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Abstract. The classical Bohr inequality says that |a+b|2 ≤ p|a|2+q|b|2 for all
scalars a, b and p, q > 0 with 1

p + 1
q = 1. The equality holds if and only if (p−

1)a = b. Several authors discussed operator version of Bohr inequality. In this
paper, we give a unified proof to operator generalizations of Bohr inequality.
One viewpoint of ours is a matrix inequality, and the other is a generalized
parallelogram law for absolute value of operators, i.e., for operators A and B
on a Hilbert space and t 6= 0,

|A−B|2 +
1
t
|tA + B|2 = (1 + t)|A|2 + (1 +

1
t
)|B|2.

1. Introduction

Let H be a complex separable Hilbert space and B(H ) the algebra of all bounded
operators on H . We say that A ∈ B(H ) is a positive operator if (Ax, x) ≥ 0 for
all x ∈ H , denoted by A ≥ 0. The absolute value of A ∈ B(H ) is denoted by
|A| = (A∗A)1/2.

The classical Bohr inequality [2] says that

|a + b|2 ≤ p|a|2 + q|b|2
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for all scalars a, b and p, q > 0 with 1
p
+ 1

q
= 1. The equality holds if and only if

(p− 1)a = b.
For this, Hirzallah [4] proposed an operator version of Bohr inequality:
If A and B are operators on a Hilbert space, and q ≥ p > 0 satisfy 1

p
+ 1

q
= 1,

then
|A−B|2 + |(p− 1)A + B|2 ≤ p|A|2 + q|B|2.

Afterwards, several authors have presented generalizations of Bohr inequality,
[3, 7].

In this note, we approach to Bohr inequality from the viewpoint of the ma-
trix order preserving map. We propose the following general theorem: For
x = (x1, · · · , xn) ∈ Rn, we define an n × n matrix Λ(x) = x∗x = (xixj) and
D(x) = diag(x1, · · · , xn).

If Λ(a) + Λ(b) ≤ D(c) for a, b, c ∈ Rn, then

|
n∑

i=1

aiAi|2 + |
n∑

i=1

biAi|2 ≤
n∑

i=1

ci|Ai|2

for arbitrary n-tuple (Ai) in B(H ).
We show that generalized Bohr inequalities are covered by this theorem.
On the other hand, a generalized parallelogram law also implies generalized

Bohr inequalities obtained in this paper. It is essentially same as the discussion
in [1].

2. Generalized Bohr inequality

First of all, we cite Bohr type inequalities obtained in [3, 4].

Theorem 2.1. If A, B ∈ B(H ), 1
p

+ 1
q

= 1, and 1 < p ≤ 2, i.e., q ≥ p > 1, then

(i) |A−B|2 + |(p− 1)A + B|2 ≤ p|A|2 + q|B|2,
(ii) |A−B|2 + |A + (q − 1)B|2 ≥ p|A|2 + q|B|2.
On the other hand, if either p < 1 or p ≥ 2, then
(iii) |A−B|2 + |(p− 1)A + B|2 ≥ p|A|2 + q|B|2.
Next we point out that [3, Theorem 3] is unified as follows:

Theorem 2.2. If A, B ∈ B(H ) and α ≥ β > 0, then

|A−B|2 +
1

α2
|βA + αB|2 ≤ (1 +

β

α
)|A|2 + (1 +

α

β
)|B|2.

We here explain the relation between Theorem 2.2 and (a), (b) in [3, Theorem
3]: The former (a) is contained in Theorem 2.2. The latter (b) can be expressed
as follows:

(i) If α ≥ −β > 0, then

|A−B|2 + | |β|
α

A + B|2 ≤ (1 +
|β|
α

)|A|2 + (1 +
α

|β|
)|B|2.

(ii) If 0 < α ≤ −β, then

|A−B|2 + | α

|β|
A + B|2 ≤ (1 +

α

|β|
)|A|2 + (1 +

|β|
α

)|B|2.
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Next we discuss Bohr inequalities for multi-operators. So we introduce the
following result [7, Theorem 7].

