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Abstract. In this paper, we state, prove and discuss a new refined general
weighted discrete Hardy-type inequality with a non-negative kernel, related
to an arbitrary non-negative convex (or positive concave) function on a real
interval and to a positive real parameter. As its consequences, obtained by
rewriting it for various suitably chosen parameters, kernels, weights and convex
(or concave) functions, we derive new weighted and unweighted generalizations
and refinements of some well-known inequalities such as Carleman’s inequality
and the so-called Godunova’s inequality. Finally, by employing exponential
and logarithmic convexity, as special cases of the usual convexity, we obtain
some further refinements of the inequalities mentioned above.

1. Introduction

Generalizing certain results of Godunova, [5] (see also [8, Chapter IV, p. 152]),
Vasić and Pečarić in [12] proved that the Hardy-type inequality

∞∑
m=1
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≤

∞∑
n=1

vnΦ(an) (1.1)
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holds for all non-negative convex functions Φ on an interval I ⊆ R, sequences
(an)n∈N in I, sequences (un)n∈N of positive real numbers and positive real numbers
kmn, m ∈ N, n = 1, . . . ,m such that

m∑
n=1

kmn = 1, m ∈ N, and
∞∑

m=n

umkmn ≤ vn, n ∈ N. (1.2)

Moreover, if the function Φ is concave and the sign of inequality in (1.2) is re-
versed, then (1.1) holds with the reversed sign of inequality.

As special cases of (1.1) for sequences of positive real numbers (an)n∈N, we get
the so-called Godunova’s inequality

∞∑
n=1

1

n + 1
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1

n

n∑
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)p

<
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n=1

ap
n

n
, (1.3)

where p ∈ R, p > 1 and Akerberg’s inequality

∞∑
n=1

1

n + 1

(
n!

n∏
m=1

am

) 1
n

<
∞∑

n=1

an, (1.4)

obtained by Akerberg in [1]. It can be shown that inequality (1.4) implies the
well-known Carleman’s inequality

∞∑
n=1

(
n∏

m=1

am

) 1
n

< e
∞∑

n=1

an, (1.5)

with the best possible constant e, proved by Carleman in [3].
Motivated by these results, in this paper we obtain a generalization and a

refinement of (1.1) by proving a new refined general weighted discrete Hardy-
type inequality with a positive real parameter. As its consequences, obtained by
rewriting it for various parameters, kernels, weights and convex (or concave) func-
tions, we derive new weighted and unweighted generalizations and refinements of
inequalities (1.3)–(1.5). Finally, by introducing the notion of exponential and
logarithmic convexity, as special cases of the usual convexity, we obtain some
further refinements of the inequalities mentioned above.

The paper is organized in the following way. After this Introduction, in Section
2 we introduce some necessary notation, recall some basic facts about convex and
concave functions and state, prove and discuss our main result in this paper: a
new general refined discrete Hardy-type inequality with a non-negative kernel,
related to an arbitrary non-negative convex (or positive concave) function on a
real interval and to a positive real parameter. This result is given in Theorem
2.1. The rest of the paper is mainly dedicated to a deeper analysis of particu-
larly interesting special cases of the inequality obtained. Namely, in Section 3
we obtain a refined discrete Jensen’s inequality and refine and even generalize
the Vasić-Pečarić inequality (1.1). As its special cases, we derive a new refined
weighted version of Godunova’s inequality (1.3) and of inequality (1.4). More-
over, we show that our result improves and generalizes Carleman’s inequality
(1.5), that is, we get a new refined weighted strengthened Carleman’s inequality.
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In the concluding Section 4 we make a further step in applications of Theorem
2.1 to some suitably chosen convex functions and parameters. By employing the
concepts of exponential and logarithmic convexity, we obtain upper and lower
bounds for the left-hand sides of some refined Hardy-type inequalities from the
previous section. In particular, we derive both-hand side bounds for the left-
hand side of the weighted Godunova’s inequality, as well as of the strengthened
weighted Carleman’s inequality.
Conventions. Throughout this paper, by an interval I in R we mean any convex
set in R, while Int I denotes its interior. Further, we set Nk = {1, 2, . . . , k} for
k ∈ N. Moreover, all expressions of the form 00, 0 ·∞, 0

0
, ∞∞ , a

∞ , where a ∈ R, are
taken to be equal to zero. Finally, inequalities like (2.5) are interpreted to mean
that if the left-hand side is finite, so is the right-hand side and the inequality
holds.

2. New refined discrete Hardy-type inequalities

To start with, we introduce some necessary notation and recall basic facts about
convex and concave functions. Suppose I is an interval in R and Φ : I → R is a
convex function. By ∂Φ(x) we denote the subdifferential of Φ at x ∈ I, that is,
the set ∂Φ(x) = {α ∈ R : Φ(y)− Φ(x)− α(y − x) ≥ 0, y ∈ I}. It is well-known
that ∂Φ(x) 6= ∅ for all x ∈ Int I. More precisely, at each point x ∈ Int I we have
−∞ < Φ′

−(x) ≤ Φ′
+(x) < ∞ and ∂Φ(x) = [Φ′

−(x), Φ′
+(x)], while the set on which

Φ is not differentiable is at most countable. Moreover, each function ϕ : I → R
satisfying ϕ(x) ∈ ∂Φ(x), whenever x ∈ Int I, is increasing on Int I. For any such
function ϕ and arbitrary x ∈ Int I, y ∈ I we have

Φ(y)− Φ(x)− ϕ(x)(y − x) ≥ 0

and further

Φ(y)− Φ(x)− ϕ(x)(y − x) = |Φ(y)− Φ(x)− ϕ(x)(y − x)|
≥ | |Φ(y)− Φ(x)| − |ϕ(x)| · |y − x| | . (2.1)

On the other hand, if Φ : I → R is a concave function, that is, −Φ is convex,
then ∂Φ(x) = {α ∈ R : Φ(x) − Φ(y) − α(x − y) ≥ 0, y ∈ I} denotes the
superdifferential of Φ at the point x ∈ I. For all x ∈ Int I, in this setting we
have −∞ < Φ′

+(x) ≤ Φ′
−(x) < ∞ and ∂Φ(x) = [Φ′

+(x), Φ′
−(x)] 6= ∅. Hence, the

inequality

Φ(x)− Φ(y)− ϕ(x)(x− y) ≥ 0

holds for all x ∈ Int I, y ∈ I and all real functions ϕ on I such that ϕ(z) ∈ ∂Φ(z),
z ∈ Int I. Finally, we get

Φ(x)− Φ(y)− ϕ(x)(x− y) = |Φ(x)− Φ(y)− ϕ(x)(x− y)|
≥ | |Φ(y)− Φ(x)| − |ϕ(x)| · |y − x| | . (2.2)

Note that, although the symbol ∂Φ(x) has two different notions, it will be clear
from the context whether it applies to a convex or to a concave function Φ.
Many further information on convex and concave functions can be found e.g. in
the monographs [9] and [10] and in references cited therein.
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Now, we are ready to state and prove a new general refined discrete Hardy-type
inequality with a kernel, related to arbitrary non-negative convex functions on
real intervals.

