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Abstract. In this paper, improvements for superquadratic functions of Jensen–
Steffensen’s and related inequalities are discussed. For superquadratic func-
tions which are not convex we get inequalities analog to Jensen–Steffensen’s
inequality for convex functions. For superquadratic functions which are con-
vex (including many useful functions), we get improvements and extensions of
Jensen–Steffensen’s inequality and related inequalities.

1. Introduction and preliminaries

In this paper we refine results derived from Jensen–Steffensen’s inequality and
its extension for superquadratic functions. These functions were introduced in [4]
and [5] and dealt with in numerous papers (see for example [9]).

Jensen–Steffensen’s inequality states that if f : I → R is convex, then

f

(
1

An

n∑
i=1

aixi

)
≤ 1

An

n∑
i=1

aif (xi)
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holds, where I is an interval in R, x = (x1, ..., xn) is any monotonic n-tuple in In

and a = (a1, ..., an) is real n-tuple that satisfies

0 ≤ Aj ≤ An, j = 1, ..., n, An > 0,

Aj =

j∑
i=1

ai, Aj =
n∑

i=j

ai, j = 1, ..., n, (1.1)

(see [11, p. 57]).
In [10], J. Pečarić proved a refinement of Slater’s inequality established in [12].

J. Pečarić proved that under the same conditions leading to Jensen–Steffensen’s
inequality, together with

n∑
i=1

aif
′
(xi) 6= 0 and M =

∑n
i=1 aixif

′
(xi)∑n

i=1 aif
′ (xi)

∈ I, (1.2)

the inequality
n∑

i=1

aif (xi) ≤ Anf (M)

holds.
Now we quote some definitions and state a list of basic properties of su-

perquadratic functions.

Definition 1.1. [4, Definition 2.1] A function f : [0, b) → R is superquadratic
provided that for all 0 ≤ x < b, there exists a constant C (x) ∈ R such that

f (y)− f (x)− f (|y − x|) ≥ C (x) (y − x)

for all y ∈ [0, b) . We say that f is subquadratic if −f is a superquadratic function.

Lemma 1.2. [5, Lemma 2.3] Suppose that f is a superquadratic function on [0, b) ,
xi ∈ [0, b) , i = 1, ..., n, and ai ≥ 0, i = 1, ..., n, are such that An =

∑n
i=1 ai > 0.

Then

1

An

n∑
i=1

aif (xi)− f (x) ≥ 1

An

n∑
i=1

aif (|xi − x|) , (1.3)

where x = 1
An

∑n
i=1 aixi.

Lemma 1.3. [4, Lemma 2.1] Let f be a superquadratic function with C (x) as in
Definition 1.1.

(i) Then f(0) ≤ 0.
(ii) If f(0) = f

′
(0) = 0, then C(x) = f

′
(x) whenever f is differentiable at

0 < x < b.
(iii) If f ≥ 0, then f is convex and f(0) = f

′
(0) = 0.

Lemma 1.4. [4, Lemma 3.1] Suppose that f : [0, b) → R is a continuously dif-

ferentiable function and f(0) ≤ 0. If f
′
is superadditive or f

′
(x)
x

is nondecreasing,
then f is superquadratic.

We quote now some theorems that we refine in the sequel.
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Theorem 1.5. [1, Theorem 1] Let f : [0, b) → R be a differentiable superquadratic
and nonnegative function. Let xi ∈ [0, b), i = 1, ..., n, be such that

x1 ≤ x2 ≤ ... ≤ xn or x1 ≥ x2 ≥ ... ≥ xn.

Let a be a real n-tuple satisfying (1.1) and x = 1
An

∑n
i=1 aixi. Then

n∑
i=1

aif (xi)− Anf (x) ≥
k−1∑
i=1

Aif(xi+1 − xi) + Akf(x− xk)

+ Ak+1f(xk+1 − x) +
n∑

i=k+2

Aif(xi − xi−1)

≥

(
k∑

i=1

Ai +
n∑

i=k+1

Ai

)
f

( ∑n
i=1 ai |xi − x|∑k

i=1 Ai +
∑n

i=k+1 Ai

)

≥ (n− 1) Anf

(∑n
i=1 ai (|xi − x|)
(n− 1) An

)
,

where k ∈ {1, ..., n− 1} satisfies

xk ≤ x ≤ xk+1.

