,W ⊗∇W,V ). Let (Ek)
∞
1 be a sequence of sets from σ(∆U,W ⊗

∇W,V ), such that Ek ↘ ∅. The assumption f(·, s) ∈ L1
U,W (m) for each s ∈ S and

the Lebesgue dominated convergence theorem implies that hEk
(s) → 0 for each

s ∈ S. Then from hT×S ∈ L1
W,V (n) and the Lebesgue dominated convergence

theorem again we get n̂W,V (hEk
, S) → 0. Then [20, Theorem 2.6] yields

(m̂⊗ n)U,V (f , Ek) ≤ n̂W,V (hEk
, S) → 0,

which completes the proof. �

Theorem 3.5. Let (U,W, V ) ∈ U×W×V. Let f : T×S → XU be a ∆c
U,W⊗∇W,V -

measurable function and for each s ∈ S the function t 7→ f(t, s), t ∈ T , be
∆U,W -integrable. Then for each E ∈ σ(∆U,W ⊗ ∇W,V ) the function gE is ∇W,V -
measurable.

Proof. Put F = {(t, s) ∈ T × S; f(t, s) 6= 0}. Then F ∈ σ(∆c
U,W ⊗ ∇W,V ), and

therefore there exist sets A ∈ σ(∆c
U,W ) and B ∈ σ(∇W,V ) such that F ⊂ A× B.

Choose a sequence (An)∞1 of sets from ∆c
U,W , such that An ↗ A. Obviously,

Fn = {(t, s) ∈ T × S; pU(f(t, s)) < n} ∈ σ(∆c
U,W ⊗∇W,V )

and Fn ↗ F , n ∈ N. Now it is easy to see that

Hn = (An ×B) ∩ Fn ∈ ∆c
U,W ⊗ σ(∇W,V ),

also Hn ↗ F , and f(·, s)χHn ∈ L1
U,W (m) for each n ∈ N and each s ∈ S. Then

by Theorem 3.4 the functions gn,E,

gn,E(s) =

∫
Es

f(·, s)χHn(·, s) dm, n ∈ N, s ∈ S, E ∈ σ(∆U,W ⊗∇W,V )

are ∇W,V -measurable. Since ∆U,W -integrability of function t 7→ f(t, s), t ∈ T , for
each s ∈ S implies that gE(s) = lim

n→∞
gn,E(s) for each E ∈ σ(∆U,W ⊗∇W,V ) and

each s ∈ S, the theorem is proved. �

Theorem 3.6. Let (U,W, V ) ∈ U×W×V. Let f : T×S → XU be a ∆U,W⊗∇W,V -
measurable function and let for each s ∈ S the function f(·, s) be ∆U,W -integrable.
Then for each E ∈ σ(∆U,W ⊗∇W,V ) the function gE is weakly ∇W,V -measurable,
i.e., for each y′ ∈ W 0 the function y′gE is ∇W,V -measurable. Therefore, if YW

is separable, then gE is ∇W,V -measurable for each E ∈ σ(∆U,W ⊗∇W,V ).

Proof. Let E ∈ σ(∆U,W ⊗∇W,V ) and y′ ∈ W 0. Then

y′gE(s) =

∫
Es

f(·, s) dy′m
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for each s ∈ S (see the paragraph after Theorem 3.5 in [19]) and we have

varU(y′m, A) = ŷ′m(A) ≤ pW 0(y′) · m̂U,W (A) < +∞

for each A ∈ ∆U,W . Thus, ŷ′m is continuous on ∆U,W and by Theorem 3.5 y′gE

is ∇W,V -measurable.
For the proof of the second statement see [22, Theorem 3.5.3]. �

Theorem 3.7. Let (U,W, V ) ∈ U×W×V. Let f : T×S → XU be a ∆U,W⊗∇W,V -
measurable function and for each s ∈ S the function f(·, s) be ∆U,W -integrable.
If

fn =
rn∑
i=1

xn,iχEn,i
, xn,i ∈ XU , En,i ∈ ∆U,W ⊗∇W,V , i = 1, 2, . . . , rn, n ∈ N,

is a sequence of ∆U,W ⊗ ∇W,V -simple functions such that fn(t, s) → f(t, s) for
each (t, s) ∈ T × S and if X1