Theorem 2.1. Let t ∈ R+, M, N ∈ N and let non-negative real numbers um, vn,
kmn, where m ∈ NM , n ∈ NN , be such that

Km =
N∑

n=1

kmn > 0, m ∈ NM , (2.3)

and

vn =

[
M∑

m=1

um

(
kmn

Km

)t
] 1

t

, n ∈ NN . (2.4)

Let Φ be a non-negative convex function on an interval I ⊆ R and ϕ : I → R be
any function such that ϕ(x) ∈ ∂Φ(x) for all x ∈ Int I. Then the inequality(

N∑
n=1

vnΦ(an)

)t

−
M∑

m=1

umΦt(Am) ≥ t
M∑

m=1

um
Φt−1(Am)

Km

N∑
n=1

kmnrmn (2.5)

holds for all t ≥ 1 and real numbers an ∈ I, for n ∈ NN , where

Am =
1

Km

N∑
n=1

kmnan (2.6)

and
rmn = | |Φ(an)− Φ(Am)| − |ϕ(Am)| · |an − Am| | , (2.7)

for m ∈ NM , n ∈ NN . If t ∈ 〈0, 1] and the function Φ : I → R is positive and
concave, then the order of terms on the left-hand side of (2.5) is reversed, that is,
the inequality

M∑
m=1

umΦt(Am)−

(
N∑

n=1

vnΦ(an)

)t

≥ t
M∑

m=1

um
Φt−1(Am)

Km

N∑
n=1

kmnrmn (2.8)

holds for all t ∈ 〈0, 1].

Proof. First, note that

N∑
n=1

kmn(an − Am) =
N∑

n=1

kmnan − Am

N∑
n=1

kmn = KmAm − AmKm = 0 (2.9)

holds for all m ∈ NM . Further, since min
n∈NN

an ∈ I, max
n∈NN

an ∈ I and

min
n∈NN

an ≤ an ≤ max
n∈NN

an, n ∈ NN ,

we easily get

min
n∈NN

an ≤
1

Km

N∑
n=1

kmnan ≤ max
n∈NN

an.

Therefore, Am ∈ I for all m ∈ NM . Moreover, if for all n ∈ NN we have an ∈ Int I,
then Am ∈ Int I for all m ∈ NM , as well.
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Now, we are ready to prove (2.5), so suppose that the function Φ is convex and
t ≥ 1. Fix m ∈ NM and n ∈ NN . If Am ∈ Int I, then substituting x = Am and
y = an in (2.1) yields

Φ(an)− Φ(Am)− ϕ(Am)(an − Am) ≥ | |Φ(an)− Φ(Am)| − |ϕ(Am)| · |an − Am| |

and therefrom

kmn

Km

[Φ(an)− Φ(Am)− ϕ(Am)(an − Am)] ≥ kmn

Km

rmn. (2.10)

Observe that (2.10) holds trivially also if kmn = 0 and Am is an endpoint of I
(if I is not an open interval). Hence, it is only left to analyze the case when Am

is an endpoint of I and kmn > 0 (from the condition (2.3) we see that such n
exists for every m ∈ NM). Without loss of generality, assume that Am is the left
endpoint of I, that is, Am = min I. Then al − Am ≥ 0 for all l ∈ NN , so (2.9)
implies that kml(al −Am) = 0 for all l ∈ NN . In particular, from kmn > 0 we get
an = Am, so both-hand sides of (2.10) are equal to 0. The case when Am = max I
is analogous. Thus, (2.10) holds for all m ∈ NM and n ∈ NN . Summing it up
over n ∈ NN gives

1

Km

N∑
n=1

kmnΦ(an)− 1

Km

N∑
n=1

kmnΦ(Am)− ϕ(Am)

Km

N∑
n=1

kmn(an − Am)

≥ 1

Km

N∑
n=1

kmnrmn

and, by using (2.9), further

Φ(Am) +
1

Km

N∑
n=1

kmnrmn ≤
1

Km

N∑
n=1

kmnΦ(an). (2.11)

Since the left-hand side of (2.11) is non-negative and the function α 7→ αt is
strictly increasing on [0,∞〉 for t ≥ 1, by applying Bernoulli’s inequality we
obtain

Φt(Am) + t
Φt−1(Am)

Km

N∑
n=1

kmnrmn ≤

(
Φ(Am) +

1

Km

N∑
n=1

kmnrmn

)t

≤

(
1

Km

N∑
n=1

kmnΦ(an)

)t

. (2.12)
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Multiplying (2.12) by um, then summing up over m ∈ NM and applying Minkow-
ski’s inequality to the right-hand side, we get

M∑
m=1

umΦt(Am) + t

M∑
m=1

um
Φt−1(Am)

Km

N∑
n=1

kmnrmn

≤
M∑

m=1

um

(
Φ(Am) +

1

Km

N∑
n=1

kmnrmn

)t

≤
M∑

m=1

um

(
1

Km

N∑
n=1

kmnΦ(an)

)t

=


 M∑

m=1

um

(
1

Km

N∑
n=1

kmnΦ(an)

)t
 1

t


t

≤


N∑

n=1

Φ(an)

[
M∑

m=1

um

(
kmn

Km

)t
] 1

t


t

=

(
N∑

n=1

vnΦ(an)

)t

,

so (2.5) holds. The proof for a concave function Φ and t ∈ 〈0, 1] is similar.
Namely, by the same arguments as for convex functions, from (2.2) we first obtain

kmn

Km

[Φ(Am)− Φ(an)− ϕ(Am)(Am − an)] ≥ kmn

Km

rmn, m ∈ NM , n ∈ NN ,

then

Φt(Am)− t
Φt−1(Am)

Km

N∑
n=1

kmnrmn ≥

(
Φ(Am)− 1

Km

N∑
n=1

kmnrmn

)t

≥

(
1

Km

N∑
n=1

kmnΦ(an)

)t

, m ∈ NM ,

and finally

M∑
m=1

umΦt(Am)− t
M∑

m=1

um
Φt−1(Am)

Km

N∑
n=1

kmnrmn

≥
M∑

m=1

um

(
Φ(Am)− 1

Km

N∑
n=1

kmnrmn

)t

≥

(
N∑

n=1

vnΦ(an)

)t

,

that is, we get (2.8).

Remark 2.2. In particular, for t = 1 inequality (2.5) reduces to

N∑
n=1

vnΦ(an)−
M∑

m=1

umΦ(Am) ≥
M∑

m=1

um

Km

N∑
n=1

kmnrmn, (2.13)

where in this setting we have

vn =
M∑

m=1

um
kmn

Km

, m ∈ NM . (2.14)
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Moreover, by analyzing the proof of Theorem 2.1, we see that (2.13) holds for
all convex functions Φ : I → R, that is, Φ does not need to be non-negative.
Similarly, if Φ is any real concave function on I (not necessarily positive), then
(2.13) holds with the reversed order of terms on its left-hand side.

