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Abstract. After a short expose of the history of the Beckenbach–Dresher
inequality, general result and the Aczél type inequality are given and su-

per(sub)additivity of the function Gp,q,u(f, g;A,B) := A
u
p (fp)

B
u−1

q (gq)
is proved.

Also, a difference which is inspired by one integral analogue of the Beckenbach–
Dresher inequality is considered.

1. Preliminaries and history

Almost sixty years ago E.F Beckenbach [1] published an inequality, which has
aroused interest until nowdays. He proved that for positive real numbers xi, yi >
0, i = 1, . . . , n and for 1 ≤ p ≤ 2 the following inequality

n∑
i=1

(xi + yi)
p

n∑
i=1

(xi + yi)
p−1

≤

n∑
i=1

xp
i

n∑
i=1

xp−1
i

+

n∑
i=1

yp
i

n∑
i=1

yp−1
i

is valid. If 0 ≤ p ≤ 1, then the inequality is reversed.
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Few years later M. Dresher [5] investigated moment spaces and stated that an
integral analogue of the previous result holds. In fact he proved that if p ≥ 1 ≥
q ≥ 0, and f, g ≥ 0, then


∫

(f + g)pdϕ∫
(f + g)qdϕ


1

p−q

≤


∫

fpdϕ∫
f qdϕ


1

p−q

+


∫

gpdϕ∫
gqdϕ


1

p−q

.

Some related results can be found in [3], [4] and [7]. In recent literature the above
inequality is called the Beckenbach–Dresher inequality.

Three decades later some new, more general results appeared. Firstly, in [9], J.
Pečarić and P.R. Beesack introduced two new moments: sums and integrals are
substituted by isotonic linear functionals and functions, which appeared in the
numerator are different than functions in the denominator. Namely, they gave
the following theorem.

Theorem 1.1. Let A, B : L → R be two isotonic linear functionals and fi, ui :
E → [0,∞〉, (i = 1, . . . , n), be functions such that fp

i , uq
i , (
∑n

i=1 fi)
p, (
∑n

i=1 ui)
q

∈ L, where 0 < q < 1 ≤ p and B(uq
i ) > 0. Then


A

(
(

n∑
i=1

fi)
p

)

B

(
(

n∑
i=1

ui)
q

)


1
p−q

≤
n∑

i=1

[
A (fp

i )

B (uq
i )

] 1
p−q

.

In this text we denote by L a class of real-valued functions on non-empty set
E with the properties: if f, g ∈ L, then (af + bg) ∈ L for all a, b ∈ R; and the
function 1 belongs to L, where 1(t) = 1 for t ∈ E. A functional A : L → R is
called an isotonic linear functional if

A1. A(af + bg) = aA(f) + bA(g) for f, g ∈ L, a, b ∈ R;
A2. f ∈ L, f(t) ≥ 0 on E implies A(f) ≥ 0.

Almost in the same time J. Petree and L.E. Persson published another general-
ization of Beckenbach–Dresher inequality, [11]. They also include isotonic linear
functionals, but with the same functions as arguments and they introduced a
new, the third positive parameter u.

Theorem 1.2. Let A, B : L → R be two isotonic linear functionals and fi, ui :
E → [0,∞〉, (i = 1, . . . , n), be functions such that fp

i , f q
i , (
∑n

i=1 fi)
p, (
∑n

i=1 fi)
q

∈ L, (i = 1, . . . , n).
If u ≥ 1 and q ≤ 1 ≤ p (q 6= 0), then
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A
u
p

(
(

n∑
i=1

fi)
p

)

B
u−1

q

(
(

n∑
i=1

fi)
q

) ≤
n∑

i=1

A
u
p (fp

i )

B
u−1

q (f q
i )

. (1.1)

If 0 < u ≤ 1, p ≤ 1 and q ≤ 1, p, q 6= 0, then the inequality is reversed.

While the result from [9] was proved using the functional version of the Minko-
wski and Hölder inequalities, above result is a consequence of the following more
general theorem ([8], [11]).

Theorem 1.3. Let F : Rn
+ → R+ be an increasing function and let g : D → R+

be superadditive.
a) If F is convex and f : D → Rn

+ is subadditive, then

g(x + y)F

(
f(x + y)

g(x + y)

)
≤ g(x)F

(
f(x)

g(x)

)
+ g(y)F

(
f(y)

g(y)

)
.

b) If F is concave and f is superadditive, then inequality holds in the opposite
direction.