Theorem 2.3. Suppose that Ai ∈ B(H ), and ri ≥ 1 for i = 1, 2, · · · , n with
n∑

i=1

1
ri

= 1. Then

|
n∑

i=1

Ai|2 ≤
n∑

i=1

ri|Ai|2.

In other words, it says that K(z) = |z|2 satisfies the (operator) Jensen inequal-
ity:

K(
n∑

i=1

tiAi) ≤
n∑

i=1

tiK(Ai)

holds for t1, · · · , tn > 0 with
n∑

i=1

ti = 1.

3. Matrix approach to Bohr inequalities

In this section, we present an approach to Bohr inequalities by the use of the
matrix order.

For this, we introduce two notations: For x = (x1, · · · , xn) ∈ Rn, we define an
n× n matrix Λ(x) = x∗x = (xixj) and D(x) = diag(x1, · · · , xn).

Theorem 3.1. If Λ(a) + Λ(b) ≤ D(c) for a, b, c ∈ Rn, then

|
n∑

i=1

aiAi|2 + |
n∑

i=1

biAi|2 ≤
n∑

i=1

ci|Ai|2

for arbitrary n-tuple (Ai) in B(H ). Incidentally, if Λ(a) + Λ(b) ≥ D(c) for
a, b, c ∈ Rn, then

|
n∑

i=1

aiAi|2 + |
n∑

i=1

biAi|2 ≥
n∑

i=1

ci|Ai|2

for arbitrary n-tuple (Ai) in B(H ).

Proof. We define a positive map Φ of B(Rn) to B(H ) by

Φ(X) = (A∗
1 · · ·A∗

n)X (A1 · · ·An)t.

Since Λ(a) = (a1, · · · , an)t (a1, · · · , an), we have

Φ(Λ(a)) = (
n∑

i=1

aiAi)
∗(

n∑
i=1

aiAi) = |
n∑

i=1

aiAi|2,

so that

|
n∑

i=1

aiAi|2 + |
n∑

i=1

biAi|2 = Φ(Λ(a) + Λ(b)) ≤ Φ(D(c)) =
n∑

i=1

ci|Ai|2.

The additional part is easily shown by the same way. �
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The meaning of Theorem 3.1 will be understood in the proof of the follow-
ing theorem well. More precisely, the essence of the proof is to check a matrix
inequality.

Theorem 3.2. (i) If 0 < t ≤ 1, then
|A∓B|2 + |tA±B|2 ≤ (1 + t)|A|2 + (1 + 1

t
)|B|2;

(ii) If either t ≥ 1 or t < 0, then
|A∓B|2 + |tA±B|2 ≥ (1 + t)|A|2 + (1 + 1

t
)|B|2.

Proof. We apply Theorem 3.1 to a = (1,−1), b = (t, 1) and c = (1 + t, 1 + 1
t
).

We consider the order between corresponding matrices Λ(a) + Λ(b) and D(c):

T = D(c)− Λ(a)− Λ(b)

=

(
1 + t 0

0 1 + 1
t

)
−

(
1 −1
−1 1

)
−

(
t2 t
t 1

)
= (1− t)

(
t 1
1 1

t

)
.

Since det(T ) = 0, T is positive (resp. negative) if 0 < t < 1 (resp. t > 1 or
t < 0). �

Remark. We note that Theorem 3.2 implies Theorem 2.1 easily: Actually,
for (i) and (iii) of Theorem 2.1, we take t = p − 1 in Theorem 3.2. For (ii), we
take t = q − 1 and permute A and B. Also Theorem 3.2 implies Theorem 2.2 by
taking t = β

α
only.