U is the closed span of

X0 =
∞⋃

n=1

rn∑
i=1

xn,i

in XU , then for each s ∈ S the function f(·, s) is integrable with respect to the
restriction of the measure m1

U,W : ∆U,W → L(X1
U ,YW ) and the set of all finite

sums of the form
∑r

j=1 m(Aj)xj, Aj ∈ ∆U,W , xj ∈ X0, j = 1, 2, . . . , r, is a dense
subset of a set {∫

A

f(·, s) dm; A ∈ σ(∆U,W ), s ∈ S
}

of the space YW .

Proof. Under the assumptions of theorem (see also proofs of convergence theorems
in [18]) for each s ∈ S there exist a sequence (Fk(s))

∞
1 of sets from ∆U,W , a set

N(s) ∈ σ(∆U,W ), and a subsequence (nk(s))
∞
1 of natural numbers, such that

lim
k→∞

∫
A

fnk(s)(·, s)χFk(s)∪N(s)(·, s) dm =

∫
A

f(·, s) dm

uniformly with respect to A ∈ σ(∆U,W ). It remains to observe that for each s ∈ S
integrals on the left-hand side of the last equality are of the form

∑r
j=1 m(Aj)xj

with Aj ∈ ∆U,W , xj ∈ X0, j = 1, . . . , r. Note that the (U,W )-semivariation
of the restricted measure m1

U,W : ∆U,W → L(X1
U ,YW ) is less than or equal to

the (U,W )-semivariation of mU,W : ∆U,W → L(XU ,YW ), hence it is finite on
∆U,W . �

As a direct consequence of theorem we have the following result.

Corollary 3.8. Let (U,W, V ) ∈ U ×W × V . Let f : T × S → XU be a ∆U,W ⊗
∇W,V -measurable function and let for each s ∈ S the function f(·, s) be ∆U,W -
integrable. Let {m(A)x; A ∈ ∆U,W} be a separable subset of YW for each x ∈
XU . Then

(i) the set B = {
∫

A
f(·, s) dm; A ∈ σ(∆U,W ), s ∈ S} is a separable subset of

YW ; especially we may choose W ∈ W such that spanB = YW ;
(ii) for each E ∈ σ(∆U,W ⊗∇W,V ) the function gE is ∇W,V -measurable.
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Theorem 3.9. Let (U,W, V ) ∈ U×W×V. Let ∆U,W be generated by a countable
system of subsets of T , let f : T×S → XU be a ∆U,W ⊗∇W,V -measurable function
and for each s ∈ S the function f(·, s) be ∆U,W -integrable. Then

(a) the set
{∫

A
f(·, s) dm; A ∈ σ(∆U,W ), s ∈ S

}
is a separable subset of YW ;

(b) for each E ∈ σ(∆U,W ⊗∇W,V ) the function gE is ∇W,V -measurable; and
(c) the function v,

v(s) = sup
A∈σ(∆U,W )

pW

(∫
A

f(·, s) dm

)
, s ∈ S,

is finite-valued and ∇W,V -measurable.

Proof. Without loss of generality we may assume that ∆U,W is generated by a
countable ring R = {Nn;n ∈ N}, see [12, Theorem C, § 5].

We will prove (a) and (b) together. With respect to Corollary 3.8 it suffices
to show that Yx = {m(A)x; A ∈ ∆U,W} is a separable subset of YW for each
x ∈ XU .

Let x ∈ XU . Put Rn = (N1 ∪ · · · ∪ Nn) ∩R, and Sn = σ(Rn), n ∈ N. Then
clearly ∆U,W = δ(R) =

⋃∞
n=1 Sn. Let us show that a set Y0 of all finite sums of

the form
∑r

i=1 m(Rni
)x is dense in Yx (Y0 is clearly separable).