Putting f(z) = A1/p(zp), g(z) = B1/q(zq), F (z) = zu we get inequality (1.1).
Finally, in [6] B. Guljaš, C.E.M. Pearce and J. Pečarić generalized the set of

indices and gave another integral analogues, which can not be obtained from
earlier functional versions given in [9] and [11]. Also, they considered a limiting
case, when one or both parameters p and q tend to 0.

Theorem 1.4. Let (X, ΣX , µ), (Y, ΣY , ν) and (Y, ΣY , λ) be measure spaces. Let
f, g be non-negative functions on X × Y such that f is integrable with respect to
the measure (µ× ν) and g is integrable with respect to (µ× λ).
a) If

(i) u ≥ 1 and q ≤ 1 ≤ p (q 6= 0), or
(ii) u < 0 and p ≤ 1 ≤ q (p 6= 0), and all terms exist, then

(∫
Y

(∫
X

f(x, y)dµ(x)
)p

dν(y)

)u
p

(∫
Y

(∫
X

g(x, y)dµ(x)
)q

dλ(y)

)u−1
q

≤
∫

X

(∫
Y

fp(x, y)dν(y)

)u
p

(∫
Y

gq(x, y)dλ(y)

)u−1
q

dµ(x). (1.2)

If (iii) 0 < u ≤ 1, p ≥ 1 and q ≤ 1, p, q 6= 0, then the inequality is reversed.
b) If u ≥ 1 and p ≤ 1, then

(∫
Y

(∫
X

f(x, y)dµ(x)
)p

dν(y)

)u
p

exp

(
1− u∫
Y

dλ

∫
Y

log

(∫
X

g(x, y)dµ(x)

)
dλ(y)

)
≤
∫

X

(∫
Y

fp(x, y)dν(y)

)u
p

exp

(
1− u∫
Y

dλ

∫
Y

log g(x, y)dλ(y)

)
dµ(x).
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It is worthy to say that the above inequalities describe some properties of
different means such as a counter-harmonic mean, the Gini mean, the Stolarsky
mean, etc. More about those means a reader can find in monograph [2].

2. Generalized Beckenbach–Dresher inequality and inequality of
the Aczél type

The next theorem is obtained combining results of Theorems 1.1 and 1.2.

Theorem 2.1. (Generalized Beckenbach–Dresher inequality)
Let A, B : L → R be two isotonic linear functionals and fi, ui : E → [0,∞〉,

(i = 1, . . . , n), be functions such that fp
i , uq

i , (
∑n

i=1 fi)
p, (

∑n
i=1 ui)

q ∈ L and
A(fp

i ), B(uq
i ), A((

∑n
i=1 fi)

p), B((
∑n

i=1 ui)
q) are positive for some real p, q. If

either
(i) u ≥ 1 and q ≤ 1 ≤ p (q 6= 0), or
(ii) u < 0 and p ≤ 1 ≤ q (p 6= 0), then

A
u
p

(
(

n∑
i=1

fi)
p

)

B
u−1

q

(
(

n∑
i=1

ui)
q

) ≤
n∑

i=1

A
u
p (fp

i )

B
u−1

q (uq
i )

. (2.1)

If 0 < u ≤ 1, p ≤ 1 and q ≤ 1, p, q 6= 0, then the inequality (2.1) is reversed.

Proof. The proof is based on the idea from [9]. Let u ≥ 1 and q ≤ 1 ≤ p (q 6= 0).
Then using the functional Minkowski inequality ([10, p.114]) we get

A
u
p

(
(

n∑
i=1

fi)
p

)

B
u−1

q

(
(

n∑
i=1

ui)
q

) ≤
[∑n

i=1 A1/p(fp
i )
]u

[
∑n

i=1 B1/q(uq
i )]

u−1

=

[
n∑

i=1

A1/p(fp
i )

]u [ n∑
i=1

B1/q(uq
i )

]1−u

≤
n∑

i=1

Au/p(fp
i )B(1−u)/q(uq

i ) =
n∑

i=1

A
u
p (fp

i )

B
u−1

q (uq
i )

,

where in the last inequality the functional Hölder inequality, ([10, p.113]), is used
with conjugate exponents u ≥ 0 and 1 − u ≤ 0. The other cases are proved
similarly. �

Next theorem is the Aczél-type result for Generalized Beckenbach–Dresher in-
equality.

