

Banach J. Math. Anal. 4 (2010), no. 2, 45–52

BANACH JOURNAL OF MATHEMATICAL ANALYSIS ISSN: 1735-8787 (electronic) www.emis.de/journals/BJMA/

ON THE SOLUBILITY OF TRANSCENDENTAL EQUATIONS IN COMMUTATIVE C*-ALGEBRAS

MARIO GARCÍA ARMAS^{1*} AND CARLOS SÁNCHEZ FERNÁNDEZ¹

Communicated by K. Jarosz

ABSTRACT. It is known that C(X) is algebraically closed if X is a locally connected, hereditarily unicoherent compact Hausdorff space. For such spaces, we prove that if $F : C(X) \to C(X)$ is an entire function in the sense of Lorch, i.e., is given by an everywhere convergent power series with coefficients in C(X), and satisfies certain restrictions, then it has a root in C(X). Our results generalizes the monic algebraic case.

1. INTRODUCTION

Let X be a compact Hausdorff space and let C(X) be the Banach algebra of complex-valued continuous functions on X. We say that $F : C(X) \to C(X)$ is *entire* (in the sense of Lorch) if it is Fréchet differentiable at every point $w \in C(X)$ and its differential is given by a multiplication operator $L_w(h) = F'(w)h$, for some $F'(w) \in C(X)$ (see [6] for details). We denote the set of entire functions by $\mathcal{H}(C(X))$ and make it into a unital algebra with the usual operations. It is well known that $F \in \mathcal{H}(C(X))$ if and only if it admits a power series expansion

$$F(w) = \sum_{n=0}^{\infty} a_n w^n, \qquad w \in C(X),$$

Date: Received: 30 November 2009; Accepted: 7 January 2010.

^{*} Corresponding author.

²⁰⁰⁰ Mathematics Subject Classification. Primary 46J10; Secondary 46T25.

Key words and phrases. Banach algebras of continuous functions, transcendental equations, entire functions.

where $a_n \in C(X)$ for all $n \ge 0$, $\limsup_n ||a_n||^{1/n} = 0$ and the series converges in norm for each fixed $w \in C(X)$.

To any entire function F, we may associate the map $X \times \mathbb{C} \to \mathbb{C}$ defined by

$$(x,z) \mapsto \sum_{n=0}^{\infty} a_n(x) z^n \left(= F\left(z \mathbb{1}_{C(X)}\right)(x)\right), \tag{1.1}$$

which is easily seen to be continuous on $X \times \mathbb{C}$ and holomorphic with respect to z for $x \in X$ fixed. On the other hand, it is obvious that the above map uniquely determines F. By a customary abuse of notation, we also write F for the map in (1.1); it should be clear from the context which case we are referring to.

We say that $F \in \mathcal{H}(C(X))$ has a root in C(X), if there exists $w \in C(X)$ such that F(x, w(x)) = 0 for all $x \in X$. If X is a locally connected compact Hausdorff space, it was observed by Miura and Niijima [7] that C(X) is algebraically closed, i.e., every monic polynomial with coefficients in the algebra has at least one root in the algebra, if and only if X is hereditarily unicoherent (see also Honma and Miura [4]). We recall that X is said to be hereditarily unicoherent, if the intersection $A \cap B$ is connected for all closed connected subsets A, B of X. A short, but accurate introduction to the state of the art in monic algebraic equations can be found in Kawamura and Miura [5].

However, if we consider more general functions in $\mathcal{H}(C(X))$, the existence of continuous roots is no longer guaranteed, even if X is as simple as the unit interval. For example, the function $F(x, z) = x^2 z - x$ does not have a root in C([0, 1]). We now introduce two phenomena that arise in the preceding example and have a strong relation with the existence of solutions of the equation F(w) = 0.

Definition 1.1. Let X be a compact Hausdorff space. A function $F \in \mathcal{H}(C(X))$ is said to be *degenerate* at $x_0 \in X$ if the map $z \mapsto F(x_0, z)$ is constant; otherwise, it is said to be *nondegenerate* at x_0 .