Let A ∈ ∆U,W . Then there exists an nA, such that A ∈ SnA
. Let hnA

: SnA
→

YW be a control measure for the vector measure m(·)x : SnA
→ YW . Then the

desired assertion directly follows from [12, Theorem D, § 13] applied to hnA
and

from the following inequality

pW (m(A1)x−m(A2)x) ≤ pW (m(A1 − A2)x) + pW (m(A2 − A1)x)

≤ 2‖m(·)x‖U,W (A14A2), A1, A2 ∈ SnA
.

(c) Since A 7→
∫

A
f(·, s)dm, A ∈ σ(∆U,W ), is a (W,σ)-additive vector measure

on a σ-ring, then v is a finite-valued measure, see [10, Theorem IV.10.4]. By [10,
Theorem IV.10.5] and [12, Theorem D] we get

v(s) = sup
n∈N

pW

(∫
Nn

f(·, s) dm

)
for each s ∈ S. Thus part (b) and [12, Theorem A, § 20] imply∇W,V -measurability
of v. �

Theorem 3.10. Let (U,W ) ∈ U × W and XU be a separable space. Then for
each A ∈ σ(∆U,W ) there exists a σ-additive measure λA : σ(∆U,W ) → [0,∞), such
that C ∈ σ(∆U,W ) and

λA(A ∩ C) = 0 ⇒ m̂U,W (A ∩ C) = 0.

Proof. Let A ∈ σ(∆U,W ) and choose a sequence (An)∞1 of sets from ∆U,W , such
that An ↗ A. Since

m̂U,W (C) = sup
y′∈W 0

varU(y′m, C)
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for each C ∈ σ(∆U,W ), see (2.1), then

m̂U,W (A ∩ C) = lim
n→∞

m̂U,W (An ∩ C)

for each C ∈ σ(∆U,W ).
Let us suppose that the theorem is proved for all A ∈ ∆U,W and consider σ-

additive measures λn : σ(∆U,W ) → [0,∞), such that C ∈ σ(∆U,W ) and λn(An ∩
C) = 0 implies m̂U,W (An ∩ C) = 0, n ∈ N. Put

λA(C) =
∞∑

n=1

1

2n

λn(An ∩ C)

1 + λn(T )
, C ∈ σ(∆U,W ).

Obviously, λA has required properties, and therefore it is sufficient to prove the
theorem for each A ∈ ∆U,W .

Let A ∈ ∆U,W and {xk ∈ XU , k ∈ N} be a dense subset of XU . Let for each
k ∈ N

λk : A ∩ σ(∆U,W ) → [0,∞)

be a control measure for vector measure m(·)xk : A ∩ σ(∆U,W ) → YW . Then
clearly

λA(C) =
∞∑

k=1

1

2k

λk(A ∩ C)

1 + λk(A)
, C ∈ σ(∆U,W ),

has the required properties. �

Theorem 3.11. Let (U,W, V ) ∈ U ×W × V. Let f : T × S → XU be a ∆U,W ⊗
∇W,V -measurable function, for each s ∈ S the function f(·, s) be ∆U,W -integrable.
If for each B ∈ σ(∇W,V ) there exists a σ-additive measure λB : σ(∇W,V ) → [0,∞),
such that

λB(B ∩D) = 0 ⇒ n̂W,V (B ∩D) = 0, D ∈ σ(∇W,V ),

then for each E ∈ σ(∆U,W ⊗ ∇W,V ) the function gE is n̂W,V -essentially ∇W,V -
measurable.