As another application of Theorem 3.1, we give a proof of Theorem 2.3:
Proof of Theorem 2.3. We check the order between the corresponding matrices

D = diag(r1, · · · , rn) and C = (cij) where cij = 1. For natural numbers k ≤ n,
put Dk = diag(ri(1), · · · , ri(k)), Ck = (cij) with cij = 1 for i, j = 1, · · · , k and

sk =
∑k

j=1 ri(j)
−1 for 1 ≤ i(1) < · · · < i(k) ≤ n. Noting that

det(Dk − Ck) = (ri(1) · · · ri(k))(1− sk) ≥ 0 (3.1)

for arbitrary k ≤ n, the determinants of all k × k submatrix of D − C are
nonnegative, so that C ≤ D. Hence we have Theorem 2.3 by Theorem 3.1. For
convenience, we give a proof of (3.1) for i(j) = j simply: It is done by the
induction. The case n = 2 is trivial. Suppose that it is true for n = k, i.e.,
|Ek| = r1 · · · rk(1− sk), where Ej = Dj − Cj. Then we have

|Ek+1| =

∣∣∣∣Ek 0
−1 rk+1

∣∣∣∣− ∣∣∣∣Ek 1
−1 1

∣∣∣∣ = rk+1|Ek| −
∣∣∣∣Dk 1

0 1

∣∣∣∣
= rk+1r1 · · · rk(1− sk)− r1 · · · rk

= r1 · · · rk+1(1− sk −
1

rk+1

)

= r1 · · · rk+1(1− sk+1).

We state Zhang’s result [7, Theorem 6] that if a = (a1, a2), b = (b1, b2) and
p = (p1, p2) satisfy

p1 ≥ a2
1 + b2

1, p2 ≥ a2
2 + b2

2, (p1 − (a2
1 + b2

1))(p2 − (a2
2 + b2

2)) ≥ (a1a2 + b1b2)
2,
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then
|a1A + a2B|2 + |b1A + b2B|2 ≤ p1|A|2 + p2|B|2

holds for A, B ∈ B(H ).
Since the assumption of the above is nothing but the matrix inequality Λ(a) +

Λ(b) ≤ D(p), Theorem 3.1 implies the conclusion.
Concluding this section, we remark the monotonicity of the operator function

F (a) = |
n∑

i=1

aiAi|2. It is proved by F (a) = Φ(a∗a), where Φ is as in the proof of

Theorem 3.1.

Corollary 3.3. For a fixed n-tuple (Ai) in B(H ), the operator function F (a) =

|
n∑

i=1

aiAi|2 for a = (a1, · · · , an) is order preserving, that is, if Λ(a) ≤ Λ(b), then

F (a) ≤ F (b).

The following corollary is a 3-dimensional version of the 2-dimensional one in
[7, Lemma 2].

Corollary 3.4. If a = (a1, a2, a3) and b = (b1, b2, b3) satisfy |ai| ≤ |bi| for i =
1, 2, 3 and aibj = ajbi for i 6= j, then F (a) ≤ F (b).

Proof. It suffices to check that Λ(a) ≤ Λ(b) by the preceding corollary. First of
all, it follows from the assumption that if i 6= l and j 6= k, then∣∣∣∣ aiaj − bibj aiak − bibk

alaj − blbj alak − blbk

∣∣∣∣ = akbj(aibl − bial) + ajbk(bial − aibl) = 0.

This means that the determinants of all 2× 2 submatrix of Λ(b)−Λ(a) are zero.
Moreover it implies that det(Λ(b) − Λ(a)) = 0 by the use of the expansion of
determinants. Since the diagonal elements satisfy |ai| ≤ |bi| for i = 1, 2, 3, we
have the desired matrix inequality Λ(a) ≤ Λ(b). �

4. Generalized parallelogram law for operators

Finally we mention another approach to Bohr inequality, whose idea is es-
sentially same as that of Abramovich, Barić and Pec̆arić [1]. In our frame, the
following generalization of the parallelogram law easily implies Theorem 3.2 which
covers many previous results as discussed in the preceding section.

Theorem 4.1. If A and B are operators on a Hilbert space and t 6= 0, then

|A + B|2 +
1

t
|tA−B|2 = (1 + t)|A|2 + (1 +

1

t
)|B|2.

Proof. It is easily checked that

|A + B|2 +
1

t
|tA−B|2

= |A|2 + |B|2 + A∗B + B∗A + t|A|2 +
1

t
|B|2 − A∗B −B∗A

= (1 + t)|A|2 + (1 +
1

t
)|B|2.