Definition 1.2. Let X be a compact Hausdorff space, let $Y \subset X$ be a connected subset and $x_0 \in \overline{Y} \setminus Y$. A function $w \in C(Y)$ is said to be an *asymptotic root* of $F \in \mathcal{H}(C(X))$ if F(x, w(x)) = 0 for all $x \in Y$ and

$$\lim_{x \to x_0} w(x) = \infty, \quad x \in Y.$$

The aim of this paper is to prove that if X is a connected, locally connected, hereditarily unicoherent compact Hausdorff space, then any nowhere degenerate function $F \in \mathcal{H}(C(X))$ with no asymptotic roots, satisfying $F(x_0, z_0) = 0$, has at least one root $w \in C(X)$ such that $w(x_0) = z_0$. It is easily seen that monic polynomials are nondegenerate at every point of X and do not have asymptotic roots. Consequently, our result generalizes that of Miura and Niijima [7].

It is important to mention that Gorin and Sánchez Fernández [2] studied the case where X is a connected, locally connected, hereditarily unicoherent, compact metric space and showed that any nowhere degenerate function $F \in \mathcal{H}(C(X))$ with no asymptotic arcs, satisfying the condition $F(x_0, z_0) = 0$, has at least one root $w \in C(X)$ such that $w(x_0) = z_0$ (for a definition of asymptotic arc, see [2]). In our work, we do not assume that X is a first-countable space.

2. Existence of Roots

We start by pointing out a very useful lemma, which arises naturally from Rouché's Theorem.

Lemma 2.1. Let X be a compact Hausdorff space, $F \in \mathcal{H}(C(X))$ and pick $x_0 \in X$ such that the map $z \mapsto F(x_0, z)$ has a zero z_0 of multiplicity n. Then, there exist an open disk $D_r(z_0)$ and a neighborhood V of x_0 such that

$$F(x,z) = P(x,z) G(x,z), \qquad (x,z) \in V \times D_r(z_0),$$

where $P(x, z) = z^n + a_1(x)z^{n-1} + \ldots + a_n(x)$ is a monic polynomial with coefficients in C(V) satisfying $P(x_0, z) = (z - z_0)^n$ and G never vanishes in $V \times D_r(z_0)$.

Proof. Set r > 0 such that the map $z \mapsto F(x_0, z)$ has no roots in $D_r(z_0) \setminus \{z_0\}$ and write $\Gamma = \{z \in \mathbb{C} : |z - z_0| = r\}$. Also, write $m = \min_{\Gamma} |F(x_0, z)| > 0$. By a standard compactness argument, we can find a neighborhood V of x_0 such that $|F(x, z) - F(x_0, z)| < m$ for all $x \in V$ and $z \in \Gamma$. Then, an application of Rouché's Theorem shows that $z \mapsto F(x, z)$ has exactly n zeros in $D_r(z_0)$, counting multiplicities, whenever $x \in V$.

For any $x \in V$, we denote the zeros of $z \mapsto F(x, z)$ in $D_r(z_0)$ by $z_1(x), \ldots, z_n(x)$, taken in any order and we define

$$P(x,z) = (z - z_1(x)) \dots (z - z_n(x)) = z^n + a_1(x)z^{n-1} + \dots + a_n(x).$$

Obviously, we have $P(x_0, z) = (z - z_0)^n$. Now, consider the central symmetric functions

$$s_k(x) = \sum_{i=1}^n (z_i(x))^k, \qquad k \ge 0.$$

Since $z_1(x), \ldots, z_n(x)$ are the zeros of $z \mapsto F(x, z)$ in the interior of Γ , it is well known (and easily verified) that

$$s_k(x) = \frac{1}{2\pi i} \int_{\Gamma} z^k \frac{\frac{\partial F}{\partial z}(x,z)}{F(x,z)} dz.$$

Consequently, $s_k \in C(V)$ for all $k \ge 0$. It is also well known that the functions s_k are connected to the functions a_k via the so-called Newton identities. Therefore, the continuity of a_k for $1 \le k \le n$ can be established by an easy induction.