Remark 2.3. Rewriting (2.5) with t = q
p
≥ 1, that is, for 0 < p ≤ q < ∞ or

−∞ < q ≤ p < 0 and with an arbitrary non-negative convex function Φ, we
obtain(

N∑
n=1

vnΦ(an)

) q
p

−
M∑

m=1

umΦ
q
p (Am) ≥ q

p

M∑
m=1

um
Φ

q
p
−1(Am)

Km

N∑
n=1

kmnrmn, (2.15)

where

vn =

[
M∑

m=1

um

(
kmn

Km

) q
p

] p
q

, n ∈ NN .

Especially, if p ≥ 1 or p < 0 (in that case Φ should be positive), then the function
Φp is convex as well, so by replacing Φ with Φp relation (2.15) becomes(

N∑
n=1

vnΦp(an)

) q
p

−
M∑

m=1

umΦq(Am) ≥ q

p

M∑
m=1

um
Φq−p(Am)

Km

N∑
n=1

kmnrmn. (2.16)

On the other hand, if Φ is a positive concave function and t = q
p
∈ 〈0, 1], that

is, 0 < q ≤ p < ∞ or −∞ < p ≤ q < 0, then (2.15) holds with the reversed
order of terms on its left-hand side. Moreover, if p ∈ 〈0, 1], then the function Φp

is concave, so the order of terms on the left-hand side of (2.16) is reversed.

Theorem 2.1 holds even if M = N = ∞. More precisely, following a similar
procedure as in the proof of Theorem 2.1, we get the following corollary.

Corollary 2.4. Suppose t ∈ R+ and non-negative numbers um, vn, kmn, for
m,n ∈ N, are such that

Km =
∞∑

n=1

kmn ∈ R+, m ∈ N, and vn =

[
∞∑

m=1

um

(
kmn

Km

)t
] 1

t

< ∞, n ∈ N.

If Φ is a non-negative convex function on an interval I ⊆ R and ϕ : I → R is
any function such that ϕ(x) ∈ ∂Φ(x) for all x ∈ Int I, then the inequality(

∞∑
n=1

vnΦ(an)

)t

−
∞∑

m=1

umΦt(Am) ≥ t
∞∑

m=1

um
Φt−1(Am)

Km

∞∑
n=1

kmnrmn (2.17)

holds for all t ≥ 1 and all real numbers an ∈ I, n ∈ N such that

Am =
1

Km

∞∑
n=1

kmnan ∈ I, m ∈ N, (2.18)

where rmn is defined by (2.7). If t ∈ 〈0, 1] and Φ : I → R is a positive concave
function, then the order of terms on the left-hand side of (2.17) is reversed.
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Remark 2.5. If I is a segment, that is, a closed subset of R, condition (2.18)
is fulfilled automatically since the series defining Km converge for all m ∈ N.
Note that this condition cannot be omitted in any other general case. Further,
according to Remark 2.2, in the case when t = 1 the function Φ from Corollary
2.4 needs not to be non-negative (or positive if it is concave). Finally, under
conditions of Corollary 2.4, Remark 2.3 holds also with M = N = ∞.

Since the right-hand sides of relations (2.5) and (2.8) are non-negative, the
next general discrete Hardy-type inequality follows as a direct consequence of
Theorem 2.1.

Corollary 2.6. Let t ∈ R+, M, N ∈ N and let non-negative real numbers um, vn,
kmn, for m ∈ NM , n ∈ NN , fulfill (2.3) and (2.4). If Φ is a non-negative convex
function on an interval I ⊆ R, then

M∑
m=1

umΦt(Am) ≤

(
N∑

n=1

vnΦ(an)

)t

(2.19)

holds for all t ≥ 1, real numbers an ∈ I, for n ∈ NN and Am defined by (2.6).
If t ∈ 〈0, 1] and the function Φ : I → R is positive and concave, then the sign of
inequality in (2.19) is reversed.

Remark 2.7. Observing that the right-hand side of (2.16) is non-negative, for
p ≥ 1 and a non-negative convex function Φ we get(

M∑
m=1

umΦq(Am)

) 1
q

≤

(
N∑

n=1

vnΦp(an)

) 1
p

. (2.20)

Obviously, similar arguments can be applied also to other cases analyzed in Re-
mark 2.3. However, here we omit their further analysis since it reflects only to the
sign of inequality in (2.20). On the other hand, if non-negative real numbers um,
vn, kmn, where m, n ∈ N, fulfill the conditions of Corollary 2.4, then Corollary
2.6 holds also with M = N = ∞.

3. Applications. A new refined Carleman’s inequality

In this section we continue previous analysis by considering some interesting
particular cases of Theorem 2.1 and of its consequences. Especially, we obtain a
refined discrete Jensen’s inequality and a refinement and a generalization of the
Hardy-type inequality (1.1) from the Introduction. As a special case of the Hardy-
type inequality obtained, we get a new refined weighted version of Godunova’s
inequality (1.3). Finally, as our most important result in this section, we state
and prove a new refined weighted strengthened Carleman’s inequality and show
how it refines and generalizes inequality (1.4). More about history, proofs and
new developments regarding Carleman’s inequality can be found in [4], [6], [11]
and in in the references cited in those papers.

First, as a consequence of Theorem 2.1 we obtain a general refined discrete
Jensen’s inequality.
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Theorem 3.1. Let Φ : I → R be a non-negative convex function on an interval
I ⊆ R and ϕ : I → R be such that ϕ(x) ∈ ∂Φ(x) for all x ∈ Int I. Let t ≥ 1 and
N ∈ N. Then the inequality(

1

WN

N∑
n=1

wnΦ(an)

)t

− Φt(AN) ≥ t
Φt−1(AN)

WN

N∑
n=1

wnrn (3.1)

holds for all real numbers an ∈ I and wn ≥ 0, n ∈ NN , where

WN =
N∑

n=1

wn > 0, AN =
1

WN

N∑
n=1

wnan,

and

rn = | |Φ(an)− Φ(AN)| − |ϕ(AN)| · |an − AN | | , n ∈ NN .

If Φ is a positive concave function and t ∈ 〈0, 1], then the order of terms on the
left-hand side of (3.1) is reversed.

Proof. Follows directly from Theorem 2.1, by taking arbitrary M ∈ N and
positive real numbers um and αm for m ∈ NM . Substituting kmn = αmwn, for all

m ∈ NM we get Km = αmWN , Am = AN and rmn = rn, while vn =
wn

WN

U
1
t

M holds

for all n ∈ NN , where UM =
M∑

m=1

um. Thus, (2.5) reduces to (3.1) and does not

depend on M , um and αm.