Proof. Let E ∈ σ(∆U,W ⊗ ∇W,V ). Consider A ∈ σ(∆U,W ) and B ∈ σ(∇W,V ),
such that E ⊂ A × B and let λB : σ(∇W,V ) → [0,∞) be the corresponding
measure. Let (fn : T → XU)∞1 be a sequence of ∆U,W ⊗ ∇W,V -simple functions,
such that fn(t, s) → f(t, s) for each (t, s) ∈ T × S and let X1

U be the closed
linear span of the union of their ranges in XU . By Theorem 3.7 we may replace
XU by the separable subspace X1

U . By Theorem 3.10 there exists a σ-additive
measure µA : σ(∆U,W ) → [0,∞), such that C ∈ σ(∆U,W ) and µA(A ∩ C) =
0 ⇒ m̂1

U,W (A∩C) = 0, where m̂1
U,W is the (U,W )-semivariation of the restricted

measure m1
U,W : σ(∆U,W ) → L(X1

U ,YW ). Clearly, m̂1
U,W (C) ≤ m̂U,W (C) for each

C ∈ σ(∆U,W ). Obviously,

F =
∞⋃

n=0

{(t, s) ∈ T × S; fn(t, s) 6= 0} ∈ σ(∆U,W )⊗ σ(∇W,V ) = σ(∆U,W ⊗∇W,V ),

where f0 = f . Since µA⊗λB : σ(∆U,W ⊗∇W,V ) → [0,∞) is a σ-additive measure,
by the Egoroff-Luzin theorem there exists a set N ∈ σ(∆U,W ⊗∇W,V ), N ⊂ F , a
sequence (Fk)

∞
1 of set from ∆U,W⊗∇W,V , such that (µA⊗λB)(N) = 0, Fk ↗ F\N ,
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and a sequence (fn)∞1 of functions U -converges uniformly to f on each Fk, k ∈ N.
Clearly,

gE(s) = gE∩(F\N)(s) + gE∩N(s) = lim
k→∞

gE∩Fk
(s) + gE∩N(s)

for each s ∈ S. By Theorem 3.7 each function gE∩Fk
, k ∈ N, is ∇W,V -measurable.

Thus, it is sufficient to prove that the function gE∩N is n̂W,V -null.
Obviously, {s ∈ S;gE∩N(s) 6= 0} ⊂ B. Since

0 = (µA ⊗ λB)(A×B ∩N) =

∫
B

µA(A ∩N s) dλB,

there exists a set D ∈ σ(∇W,V ) with λB(B ∩D) = 0 such that µA(A ∩ N s) = 0
for each s ∈ B \D, see [12, Theorem A, § 36]. But then m̂1

U,W (A∩N s) = 0, and
therefore gE∩N(s) = 0 for each s ∈ B \D. Thus {s ∈ S;gE∩N(s) 6= 0} ⊂ B ∩D.
However, n̂W,V (B ∩ D) = 0, and therefore gE∩N is n̂W,V -null, which completes
the proof. �

Remark 3.12. Let (U,W, V ) ∈ U×W×V . Let f : T×S → XU be a ∆U,W⊗∇W,V -
measurable function and for each s ∈ S the function f(·, s) be ∆U,W -integrable.
Then ∇W,V -measurability of function gE for each E ∈ σ(∆U,W ⊗∇W,V ) depends
naturally on the function f . Particularly, if the range of f is a relatively σ-compact
set on XU , then [18, Theorem 3.2] and [18, Theorem 4.4] (on interchange of limit
and integral) immediately imply ∇W,V -measurability of the function gE for each
E ∈ σ(∆U,W ⊗∇W,V ).

4. The general Fubini theorem

Lemma 4.1. Let (U,W, V ) ∈ U×W×V, and f : T×S → XU be a ∆U,W⊗∇W,V -
measurable function. Then there exist sequences (An)∞1 ∈ ∆U,W , (Bn)∞1 ∈ ∇W,V ,
such that f is δ({An ×Bn}n∈N)-measurable.

Proof. By definition of a ∆U,W⊗∇W,V -measurable function there exists a sequence
(fk)

∞
1 of ∆U,W⊗∇W,V -simple functions, such that fk(t, s) → f(t, s) for each (t, s) ∈

T × S. Each fk is of the form fk =
∑rk

i=1 xk,iχEk,i
, where xk,i ∈ XU , Ek,i ∈

∆U,W ⊗∇W,V , Ek,i ∩ Ek,j = ∅ for i 6= j, i, j = 1, 2, . . . , rk. Since ∆U,W ⊗∇W,V is
the smallest δ-ring over all rectangles A×B, A ∈ ∆U,W , B ∈ ∇W,V , the obviously
valid δ-version of [12, Theorem D, § 5] implies that for each couple (k, i), k ∈ N,
i = 1, 2, . . . , rk, there exist sequences (Ak,i,j)

∞
j=1 ∈ ∆U,W , (Bk,i,j)

∞
j=1 ∈ ∇W,V , such

that

Ek,i ∈ δ({Ak,i,j ×Bk,i,j}j∈N).