Finally, for $(x, z) \in V \times D_r(z_0)$, define G(x, z) as the quotient F(x, z)/P(x, z)if $P(x, z) \neq 0$ and set G(x, z) = 1 otherwise.

Before going any further, we need some topological remarks. A good exposition of such facts can be found in [7], a great deal of which we reproduce for completeness. Let X be a connected topological space. A point $p \in X$ separates the distinct points $a, b \in X \setminus \{p\}$ if there exist disjoint open sets A and B such that $a \in A, b \in B$ and $X \setminus \{p\} = A \cup B$. If the point p belongs to every connected closed subset of X containing a and b, we say that p cuts X between a and b. If X is a locally connected and connected compact Hausdorff space, then p cuts X between a and b if and only if p separates the points a and b (cf. [3, Theorem 3-6]). If X is a connected compact Hausdorff space, there exists a minimal connected closed subset, with respect to set inclusion, containing both a and b (cf. [3, Theorem 2-10]). If X is hereditarily unicoherent, such a minimal set is unique and we denote it by E[a, b]. Clearly, every point in $E[a, b] \setminus \{a, b\}$ cuts X between a and b. Therefore, if we assume that X is also locally connected, such points also separate a and b. We define the separation order \leq in E[a, b] the following way: for distinct points $p, q \in E[a, b]$, we say that $p \prec q$ if p = a or p separates a and q. Then, we write $p \preceq q$ if p = q or $p \prec q$. Such choice makes E[a, b] into a totally ordered space (cf. [3, Theorem 2-21]). If we define the order topology in E[a, b] the usual way, then it coincides with the induced topology in E[a, b] (cf. [3, Theorem 2-25]). Also, by [3, Theorem 2-26], every non-empty subset of E[a, b] has a least upper bound, i.e., E[a, b] is order-complete.

To avoid repetitions, we assume henceforth that X is a connected, locally connected, hereditarily unicoherent compact Hausdorff space, unless stated otherwise.

Lemma 2.2. The following two properties hold:

i-) Any connected subset of X containing a and b, must contain E[a, b].

ii-) An arbitrary intersection of connected subsets of X is either empty or connected.

Proof. The first part is a direct consequence of the fact that any point in the set $E[a, b] \setminus \{a, b\}$ separates a and b. For the second part, let $\{M_{\alpha}\}$ be a collection of connected subsets of X and suppose that $\bigcap_{\alpha} M_{\alpha}$ has at least two points. Given any pair of distinct points $a, b \in \bigcap_{\alpha} M_{\alpha}$, we must have $E[a, b] \subset M_{\alpha}$ for all α , whence we obtain $E[a, b] \subset \bigcap_{\alpha} M_{\alpha}$. The connectedness of $\bigcap_{\alpha} M_{\alpha}$ is now obvious. \Box

The above lemma will be used very often later.

Lemma 2.3. Let $D \subset X$ be connected and $x^* \in \overline{D} \setminus D$. Suppose that the function $F \in \mathcal{H}(C(X))$ is nondegenerate at x^* and consider $w \in C(D)$ such that F(x, w(x)) = 0 for all $x \in D$. Then, there exists the limit

$$\lim_{x \to x^*} w(x), \quad x \in D,$$

in the Riemann sphere.

