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LÁSZLÓ VAJDAY1

Communicated by P. K. Sahoo

Abstract. Using the concept of exponential monomial on Sturm–Liouville
hypergroups we show that an important subclass of exponential monomials,
the class of special exponential monomials has a linear independence property.
The result can be reformulated as the linear independence of the derivatives
with respect to the parameter of the solutions of eigenvalue problems for second
order linear differential equations.

1. Introduction

In this paper R0, R+ and C denotes the set of nonnegative real numbers, the set of
positive real numbers and the set of complex numbers, respectively. Concerning
hypergroups and different concepts on hypergroups the reader should consult with
[1].

The study of spectral analysis and spectral synthesis problems is based on the
concept of exponential monomials. Unfortunately at this moment we do not have
a general definition of this concept on arbitrary (commutative) hypergroups hence
on each special type of hypergroups we need to introduce the most appropriate
form. In the papers [2] and [3] the corresponding definition on polynomial hy-
pergroups in one variable and in several variables is given. Using these concepts
it is possible to prove spectral synthesis on these types of hypergroups. Here we
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define exponential monomials on Sturm–Liouville hypergroups and we prove a
special linear independence property of them.

Let K = (R0, A) be a Sturm–Liouville hypergroup. We recall that the contin-
uous function m : R0 → C is an exponential on K if and only if it is C∞ on the
positive reals and there exists a complex number λ such that

m′′(x) +
A′(x)

A(x)
m′(x) = λm(x), m(0) = 1, m′(0) = 0

holds for any positive x. Exponential functions satisfy Cauchy’s functional equa-
tion

m(x ∗ y) = m(x)m(y)

for all x, y inK.
It is obvious that we can define an exponential family ϕ : R0×C → C with the

property that the function x 7→ ϕ(x, λ) is an exponential of K for each complex
λ, and for each exponential m of K there exists a unique complex λ such that
m(x) = ϕ(x, λ) holds for every x in R0. Hence the exponential family satisfies

∂2
1ϕ(x, λ) + p(x)∂1ϕ(x, λ) = λϕ(x, λ), ϕ(0, λ) = 1, ∂1ϕ(0, λ) = 0

for each x in R+ and complex number λ, where p(x) = A′(x)
A(x)

. Here ∂2 denotes the

partial differential operator with respect to the second variable. Actually, (2.5)
characterizes the exponential family. Clearly ϕ is C∞ on R0 in x and entire in λ.

Using the exponential family we define exponential monomials on K as func-
tions of the form x 7→ P (∂2)ϕ(x, λ), where P is a complex polynomial and λ is
a complex number. The meaning of P (∂2) is obvious. In particular, if P ≡ 1,
then we have that any exponential function is an exponential monomial. Observe,
that this is an analogous concept to the ”exponential monomial” on polynomial
hypergroups in several variables in [2] and [3]. Sums of exponential monomials
are called exponential polynomials.

A particular subclass of exponential monomials is formed by the functions of
the type x 7→ ∂k

2ϕ(x, λ), where k is a nonnegative integer and λ is a complex
number. Here we note that if λ = 0, then ϕ(x, 0) = 1 for each x in R0, hence
the corresponding function x 7→ ∂k

2ϕ(x, 0) is identically 1 for k = 0, and it is
identically 0 for k > 0. For the sake of simplicity we will call the functions
x 7→ ∂k

2ϕ(x, λ) special exponential monomials if k is a nonnegative integer and λ
is a complex number, supposing that if λ = 0, then k = 0. Our aim is to show
that different special exponential monomials are linearly independent.

2. Main results

First we show that different exponential functions are linearly independent.

Theorem 2.1. On any hypergroup different exponentials are linearly indepen-
dent.
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Proof. Let m1, m2, . . . ,mn be different exponentials on the hypergroup K. We
prove by induction on n. For n = 1 the statement is trivial. Suppose that n > 1
and

c1m1(t) + c2m2(t) + · · ·+ cn−1mn−1(t) + cnmn(t) = 0 (2.1)

holds for each t in K. Let x, y be arbitrary in K and we integrate both sides of
equation (2.1) with respect to the measure δx ∗ δy:

c1m1(x ∗ y) + c2m2(x ∗ y) + · · ·+ cn−1mn−1(x ∗ y) + cnmn(x ∗ y) = 0 .