Lemma 1.6. [6, Lemma 1a] Let f : (a, b) → R, where −∞ ≤ a < b ≤ ∞, be a
convex function. Let z ∈ (a, b) be fixed. Then the function ∆ : (a, b) → R defined
by

∆(y) = f(y)− f(z)− f
′
(z)(y − z)

is nonnegative on (a, b) , nonincreasing on (a, z] and nondecreasing on [z, b) .

Theorem 1.7. [6, Theorem 1] Let f : (a, b) → R be a convex function and ai ∈ R,
i = 1, ..., n, be such that (1.1) holds. Then for any xi ∈ (a, b) , i = 1, ..., n, such
that

x1 ≤ x2 ≤ ... ≤ xn or x1 ≥ x2 ≥ ... ≥ xn,

the inequalities

f(c) + f
′
(c)(x− c) ≤ 1

An

n∑
i=1

aif (xi) ≤ f(d) +
1

An

n∑
i=1

aif
′
(xi)(xi − d)

hold for all c, d ∈ (a, b), where x = 1
An

∑n
i=1 aixi.

Theorem 1.8. [6, Theorem 4] Suppose that all the conditions of Theorem 1.7 are
satisfied and additionally assume that f is differentiable on I = (a, b) and M sat-
isfies (1.2). If f is nondecreasing and f

′
is concave on I, or if f is nonincreasing

and f
′
is convex on I, then

1

An

n∑
i=1

aif (xi) ≤ f(x) +
1

An

n∑
i=1

aif
′
(xi)(xi − x) ≤ f(M). (1.4)
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In this paper we obtain Lemma 1.2 and related results for superquadratic
functions, but this time the coefficients ai (i = 1, ..., n) are not only nonnegative.
There, in Lemma 1.2, the coefficients satisfy

ai ≥ 0 (i = 1, ..., n) and An =
n∑

i=1

ai > 0.

Here we deal with coefficients that satisfy (1.1) and 0 ≤ x1 ≤ x2 ≤ ... ≤ xn < b.
We generalize also part of the theorems proved in [3]. In particular we extend

the following version of [3, Theorem 2.1a], as most of the theorems there, in [3],
result from this theorem.

Theorem 1.9. [3, Theorem 2.1a] Let 0 ≤ xk < b, ak > 0, k = 1, ..., n. If f is
superquadratic on [0, b), then

n∑
i=1

aif (xi)− Anf

(∑n
i=1 aixi

An

)
−

(
n∑

i=m+1

aif (xi)− Am+1f

(∑n
i=m+1 aixi

Am+1

))

≥
m∑

i=1

aif

(∣∣∣∣∣xi −
∑n

j=1 ajxj

An

∣∣∣∣∣
)

+ Am+1f

(∣∣∣∣∑n
i=m+1 aixi

Am+1

−
∑n

i=1 aixi

An

∣∣∣∣) . (1.5)

This type of inequality, but for convex functions, was dealt with in [7].
In the sequel, all the results dealing with 0 ≤ x1 ≤ x2 ≤ ... ≤ xn < b hold also

for b > x1 ≥ x2 ≥ ... ≥ xn ≥ 0.

2. Main results

Analogous to Lemma 1.6 and Theorem 1.7 we prove the following Lemma 2.1
and Theorem 2.2. We use a technique similar to the one used in [6].

Lemma 2.1. Let f be a continuously differentiable function on [0, b) and f ′ be
superadditive on [0, b). Then the function D : [0, b) → R, defined by

D (y) = f (y)− f (z)− f ′ (z) (y − z)− f (|y − z|) + f (0)

is nonnegative on [0, b), nonincreasing on [0, z) and nondecreasing on [z, b), for
0 ≤ z < b.

Proof. Since f ′ is superadditive, then for 0 ≤ z ≤ y < b we have

0 ≤
y∫
z

(f ′(t)− f ′(z)− f ′(t− z)) dt

= f(y)− f(z)− f ′(z)(y − z)− f(y − z) + f(0)

and for 0 ≤ y ≤ z < b,

0 ≤
z∫
y

(f ′(z)− f ′(t)− f ′(z − t)) dt

= f ′(z)(z − y)− f(z) + f(y) + f(0)− f(z − y).