Proof. Denote the Riemann sphere by $\widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ and let $\{U_{\alpha}\}_{\alpha \in I}$ be a local basis at x^* consisting of connected open sets. It is readily seen that the family $\mathcal{F} = \{\overline{w(D \cap U_{\alpha})} : \alpha \in I\}$ is a filterbase in $\widehat{\mathbb{C}}$. Since the latter is compact, \mathcal{F} has at least one accumulation point, i.e.,

$$\mathcal{F}_{ac} = \bigcap_{\alpha \in I} \overline{w(D \cap U_{\alpha})} \neq \emptyset$$

Next, by Lemma 2.2, it is easy to see that $D \cap U_{\alpha}$ is connected for all $\alpha \in I$ and the continuity of w implies that $\overline{w(D \cap U_{\alpha})}$ is also connected. Suppose that \mathcal{F}_{ac} is not connected, i.e., there exist disjoint open sets $A, B \subset \widehat{\mathbb{C}}$ such that $\mathcal{F}_{ac} \subset A \cup B$, $\mathcal{F}_{ac} \cap A \neq \emptyset$ and $\mathcal{F}_{ac} \cap B \neq \emptyset$. Note that we can write

$$\bigcap_{\alpha \in I} \overline{w(D \cap U_{\alpha})} \cap \left(\widehat{\mathbb{C}} \setminus (A \cup B)\right) = \mathcal{F}_{ac} \cap \left(\widehat{\mathbb{C}} \setminus (A \cup B)\right) = \emptyset$$

and accordingly, the compactness of $\widehat{\mathbb{C}}$ implies the existence of a finite set of indices $\alpha_1, \ldots, \alpha_n \in I$ such that $\overline{w(D \cap U_{\alpha_1})} \cap \ldots \cap \overline{w(D \cap U_{\alpha_n})} \cap (\widehat{\mathbb{C}} \setminus (A \cup B)) = \emptyset$. Since \mathcal{F} is a filterbase, we can find $\beta \in I$ such that $\overline{w(D \cap U_{\beta})} \subset \overline{w(D \cap U_{\alpha_1})} \cap \ldots \cap \overline{w(D \cap U_{\alpha_n})}$ and thus, $\overline{w(D \cap U_{\beta})} \subset A \cup B$. However, as $\mathcal{F}_{ac} \subset \overline{w(D \cap U_{\beta})}$, we must have $\overline{w(D \cap U_{\beta})} \cap A \neq \emptyset$ and $\overline{w(D \cap U_{\beta})} \cap B \neq \emptyset$. Hence, $\overline{w(D \cap U_{\beta})}$ cannot be connected, which is absurd.

We assume, towards contradiction that \mathcal{F}_{ac} contains at least two points. Let $\epsilon > 0$ be arbitrary and let $z^* \in \mathcal{F}_{ac}, z^* \neq \infty$. Pick $\delta > 0$ and a neighborhood U_{γ} of x^* with $\gamma \in I$ such that $|F(x, z) - F(x^*, z^*)| < \epsilon$ whenever $x \in U_{\gamma}$ and $|z - z^*| < \delta$. Since $z^* \in \overline{w(D \cap U_{\gamma})}$, there exists $x_{\gamma} \in D \cap U_{\gamma}$ such that $|w(x_{\gamma}) - z^*| < \delta$, whence we obtain that $|F(x_{\gamma}, w(x_{\gamma})) - F(x^*, z^*)| < \epsilon$. Given that $F(x_{\gamma}, w(x_{\gamma})) = 0$, we must have $|F(x^*, z^*)| < \epsilon$. Since ϵ is arbitrary, $F(x^*, z^*) = 0$. Therefore, any finite point of \mathcal{F}_{ac} is a root of $z \mapsto F(x^*, z)$. Since F is nondegenerate at $x^*, z \mapsto F(x^*, z)$ is a non-constant entire function and therefore has at most countably many roots. As a result, \mathcal{F}_{ac} is at most countable. Since it is also a non-empty, connected subset of $\widehat{\mathbb{C}}$, we get our desired contradiction and conclude that \mathcal{F}_{ac} reduces to a single point. Then, it is straightforward to see that such point must be the limit of w(x) as $x \to x^*$.

We now prove the main result of the paper.