By a suitable enumeration of the countable set

{(k, i, j); k ∈ N, i = 1, 2, . . . , rk, j ∈ N}

we immediately get the desired sequences (An)∞1 ∈ ∆U,W and (Bn)∞1 ∈ ∇W,V . �
The next lemma is a direct consequence of the Orlicz-Pettis theorem, see [22,

Theorem 3.2.3] and [10, Theorem IV.10.1].
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Lemma 4.2. Let V ∈ V and xn,k ∈ ZV , k, n ∈ N. Let for each n ∈ N the series
∞∑

n=1

zn,k be unconditionally V -bornologically convergent (in ZV ), and let for each

In ⊂ N the series
∞∑

n=1

∑
k∈In

zn,k be unconditionally V -bornologically convergent.

Then the series
∞∑

k=1

∞∑
n=1

zn,k is unconditionally V -bornologically convergent.

Using the above lemmas we prove the following

Lemma 4.3. Let (U,W, V ) ∈ U×W×V. Let f : T×S → XU be a ∆U,W ⊗∇W,V -
measurable function, for each s ∈ S the function f(·, s) be ∆U,W -integrable, and
for each E ∈ σ(∆U,W ⊗∇W,V ) the function gE be ∇W,V -integrable. Then the set
function

E 7→
∫

S

∫
Es

f(·, s) dmdn, E ∈ σ(∆U,W ⊗∇W,V ),

is a (V, σ)-additive measure on σ(∆U,W ⊗∇W,V ).

Proof. Let (Ek)
∞
1 be a sequence of pairwise disjoint sets from σ(∆U,W ⊗ ∇W,V )

and put E0 =
∞⋃

k=1

Ek. We have to show that

∫
S

∫
Es

f(·, s) dmdn =
∞∑

k=1

∫
S

∫
Es

k

f(·, s) dmdn

in the sense of unconditional V -bornological convergence. By [18, Theorem 4.4]
(on interchange of limit and integral) it is enough to show that the series on the
right-hand side is unconditionally V -bornologically convergent.

By Lemma 4.1 there exists a countable system A ⊂ ∆U,W , such that Ek ∈
σ(A)⊗ σ(∇W,V ) for each k ∈ N. Choose the sets A ∈ σ(A), B ∈ σ(∇W,V ), such
that E0 ⊂ A × B, and choose the sequence (Bn)∞1 of sets from ∇W,V , such that
Bn ↗ B and B0 = ∅. By Theorem 3.9(c) the function v,

v(s) = sup
A1∈σ(A)

pW

(∫
A1∩Es

0

f(·, s) dm

)
, s ∈ S,

is finite-valued and ∇W,V -measurable. Thus,

Fn = {s ∈ S; 0 ≤ v(s) < n} ∈ σ(∇W,V )

for each n = 0, 1, . . . , and Fn ↗. Put

Gn = Bn ∩ Fn \Bn−1 ∩ Fn−1, n ∈ N.

Then Gn, n ∈ N, are pairwise disjoint elements of ∇W,V , and
∞⋃

n=1

Gn ⊂ B. Put

zn,k =

∫
Gn

∫
Es

k

f(·, s) dmdn, n, k ∈ N.
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Using Lemma 4.1 we will show that the series
∞∑

n=1

∞∑
k=1

zn,k is unconditionally V -

bornologically convergent, and this will prove the lemma since by [18, Theo-
rem 4.4] we have

∞∑
n=1

∞∑
k=1

zn,k =
∞∑

n=1

∞∑
k=1

∫
Gn

∫
Es

k

f(·, s) dmdn =
∞∑

k=1

∫
S

∫
Es

k

f(·, s) dmdn.