Remark 3.2. For t = 1 inequality (3.1) becomes the classical refined discrete
Jensen’s inequality

1

WN

N∑
n=1

wnΦ(an)− Φ(AN) ≥ 1

WN

N∑
n=1

wnrn (3.2)

and the function Φ is not necessarily non-negative. Of course, if the function Φ
is concave, relation (3.2) holds with the reversed order of terms on its left-hand
side.

Observe that Theorem 2.1 and Corollary 2.4 can be easily rewritten with ar-
bitrary M, N ∈ N and Km = 1 for all m ∈ NM . Here, we emphasize just such
case with M = N = ∞ since it provides a generalization and a refinement of the
Hardy-type inequality (1.1).

Theorem 3.3. Let I be an interval in R, Φ : I → R be a non-negative convex
function and ϕ : I → R be such that ϕ(x) ∈ ∂Φ(x), x ∈ Int I. Let t ∈ R+. If real
numbers um, vn, kmn ≥ 0, m, n ∈ N, are such that

∞∑
n=1

kmn = 1, m ∈ N, and vn =

(
∞∑

m=1

umkt
mn

) 1
t

< ∞, n ∈ N,
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if real numbers an ∈ I, n ∈ N, fulfill Am =
∞∑

n=1

kmnan ∈ I, m ∈ N and if rmn is

defined by (2.7), then the inequality(
∞∑

n=1

vnΦ(an)

)t

−
∞∑

m=1

umΦt(Am) ≥ t

∞∑
m=1

umΦt−1(Am)
∞∑

n=1

kmnrmn (3.3)

holds for all t ≥ 1. If t ∈ 〈0, 1] and the function Φ is positive and concave, the
order of terms on the left-hand side of (3.3) is reversed.

Remark 3.4. Set kmn = 0 for m < n in Theorem 3.3. Then

m∑
n=1

kmn = 1, Am =
m∑

n=1

kmnan, m ∈ N, and vn =

(
∞∑

m=n

umkt
mn

) 1
t

, n ∈ N.

Therefore, in this setting (3.3) becomes(
∞∑

n=1

vnΦ(an)

)t

−
∞∑

m=1

umΦt

(
m∑

n=1

kmnan

)

≥ t
∞∑

m=1

umΦt−1

(
m∑

n=1

kmnan

)
m∑

n=1

kmnrmn. (3.4)

In particular, for t = 1 we get vn =
∞∑

m=n

umkmn and

∞∑
n=1

vnΦ(an)−
∞∑

m=1

umΦ

(
m∑

n=1

kmnan

)
≥

∞∑
m=1

um

m∑
n=1

kmnrmn, (3.5)

so (3.3), (3.4) and (3.5) can be respectively regarded as two generalizations and
a refinement of the Vasić–Pečarić relation (1.1). As in Theorem 3.3, for t ∈ 〈0, 1]
and a positive convex function Φ, inequality (3.4) holds with the reversed order
of terms on its left-hand side. The same goes also for (3.5), although in this case
Φ does not have to be non-negative (or positive, if it is concave).

Now, we consider some particular functions Φ and non-negative real num-
bers um and kmn. The following result provides a new weighted refinement of
Godunova’s inequality (1.3). Here we make use of the function Φ : R+ → R,
Φ(x) = xp, where p ∈ R, p 6= 0. For p ≥ 1 and p < 0 this function is convex,
while it is concave for p ∈ 〈0, 1]. In both cases we have ϕ(x) = pxp−1, x ∈ R+.

Theorem 3.5. Let N ∈ N, t ∈ R+ and p ∈ R, p 6= 0. Let (wn)n∈N be a sequence
of non-negative real numbers such that w1 > 0 and let

Wn =
n∑

m=1

wm, n ∈ N. (3.6)
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If t ≥ 1 and p ∈ R \ [0, 1〉, then the inequality N∑
n=1

wn

(
N∑

m=n

wm+1

W t
mWm+1

) 1
t

ap
n

t

−
N∑

m=1

wm+1

Wm+1

Apt
m

≥ t
N∑

m=1

wm+1

WmWm+1

Ap(t−1)
m

m∑
n=1

rmnwn (3.7)

holds for all sequences (an)n∈N of positive real numbers, where

Am =
1

Wm

m∑
n=1

wnan and rmn =
∣∣ |ap

n − Ap
m| − |p| · |Am|p−1 · |an − Am|

∣∣ , (3.8)

for m,n ∈ N. If t, p ∈ 〈0, 1], then the order of terms on the left-hand side of (3.7)
is reversed.

Proof. Note that w1 > 0 implies Wn > 0 for all n ∈ N. In Theorem 2.1, set

Φ : R+ → R, Φ(x) = xp, M = N , um =
wm+1

Wm+1

and

kmn =


wn

Wm

, m ≥ n,

0, otherwise,

for m, n ∈ NN . Then we have Km =
m∑

n=1

wn

Wm

= 1, m ∈ NN and

vn = wn

(
N∑

m=n

wm+1

W t
mWm+1

) 1
t

, n ∈ NN ,

so (3.7) holds.
According to Theorem 3.3 and Remark 3.4, Theorem 3.5 can be easily extended

to N = ∞.

Corollary 3.6. Let t ∈ R+ and p ∈ R, p 6= 0. Let (wn)n∈N be a sequence of non-
negative real numbers and the sequence (Wn)n∈N be defined by (3.6). Let w1 > 0

and
∞∑

m=1

wm+1

W t
mWm+1

< ∞. If t ≥ 1 and p ∈ R \ [0, 1〉, then the inequality

 ∞∑
n=1

wn

(
∞∑

m=n

wm+1

W t
mWm+1

) 1
t

ap
n

t

−
∞∑

m=1

wm+1

Wm+1

Apt
m

≥ t

∞∑
m=1

wm+1

WmWm+1

Ap(t−1)
m

m∑
n=1

rmnwn (3.9)

holds for all sequences (an)n∈N of positive real numbers and Am, rmn defined by
(3.8) for m, n ∈ N. If t, p ∈ 〈0, 1], then (3.9) holds with the reversed order of
terms on its left-hand side.
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Remark 3.7. Rewrite Theorem 3.5 with t = 1. Then we have

vn = wn

N∑
m=n

wm+1

WmWm+1

=
wn

Wn

(
1− Wn

WN+1

)
, (3.10)

so for p ∈ R \ [0, 1] we get the inequality

N∑
n=1

(
1− Wn

WN+1

)
wn

Wn

ap
n −

N∑
m=1

wm+1

Wm+1

(
1

Wm

m∑
n=1

wnan

)p

≥
N∑

m=1

wm+1

WmWm+1

m∑
n=1

rmnwn, (3.11)

while for p ∈ 〈0, 1〉 terms on the left-hand side of (3.11) swap their positions. If
p = 1, (3.11) holds trivially with both-hand sides equal to 0. On the other hand,
denote

W∞ =
∞∑

n=1

wn (3.12)

and set t = 1 in Corollary 3.6. By using (3.10) and that 0 < Wn ≤ Wn+1 ≤ W∞,

that is, 0 ≤ 1− Wn

W∞
≤ 1 for all n ∈ N, relation (3.9) becomes

∞∑
n=1

wn

Wn

ap
n −

∞∑
m=1

wm+1

Wm+1

(
1

Wm

m∑
n=1

wnan

)p

≥
∞∑

n=1

(
1− Wn

W∞

)
wn

Wn

ap
n −

∞∑
m=1

wm+1

Wm+1

(
1

Wm

m∑
n=1

wnan

)p

≥
∞∑

m=1

wm+1

WmWm+1

m∑
n=1

rmnwn ≥ 0.