Theorem 2.4. Let $F \in \mathcal{H}(C(X))$ be a nowhere degenerate function, having no asymptotic roots and assume that there exist $x_0 \in X$ and $z_0 \in \mathbb{C}$ such that $F(x_0, z_0) = 0$. Then there exists $w \in C(X)$ such that $w(x_0) = z_0$ and F(x, w(x)) = 0 for all $x \in X$.

Proof. Let \mathfrak{D} be the set of pairs (D, w), where $D \subset X$ is a connected subset containing $x_0, w \in C(D), w(x_0) = z_0$ and F(x, w(x)) = 0 for all $x \in X$. The family \mathfrak{D} is not empty, as it contains the pair (D_0, w_0) , where $D_0 = \{x_0\}$ and $w_0: D_0 \to \mathbb{C}$ is defined by $w_0(x_0) = z_0$. We define a partial order in \mathfrak{D} as follows: we write $(D_1, w_1) \leq (D_2, w_2)$ if $D_1 \subset D_2$ and $w_2|_{D_1} = w_1$.

Let $\{(D_{\alpha}, w_{\alpha})\}_{\alpha \in I}$ be a chain in \mathfrak{D} . Set $\widetilde{D} = \bigcup_{\alpha} D_{\alpha}$ and define $\widetilde{w} : \widetilde{D} \to \mathbb{C}$ by $\widetilde{w}(x) = w_{\alpha}(x)$, if $x \in D_{\alpha}$. It is obvious that \widetilde{D} is a connected subset of X containing x_0 and \widetilde{w} is a well defined function such that $\widetilde{w}(x_0) = z_0$ and $F(x, \widetilde{w}(x)) = 0$ for all $x \in \widetilde{D}$.

We subsequently prove that \widetilde{w} is continuous on \widetilde{D} . Let $\widetilde{x} \in \widetilde{D}$ be arbitrary and consider a local basis $\{U_{\beta}\}_{\beta \in J}$ at \widetilde{x} consisting of connected open sets. The family $\mathcal{F} = \{\overline{\widetilde{w}(\widetilde{D} \cap U_{\beta})} : \beta \in J\}$ may be regarded as a filterbase in $\widehat{\mathbb{C}}$. If we denote its set of accumulation points by $\mathcal{F}_{ac} = \bigcap_{\beta} \overline{\widetilde{w}(\widetilde{D} \cap U_{\beta})}$, it is obvious that $\widetilde{w}(\widetilde{x}) \in \mathcal{F}_{ac}$, since $\widetilde{x} \in \widetilde{D} \cap U_{\beta}$ for all $\beta \in J$.

We show that $\widetilde{w}(D \cap U_{\beta})$ is connected for all $\beta \in J$. Suppose on the contrary that there exist two disjoint open sets $A, B \subset \widehat{\mathbb{C}}$ such that $\widetilde{w}(\widetilde{D} \cap U_{\beta}) \subset A \cup B$, $\widetilde{w}(\widetilde{D} \cap U_{\beta}) \cap A \neq \emptyset$ and $\widetilde{w}(\widetilde{D} \cap U_{\beta}) \cap B \neq \emptyset$. Pick $\xi_A \in \widetilde{w}(\widetilde{D} \cap U_{\beta}) \cap A$ and $\xi_B \in \widetilde{w}(\widetilde{D} \cap U_{\beta}) \cap B$. Then, we can find $x_A, x_B \in \widetilde{D} \cap U_{\beta}$ such that $\widetilde{w}(x_A) = \xi_A$ and $\widetilde{w}(x_B) = \xi_B$. Note that

$$x_A \in \left(\bigcup_{\alpha \in I} D_\alpha\right) \cap U_\beta = \bigcup_{\alpha \in I} (D_\alpha \cap U_\beta)$$

