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ON PSEUDO HERMITE MATRIX POLYNOMIALS OF TWO
VARIABLES
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Communicated by F. Kittaneh

Abstract. The main aim of this paper is to define a new polynomial, say,
pseudo hyperbolic matrix functions, pseudo Hermite matrix polynomials and
to study their properties. Some formulas related to an explicit representation,
matrix recurrence relations are deduced, differential equations satisfied by them
is presented, and the important role played in such a context by pseudo Hermite
matrix polynomials are underlined.

1. Introduction

The pseudo hyperbolic and pseudo trigonometric functions have been introduced
on the eve of seventies by Ricci [14] in applications has been recognized only
recently, within the context of problems involving arbitrary order coherent states
[7, 13] and the emission of electromagnetic radiation by accelerated charges [7, 13].
This class of functions providing a fairly natural generalization of the ordinary
exponential, hyperbolic and trigonometric functions [3, 4], offers the possibil-
ity of exploring, from a more general and unifying point of view, the theory
of special functions including generalized cases. The pseudo-Laguerre, pseudo-
Hermite polynomials and pseudo Bessel functions have been introduced in [5, 6].
Moreover, the Hermite matrix polynomials have been introduced and studied in
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[2, 10, 11, 12] for matrices in CN×N whose eigenvalues are all situated in the right
open half-plane.

If D0 is the complex plane cut along the negative real axis and log(z) denotes

the principal logarithm of z, then z
1
2 represents exp(1

2
log(z)). If A is a matrix in

CN×N , its two-norm denoted ||A|| is defined by

||A|| = sup
x 6=0

||Ax||2
||x||2

where for a vector y in CN , ||y||2 = (yT y)
1
2 denotes the usual Euclidean norm of

y. The set of all the eigenvalues of A is denoted by σ(A). If f(z) and g(z) are
holomorphic functions of the complex variable z, which are defined in an open
set Ω of the complex plane, and A is a matrix in CN×N such that σ(A) ⊂ Ω, then
from the properties of the matrix functional calculus [10], it follows that

f(A)g(A) = g(A)f(A).

If A is a matrix with σ(A) ⊂ D0, then A
1
2 =

√
A = exp(1

2
log(A)) denotes the

image by z
1
2 =

√
z = exp(1

2
log(z)) of the matrix functional calculus acting on

the matrix A. If A is a positive stable matrix in CN×N [2, 10, 11, 12]

Re(z) > 0, for all z ∈ σ(A). (1.1)

If A(k, n) and B(k, n) are matrices on CN×N for n ≥ 0, k ≥ 0, in an analogous
way to the proof of Lemma 11 of [10], it follows that

∞∑
n=0

∞∑
k=0

A(k, n) =
∞∑

n=0

[ 1
2
n]∑

k=0

A(k, n− 2k),

∞∑
n=0

∞∑
k=0

B(k, n) =
∞∑

n=0

n∑
k=0

B(k, n− k). (1.2)

Similarly to (1.2), we can write

∞∑
n=0

[ 1
2
n]∑

k=0

A(k, n) =
∞∑

n=0

∞∑
k=0

A(k, n + 2k),

∞∑
n=0

n∑
k=0

B(k, n) =
∞∑

n=0

∞∑
k=0

B(k, n + k). (1.3)

In the following we will make great use of the operator D−1
x , which is the inverse

of the derivative operator. By exploiting the notion of Cauchy repeated integral
[8, 9], we can write

D−n
x f(x) =

1

(n− 1)!

∫ x

0

(x− t)n−1f(t)dt

and it is also easy on unity to realize that

D−n
x (1) =

xn

n!
.
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The following two identities are a fairly direct consequence of the previous con-
siderations, it is indeed easily checked that

D−i
x (D−n

x )(1) =
xn+i

(n + i)!

and that

ex
√

rA =
∞∑

n=0

(x
√

rA)n

n!
=

∞∑
n=0

D−n
x (
√

rA)n = (I −D−1
x (
√

rA))−1.