Theorem 2.2. Let A, B : L → R be two isotonic linear functionals, f0,i, u0,i > 0
and fi, ui : E → [0,∞〉, (i = 1, . . . , n), be functions such that fp

i , uq
i , (
∑n

i=1 fi)
p,
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(
∑n

i=1 ui)
q ∈ L and fp

0,i − A(fp
i ), uq

0,i −B(uq
i ), (

∑n
i=1 f0,i)

p − A((
∑n

i=1 fi)
p),

(
∑n

i=1 u0,i)
q −B((

∑n
i=1 ui)

q) are positive for some real p, q. If either
(i) u ≥ 1, (0 < p ≤ 1) and (q ≤ 1 or q < 0) or
(ii) u < 0, (0 < q ≤ 1) and (p ≤ 1 or p < 0), then(

(
n∑

i=1

f0,i)
p − A((

n∑
i=1

fi)
p)

)u
p

(
(

n∑
i=1

u0,i)
q −B((

n∑
i=1

ui)
q)

)u−1
q

≤
n∑

i=1

(
fp

0,i − A(fp
i )
)u

p(
uq

0,i −B(uq
i )
)u−1

q

.

If 0 < u ≤ 1, (q ≥ 1 or q < 0) and (p ≥ 1 or p < 0), then the inequality is
reversed.

The proof is very similar to the previous proof but instead of the Minkowski
inequality we use the Bellman inequality, ([10, p.125]).

Let p, q, u be real numbers and let Gp,q,u(f, g; A, B) be a mapping defined as

Gp,q,u(f, g; A, B) :=
A

u
p (fp)

B
u−1

q (gq)
,

where A and B are isotonic linear functionals on L and f and g are positive
functions, fp, gq ∈ L. Theorem 2.1 can be read as the following: the mapping
Gp,q,u(f, g; A, B) is super(sub)additive in arguments f and g for certain choices of
parameters p, q and u. But we have superadditivity in the other two arguments.
Namely, the following theorem holds.

Theorem 2.3. If p, q and u satisfy
(a) u ≥ 1, (p < 0 or p ≥ 1) and 0 < q ≤ 1
or
(b) u < 0, 0 < p ≤ 1 and (q < 0 or q ≥ 1), then

Gp,q,u(f, g; A1 + A2, B1 + B2) ≤ Gp,q,u(f, g; A1, B1) + Gp,q,u(f, g; A2, B2) ,

where A1, A2, B1, B2 are isotonic linear functionals and f and g are positive func-
tions such that the above terms exist.

If (c) 0 < u ≤ 1, 0 < p ≤ 1 and 0 < q ≤ 1, then the inequality is reversed.

Proof. Let us suppose that u ≥ 1, (p < 0 or p ≥ 1) and 0 < q ≤ 1. Using
subadditivity of the function x1/p for p < 0 or p ≥ 1 and superadditivity of the
function x1/q for 0 < q ≤ 1, and using the Hölder inequality we have the following

Gp,q,u(f, g; A1 + A2, B1 + B2) =
(
(A1 + A2)

u
p (fp)

)(
(B1 + B2)

1−u
q (gq)

)
≤

(
A

1
p

1 (fp) + A
1
p

2 (fp)
)u(

B
1
q

1 (gq) + B
1
q

2 (gq)
)1−u

≤ A
u
p

1 (fp)B
1−u

q

1 (gq) + A
u
p

2 (fp)B
1−u

q

2 (gq)

= Gp,q,u(f, g; A1, B1) + Gp,q,u(f, g; A2, B2).

The other cases are proved on the similar way. �
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As a simple consequence of the previous theorem we have the following corol-
lary.

Corollary 2.4. Let w1 and w2 be non-negative functions, A and B be isotonic
linear functionals on L and f and g be positive functions such that w1f

p, w2f
p,

w1g
q, w2g

q ∈ L. Let us denote G(w) = A
u
p (wfp)

B
u−1

q (wgq)
.

If p, q, u satisfy (a) or (b) of the previous theorem, then

G(w1 + w2) ≤ G(w1) + G(w2). (2.2)

If p, q, u satisfy (c), then the inequality (2.2) is reversed and if w1 ≤ w2, then

G(w1) ≤ G(w2).