Using the exponential properties of the m′s we have

c1m1(x)m1(y) + · · ·+ cn−1mn−1(x)mn−1(y) + cnmn(x)mn(y) = 0 . (2.2)

Now we write t = x in (2.1) and multiply the equation obtained by mn(y):

c1m1(x)mn(y) + · · ·+ cn−1mn−1(x)mn(y) + cnmn(x)mn(y) = 0 . (2.3)

We subtract (2.3) from (2.2) to get

c1m1(x)[m1(y)−mn(y)] + · · ·+ cn−1mn−1(x)[mn−1(y)−mn(y)] = 0 .

By assumption the exponentials m1, m2, . . . ,mn−1 are linearly independent, hence

ci[mi(y)−mn(y)] = 0

for i = 1, 2, . . . , n − 1. As mn 6= m1 we can choose a y in K such that mn(y) 6=
m1(y); it follows that c1 = 0. Continuing this argument we get ci = 0 for
i = 1, 2, . . . , n− 1, which also implies cn = 0. The proof is complete. �

We shall also need the following result in the sequel.

Theorem 2.2. Let K be a Sturm–Liouville hypergroup with the exponential fam-
ily ϕ : R0×C → C, n a nonnegative integer and λ0 6= 0 a complex number. Then
the special exponential monomials

x 7→ ϕ(x, λ0), x 7→ ∂2ϕ(x, λ0), . . . , x 7→ ∂n
2 ϕ(x, λ0)

are linearly independent.

Proof. We prove the statement by induction on n, which is obviously true for
n = 0. Suppose that we have proved it for n, and we prove it for n + 1, where n
is some nonnegative integer. Proving our statement by contradiction we suppose
that the function x 7→ ∂n+1

2 ϕ(x, λ0) is a linear combination of the functions

x 7→ ∂k
2ϕ(x, λ0)

for k = 0, 1, . . . , n, that is there are complex numbers ck for k = 0, 1, . . . , n such
that

∂n+1
2 ϕ(x, λ0) =

n∑
k=0

ck∂
k
2ϕ(x, λ0) (2.4)

holds for each x in K. By the definition of the exponential family we have

∂2
1ϕ(x, λ) + p(x)∂1ϕ(x, λ) = λϕ(x, λ) (2.5)
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for each x > 0 and λ in C. We differentiate both sides k times with respect to λ
for k = 0, 1, . . . , n + 1. We then obtain

∂2
1∂

k
2ϕ(x, λ) + p(x)∂1∂

k
2ϕ(x, λ) =

k∑
j=0

(
k

j

)
λ(j) · ∂k−j

2 ϕ(x, λ) ,

or, equivalently

∂2
1∂

k
2ϕ(x, λ) + p(x)∂1∂

k
2ϕ(x, λ) = λ∂k

2ϕ(x, λ) + k∂k−1
2 ϕ(x, λ) (2.6)

for each x > 0 and λ inC and for k = 0, 1, . . . , n + 1. (Here ∂−1
2 ϕ(x, λ) = 0.) We

shall use this equation several times in the sequel.
Differentiating equation (2.4) two times with respect to x we have the equations

∂1∂
n+1
2 ϕ(x, λ0) =

n∑
k=0

ck∂1∂
k
2ϕ(x, λ0)

and

∂2
1∂

n+1
2 ϕ(x, λ0) =

n∑
k=0

ck∂
2
1∂

k
2ϕ(x, λ0)

for each x > 0. From these equations by (2.6) we have

n∑
k=0

ck∂
2
1∂

k
2ϕ(x, λ0) +

n∑
k=0

ckp(x)∂1∂
k
2ϕ(x, λ0) =

= λ0∂
n+1
2 ϕ(x, λ0) + (n + 1)∂n

2 ϕ(x, λ0) =
n∑

k=0

λ0ck∂
k
2ϕ(x, λ0) + (n + 1)∂n

2 ϕ(x, λ0) .

We can reorder the terms in this equation to obtain

n∑
k=0

ck[∂
2
1∂

k
2ϕ(x, λ0) + p(x)∂1∂

k
2ϕ(x, λ0)− λ0∂

k
2ϕ(x, λ0)] =

= (n + 1)∂n
2 ϕ(x, λ0) ,

or, equivalently, using again (2.6)

n∑
k=1

kck∂
k−1
2 ϕ(x, λ0)− (n + 1)∂n

2 ϕ(x, λ0) = 0 . (2.7)

But this is a contradiction, because equation (2.7) presents a nontrivial linear
combination of linearly independent functions, which has the value zero. Hence
the proof is complete. �

Now we are in the position to prove linear independence of the special expo-
nential monomials.