Therefore, it remains to verify the validity of assumptions of Lemma 4.1.
Let n ∈ N be fixed. We will show that for each z′ ∈ V 0 the equality〈∫

Gn

∫
Es

0

f(·, s) dmdn, z′

〉
=

〈
∞∑

k=1

∫
Gn

∫
Es

k

f(·, s) dmdn, z′

〉
=

〈
∞∑

k=1

zn,k, z
′

〉
holds in the sense of unconditional V -bornological convergence, and so by Orlicz-
Pettis theorem we will prove the unconditional V -bornological convergence of
∞∑

k=1

zn,k.

Since the function f(·, s) is ∆U,W -integrable for each s ∈ S, by [18, Theorem 4.4]
we immediately get that for each s ∈ S∫

Es
0

f(·, s) dm =
∞∑

k=1

∫
Es

k

f(·, s) dm

in the sense of unconditional V -bornological convergence. ¿From the definition
of the function v it is clear that

pW

(∑
k∈K

∫
Es

k

f(·, s)dm

)
≤ v(s)

for each s ∈ S and each K ⊂ N. Thus, for any finite K ⊂ N by [19, Lemma 3.3]
we have ∣∣∣∣∣

〈∑
k∈K

∫
Gn

∫
Es

k

f(·, s) dmdn, z′

〉∣∣∣∣∣
≤ pV 0(z′) · pV

(∫
Gn

(∑
k∈K

∫
Es

k

f(·, s) dm

)
dn

)

≤ pV 0(z′) · sup
s∈Gn

pW

(∑
k∈K

∫
Es

k

f(·, s) dm

)
· n̂W,V (Gn)

≤ pV 0(z′) · sup
s∈Gn

v(s) · n̂W,V (Bn)

≤ pV 0(z′) · n · n̂W,V (Bn) < +∞.

Therefore, the series〈
∞∑

k=1

∫
Gn

∫
Es

k

f(·, s) dmdn, z′

〉
=

∞∑
k=1

∫
Gn

∫
Es

k

f(·, s) dmd(z′n)
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is unconditionally V -bornologically convergent, thus by [18, Theorem 4.4] we get
∞∑

k=1

〈zn,k, z
′〉 =

∞∑
k=1

∫
Gn

∫
Es

k

f(·, s) dmd(z′n) =

∫
Gn

∫
Es

0

f(·, s) dmd(z′n)

=

〈∫
Gn

∫
Es

0

f(·, s) dmdn, z′

〉
,

which was to be shown.
Now, let In ⊂ N, n ∈ N, and put

E =
∞⋃

n=1

(T ×Gn) ∩

(⋃
k∈In

Ek

)
.

Since Gn, n ∈ N, are pairwise disjoint, the ∇W,V -integrability of gE implies that
the series

∞∑
n=1

∫
Gn

∫
(
S

k∈In
Ek)

s
f(·, s) dmdn =

∞∑
n=1

(∑
k∈In

zn,k

)
is unconditionally V -bornologically convergent, i.e., the assumptions of Lemma 4.1
are satisfied which was to be shown. �

Lemma 4.4. Let (U,W ) ∈ U × W, and f : T → XU be a ∆U,W -measurable
function. Then there exists a σ-additive measure λ : σ(∆U,W ) → [0,∞), such that
N ∈ σ(∆U,W ), λ(N) = 0 implies that fχN is ∆U,W -integrable and

∫
N

f dm = 0.

Proof. Let (fn : T → XU)∞1 be a sequence of ∆U,W -simple functions such that
fn(t) → f(t) for each t ∈ T . To each vector measure A 7→

∫
A
fn dm, A ∈ σ(∆U,W ),

n ∈ N, take a control measure λn : σ(∆U,W ) → [0,∞). Now it is sufficient to put

λ(A) =
∞∑

n=1

1

2n

λn(A)

1 + λn(T )
, A ∈ σ(∆U,W ),

which has the desired properties. �

Lemma 4.5. Let (U,W, V ) ∈ U×W×V. Let f : T×S → XU be a ∆U,W ⊗∇W,V -
measurable function and for each s ∈ S the function f(·, s) be ∆U,W -integrable.
Then for each set E ∈ σ(∆U,W ⊗∇W,V ) the function gE is ∇W,V -measurable.