and accordingly, there exists an index $\alpha_1 \in I$ such that $x_A \in D_{\alpha_1} \cap U_\beta$. Similarly, there exists $\alpha_2 \in I$ such that $x_B \in D_{\alpha_2} \cap U_\beta$. Since $\{(D_\alpha, w_\alpha)\}_{\alpha \in I}$ is a chain, we may assume $D_{\alpha_1} \subset D_{\alpha_2}$. In that case, $x_A, x_B \in D_{\alpha_2} \cap U_\beta$, whence we derive that $E[x_A, x_B] \subset D_{\alpha_2} \cap U_\beta$, by an application of Lemma 2.2. Observe that $\widetilde{w}(E[x_A, x_B]) = w_{\alpha_2}(E[x_A, x_B])$ is connected; however, $\widetilde{w}(E[x_A, x_B]) \subset A \cup B$, $\xi_A \in \widetilde{w}(E[x_A, x_B]) \cap A$ and $\xi_B \in \widetilde{w}(E[x_A, x_B]) \cap B$, which is clearly impossible. We have reached a contradiction, which proves the connectedness of $\widetilde{w}(\widetilde{D} \cap U_\beta)$ for all $\beta \in J$. Therefore, $\overline{\widetilde{w}(\widetilde{D} \cap U_\beta)}$ is also connected and an analogous argument to that of Lemma 2.3 shows that \mathcal{F}_{ac} must be connected as well.

Also, by reviewing the techniques introduced in the proof of Lemma 2.3, it is straightforward to see that any finite point of \mathcal{F}_{ac} is a zero of the non-constant entire function $z \mapsto F(\tilde{x}, z)$, which shows that \mathcal{F}_{ac} is at most countable. Since it is also non-empty and connected, it must reduce to a single point, which in this case is obviously $\tilde{w}(\tilde{x})$. Then, it is easy to conclude that \tilde{w} is continuous at \tilde{x} .

A standard application of Zorn's Lemma shows that \mathfrak{D} has a maximal element, which we denote by (D^*, w^*) . We wish to prove that $D^* = X$.

We first show that D^* is closed. Conversely, suppose that there exists $x^* \in \overline{D^*} \setminus D^*$. A direct application of Lemma 2.3 shows that $w^*(x)$ has a limit in the Riemman sphere as $x \to x^*$ ($x \in D^*$), which cannot be infinity by the assumption on the non-existence of asymptotic roots for F. Therefore, w^* has a continuous extension \widetilde{w}^* to $D^* \cup \{x^*\}$. Note that the map $x \mapsto F(x, \widetilde{w}^*(x))$ vanishes on D^* and is continuous on the connected set $D^* \cup \{x^*\}$, whence we deduce that $F(x, \widetilde{w}^*(x)) = 0$ for all $x \in D^* \cup \{x^*\}$. Consequently, we have proven that $(D^*, w^*) < (D^* \cup \{x^*\}, \widetilde{w}^*)$, which contradicts the maximality of (D^*, w^*) .

Finally, suppose that $D^* \neq X$, i.e., there exists $y \in X \setminus D^*$. Since, as noted in page 4, $E[x_0, y]$ is order-complete with respect to the separation order, there exists a least upper bound m of $E[x_0, y] \cap D^*$. Since D^* is closed, it is easy to see that $m \in D^*$; moreover, we have the inclusions $E[x_0, m] \subset D^*$ (by Lemma 2.2) and $E[m, y] \setminus \{m\} \subset X \setminus D^*$. By taking into account that $F(m, w^*(m)) =$ 0 and F is nowhere degenerate, we can use Lemma 2.1 to find an open disk $D_r(w^*(m))$ and a neighborhood V of m such that F(x, z) = P(x, z) G(x, z) for all $(x, z) \in V \times D_r(w^*(m))$, where P is a monic polynomial with coefficients in C(V) and G is free of zeros in $V \times D_r(w^*(m))$. Without loss of generality, we may assume that V is connected and then, we select $y_1 \in E[m, y] \setminus \{m\}$ such that $E[m, y_1] \subset V$. Since $E[m, y_1]$ is a totally ordered and order-complete space, we can find $w_1 \in C(E[m, y_1])$ such that $P(x, w_1(x)) = 0$ for all $x \in E[m, y_1]$, by [1, Theorem 3]. Also, given that P(m, z) is a power of $(z - w^*(m))$ (see Lemma 2.1), we must have $w_1(m) = w^*(m)$. By the continuity of w_1 , we can pick $\bar{y} \in E[m, y_1] \setminus \{m\}$ such that $w_1(E[m, \bar{y}]) \subset D_r(w^*(m))$. Now, we write $\widetilde{D} = D^* \cup E[m, \overline{y}]$ and consider the function $\widetilde{w} : \widetilde{D} \to \mathbb{C}$ defined by