Theorem 2.3. On any Sturm–Liouville hypergroup different special exponential
monomials are linearly independent.
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Proof. We have to show that any finite set of special exponential monomials
is linearly independent. First we suppose that this set does not include the
special exponential monomial 1. We may suppose that this set consists of special
exponential monomials of the form

x 7→ ∂l
2ϕ(x, λj)

for l = 0, 1, . . . , n and j = 1, 2, . . . , k with some restrictions on the nonnegative
integer n and the positive integer k. Actually, we shall consider two cases: in the
first case we suppose that we have proved the linear independence of the functions

x 7→ ∂l
2ϕ(x, λj)

for l = 0, 1, . . . , n and j = 1, 2, . . . , k, where n is a nonnegative integer and k is a
positive integer, and we show that the function x 7→ ∂n+1

2 ϕ(x, λ1) is not a linear
combination of them, and in the second case we suppose that we have proved the
linear independence of the functions

x 7→ ∂l
2ϕ(x, λs), x 7→ ∂n+1

2 ϕ(x, λt)

for l = 0, 1, . . . , n, s = 1, 2, . . . , k and t = 1, 2, . . . , j, where n is a nonnegative
integer, k ≥ 2 is a positive integer and j is a positive integer with j ≤ k − 1,
and we show that the function x 7→ ∂n+1

2 ϕ(x, λj+1) is not a linear combination
of them. It is easy to see that any other case can be reduced to these two cases
(eventually, by renumbering the λ’s). We apply induction again: in the first case
the statement is clearly true for n = 0 and k = 1. Also, if n = 0 and k is arbitrary,
then the statement follows from Theorem 2.1, and if k = 1 and n is arbitrary,
then the statement follows from Theorem 2.2. Hence we can consider the first
case and prove by contradiction: suppose that the function x 7→ ∂n+1

2 ϕ(x, λ1) is
a linear combination of the functions

x 7→ ∂l
2ϕ(x, λj)

for l = 0, 1, . . . , n and j = 1, 2, . . . , k, where n is a nonnegative integer and k is a
positive integer. This means that there are complex numbers cl,j for l = 0, 1, . . . , n
and j = 1, 2, . . . , k such that

∂n+1
2 ϕ(x, λ1) =

n∑
l=0

k∑
j=1

cl,j∂
l
2ϕ(x, λj)

holds for each x > 0. Differentiating two times with respect to x we get the
equations

∂1∂
n+1
2 ϕ(x, λ1) =

n∑
l=0

k∑
j=1

cl,j∂1∂
l
2ϕ(x, λj)

and

∂2
1∂

n+1
2 ϕ(x, λ1) =

n∑
l=0

k∑
j=1

cl,j∂
2
1∂

l
2ϕ(x, λj)



144 L. VAJDAY

for each x > 0. From these equations by (2.6) we have

n∑
l=0

k∑
j=1

cl,j∂
2
1∂

l
2ϕ(x, λj) +

n∑
l=0

k∑
j=1

cl,jp(x)∂1∂
l
2ϕ(x, λj) =

= λ1∂
n+1
2 ϕ(x, λ1)+(n+1)∂n

2 ϕ(x, λ1) =
n∑

l=0

k∑
j=1

λ1cl,j∂
l
2ϕ(x, λj)+(n+1)∂n

2 ϕ(x, λ1) .

We can reorder the terms in this equation to obtain

n∑
l=0

k∑
j=1

cl,j[∂
2
1∂

l
2ϕ(x, λj) + p(x)∂1∂

l
2ϕ(x, λj)− λ1∂

l
2ϕ(x, λj)] =

= (n + 1)∂n
2 ϕ(x, λ1) ,

or, equivalently, using again (2.6)

n∑
l=1

k∑
j=1

lcl,j∂
l−1
2 ϕ(x, λj)− (n + 1)∂n

2 ϕ(x, λ1) = 0 . (2.8)

But this is a contradiction, because equation (2.8) presents a nontrivial linear
combination of linearly independent functions, which has the value zero. Hence
the proof of our statement in the first case is complete.

Now we consider the second case and we prove again by contradiction: we
suppose that we have proved the linear independence of the functions

x 7→ ∂l
2ϕ(x, λs), x 7→ ∂n+1

2 ϕ(x, λt)

for l = 0, 1, . . . , n, s = 1, 2, . . . , k and t = 1, 2, . . . , j, where n is a nonnegative
integer, k ≥ 2 is a positive integer and j is a positive integer with j ≤ k − 1,
and we show that the function x 7→ ∂n+1

2 ϕ(x, λj+1) is a linear combination of
them. This means that there are complex numbers cl,s, dt for l = 0, 1, . . . , n and
s = 1, 2, . . . , k, t = 1, 2, . . . , j such that