We extend the definition of exponential by introducing in the following a new
family of functions, characterized by an integer r

E0(x, A; r) =
∞∑

n=0

(x
√

rA)nr

(nr)!
=

∞∑
n=0

D−nr
x (

√
rA)nr. (1.4)

We can infer directly from their definition that the functions E0(x, A; r), called
from now on pseudo hyperbolic functions, can be complemented by

Ei(x, A; r) = (
√

rA)iD−i
x E0(x, A; r) =

∞∑
n=0

(x
√

rA)nr+i

(nr + i)!
=

∞∑
m=0

D−nr
x (

√
rA)nr

all linearly independent if i < r and satisfying the identities

d

dx
Ei(x, A; r) =

√
rAEi−1(x, A; r)

this can be combined to get

(
d

dx
)rEi(x, A; r) = (

√
rA)rEi−r(x, A; r).

In the forthcoming sections of the paper we will show how a proper combination
of the points of view of [14] offers the possibility of developing the theory of
pseudo Hermite matrix polynomials. We will show a further natural complement
of the functions defined by the families of pseudo Hermite matrix polynomials.
We will discuss the properties of these new families of polynomials and we will
analyze possible developments and applications of the theory.

2. Pseudo Hermite matrix polynomials

The pseudo Hermite matrix polynomials of two variables defined by the series

kn(x, y, A; r, 0) = n!
n∑

k=0

(−y)n−k(x
√

rA)rk

(rk)!(n− k)!
= n!

n∑
k=0

(−y)n−kD−rk
x (

√
rA)rk

(n− k)!
(2.1)
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where A satisfying the condition (1.1). By using (1.3), (1.4) and (2.1), we consider
the series

∞∑
n=0

tn

n!
kn(x, y, A; r, 0) =

∞∑
n=0

n∑
k=0

(−y)n−ktn(x
√

rA)rk

(rk)!(n− k)!

=
∞∑

n=0

∞∑
k=0

(−y)ntn+k(x
√

rA)rk

n!(rk)!

=
∞∑

n=0

(−y)ntn

n!

∞∑
k=0

tk(x
√

rA)rk

(rk)!

= exp (− yt)E0(xt
1
r , A, r).

Thus, we obtain the new generating function which represents an explicit repre-
sentation for the pseudo Hermite matrix polynomials in the form

∞∑
n=0

tn

n!
kn(x, y, A; r, 0) = exp (− yt)E0(xt

1
r , A, r) (2.2)

It is clear that

k−1(x, y, A; r, 0) = 0 and k0(x, y, A; r, 0) = I.

Also, we can write

kn(x, y, A; r, 0) = ynkn(
x
r
√

y
, 1, A; r, 0) and kn(x, 1, A; r, 0) = kn(x, A; r, 0).

Special case: It should be observed that, in view of the explicit representa-
tion (2.1), the pseudo Hermite matrix polynomials kn(x, 1, A; r, 0) reduces to the
pseudo Hermite matrix polynomials kn(x, A; r, 0). Before getting into the main
body of the paper, let us recall some important properties of pseudo Hermite
matrix polynomials of the addition, multiplication theorems, which will be used
in the forthcoming papers.

Theorem 2.1. Multiplication Theorem

kn(x, αy,A; r, 0) = αnkn(
x

r
√

α
, y, A; r, 0) (2.3)

and

kn(αx, αry, A; r, 0) = αnrkn(x, y, A; r, 0) (2.4)

where α is constant.

Proof. Using (2.1), we have

αnkn(
x

r
√

α
, y, A; r, 0) = αnn!

n∑
k=0

(−y)n−k

(rk)!(n− k)!
(
x
√

rA
r
√

α
)rk

= n!
n∑

k=0

(−αy)n−k

(rk)!(n− k)!
(x
√

rA)rk

= kn(x, αy,A; r, 0).
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From (2.1) yields the pseudo Hermite matrix polynomials as given in the following
form

kn(αx, αry, A; r, 0) = n!
n∑

k=0

(−αry)n−k

(rk)!(n− k)!
(xα

√
rA)rk = αnrkn(x, y, A; r, 0).

Therefore, the expressions (2.3) and (2.4) are established. �

In the following theorem, we obtain the addition properties of pseudo Hermite
matrix polynomials as follows

Theorem 2.2. Addition Theorem

kn(x, y + z, A; r, 0) = n!
n∑

k=0

(−1)kzk

k!(n− k)!
kn−k(x, y, A; r, 0). (2.5)

Proof. From (1.3), (2.1), (2.2) and the properties of exponential matrix, the gen-
erating pseudo Hermite polynomials reduces to

∞∑
n=0

tn

n!
kn(x, y + z, A; r, 0) = exp (− (y + z)t)E0(xt

1
r , A, r)

=
∞∑

n=0

∞∑
k=0

(−z)ktn+k

n!k!
kn(x, y, A; r, 0)

=
∞∑

n=0

n∑
k=0

(−z)ktn

k!(n− k)!
kn−k(x, y, A; r, 0)

by comparing the coefficients of tn, we get (2.5) and the proof is completed. �

Some recurrence relation is carried out on the pseudo Hermite matrix polyno-
mials. We obtain the following theorem.