Here we also covered the case when W∞ = ∞.

Remark 3.8. Theorem 3.5 can be considered in the unweighted case, that is, for

wn = 1, n ∈ N. Then Am =
1

m

m∑
n=1

an, m ∈ N, so relation (3.7) reduces to

 N∑
n=1

(
N∑

m=n

m−t

m + 1

) 1
t

ap
n

t

−
N∑

m=1

1

m + 1
Apt

m ≥ t
N∑

m=1

1

m(m + 1)
Ap(t−1)

m

m∑
n=1

rmn.
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Moreover, for t = 1 and p ∈ R \ [0, 1〉 we have

N∑
n=1

ap
n

n
−

N∑
m=1

1

m + 1

(
1

m

m∑
n=1

an

)p

≥
N∑

n=1

(
1− n

N + 1

)
ap

n

n
−

N∑
m=1

1

m + 1

(
1

m

m∑
n=1

an

)p

≥
N∑

m=1

1

m(m + 1)

m∑
n=1

rmn ≥ 0. (3.13)

Finally, for N = ∞ inequality (3.7) becomes

∞∑
n=1

ap
n

n
−

∞∑
m=1

1

m + 1

(
1

m

m∑
n=1

an

)p

≥
∞∑

m=1

1

m(m + 1)

m∑
n=1

rmn ≥ 0, (3.14)

so (3.13) and (3.14) respectively provide a finite section and a refinement of Go-
dunova’s inequality (1.3). Therefore, Theorem 3.5 can be regarded as a weighted
finite section of (1.3), while Corollary 3.6 gives a weighted generalization of Go-
dunova’s inequality.

As the last result in this section, applying Theorem 2.1 to the convex function
Φ : R → R+, Φ(x) = ex, we obtain a new strengthened weighted Carleman’s
inequality. Here we have ϕ = Φ. The following theorem provides our first result
in that direction.

Theorem 3.9. Let N ∈ N and t ∈ [1,∞〉. If (wn)n∈N is a sequence of non-
negative real numbers such that w1 > 0 and the sequence (Wn)n∈N is defined as
in (3.6), then the inequality N∑

n=1

wnWn

(
N∑

m=n

wm+1

W t
mWm+1

) 1
t

an

t

−
N∑

m=1

wm+1

Wm+1

Gt
m

≥ t

N∑
m=1

wm+1

WmWm+1

Gt−1
m

m∑
n=1

rmnwn (3.15)

holds for all sequences (an)n∈N of positive real numbers, where

Gm =

[
m∏

n=1

(Wnan)wn

] 1
Wm

, m ∈ N, (3.16)

and

rmn =

∣∣∣∣ |Wnan −Gm| −Gm

∣∣∣∣log
Wnan

Gm

∣∣∣∣ ∣∣∣∣ , m, n ∈ N. (3.17)
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In particular, for t = 1 relation (3.15) reduces to

N∑
n=1

(
1− Wn

WN+1

)
wnan −

N∑
m=1

wm+1

Wm+1

(
m∏

n=1

Wwn
n

) 1
Wm
(

m∏
n=1

awn
n

) 1
Wm

≥
N∑

m=1

wm+1

WmWm+1

m∑
n=1

rmnwn. (3.18)

Proof. Follows immediately by rewriting Theorem 2.1 with M = N , Φ : R → R+,
Φ(x) = ex, parameters um and kmn as in the proof of Theorem 3.5 and with the
sequence (log(Wnan))n∈N instead of (an)n∈N. Then we have Am = log Gm, m ∈ N,
so (3.15) and (3.18) hold.

Reformulating Theorem 3.9 for N = ∞, as in Theorem 3.3 and Remark 3.4 we
get the following corollary.

Corollary 3.10. Suppose t ∈ [1,∞〉, (wn)n∈N is a sequence of non-negative
real numbers and the sequence (Wn)n∈N is defined by (3.6). If w1 > 0 and
∞∑

m=1

wm+1

W t
mWm+1

< ∞, then

 ∞∑
n=1

wnWn

(
∞∑

m=n

wm+1

W t
mWm+1

) 1
t

an

t

−
∞∑

m=1

wm+1

Wm+1

Gt
m

≥ t
∞∑

m=1

wm+1

WmWm+1

Gt−1
m

m∑
n=1

rmnwn

holds for all sequences (an)n∈N of positive real numbers and Gm, rmn respectively
defined by (3.16) and (3.17). In particular, for t = 1 and W∞ defined by (3.12),
we get

∞∑
n=1

(
1− Wn

W∞

)
wnan −

∞∑
m=1

wm+1

Wm+1

(
m∏

n=1

Wwn
n

) 1
Wm
(

m∏
n=1

awn
n

) 1
Wm

≥
∞∑

m=1

wm+1

WmWm+1

m∑
n=1

rmnwn.

Under some additional conditions on weights wn, the inequalities obtained in
Theorem 3.9 and Corollary 3.10 can be seen as finite sections and refinements
of the classical weighted Carleman’s inequality. One possible such conditions are
given in the next lemma, interesting in its own right.

Lemma 3.11. Suppose (wn)n∈N is a sequence of non-negative real numbers such
that w1 > 0 and w1 ≥ wn, for n = 2, 3, . . .. If the sequence (Wn)n∈N is defined
by (3.6), then

1

Wm+1

(
m∏

n=1

Wwn
n

) 1
Wm

>
1

e
, m ∈ N. (3.19)
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Proof. Since the mapping x 7→ log x is strictly increasing on R+, for arbitrary
0 < a ≤ b < ∞ we have

(b− a) log b ≥
∫ b

a

log x dx,

with the strict inequality if a < b. In particular, by substituting a = Wn−1 and
b = Wn, we get b− a = wn and

wn log Wn ≥
∫ Wn

Wn−1

log x dx, n = 2, 3, . . . . (3.20)

Hence
m+1∑
n=2

wn log Wn ≥
∫ Wm+1

W1

log x dx

= Wm+1 log Wm+1 −Wm+1 − w1 log W1 + w1

holds for an arbitrary m ∈ N. Therefrom
m∑

n=1

wn log Wn ≥ Wm log Wm+1 −Wm+1 + w1 ≥ Wm log Wm+1 −Wm, (3.21)

where we used the condition w1 ≥ wm+1. Observe that at least one of inequalities
in (3.21) is strict. Namely, if there exists n ∈ {2, 3, . . . , m+1} such that wn > 0,
then the sign of inequality in (3.20) is strict and so is the first inequality in (3.21).
Otherwise, we have w1 > 0 = wm+1 and the second inequality in (3.21) is strict.
Finally,

log

(
m∏

n=1

Wwn
n

)
> Wm log

Wm+1

e
,

so we get (3.19).

