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ABSTRACT. We show that the unit ball of the subspace MY}, of ordered contin-
uous elements of My, has no extreme points, where My, is the Marcinkiewicz
function space generated by a decreasing weight function w over the interval
(0,00) and W (t) = fg w, t € (0,00). We also present here a proof of the fact
that a function f in the unit ball of My, is an extreme point if and only if
ff=w.

1. INTRODUCTION AND PRELIMINARIES

In [9, 10], Ryff considered extreme points of the convex set Q(w) of functions
on [0, 1] that is an orbit of a given function w. An orbit of a decreasing weight
function w is in fact a unit ball of the Marcinkiewicz space My, corresponding
to the weight w. Thus the Ryff’s description can be applied directly to the
characterization of extreme points of the unit ball of the Marcinkiewicz function
space My on the interval [0,1]. Further in [3], the analogous description has
been given in the spaces of functions on the interval (0, c0). Here we consider the
Marcinkiewicz spaces My, over (0,00). We first show that the unit ball in the
subspace My, of all ordered continuous elements of My, has no extreme points.
Moreover we provide a detailed proof, different than that given in [3, 9, 10], of
the fact that f is an extreme point of the unit ball in My, if and only if f* = w.
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Extreme and smooth points of the unit ball in Lorentz and Marcinkiewicz
spaces have been a subject of investigation already for some time. The character-
ization of the extreme points in (Orlicz)-Lorentz function spaces has been done
in [1], while the extreme and smooth points in both Lorentz and Marcinkiewicz
sequence spaces corresponding to decreasing weight have been described in [6].
Smooth points in Marcinkiewicz function spaces over (0, co) have been determined
in [7].

We will start by agreeing on some notations. Let L° be the set of all real-valued
| - |-measurable functions defined on (0, 00), where |- | is the Lebesgue measure on
R. By supp f we denote the support of f,i.e. {t: f(t) # 0}. Given A C (0,00),
denote by A° = (0,00) \ A.

The distribution function d; of a function f € L° is given by ds(\) = [{t > 0 :
|f(t)] > A}, for all X\ > 0. For f € L° we define its decreasing rearrangement
as f*(t) = inf{s > 0 : dy(s) < t}, t > 0. The functions d; and f* are right-
continuous on (0, 00) (see [2, &]).

Let w : (0,00) — (0,00) be the weight function, with lim, o+ w(t) = co and
lim,_.c w(t) = 0. Denoting by W(t) := [Jw, t > 0, we assume that W (t) < oo
for all t > 0 and W (o0) = co. We assume also here that w is decreasing.

The Marcinkiewicz space My [3, 5] is the space of all functions f € LY satisfying

f; f*(s)ds
=sup———F— < 0
Il = sup 2
We also define the subspace

t
o i B
My = {f € My A W T 0}

The space My, equipped with the norm || ||y is a Banach function space. The set
My, is a closed subspace of My, and it consists of all order continuous elements
of My, which also coincides with the closure of all bounded functions of finite
measure supports [2, 5].

Given a Banach space (X, | - ||), we will denote by Sx and By respectively,
the unit sphere and the unit ball of the space. An element x € Sy is an extreme
point of the ball By if x = (x1 +x2)/2 with x1, 25 € Sx implies that x = x; = z.

2. MAIN RESULTS

Lemma 2.1. Let f € MY, with || f|lw <1 or f € Sy, with |supp f| < co. Then
there exists a measurable set G with |G°| < oo and there exists € > 0 such that
for all functions g with ||g|lw < 1, ||g|loc <1 and supp g C G, we have that

If+Xgllw <1,  forall |\ <e.

Proof. The case when f € My, with || f||w < 1 is proved in [1, Proposition 2]. So
we only discuss here the case when f € Sy, with |supp f| < oo. Since || f|lw =1,
denote by

bl
W(t)

1}

T :=sup{t >0:
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and let S := |supp f|. So by assumption supp f* = [0,5) and S < oo
| supp f| < oo,

VA

M wm AR w

3

. Since

so 0 <T < 0.
If T'=0, then f*(T) = f*(0) = limy_o+ f*(t) > 0.
If T"> 0, consider 0 < ¢ <T. Then
T rx " c
1= fO f _ f f 0 fT c f fT c
=" = .
Jow “w fo f fo fo w

T T
[ es<] 1
T—c T—c

fT c < (T —c)c
fT w w(T)c ’
So we have that 0 < w(T) < f*(T —¢), for all 0 < ¢ < T. Then
FT) = tim f0) > w(T) > 0.