Proof. Let E ∈ σ(∆U,W ⊗ ∇W,V ). Since the function fχE is ∆U,W ⊗ ∇W,V -
measurable, then by Lemma 4.1 there exists a sequence (An)∞1 of sets from
σ(∆U,W ), such that fχE is δ({A1, . . . , An, . . . })⊗∇W,V -measurable. By [7, The-
orem 4] for each s ∈ S the function fχE(·, s) is integrable with respect to the
restriction

m∗ = m : δ({A1, . . . , An, . . . }) → L(XU ,YW ),

and there holds

gE(s) =

∫
Es

f(·, s) dm =

∫
Es

f(·, s) dm∗ = g∗E(s).

Since δ({A1, . . . , An, . . . }) is σ-generated, then gE = g∗E, and by Theorem 3.9(b)
is ∇W,V -measurable. �
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Finally, now we are able to prove the main theorem of this paper – the general
Fubini theorem for the Dobrakov integral in C. B. L. C. S.

Theorem 4.6. (Fubini) Let (U,W, V ) ∈ U ×W × V. Let the product measure
mU,W ⊗ nW,V : ∆U,W ⊗ ∇W,V → L(XU ,ZV ) exist and let f : T × S → XU be a
∆U,W ⊗∇W,V -measurable function. Further, let for each s ∈ S the function f(·, s)
be ∆U,W -integrable. Then the following conditions are equivalent:

(a) for each E ∈ σ(∆U,W ⊗∇W,V ) the function f is ∆U,W ⊗∇W,V -integrable;
(b) for each E ∈ σ(∆U,W ⊗∇W,V ) the function gE is n̂W,V -essentially ∇W,V -

integrable.

If these conditions are satisfied, then∫
E

f d(m⊗ n) =

∫
S

∫
Es

f(·, s) dmdn (4.1)

for each E ∈ σ(∆U,W ⊗∇W,V ).

Proof. Without loss of generality we may suppose that for each E ∈ σ(∆U,W ⊗
∇W,V ) the function gE is ∇W,V -measurable. Let (fn : T → XU)∞1 be a sequence
of ∆U,W ⊗∇W,V -simple functions, such that fn(t, s) → f(t, s) and pU(fn(t, s)) ↗
pU(f(t, s)) for each (t, s) ∈ T × S. For each vector measure

E 7→
∫

E

fn d(m⊗ n), E ∈ σ(∆U,W ⊗∇W,V ), n ∈ N,

take a control measure λn : σ(∆U,W ⊗∇W,V ) → [0,∞) and put

λ(E) =
∞∑

n=1

1

2n

λn(E)

1 + λn(T )
, E ∈ σ(∆U,W ⊗∇W,V ).

Let X1
U be the closed linear span of the set {fn(t, s); (t, s) ∈ T ×S, n ∈ N}. Then

X1
U is a separable Banach space and according to Theorem 3.7 we may replace

XU by X1
U . Hence, we may assume that XU is a separable Banach space.

Take A0 ∈ σ(∆U,W ) and B0 ∈ σ(∇W,V ) such that

F = {(t, s) ∈ T × S; f(t, s) 6= 0} ⊂ A0 ×B0.

Then by Theorem 3.10 there exists a σ-additive measure νA0 : σ(∆U,W ) → [0,∞)
such that C ∈ σ(∆U,W ) and νA0(A0 ∩ C) = 0 ⇒ m̂U,W (A0 ∩ C) = 0.