Theorem 2.3. The pseudo Hermite matrix polynomials of two variables satisfy
the following relations

∂r

∂xr
kn(x, y, A; r, 0) = n(

√
rA)rkn−1(x, y, A; r, 0) (2.6)

and

∂m

∂ym
kn(x, y, A; r, 0) =

(−1)mn!

(n−m)!
kn−m(x, y, A; r, 0); 0 ≤ m ≤ n. (2.7)

Proof. Differentiating the identity (2.1) with respect to x yields

∂

∂x
kn(x, y, A; r, 0) = n!

√
rA

n∑
k=0

(−y)n−k(x
√

rA)rk−1

(rk − 1)!(n− k)!
. (2.8)

Iteration (2.8), for 0 ≤ r ≤ n, implies (2.6). Differentiating the identity (2.1)
with respect to y, we get

∂

∂y
kn(x, y, A; r, 0) = −n!

n∑
k=0

(−y)n−k−1(x
√

rA)rk

(rk)!(n− k − 1)!
= −nkn−1(x, y, A; r, 0) (2.9)
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and, in general,

∂m

∂ym
kn(x, y, A; r, 0) =

(−1)mn!

(n−m)!
kn−m(x, y, A; r, 0).

Therefore, the expression (2.7) is established and the proof of Theorem 2.3 is
completed. �

The following corollary is a consequence of Theorem 2.3 to satisfy the differ-
ential equations.

Corollary 2.4. The pseudo Hermite matrix polynomials satisfy the following
relations

∂r

∂xr
kn(x, y, A; r, 0) + (

√
rA)r ∂

∂y
kn(x, y, A; r, 0) = 0. (2.10)

Proof. From (2.6) and (2.9) the equation (2.10) follows directly. According to
(2.10), it is clear that the kn(x, y, A; r, 0) are the natural solutions of the heat
partial differential equation. �

The above terms the differential recurrence relation will be used in the following
corollary is a consequence of Theorem 2.3.

Corollary 2.5. Let A be a matrix in CN×N satisfying (1.1), then, we have

nrkn(x, y, A; r, 0) = x
∂

∂x
kn(x, y, A; r, 0)− nrykn−1(x, y, A; r, 0), n ≥ 1.(2.11)

Proof. Replacing n by n − 1 in (2.1), multiply by y and multiply of (2.8) by x,
we obtain differential recurrence relation (2.11) follows directly. �

In the following result, the pseudo Hermite matrix polynomials appear as finite
series solutions of the r-th order matrix differential equations.

Corollary 2.6. The pseudo Hermite matrix polynomials are solutions of the ma-
trix differential equations of the r-th order in the form[

y
∂r

∂xr
− x(

√
rA)r

r

∂

∂x
+ n(

√
rA)r

]
kn(x, y, A; r, 0) = 0. (2.12)

Proof. From (2.6) and (2.11) to obtain (2.12). Thus the proof of Corollary 2.3 is
completed. �

In the following theorem, we obtain another representation for the pseudo
Hermite matrix polynomials as follows theorem.

Theorem 2.7. Suppose that A is a matrix in CN×N satisfying (1.1). Then the
pseudo Hermite matrix polynomials has the following representation

kn(x, y, A; r, 0) = exp

(
− y

(
√

rA)r

∂r

∂xr

)(
n!

(nr)!
(x
√

rA)nr

)
.
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Proof. It is clear by (1.2) and (2.1) that

exp

(
− y

(
√

rA)r

∂r

∂xr

)(
n!

(nr)!
(x
√

rA)nr

)
=

∞∑
k=0

(−y)k

k!(
√

rA)rk

∂rk

∂xrk

(
n!

(nr)!
(x
√

rA)nr

)

=
∞∑

k=0

(−y)k(
√

rA)rk(nr)!

k!(nr − rk)!(
√

rA)rk

(
n!

(nr)!
(x
√

rA)nr−rk

)

= n!
n∑

k=0

(−y)n−k(x
√

rA)nr

(nr)!(n− k)!
= kn(x, y, A; r, 0).