Case 1: Let T'=S. Then f*(T) = limy 7+ f*(t) =0 and T > 0.
Let t; > T and let

0<e< min{W(tz : ?/(T),ff(T), 1-— a},

Therefore

and it follows that

where 0 < a < 1 such that fO g < for all £ > ¢;. Let G = (supp f)¢ and choose
g such that suppg C G, ||g|lcc < 1 and ||g|lw < 1

If 0 <t <T,then by ¢ < f*(T) we have

Al +elah)s [y f

= <1.
W(t) wit) —
If T'< t <tq, then from the choice of € we have that
L/ px
Tl +elgh _ JoUF1 + eXoeonmn ) Jy(f +eXiroc)
wi)  ~

W(t) N W(t)
o =T [ FW(T) | t-T
W W - w@owe W
W) | W) - WT =T
— W() t—T W)

If t > t1, then by the subadditivity of the functional f — fot f* and the choice of
g,

B +elgh” _ Jo I

hS +e€ S 1.
OO W(t)
So we have that ||f +eg|lw < 1.
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Case 2: Assumte now that 0 < T <S5
If T'= 0, sup,s {Aof(t) hmH0+ Jis W = 1 and for all t € (0,5), 1% fo < 1. Since
T < S, we have that f*(T") > 0, so there exists t; > T such that f (tl) > 0. Let

*(t
0<5<min{f<21),1—a},

where 0 < a < 1 is such that {AO/(];) <a,foralt>t. Let G={t>0:]|f(t)] <
I tl) —e}. So

G={t>0:|f®)] > f*(2t1) —e}| < o0

Let g be such that suppg C G, ||gllec < 1, ||gllw < 1. If 0 < t < ¢4, then

LUfl+elghs [y F
W we =k

If t > t{, then

. ¢
et _r o

O TORMTI0
so again we have that ||f +eg|lw < 1. O]

Let f € Syg or f € Su, with |supp f| < oo. Choose g satisfying the
assumptions of Lemma 2.1 and let hy = f + g and hy = f —eg. Then hy # ho,
[hillw = ||hollw < 1 and f = 232 5o f is not an extreme point. So we have
proved the following corollaries.

Corollary 2.2. The unit sphere in M, has no extreme points.
Corollary 2.3. If f € Sy, and |supp f| < 0o, then f is not an extreme point.

The next lemma is well know [3, 9], but for the sake of completeness we provide
its proof here.

Lemma 2.4. Let ||f|lw = 1 and supp f* = (0,00). If f is an extreme point of
Myy, then f* is also an extreme point.

Proof. By [2, Corollary 7.6], there exists 7 : supp f — supp f*, a measure
preserving transformation from supp f onto supp f*, such that for all ¢ > 0,

[f (@) = f*(7(2)).
Assume that f*(t) = t)i ,forallt >0, g # hand ||g|lw = ||kllw = || fllw = 1.

Then _ .

f(t) = S f()g(r(@)) er sign f()h(7(?))
Define . .

3(t) = { gl’gnf(t)g(T(t)% 1: ; :ﬁgg?j
and

h(t) = { sign f(t)h(7(t)), ift € supp f;
& if ¢ ¢ supp f.
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Since 7 is a measure preserving transformation, g and h are equimeasurable to ¢
and h respectively, so ||g|llw = ||h|lw = |lgllw = ||h]|w = 1. Since the range of 7
is (0,00) and g # h, there exists A C (0, 00) such that |A| > 0 and

§(t) = g(r(1) # h(r() = h(t),  forallt € 4,
therefore g # h and f(t) = w, for all t > 0, which is a contradiction. O

Theorem 2.5. If f € My 1is such that f* = w, then f is an extreme point of
B

w-
Proof. Let f = 2% where ||g|lw = ||hlw = 1, and f* = w. Then f* = w =
(#) and for all s > 0,

1:fosw:fosf*:fos(%)* lf 1f <1
Wi(s) W(s) Wi(s) — 2W(s) 2W( )

So for all s > 0,
s s . AN
L= 6+ [ G)

and it follows that w = @ a.e. Since w is decreasing, we can assume it is
right-continuous. The functions ¢g* and A* are right-continuous.

Claim 1: We wish to show that w = g* = h*.

Assume that w(t) # h*(t). Then there exists an interval (a,b) C (0,00) such
that either w(t) > h*(t) on (a,b) or w(t) < h*(t) on (a,b). Let’s assume first
that a = 0. If w(t) > h*( ), for all t € (0,b), then g*(t) = 2w(t) — h*(t) >
2w(t) —w(t) = w(t) and in this case,