$$\widetilde{w}(x) = \begin{cases} w^*(x), & x \in D^*; \\ w_1(x), & x \in E[m, \bar{y}] \end{cases}$$

It is easy to see that $D^* \setminus \{m\}$ and $E[m, \overline{y}] \setminus \{m\}$ are both open in \widetilde{D} , whence it may be inferred that \widetilde{w} is continuous on \widetilde{D} . We prove that $F(x, \widetilde{w}(x)) = 0$ for all $x \in \widetilde{D}$. The result is obvious for $x \in D^*$. On the other hand, if $x \in E[m, \overline{y}]$, then it is straightforward to see that $\widetilde{w}(x) \in D_r(w^*(m))$ (recall the choice of \overline{y}) and consequently, we have $F(x, \widetilde{w}(x)) = P(x, \widetilde{w}(x)) G(x, \widetilde{w}(x)) = 0$. Thus, we have shown that $(D^*, w^*) < (\widetilde{D}, \widetilde{w})$, which contradicts the maximality of (D^*, w^*) . The proof is now complete.

Remark 2.5. Note that we have assumed that X is connected in the preceding theorem, while Miura and Niijima [7] have shown that such restriction is unnecessary for C(X) to be algebraically closed. Can we drop the connectedness hypothesis in Theorem 2.4? Not completely. The connected components of a locally connected space are open. Hence, if we can find a root of F in $C(X_{\lambda})$ for every connected component X_{λ} of X, we easily conclude that F has a root in C(X). If F is nowhere degenerate and has no asymptotic roots, this can be done by Theorem 2.4, provided that $F(x_0, z_0) = 0$ for some $x_0 \in X_{\lambda}$ and $z_0 \in \mathbb{C}$. Such condition is not always met for arbitrary functions $F \in \mathcal{H}(C(X))$ (e.g., take F to be a suitable exponential function in one connected component of X). However, if F is a non-constant monic polynomial, it is trivially fulfilled and we may recover the results from [7].

Remark 2.6. The restrictions imposed to F in the hypotheses of Theorem 2.4 are not necessary for the existence of roots. For example, consider the algebra C([0,1]) and define $F_1(x,z) = \exp(xz) - 1$. It is clearly degenerate at $x_0 = 0$. Moreover, the function $\omega : (0,1] \to \mathbb{C}$ defined by $\omega(x) = 2\pi i x^{-1}$ is an asymptotic root of F_1 . However, it obviously has the zero function as a root.

To finish this paper, we introduce two examples showing how the presence of degeneracy and asymptotic roots can interfere with the existence of roots.

Example 2.7. Recall that F is degenerate at $x_0 \in X$ if $z \mapsto F(x_0, z)$ is a constant map. Obviously, if it is not the zero map, F cannot have any root. On the other hand, let X = [0, 1] and write $h(x) = \sin(1/x)$. Consider the function

$$F(x,z) = \begin{cases} x(\exp z - \exp h(x)), & 0 < x \le 1; \\ 0, & x = 0. \end{cases}$$