Let E ∈ σ(∆U,W ⊗ ∇W,V ). Then by Lemma 4.5 the function gE is ∇W,V -
measurable. Therefore by Lemma 4.4 there exists a σ-additive measure ηE :
σ(∇W,V ) → [0,∞) such that D ∈ σ(∇W,V ), ηE(D) = 0 implies gEχD is ∇W,V -
integrable and

∫
D

gE dn = 0. Put

µE(G) = λ(G) + (νA0 ⊗ ηE)(G), G ∈ σ(∆U,W ⊗∇W,V ).

Then from the above stated results and [12, Theorem A, § 36] it follows that if
N ∈ σ(∆U,W ⊗∇W,V ) and µE(N) = 0, then the function fχN∩E is ∆U,W ⊗∇W,V -
integrable, the function gN∩E is ∇W,V -integrable and∫

N∩E

f d(m⊗ n) =

∫
S

gN∩E dn = 0.
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According to the Egoroff-Lusin theorem there is a setN ∈ σ(∆U,W⊗∇W,V ) with
µE(N) = 0, a sequence (Fk)

∞
1 of sets from ∆U,W ⊗∇W,V , such that Fk ↗ F \N ,

and the sequence (fn)∞1 of functions U -converging uniformly to f on each Fk,
k ∈ N. Thus by [20, Theorem 3.1] the function fχE∩F is ∆U,W ⊗∇W,V -integrable
for each k ∈ N, the function gE∩F is ∇W,V -integrable and∫

G∩E∩Fk

f d(m⊗ n) =

∫
S

gG∩E∩Fk
dn =

∫
S

∫
(G∩E∩Fk)s

f(·, s) dm dn (4.2)

for each G ∈ σ(∆U,W ⊗∇W,V ). Since by assumption the function f(·, s) is ∆U,W -
integrable for each s ∈ S, then

gE∩Fk
(s) =

∫
(E∩Fk)s

f(·, s) dm →
∫

[E∩(F\N)]s
f(·, s) dm

= gE∩(F∩N)(s) = gE\N(s) (4.3)

for each s ∈ S.
(a)⇒(b) and (4.1). Let us suppose that f is ∆U,W ⊗ ∇W,V -integrable and

B ∈ σ(∇W,V ). Then∫
B

gE∩F dn =

∫
(A0×B)∩E∩Fk

f d(m⊗ n) →
∫

(A0×B)∩(F\N)∩E

f d(m⊗ n)

=

∫
(A×B)∩E

f d(m⊗ n). (4.4)

Then [18, Theorem 4.4], (4.3) and (4.4) imply that the function gE\N , hence also
gE, is ∇W,V -integrable and thus∫

B

gE dn =

∫
B

gE\N dn =

∫
(A0×B)∩E

f d(m⊗ n)

for each B ∈ σ(∇W,V ). Taking B = B0 we get the equality (4.1).
(b)⇒(a) and (4.1). Let us suppose that for each E ∈ σ(∆U,W ⊗ ∇W,V ) the

function gE is ∇W,V -integrable. Take E = A0 × B0 in the proof of (a)⇒(b)
and (4.1) above. Then for each k ∈ N the function fχFk

= fχ(A0×B0)∩Fk
is

∆U,W ⊗∇W,V -integrable and

(fχFk
)(t, s) → (fχF\N)(t, s) (4.5)

for each (t, s) ∈ T × S.
Since by Lemma 4.3 the set function

G 7→
∫

S

gG dn, G ∈ σ(∆U,W ⊗∇W,V ),

is a (V, σ)-additive measure, then by (4.2) we have∫
G

fχFk
d(m⊗ n) =

∫
(A0×B0)∩G∩Fk

f d(m⊗ n) =

∫
S

g(A0×B0)∩G∩Fk
dn

=

∫
S

gFk∩G dn →
∫

S

gG∩(F\N) dn =

∫
S

gG dn. (4.6)
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Then [18, Theorem 4.4], (4.5) and (4.6) imply ∆U,W ⊗∇W,V -integrability of func-
tion f and the equality (4.1). The theorem is proved. �
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17. J. Haluška, On integration in complete bornological locally convex spaces, Czechoslovak

Math. J. 47 (1997), 205–219.
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