Proof. Putting Ai(f) = A(wif) and Bi(g) = B(wig), i = 1, 2 in Theorem 2.3 we
obtain the statement of the corollary. �

3. Integral Beckenbach–Dresher difference

Let (X, ΣX , µ), (Y, ΣY , ν) and (Y, ΣY , λ) be measure spaces. Let f, g be non-
negative functions on X×Y such that f is integrable with respect to the measure
(µ× ν) and g is integrable with respect to (µ× λ).

An integral Beckenbach–Dresher difference BD1(µ) is defined as

BD1(µ) =

∫
X

(∫
Y

fp(x, y)dν(y)

)u
p

(∫
Y

gq(x, y)dλ(y)

)u−1
q

dµ(x)−

(∫
Y

(∫
X

f(x, y)dµ(x)
)p

dν(y)

)u
p

(∫
Y

(∫
X

g(x, y)dµ(x)
)q

dλ(y)

)u−1
q

,

where we suppose that all terms exist.

Theorem 3.1. If
(i) u ≥ 1 and q ≤ 1 ≤ p (q 6= 0), or
(ii) u < 0 and p ≤ 1 ≤ q (p 6= 0), and all terms exist, then

BD1(µ1 + µ2) ≥ BD1(µ1) + BD1(µ2) (3.1)

and if µ2 − µ1 is a measure, then

BD1(µ1) ≤ BD1(µ2). (3.2)

Also, if M and m are real numbers such that M ≥ m ≥ 0 and µ1 −mµ2 and
Mµ2 − µ1 are measures, then

M ·BD1(µ2) ≥ BD1(µ1) ≥ m ·BD1(µ2). (3.3)

If (iii) 0 < u ≤ 1, p ≤ 1 and q ≤ 1, p, q 6= 0, then the inequalities (3.1), (3.2)
and (3.3) are reversed.

Proof. Let us suppose that (i) or (ii) is valid. Then we have

BD1(µ1 + µ2)−BD1(µ1)−BD1(µ2) =
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=

(∫
Y

(∫
X

f(x, y)dµ1(x)
)p

dν(y)

)u
p

(∫
Y

(∫
X

g(x, y)dµ1(x)
)q

dλ(y)

)u−1
q

+

(∫
Y

(∫
X

f(x, y)dµ2(x)
)p

dν(y)

)u
p

(∫
Y

(∫
X

g(x, y)dµ2(x)
)q

dλ(y)

)u−1
q

−

(∫
Y

(∫
X

f(x, y)dµ1(x) +

∫
X

f(x, y)dµ2(x)
)p

dν(y)

)u
p

(∫
Y

(∫
X

g(x, y)dµ1(x) +

∫
X

g(x, y)dµ2(x)
)q

dλ(y)

)u−1
q

≥ 0 ,

where in the last inequality we use (1.2) from Theorem 1.4, when the measure ν
is discrete.

Using the result of Theorem 1.4 that if (i) or (ii) are satisfied, then BD1(µ) ≥ 0,
we have

BD1(µ2) = BD1(µ1 + (µ2 − µ1))

≥ BD1(µ1) + BD1(µ2 − µ1) ≥ BD1(µ1).

�

For fixed measures µ, ν, λ and functions f and g we define a difference BD2 on
the following way

BD2(A) =

∫
A

(∫
Y

fp(x, y)dν(y)

)u
p

(∫
Y

gq(x, y)dλ(y)

)u−1
q

dµ(x)

−

(∫
Y

(∫
A

f(x, y)dµ(x)
)p

dν(y)

)u
p

(∫
Y

(∫
A

g(x, y)dµ(x)
)q

dλ(y)

)u−1
q

,

where A is a subset of X.
For BD2 the following result holds.

Theorem 3.2. If (i) or (ii) from Theorem 3.1 is valid and if A1, A2 ⊆ X,
A1 ∩ A2 = ∅, then

BD2(A1 ∪ A2) ≥ BD2(A1) + BD2(A2).

If A1 ⊆ A2, then

BD2(A1) ≤ BD2(A2).

Especially, if Sk is a subset of X with k elements and if Sm ⊃ Sm−1 ⊃ . . . ⊃ S2,
then we have

BD2(Sm) ≥ BD2(Sm−1) ≥ . . . ≥ BD2(S2) ≥ 0
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and

BD2(Sm) ≥ max{BD2(S2) : S2 is any subset of Sm with 2 elements}.
If (iii) from Theorem 3.1 is valid, then the above inequalities are reversed with
max → min.
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