It can be easily verified that $F \in \mathcal{H}(C(X))$. Also, note that F is degenerate at $x_0 = 0$ and $z \mapsto F(0, z)$ is the zero function. Suppose that $w \in C(X)$ is a root of F. Then, F(x, w(x)) = 0 for all $x \in [0, 1]$ implies that $w(x) = h(x) + 2k(x)\pi i$ for $x \in (0, 1]$, where $k(x) \in \mathbb{Z}$. By continuity, k(x) must be constant, which yields $w(x) = \sin(1/x) + 2k\pi i$ for all $x \in (0, 1]$. Since this function does not have a continuous extension to the interval [0, 1], we have reached a contradiction. Moreover, although the function $g(x) = \sin(1/x) + 2k\pi i$ satisfies F(x, g(x)) = 0 for all $x \in (0, 1]$, it does not have a limit in the Riemann sphere as $x \to 0$. Therefore, the hypothesis of nondegeneracy is also essential for Lemma 2.3.

Example 2.8. Let X = [0, 1]. Consider the function $\varphi(z) = z \exp(-z)$ and any continuous curve $\omega : [0, 1) \to \mathbb{C}$ such that $\omega(0) = 0$, $\omega(x) = (1 - x)^{-1}$ for $1/2 \leq x < 1$ and its image avoids the point 1 (the zero of φ'). Define the function

$$F(x,z) = \begin{cases} \varphi(z) - \varphi(\omega(x)), & 0 \le x < 1; \\ \varphi(z), & x = 1. \end{cases}$$

It can be easily seen that $F \in \mathcal{H}(C(X))$ and is nowhere degenerate; however, ω is an asymptotic root of F. Suppose that $w \in C(X)$ is a root of F. Then, we must have $\varphi(w(x)) = \varphi(\omega(x))$ for all $x \in [0,1)$. We prove that the set $A = \{x \in [0,1) \mid w(x) = \omega(x)\}$ is open and closed in [0,1). The second assertion is obvious from the continuity of $w - \omega$. On the other hand, if $w(x_0) = \omega(x_0) = z_0$, we have that φ is locally injective at z_0 (since $\varphi'(\omega(x)) \neq 0$ for all $x \in [0,1)$). Since $\varphi(w(x)) = \varphi(\omega(x))$, the continuity of w and ω implies that such functions must coincide in a neighborhood of x_0 , proving that A is open in [0, 1). Next, note that $0 \in A$. Since [0, 1) is connected, we conclude that A = [0, 1). However, this means that $w(x) \to \infty$ as $x \to 1$, which is clearly absurd.

Acknowledgements: The authors would like to thank the referee for his very valuable suggestions.

References

- D. Deckard and C. Pearcy, On algebraic closure in function algebras, Proc. Amer. Math. Soc. 15 (1964), No. 2, 259–263.
- E.A. Gorin and C. Sánchez Fernández, Transcendental equations in commutative Banach algebras, Funct. Analysis and Appl. 11 (1977), No. 1, 63–64.¹
- 3. J.G. Hocking and G.S. Young, *Topology*, 2 ed., Dover Publications, Inc., N. Y., 1988.
- 4. D. Honma and T. Miura, On a characterization of compact Hausdorff space X for which certain algebraic equations are solvable in C(X), Tokyo J. Math. **30** (2007), No. 2, 403–416.
- K. Kawamura and T. Miura, On the root closedness of continuous function algebras, Topology Appl. 156 (2009), No. 3, 624–628.
- E.R. Lorch, The Theory of Analytic Functions in Normed Abelian Vector Rings, Trans. Amer. Math. Soc. 54 (1943), 414–425.
- T. Miura and K. Niijima, On a characterization of the maximal ideal spaces of algebraically closed commutative C*-algebras, Proc. Amer. Math. Soc. 131 (2003), No. 9, 2869–2876.

 1 Facultad de Matemática y Computación, Universidad de La Habana, Havana, Cuba.

E-mail address: marioga@matcom.uh.cu *E-mail address*: csanchez@matcom.uh.cu

¹Due to transliteration errors between versions, the name of the second author of this paper was changed to K. Sanches Fernandes.