�
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Remark. We immediately obtain Theorem 3.2 from Theorem 4.1 by consid-
ering the condition of t in it; that is, if 0 < t ≤ 1, then 1

t
≥ 1, so that the second

term 1
t
|tA − B|2 of the left hand side in Theorem 4.1 is greater than |tA − B|2.

Hence we have (i) in Theorem 3.2. Similarly (ii) in Theorem 3.2 is obtained.
Consequently Theorem 4.1 also implies Theorems 2.1 and 2.2 stated in Section
2.

Next we extend Theorem 4.1 for multi-operators. As an easy consequence, we
have Theorem 2.3 [7, Theorem 7].

Theorem 4.2. Suppose that Ai ∈ B(H ) and ri ≥ 1 with
n∑

i=1

1
ri

= 1 for i =

1, 2, ..., n. Then
n∑

i=1

ri|Ai|2 − |
n∑

i=1

Ai|2 =
∑

1≤i<j≤n

∣∣∣∣√ ri

rj

Ai −
√

rj

ri

Aj

∣∣∣∣2.
Proof. We show it by the induction on n. Note that it is true for n = 2 by
Theorem 4.1. Because it is expressed as follows: Let Ai ∈ B(H ) and ri ≥ 1 for
i = 1, 2 satisfying 1

r1
+ 1

r2
= 1. Then

r1|A1|2 + r2|A2|2 − |A1 + A2|2 = |
√

r1

r2

A1 −
√

r2

r1

A2|2.

Now suppose that it is true for n = k, then we take A1, · · · , Ak+1 ∈ B(H )

and r1, · · · , rk+1 > 1 satisfying
k+1∑
i=1

1
ri

= 1. We here put r′i = ri(1 − 1
rk+1

) for

i = 1, · · · , k and B =
k∑

i=1

Ai for convenience, then r′i > 1 and
k∑

i=1

1
ri′

= 1. Hence

we have

k+1∑
i=1

ri|Ai|2 − |
k+1∑
i=1

Ai|2 =
k∑

i=1

ri|Ai|2 + rk+1|Ak+1|2 − |
k∑

i=1

Ai + Ak+1|2

= (1− 1

rk+1

)
k∑

i=1

ri|Ai|2−|B|2+(rk+1−1)|Ak+1|2+
1

rk+1

k∑
i=1

ri|Ai|2−B∗Ak+1−A∗
k+1B

=

( k∑
i=1

r
′

i|Ai|2−|B|2
)

+
k∑

i=1

ri

rk+1

|Ai|2−B∗Ak+1−A∗
k+1B+(rk+1−1)|Ak+1|2

=
∑

1≤i<j≤k

∣∣∣∣√ ri

rj

Ai−
√

rj

ri

Aj

∣∣∣∣2+
k∑

i=1

ri

rk+1

|Ai|2−B∗Ak+1−A∗
k+1B+

k∑
i=1

rk+1

ri

|Ak+1|2

=
∑

1≤i<j≤k

∣∣∣∣√ ri

rj

Ai −
√

rj

ri

Aj

∣∣∣∣2 +
k+1∑
i=1

∣∣∣∣√ ri

rk+1

Ai −
√

rk+1

ri

Ak+1

∣∣∣∣2
=

∑
1≤i<j≤k+1

∣∣∣∣√ ri

rj

Ai −
√

rj

ri

Aj

∣∣∣∣2.
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Therefore, the desired equality holds for all n ∈ N. That is, Theorem 4.2 is
proved. �

We note that the condition ri ≥ 1 in Theorem 4.2 is not necessary. As a matter
of fact, we can weaken it to ri 6= 0 by the adoption of the following expression:

Theorem 4.3. Let Ai ∈ B(H ) and ri 6= 0 for i = 1, 2, ..., n with
n∑

i=1

1
ri

= 1. Then

n∑
i=1

ri|Ai|2 − |
n∑

i=1

Ai|2 =
∑

1≤i≤j≤n

rj

ri

∣∣∣∣ ri

rj

Ai − Aj

∣∣∣∣2.
Further development of operator Bohr inequalities are appeared in [5, 6].
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