Together these show that for any y, z ∈ [0, b) the inequality

f (y)− f (z)− f ′ (z) (y − z)− f (|y − z|) + f (0) ≥ 0
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holds. So we conclude that the function D is nonnegative on [0, b) .
Since

D′ (y) = f ′ (y)− f ′ (z)− f ′ (|y − z|) sgn (y − z) ,

and as f ′ is superadditive, then for 0 ≤ y ≤ z we have

D′ (y) = f ′ (y)− f ′ (z) + f ′ (z − y)

≤ f ′ (y)− f ′ (z) + f ′ (z)− f ′(y)

= 0

and for z ≤ y < b,

D′ (y) = f ′ (y)− f ′ (z)− f ′ (y − z)

≥ f ′ (y)− f ′ (z)− f ′(y) + f ′ (z)

= 0.

This completes the proof. �

Now we can present the main results of this section where we show that in-
equality (1.3) is satisfied not only for nonnegative coefficients but also when (1.1)
is satisfied and x1 ≤ x2 ≤ ... ≤ xn.

Theorem 2.2. Let f be a continuously differentiable function on [0, b) and f ′ be
superadditive on [0, b) . Let a be a real n-tuple satisfying (1.1). Let xi ∈ [0, b) ,
i = 1, ..., n, be such that x1 ≤ x2 ≤ ... ≤ xn and x = 1

An

∑n
i=1 aixi. Then

(a) the inequality

f (c)− f (0) + f ′ (c) (x− c) +
1

An

n∑
i=1

aif (|xi − c|) ≤ 1

An

n∑
i=1

aif (xi) (2.1)

holds for all c ∈ [0, b) .
In particular,

1

An

n∑
i=1

aif (xi)− f (x) + f (0) ≥ 1

An

n∑
i=1

aif (|xi − x|) . (2.2)

(b) If in addition f (0) ≤ 0, then f is superquadratic and

1

An

n∑
i=1

aif (xi) ≥ f (c) + f ′ (c) (x− c) +
1

An

n∑
i=1

aif (|xi − c|) . (2.3)

In particular,

1

An

n∑
i=1

aif (xi) ≥ f (x) +
1

An

n∑
i=1

aif (|xi − x|) . (2.4)

(c) If in addition f ≥ 0 and f(0) = f
′
(0) = 0, then f is superquadratic and

convex increasing and

1

An

n∑
i=1

aif (xi)− f (c)− f ′ (c) (x− c) ≥ 1

An

n∑
i=1

aif (|xi − c|) ≥ 0. (2.5)
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Proof. It was proved in [1] and in [2] that x1 ≤ x ≤ xn.

(a) Let D (xi) = f (xi)−f (c)−f
′
(c) (xi − c)−f (|xi − c|)+f (0) , i = 1, ..., n.

From Lemma 2.1 we know that D(xi) ≥ 0 for all i = 1, ..., n.

Comparing c with x1, ..., xn we must consider three cases.

Case 1. xn < c < b : In this case xi ∈ [0, c) for all i = 1, ..., n. Hence, according
to Lemma 2.1 we have

D (x1) ≥ D (x2) ≥ ... ≥ D (xn) ≥ 0.

Denoting A0 = 0 it follows

ai = Ai − Ai−1, i = 1, ..., n,

and therefore
n∑

i=1

aiD (xi) =
n∑

i=1

(Ai − Ai−1) D (xi)

= A1D (x1) + (A2 − A1) D (x2) + ... + (An − An−1) D (xn)

=
n−1∑
i=1

Ai (D (xi)−D (xi+1)) + AnD (xn)

≥ 0.

Case 2. 0 ≤ c < x1 : In this case xi ∈ (c, b) for all i = 1, ..., n. Hence, according
to Lemma 2.1 we have

0 ≤ D (x1) ≤ D (x2) ≤ ... ≤ D (xn) .

Denoting An+1 = 0 it follows

Ak =
n∑

i=k

ai = An − Ak−1, k = 1, ..., n,

ai = Ai − Ai+1, i = 1, ..., n,

and therefore
n∑

i=1

aiD (xi) =
n∑

i=1

(
Ai − Ai+1

)
D (xi)

= A1D (x1) +
n∑

i=2

Ai (D (xi)−D (xi−1))

≥ 0.