Remark 3.12. If wn = 1, n ∈ N, then (3.19) becomes

1

m + 1
m
√

m! >
1

e
, m ∈ N,

that is,
m + 1

m
√

m!
< e, m ∈ N.

Thus, Lemma 3.11 provides a class of lower bounds for the constant e.

Using Lemma 3.11 in Theorem 3.9 and Corollary 3.10, we obtain a new strength-
ened weighted Carleman’s inequality and its finite sections. Here we emphasize
only the most important case, that is, the case with t = 1. Since the general case
can be derived analogously, it is omitted.

Corollary 3.13. Under the conditions of Theorem 3.9 and Lemma 3.11, the
left-hand side of (3.18) is strictly less than

N∑
n=1

(
1− Wn

WN+1

)
wnan −

1

e

N∑
m=1

wm+1

(
m∏

n=1

awn
n

) 1
Wm

.
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Especially, if N = ∞, then the inequalities

∞∑
n=1

wnan −
1

e

∞∑
m=1

wm+1

(
m∏

n=1

awn
n

) 1
Wm

≥
∞∑

n=1

(
1− Wn

W∞

)
wnan −

1

e

∞∑
m=1

wm+1

(
m∏

n=1

awn
n

) 1
Wm

>
∞∑

n=1

(
1− Wn

W∞

)
wnan −

∞∑
m=1

wm+1

Wm+1

(
m∏

n=1

Wwn
n

) 1
Wm
(

m∏
n=1

awn
n

) 1
Wm

≥
∞∑

m=1

wm+1

WmWm+1

m∑
n=1

rmnwn ≥ 0

hold, where the case when W∞ = ∞ is included as well.

Remark 3.14. For wn = 1, n ∈ N, relation (3.15) reduces to N∑
n=1

n

(
N∑

m=n

m−t

m + 1

) 1
t

an

t

−
N∑

m=1

H t
m

m + 1
≥ t

N∑
m=1

H t−1
m

m(m + 1)

m∑
n=1

rmn, (3.22)

where

Hm =

(
m!

m∏
n=1

an

) 1
m

and rmn =

∣∣∣∣ |nan −Hm| −Hm

∣∣∣∣log
nan

Hm

∣∣∣∣ ∣∣∣∣ , m, n ∈ N.

Since
∞∑

m=1

m−t

m + 1
< ∞ for all t ∈ [1,∞〉, note that inequality (3.22) covers also

the case when N = ∞. On the other hand, Corollary 3.13 and Remark 3.12
imply that

N∑
n=1

(
1− n

N + 1

)
an −

1

e

N∑
m=1

(
m∏

n=1

an

) 1
m

>

N∑
n=1

(
1− n

N + 1

)
an −

N∑
m=1

1

m + 1
Hm ≥

N∑
m=1

1

m(m + 1)

m∑
n=1

rmn ≥ 0

holds for all N ∈ N, while for N = ∞ we have

∞∑
n=1

an −
1

e

∞∑
m=1

(
m∏

n=1

an

) 1
m

>
∞∑

n=1

an −
∞∑

m=1

1

m + 1
Hm

≥
∞∑

m=1

1

m(m + 1)

m∑
n=1

rmn ≥ 0.

Therefore, our results refine and generalize relation (1.4) and Carleman’s inequal-
ity (1.5). We take an opportunity to mention that another strengthened weighted
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Carleman’s inequality was obtained by Čižmešija et al. in [4], but that result can
be hardly comparable with the inequalities derived in this section.

4. Exponential convexity and Hardy-type inequalities

By employing the concept of logarithmic and exponential convexity, here we
obtain upper bounds and some further lower bounds for the left-hand sides of
the Hardy-type inequalities from previous two sections, in settings with suitably
chosen convex functions Φ and t = 1. Before presenting our ideas and results, we
recall basic facts about log-convex and exponentially convex functions.

Let I ⊆ R be an interval. A positive function Φ : I → R is said to be
logarithmically convex, or log-convex, if the function log Φ is convex. It is well-
known that each log-convex function is convex and that

Φ(x2)
x3−x1 ≤ Φ(x1)

x3−x2Φ(x3)
x2−x1 (4.1)

holds for all such functions Φ and all x1, x2, x3 ∈ I such that x1 < x2 < x3. On
the other hand, an exponentially convex function on I is any continuous function
Φ : I → R satisfying

k∑
i=1

k∑
j=1

αiαjΦ(xi + xj) ≥ 0 (4.2)

for all k ∈ N and all sequences (αn)n∈N and (xn)n∈N of real numbers such that
xi +xj ∈ I, i, j ∈ N. It can be proved that every exponentially convex function is
log-convex and thus convex. Moreover, the condition (4.2) can be replaced with
a more suitable condition

k∑
i=1

k∑
j=1

αiαjΦ

(
xi + xj

2

)
≥ 0, (4.3)

which has to hold for all k ∈ N, all sequences (αn)n∈N of real numbers and all
sequences (xn)n∈N in I. More precisely, a function Φ : I → R is exponentially
convex if and only if it is continuous and fulfills (4.3). Further information about
log-convex and exponentially convex functions can be found in [2] and [7], as well
as in the references given in those monographs.

Our analysis now continues by making use of two suitably chosen families of
convex functions dependent on a real parameter. We need the following lemma.

Lemma 4.1. Let s ∈ R and the functions Φs : R+ → R and Ψs : R → R be
defined by

Φs(x) =



xs

s(s− 1)
, s 6= 0, 1,

− log x, s = 0,

x log x, s = 1,

(4.4)
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and

Ψs(x) =


1

s2
esx, s 6= 0,

1

2
x2, s = 0.

(4.5)

For all s ∈ R, the functions Φs and Ψs are convex and differentiable on their
respective domains. Moreover, Φ

′′
s (x) = xs−2 and Ψ

′′
s (x) = esx.

Proof. Fix s ∈ R. Since Φ
′′
s (x) = xs−2 > 0, x ∈ R+ and Ψ

′′
s (x) = esx > 0, x ∈ R,

we easily conclude that both functions Φs and Ψs are convex.
According to Lemma 4.1, all the results from Section 2 can be rewritten with

convex functions Φs and Ψs, s ∈ R. In particular, observing that the right-hand
side of (2.13) is non-negative, from Remark 2.2 we get

N∑
n=1

vnΦs(an)−
M∑

m=1

umΦs(Am) ≥ 0

and
N∑

n=1

vnΨs(an)−
M∑

m=1

umΨs(Am) ≥ 0,

where M, N ∈ N and um, kmn, Km, an and Am are as in Theorem 2.1 (an ∈ R+

and an ∈ R in the cases with Φs and Ψs respectively), while vn is defined by (2.14).
Therefore, under assumptions of Theorem 2.1, the functions F, G : R → R,

F (s) =
N∑

n=1

vnΦs(an)−
M∑

m=1

umΦs(Am) (4.6)

and

G(s) =
N∑

n=1

vnΨs(an)−
M∑

m=1

umΨs(Am), (4.7)

are well-defined and non-negative. By proving that they are log-convex, we pro-
vide upper bounds and some new lower bounds for the left-hand side of (2.13),
in the setting with convex functions Φs and Ψs. In fact, in the sequel we prove a
stronger result, that is, that F and G are exponentially convex functions.