Therefore, the result is established. �

In the following corollary, we obtain another recurrence formula for the pseudo
Hermite matrix polynomials as follows.

Corollary 2.8. The pseudo Hermite matrix polynomials of two variables satisfy
the following

kn(x, y + z, A; r, 0) = exp

(
− z

(
√

rA)r

∂r

∂xr

)
kn(x, y, A; r, 0). (2.13)

Proof. By using the Theorem 2.4, we get directly the equation (2.13). Hence the
Corollary 2.4 is established. �

By recalling that the Hermite matrix polynomials Hn,m(x, y, A) are defined
through [15]

Hn,m(x, y, A) = exp

(
− y

(
√

mA)m

∂m

∂xm

)
(x
√

mA)n

= n!

[ n
m

]∑
k=0

(−1)kyk

k!(n−mk)!
(x
√

mA)n−mk

we can identify the kn(x, y, A; r, 0) with

kn(x, y, A; r, 0) =
n!

(nr)!
Hnr,r(x, y, A).

The generating function of the polynomials (2.1) defined from now on pseudo
Hermite matrix polynomials, can be derived, by recalling that, according to [15],
the following identity holds

∞∑
n=0

tnr

(nr)!
Hnr,m(x, y, A) = exp

(
xtr
√

mA− yItm
)

.

Now, we can see state that the expansion of pseudo Hermite matrix polynomials
with on their properties and prove the following theorem.
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Theorem 2.9. Let A be a positive stable matrix in CN×N satisfy (1.1), and then
we have

(x
√

rA)nr =
n∑

k=0

(nr)!

k!(n− k)!
ykkn−k(x, y, A; r, 0), −∞ < x < ∞. (2.14)

Proof. By (1.2) and (2.3), we can write the following

E0(xt
1
r , A; r) =

∞∑
n=0

(x
√

rA)nr

(nr)!
tn =

∞∑
n=0

∞∑
k=0

ykkn(x, y, A; r, 0)

n!k!
tn+k

=
∞∑

n=0

n∑
k=0

ykkn−k(x, y, A; r, 0)

k!(n− k)!
tn. (2.15)

By expanding the left-hand side of (2.15) in powers of t and identification of the
coefficients of tn in both sides gives (2.14). Therefore, the expression (2.14) is
established and the proof of Theorem 2.5 is completed. �

The above relations will be used, along with the generalized pseudo Hermite
matrix polynomials can be shown to satisfy the property, to derive new properties
of the family generated by (2.1) yields as given in the following section.

3. Generalized pseudo Hermite matrix polynomials

It goes by itself that we can introduce the matrix polynomials

kn(x, y, A; r, i) = (
√

rA)iD−i
x kn(x, y, A; r, 0) = n!

n∑
k=0

(−y)n−k(x
√

rA)rk+i

(n− k)!(rk + i)!

which in terms of generalized two index Hermite matrix polynomials of two vari-
ables

kn(x, y, A; r, i) =
n!

(nr + i)!
Hnr+i,r(x, y, A),

and the relevant generating function can be written in terms of pseudo hyperbolic
matrix function as

∞∑
n=0

tn

n!
kn(x, y, A; r, i) = t−

i
r e−ytEi(xt

1
r , A; r).

This last identity completes the first part of the paper. We have indeed proved
the existence of new families of polynomials linked to pseudo hyperbolic matrix
functions in the same way in which ordinary polynomials Hermite matrix are
linked to the hyperbolic matrix functions.

We believe interesting to consider a further example relevant to the family of
matrix polynomials

kn,m(x, y, A; r, i) = n!

[ n
m

]∑
k=0

(−y)n−mk(x
√

rA)rk+i

(rk + i)!(n−mk)!
; m < r. (3.1)
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satisfying the differential equations

∂r

∂xr
kn,m(x, y, A; r, i) + (

√
rA)r ∂m

∂ym
kn,m(x, y, A; r, i) = 0.

According to the so far developed discussion it is easily realized that the poly-
nomials (3.1) too are linked to the pseudo hyperbolic matrix functions by the
generating function

∞∑
n=0

tn

n!
kn,m(x, y, A; r, i) = t−

mi
r e−ytEi(xt

m
r , A; r)

this can be used as a useful starting point to study the properties of this family
of matrix polynomials.
Acknowledgement. The author wishes to express their gratitude to the un-
known referee for several helpful comments and suggestions.
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