Case 3. x1 ≤ c ≤ xn : In this case there exists k ∈ {1, ..., n − 1} such that xk ≤
c ≤ xk+1.

By Lemma 2.1 we have

D (x1) ≥ D (x2) ≥ ... ≥ D (xk) ≥ 0 and 0 ≤ D (xk+1) ≤ D (xk+2) ≤ ... ≤ D (xn) .
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Then
n∑

i=1

aiD (xi) =
k∑

i=1

aiD (xi) +
n∑

i=k+1

aiD (xi)

=
k−1∑
i=1

Ai (D (xi)−D (xi+1)) + AkD (xk)

+ Ak+1D (xk+1) +
n∑

i=k+2

Ai (D (xi)−D (xi−1))

≥ 0.

In all three cases we get

n∑
i=1

aiD (xi) =
n∑

i=1

ai [f (xi)− f (c)− f ′ (c) (xi − c)− f (|xi − c|) + f (0)]

≥ 0,

and therefore, the inequality (2.1) holds. Inserting c = x in (2.1) we get (2.2).

(b) From Lemma 1.4 we get that as f(0) ≤ 0, f is superquadratic. The
inequality (2.3) follows from (2.1). Inserting c = x in (2.3) we get (2.4).

(c) First, from Lemma 1.4 we get that as f(0) = 0, f is superquadratic. Then
from Lemma 1.3 it follows that f is convex increasing. We only need to show
that under our conditions the inequality

1

An

n∑
i=1

aif (|xi − c|) ≥ 0 (2.6)

holds.
We will show that (2.6) holds in the case that xk ≤ c ≤ xk+1, k = 1, ..., n− 1.

The other cases we can prove similarly.
We use the identity

n∑
i=1

aif (|xi − c|) =
k−1∑
i=1

Ai (f (c− xi)− f (c− xi+1))

+ Akf(c− xk) + Ak+1f(xk+1 − c)

+
n∑

i=k+2

Ai(f (xi − c)− f (xi−1 − c)).

Since the function f is nonnegative and convex, and f(0) = 0, then for 0 ≤ xi ≤
xi+1 ≤ c, i = 1, ..., k − 1, we have

f (c− xi)− f (c− xi+1) ≥ f(xi+1 − xi)− f(0)

= f(xi+1 − xi)

≥ 0
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and for c ≤ xi−1 ≤ xi < b, i = k + 2, ..., n,

f (xi − c)− f (xi−1 − c) ≥ f(xi − xi−1)− f(0)

= f(xi − xi−1)

≥ 0.

Therefore, as (1.1) holds, (2.6) is satisfied and together with (2.1) it gives (2.5).
This completes the proof. �

So, we see that the inequality (2.4) in Part (b) of Theorem 2.2 extends Lemma
1.2 to coefficients satisfying (1.1) and x1 ≤ x2 ≤ ... ≤ xn. In (2.3) we get re-
finement of Lemma 1.2. Also, the inequality (2.5) for c = x improves Theorem
1.5.

Remark 2.3. Suppose that f is continuously differentiable on [0, b), f (0) = 0 and
f ′ is subadditive on [0, b) . Then f is subquadratic and the reverse of (2.3) holds.

Theorem 2.4. Let f be continuously differentiable and convex increasing on
[0, b) , f(0) = f ′(0) = 0 and f ′ be concave on [0, b) . Let a be a real n-tuple
satisfying (1.1) and xi ∈ [0, b), i = 1, ..., n, be such that x1 ≤ x2 ≤ ... ≤ xn. Then

1

An

n∑
i=1

aif (xi)

≤ min

{
f(x) +

1

An

n∑
i=1

aif
′(xi)(xi − x), f(x) +

1

An

n∑
i=1

aif (|xi − x|)

}
(2.7)

holds, where x = 1
An

∑n
i=1 aixi.