Theorem 4.2. Let M, N ∈ N. For m ∈ NM and n ∈ NN , let an ∈ R+, um, kmn,
Km and Am be as in Theorem 2.1 and let vn be as in (2.14). Then the function
F : R → R, defined by (4.6), is exponentially convex and the inequality

F (s2)
s3−s1 ≤ F (s1)

s3−s2F (s3)
s2−s1 (4.8)

holds for all s1, s2, s3 ∈ R such that s1 < s2 < s3.

Proof. The first step is to prove that F is continuous on R. Since the mapping
s 7→ as

s(s−1)
is continuous on R \ {0, 1} for all a ∈ R+, we only need to prove the
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continuity of F in s = 0 and s = 1. Note that

N∑
n=1

vn −
M∑

m=1

um =
N∑

n=1

M∑
m=1

um
kmn

Km

−
M∑

m=1

um

=
M∑

m=1

um

(
1

Km

N∑
n=1

kmn

)
−

M∑
m=1

um = 0 (4.9)

and
N∑

n=1

vnan −
M∑

m=1

umAm =
N∑

n=1

an

M∑
m=1

um
kmn

Km

−
M∑

m=1

um

Km

N∑
n=1

kmnan = 0. (4.10)

Applying the classical L’Hospital’s rule, identity (4.9) and the definitions of the
functions Φs and F , we have

lim
s→0

F (s) = lim
s→0

N∑
n=1

vna
s
n −

M∑
m=1

umAs
m

s(s− 1)

= lim
s→0

N∑
n=1

vna
s
n log an −

M∑
m=1

umAs
m log Am

2s− 1

=
M∑

m=1

um log Am −
N∑

n=1

vn log an = F (0)

and similarly, by using (4.10),

lim
s→1

F (s) =
N∑

n=1

vnan log an −
M∑

m=1

umAm log Am = F (1).

Hence, F is continuous on R. To prove that it is exponentially convex, it suffices
to check condition (4.3). Fix k ∈ N and αi ∈ R, si ∈ R+, for i ∈ Nk. Denote

Φ =
k∑

i=1

k∑
j=1

αiαjΦ si+sj
2

. Lemma 4.1 implies

Φ
′′
(x) =

k∑
i=1

k∑
j=1

αiαjΦ
′′
si+sj

2

(x) =
k∑

i=1

k∑
j=1

αiαjx
si+sj

2
−2

=

(
k∑

i=1

αix
si
2
−1

)2

≥ 0, x ∈ R+,

so Φ is a convex function on R+. Thus, applying Corollary 2.6 to Φ and t = 1,
we get

N∑
n=1

vnΦ(an)−
M∑

m=1

umΦ(Am) ≥ 0
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and finally
k∑

i=1

k∑
j=1

αiαjF

(
si + sj

2

)

=
k∑

i=1

k∑
j=1

αiαj

(
N∑

n=1

vnΦ si+sj
2

(an)−
M∑

m=1

umΦ si+sj
2

(Am)

)

=
N∑

n=1

vn

k∑
i=1

k∑
j=1

αiαjΦ si+sj
2

(an)−
M∑

m=1

um

k∑
i=1

k∑
j=1

αiαjΦ si+sj
2

(Am)

=
N∑

n=1

vnΦ(an)−
M∑

m=1

umΦ(Am) ≥ 0.

Therefore, (4.3) holds and F is exponentially convex. Since every exponentially
convex function is log-convex, (4.8) follows directly from (4.1).

By using similar arguments, we prove exponential convexity of the function G.

Theorem 4.3. Suppose M, N ∈ N. For m ∈ NM and n ∈ NN , suppose that
an ∈ R, um, kmn, Km and Am are as in Theorem 2.1, and that vn is as in (2.14).
Then the function G : R → R, given by (4.7), is exponentially convex and

G(s2)
s3−s1 ≤ G(s1)

s3−s2G(s3)
s2−s1 (4.11)

holds for all s1, s2, s3 ∈ R such that s1 < s2 < s3.

Proof. Combining (4.9), (4.10), L’Hospital’s rule and the definition of the
function G, we obtain

lim
s→0

G(s) = lim
s→0

1

s2

(
N∑

n=1

vne
san −

M∑
m=1

umesAm

)

= lim
s→0

1

2s

(
N∑

n=1

vnane
san −

M∑
m=1

umAmesAm

)

= lim
s→0

1

2

(
N∑

n=1

vna
2
ne

san −
M∑

m=1

umA2
mesAm

)

=
1

2

(
N∑

n=1

vna
2
n −

M∑
m=1

umA2
m

)
= G(0).

Since the mapping s 7→ eas

s2 is continuous on R \ {0}, we conclude that G is
continuous on R. To prove that G is an exponentially convex function, fix
k ∈ N and αi, si ∈ R, for i ∈ Nk. Applying Lemma 4.1 to the function

Ψ =
k∑

i=1

k∑
j=1

αiαjΨ si+sj
2

, for all x ∈ R we get

Ψ
′′
(x) =

k∑
i=1

k∑
j=1

αiαjΨ
′′
si+sj

2

(x) =
k∑

i=1

k∑
j=1

αiαje
si+sj

2
x =

(
k∑

i=1

αie
si
2

x

)2

≥ 0,
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so Ψ is convex on R and
k∑

i=1

k∑
j=1

αiαjG

(
si + sj

2

)
≥ 0

holds as in the proof of Theorem 4.2. Thus, G is exponentially convex and then
also log-convex. Relation (4.11) follows directly from (4.1).

Remark 4.4. Observe that each of inequalities (4.8) and (4.11) implies three fur-
ther relations suitable for establishing lower and upper bounds for values of F
and G. Namely, from (4.8) we obtain that inequalities

F (s2) ≤ F (s1)
s3−s2
s3−s1 F (s3)

s2−s1
s3−s1 , (4.12)

F (s1) ≥ F (s2)
s3−s1
s3−s2 F (s3)

s1−s2
s3−s2 and F (s3) ≥ F (s1)

s2−s3
s2−s1 F (s2)

s3−s1
s2−s1 (4.13)

hold for all s1, s2, s3 ∈ R such that s1 < s2 < s3, while the same inequalities for
G follow from (4.11).