∂n+1
2 ϕ(x, λj+1) =

n∑
l=0

k∑
s=1

cl,s∂
l
2ϕ(x, λs) +

j∑
t=1

dt∂
n+1
2 ϕ(x, λt)

holds for each x > 0. Differentiating two times with respect to x we get the
equations

∂1∂
n+1
2 ϕ(x, λj+1) =

n∑
l=0

k∑
s=1

cl,s∂1∂
l
2ϕ(x, λs) +

j∑
t=1

dt∂1∂
n+1
2 ϕ(x, λt)

and

∂2
1∂

n+1
2 ϕ(x, λj+1) =

n∑
l=0

k∑
s=1

cl,s∂
2
1∂

l
2ϕ(x, λs) +

j∑
t=1

dt∂
2
1∂

n+1
2 ϕ(x, λt)

for each x > 0. From these equations by (2.6) we have

n∑
l=0

k∑
s=1

cl,s∂
2
1∂

l
2ϕ(x, λs) +

j∑
t=1

dt∂
2
1∂

n+1
2 ϕ(x, λt)+
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+
n∑

l=0

k∑
s=1

cl,sp(x)∂1∂
l
2ϕ(x, λs) +

j∑
t=1

dtp(x)∂1∂
n+1
2 ϕ(x, λt) =

= λj+1∂
n+1
2 ϕ(x, λj+1) + (n + 1)∂n

2 ϕ(x, λj+1) =

=
n∑

l=0

k∑
s=1

λj+1cl,s∂
l
2ϕ(x, λs) +

j∑
t=1

dtλj+1∂
n+1
2 ϕ(x, λt) + (n + 1)∂n

2 ϕ(x, λj+1) .

We can reorder the terms in this equation to obtain
n∑

l=0

k∑
s=1

cl,s[∂
2
1∂

l
2ϕ(x, λs) + p(x)∂1∂

l
2ϕ(x, λs)− λj+1∂

l
2ϕ(x, λs)]+

+

j∑
t=1

dt[∂
2
1∂

n+1
2 ϕ(x, λt) + p(x)∂1∂

n+1
2 ϕ(x, λt)− λj+1∂

n+1
2 ϕ(x, λt)] =

= (n + 1)∂n
2 ϕ(x, λj+1) ,

or, equivalently, using again (2.6)

n∑
l=1

k∑
s=1

lcl,s∂
l−1
2 ϕ(x, λs) +

j∑
t=1

dt(n + 1)∂n
2 ϕ(x, λt)

+
n∑

l=0

k∑
s=1

cl,s(λs − λj+1)∂
l
2ϕ(x, λs)

+

j∑
t=1

dt(λt − λj+1)∂
n+1
2 ϕ(x, λt)− (n + 1)∂n

2 ϕ(x, λj+1) = 0 .

The term containing ∂n
2 ϕ(x, λj+1) does not appear in the first two sums, it appears

with zero coefficient in the third sum, it does not appear in the fourth sum, hence
its coefficient on the left hand side is −(n + 1) 6= 0. This is a contradiction and
the proof of our statement also in the second case is complete.

To finish the proof we have to consider the case where the special exponential
monomial 1 is in the set of the exponential monomials. We prove by contradiction
again: suppose that there are nonzero complex numbers λ1, λ2, . . . , λk and there
is a nonnegative integer n such that

1 =
n∑

l=0

k∑
j=1

cl,j∂
l
2ϕ(x, λj) (2.9)

holds for each x > 0. Differentiating equation two times with respect to x we
obtain

0 =
n∑

l=0

k∑
j=1

cl,j∂1∂
l
2ϕ(x, λj) (2.10)

and

0 =
n∑

l=0

k∑
j=1

cl,j∂
2
1∂

l
2ϕ(x, λj) (2.11)
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for each x > 0. Adding equations (2.10) and (2.11) we get

0 =
n∑

l=0

k∑
j=1

cl,j[∂
2
1∂

l
2ϕ(x, λj) + p(x)∂1∂

l
2ϕ(x, λj)] =

=
n∑

l=0

k∑
j=1

cl,j[λj∂
l
2ϕ(x, λj) + l∂l−1

2 ϕ(xλj)]

for each x > 0. On the right hand side we have a linear combination of linearly
independent functions. The coefficient of ∂n

2 ϕ(x, λj) is cn,jλj, which must be
zero, hence cn,j = 0 for j = 1, 2, . . . , k. Continuing recursively we get that
cn−1,j = cn−2,j = · · · = c0,j = 0 for j = 1, 2, . . . , k, which contradicts to equation
(2.9). Now the proof of the theorem is complete. �
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