Proof. Since f ′(0) = 0 and f
′

is concave, it follows that f
′

is subadditive and
therefore, f is subquadratic.
Then by Remark 2.3 the inequality

1

An

n∑
i=1

aif (xi) ≤ f (c) + f ′ (c) (x− c) +
1

An

n∑
i=1

aif (|xi − c|)

holds. Choosing x = c we get

1

An

n∑
i=1

aif (xi) ≤ f (x) +
1

An

n∑
i=1

aif (|xi − x|) . (2.8)

By combining (2.8) with (1.4) it follows (2.7). �

In the following example we show that there are cases where the inequality
(2.7), which is derived in Theorem 1.8 from the convexity of f, gives a better
bound than the bound derived from (2.8) for subquadratic f and vice-versa.

Example 2.5. Consider the function f(x) = x1+α for 0 ≤ α ≤ 1 and x ≥ 0.
It’s clear that f is convex and f ′ is concave on [0, b). Since f(0) = 0, then f is
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also subquadratic.
If we choose a1 = a2 = 1

2
, x1 = 0, x2 = 1, from (2.7) it follows

1

2
≤ min

{
1

21+α
+

1 + α

4
,

1

21+α
+

1

21+α

}
.

Then for α = 1 we have
1

2
≤ min

{
3

4
,

1

4

}
=

1

4

and for α = 0
1

2
≤ min

{
3

4
, 1

}
=

3

4
.

We see that in the first case we get better bound derived from the subquadracity
of f and in the second case the better bound is derived from the convexity of f
and the concavity of f

′
.

Now we prove an analog to Theorem 1.9 for coefficients that satisfy (1.1).

Theorem 2.6. Let f be a continuously differentiable function on [0, b), f(0) = 0
and f

′
be superadditive on [0, b). Let a be a real n-tuple satisfying (1.1) and

Aj > 0 for all j = 1, ..., n. Then for any xi ∈ [0, b), i = 1, ..., n, such that
x1 ≤ x2 ≤ ... ≤ xn, the inequality (1.5) holds.

Proof. It is given that 0 ≤ x1 ≤ x2 ≤ ... ≤ xn < b and Aj > 0 for all j = 1, ..., n.
Therefore, according to Theorem 399 in [8] we get

n∑
i=m+1

ai(xi − xm) ≥ 0

which is equivalent to

1

Am+1

n∑
i=m+1

aixi ≥ xm.

Denote

yi = xi, i = 1, ...,m, ym+1 =
1

Am+1

n∑
i=m+1

aixi,

bi = ai, i = 1, ...,m, bm+1 = Am+1,

Bi = Ai, i = 1, ...,m, Bm+1 =
m+1∑
i=1

bi. (2.9)

From this notation it follows that

0 ≤ Bi ≤ Bm+1, i = 1, ...,m, Bm+1 > 0,

Bm+1 =
m+1∑
i=1

bi = An,

and
0 ≤ y1 ≤ y2 ≤ ... ≤ ym+1.
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Applying (2.4) to yi, bi, Bi, i = 1, ...,m + 1, we get

1

Bm+1

m+1∑
i=1

bif (yi) ≥ f (y) +
1

Bm+1

m+1∑
i=1

bif (|yi − y|) , (2.10)

where

y =
1

Bm+1

m+1∑
i=1

biyi.

Multiplying inequality (2.10) with Bm+1 we get
m∑

i=1

bif (yi) + bm+1f (ym+1)

≥ Bm+1f (y) +
m∑

i=1

bif (|yi − y|) + bm+1f (|ym+1 − y|) . (2.11)

From (2.9) it follows that

y =
1

An

(
m∑

i=1

aixi +
n∑

i=m+1

aixi

)
=

1

An

n∑
i=1

aixi (2.12)

and therefore, using (2.9) and (2.12), the inequality (2.11) becomes

m∑
i=1

aif (xi) + Am+1f

(
1

Am+1

n∑
i=m+1

aixi

)

≥ Anf

(
1

An

n∑
i=1

aixi

)
+

m∑
i=1

aif

(∣∣∣∣∣xi −
1

An

n∑
i=1

aixi

∣∣∣∣∣
)

+ Am+1f

(∣∣∣∣∣ 1

Am+1

n∑
i=m+1

aixi −
1

An

n∑
i=1

aixi

∣∣∣∣∣
)

,

which is equivalent to (1.5). �
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