Remark 4.5. In (4.6) and (4.7), the functions F and G were defined as finite
sums of functions, so there were no further conditions on the sequences (un)n∈N,
(vn)n∈N, (an)n∈N and (An)n∈N needed to apply methods used in the proofs of
Theorem 4.2 and Theorem 4.3. Of course, we can also consider the case when
M = N = ∞, that is, to define F and G respectively by

F (s) =
∞∑

n=1

vnΦs(an)−
∞∑

m=1

umΦs(Am)

and

G(s) =
∞∑

n=1

vnΨs(an)−
∞∑

m=1

umΨs(Am).

Obviously, then we have to deal with function series and, in order to apply
L’Hospital’s rule, be able to take limits and differentiate them term by term.
Therefore, the sequences of real numbers mentioned above should be such that

the function series
∞∑

n=1

vna
s
n and

∞∑
m=1

umAs
m are uniformly convergent in neighbour-

hoods of s = 0 and s = 1 and that the function series
∞∑

n=1

vne
ans and

∞∑
m=1

umeAms

are uniformly convergent in some neighbourhood of s = 0. Some such sufficient
conditions follow, for example, from the usual Weierstrass’s test for uniform con-
vergence.

Theorem 4.2 and Theorem 4.3, along with Remark 4.4 and Remark 4.5, can
be applied to all particular cases of Theorem 2.1 and Corollary 2.4 explored in
detail in Section 3. However, owing to the lack of space, here we mention just
the cases related to our improvements of Godunova’s and Carleman’s inequality.

The following result provides a new lower and upper bound for the left-hand
side of the refined weighted Godunova’s inequality (3.11).
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Corollary 4.6. Let N ∈ N and p ∈ R \ {0, 1}. If (wn)n∈N is a sequence of
non-negative real numbers, such that w1 > 0 and the sequence (Wn)n∈N is defined
by (3.6), then the inequalities

p(p− 1) inf
(s,t)∈Sp

F (s)
t−p
t−s F (t)

p−s
t−s

≥
N∑

n=1

(
1− Wn

WN+1

)
wn

Wn

ap
n −

N∑
m=1

wm+1

Wm+1

(
1

Wm

m∑
n=1

wnan

)p

≥ p(p− 1) sup
(s,t)∈Tp

F (s)
t−p
t−s F (t)

p−s
t−s (4.14)

hold for all sequences (an)n∈N of positive real numbers and F : R → R given by

F (s) =
N∑

n=1

(
1− Wn

WN+1

)
wn

Wn

Φs(an)−
N∑

m=1

wm+1

Wm+1

Φs

(
1

Wm

m∑
n=1

wnan

)
,

where Φs is defined by (4.4) and

Sp = {(s, t) ∈ R2 : s < p < t}, Tp = {(s, t) ∈ R2 : p < s < t or s < t < p}.

Proof. Follows directly from Theorem 4.2, applied with M = N , um and kmn as
in the proof of Theorem 3.5 and with vn defined by (3.10). The first inequality in
(4.14) is obtained from (4.12), rewritten with s1 = s, s2 = p, and s3 = t, where
s < p < t. On the other hand, the second inequality in (4.14) is a consequence
of both relations in (4.13). The first of them is rewritten with s1 = p, s2 = s and
s3 = t, where p < s < t and the second with s1 = s, s2 = t and s3 = p, where
s < t < p.

Remark 4.7. In particular, for wn = 1, n ∈ N, we have

F (s) =
N∑

n=1

(
1− n

N + 1

)
1

n
Φs(an)−

N∑
m=1

1

m + 1
Φs

(
1

m

m∑
n=1

an

)
,

so (4.14) becomes

p(p− 1) inf
(s,t)∈Sp

F (s)
t−p
t−s F (t)

p−s
t−s

≥
N∑

n=1

(
1− n

N + 1

)
ap

n

n
−

N∑
m=1

1

m + 1

(
1

m

m∑
n=1

an

)p

≥ p(p− 1) sup
(s,t)∈Tp

F (s)
t−p
t−s F (t)

p−s
t−s .

Under the conditions of Remark 4.5, Corollary 4.6 holds also for N = ∞. In that
case, WN+1 is replaced with W∞ defined by (3.12) and covers also the case when
W∞ = ∞.

Our final result in this paper is the following refinement of the weighted Car-
leman’s inequality.
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Corollary 4.8. Suppose N ∈ N, (wn)n∈N is a sequence of non-negative real
numbers such that w1 > 0 and the sequence (Wn)n∈N is defined by (3.6). Then
the inequalities

inf
(s,t)∈S1

G(s)
t−1
t−s G(t)

1−s
t−s ≥

N∑
n=1

(
1− Wn

WN+1

)
wnan −

N∑
m=1

wm+1

Wm+1

Gm

≥ sup
(s,t)∈T1

G(s)
t−1
t−s G(t)

1−s
t−s (4.15)

hold for all sequences (an)n∈N of positive real numbers, (Gn)n∈N defined by (3.16),
and G : R → R given by

G(s) =
N∑

n=1

(
1− Wn

WN+1

)
wn

Wn

Ψs (log(Wnan))−
N∑

m=1

wm+1

Wm+1

Ψs (log Gm) ,

where Ψs is defined by (4.5) and

S1 = {(s, t) ∈ R2 : s < 1 < t}, T1 = {(s, t) ∈ R2 : 1 < s < t or s < t < 1}.

Proof. A direct consequence of Theorem 4.3, rewritten with M = N , um and
kmn as in the proof of Theorem 3.5, vn defined by (3.10) and with the sequence
(log(Wnan))n∈N instead of (an)n∈N. The first inequality in (4.15) follows from
(4.12), rewritten with G, s1 = s, s2 = 1, and s3 = t, for (s, t) ∈ S1. The second
inequality in (4.15) is obtained by combining both relations in (4.13), rewritten
with G. In the first of them we set s1 = 1, s2 = s and s3 = t, where 1 < s < t,
while in the second relation we substitute s1 = s, s2 = t and s3 = 1, where
s < t < 1.

Remark 4.9. Note that for wn = 1, n ∈ N, we have

G(s) =
N∑

n=1

1

n

(
1− n

N + 1

)
Ψs (log(nan))−

N∑
m=1

1

m + 1
Ψs (log Hm) ,

where Hm =

(
m!

m∏
n=1

an

) 1
m

. Hence, in this setting (4.15) becomes

inf
(s,t)∈S1

G(s)
t−1
t−s G(t)

1−s
t−s ≥

N∑
n=1

(
1− n

N + 1

)
an −

N∑
m=1

1

m + 1

(
m!

m∏
n=1

an

) 1
m

≥ sup
(s,t)∈T1

G(s)
t−1
t−s G(t)

1−s
t−s .

If the sequence (an)n∈N fulfills the conditions of Remark 4.5, Corollary 4.8 holds
also for N = ∞ and WN+1 replaced with W∞ defined by (3.12). The case with
W∞ = ∞ is included as well.
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