09w
W W

which is a contradiction. If w(t) < h*(t), for all ¢ € (0,b), then again a contra-

diction since
e g
W)~ W)
Assume now that there exist b > a > 0 such that w(t) = h*(t) = g*(¢), for all
€ (0,a) and for all ¢t € (a,b), w(t) > h*(t) or w(t) < h*(t). If w(t) > h*(¢) for
all t € (a,b), then ¢g*(t) > w(t), for all t € (a,b) and so
00 Lo e W) | fiet W) | fyw
1> + = > —1,
wi(t) W) W(a) w’(t) wi(t) -~ W) W()

a contradiction. Similarly we get a contradiction if w(t) < h*(t) for all t € (a, b),

since then
P A O A L ) B AT
Sw@e) o W) W) W) we)
So we have shown that w = ¢g* = h* a.e.
Claim 2: It holds that g = h a.e.
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By the assumption and claim 1,

g =t —w=p

g+h>*_g*+h*
2 2

By [5, 7.9 page 64], (££)" = 52 if and only if [h(t) + g(t)| = |A(1)] + |g(t)

a.e. and furthermore, for all s > 0, there exists a measurable set e(s) such that

L e L [ [ [
[ sl =10 =

So in particular, for all s > 0,
and so |g| = |h| a.e. Since |h(t) + g(t)] = |h(t)] + |g(t)] a.e., we have that
sign g = signh a.e., so h = g a.e. and f is an extreme point.

O

The following theorem is the converse of Theorem 2.5.

Theorem 2.6. If w s strictly decreasing and f € Sy, is an extreme point of
B, , then f* = w.

Proof. Let ||f|lw = 1 and f* # w. In view of Lemma 2.4, it is enough to show
that f* is not an extreme point. We can assume without loss of generality that
w is right-continuous. Also, we can assume that |supp f*| = oo, since otherwise
by Corollary 2.3, f is not an extreme point.

We claim first that there exists an interval [a,b] such that

K = teir[lfb](w(t) — f*(t)) >0 and f*(b) > 0. (2.1)

Suppose that f*(s) > w(s) for every s > 0. Then

/f >/w— W(t),  forallt>0,

so f* = w, which is a contradiction, since f* # w. Thus there exists ay > 0 such
that f*(ag) < w(ap). By right-continuity of w there exists 0 > 0 such that for all
t e [ao, ag + 5]
w(ao) — f*(ao)

2

w(ag) —w(t) <
Hence for all ¢ € [ag, ag + ]

w10 > =T ) a7 o)1) 2

Setting a = ap and b = ag + 0, we have (2.1).
Case 1: Assume now that there exists ¢ € (a,b) such that

fila) > f*(e) > f2(b). (2.2)

w(ag) — f*(ao).
2
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Let € > 0 be such that

0<e<gmin{fila) - P SE) - LB}, 2<

(2.3)

Let
a; = inf{t: f*(t) < f*(c) + ¢}, as = inf{t : f*(t) < f*(c) + 2¢},

by =sup{t: f*(t) > f*(c) — e}, by = sup{t: f*(t) > f*(c) — 2¢}.
By conditions (2.2) and (2.3) and right-continuity of f* we have a < as < a; <

c<b <by<b Let a= 1;b17 and define

9= f*X((),al) + (f* + 5) X(a1,@) (f - 5) X(a,b1) T f*X(bLOO)a

A
A

and
h=f"X0.a)+ ("= )X@,a) + (f +E)X@b) + F Xbr1,00)-
Then f* = %. Now we have
9" = ["X(0.a5) + 9" X(az,a) + 9" X(aps) + [ X(bs,00)5

where ¢*X(as,a) 15 equimeasurable to f*X(as,a1) + (f* + €)X(a1,0) a0d §" X (abs) 18
equimeasurable to (f* — €)X (ap) + f*X(b1,bo)- 1t follows that

o o ba b2
/ g*z/ f*+ela—ay) and / g = [T —ebr — ).
Hence

/abg*:/a“2f*+/:f*+s(a—a1)+ Fr—e(bi— /be _/ £ (24)

Moreover, by (2.1) and (2.3) we have that
g (t) <w(t), for all ¢t € (a,b). (2.5)
If t € (0,a), then fot g = fot f*<W(). If t € (a,b) or t € (b,00), then by (2.4)

and (2.5), Jg* < W (t). So |lg|lw < 1, and similarly, ||h|lw < 1.
Case 2: Suppose now that (2.2) is not satisfied. Then

fia) = f*(c) or () = f*(o), for all ¢ € (a,b).

We shall consider several cases.

(a) Let fi(a) > f*(b) and there exists ¢ € (a,b) such that

[Xae)y = fi(a) and  fx(ep = [2(D). (2.6)
Let
= inf{t : f*(t) = f*(a)}.
Since w is decreasing, we will also have similarly to (2.1) that

nt (w(t) = /() = K > 0.
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(a-i) If f* is not continuous at d > 0 or d = 0, then pick up 0 < ¢ <
min{ f*(d) — fi(d), fi(d) — fx(b), K}, for d > 0, and 0 < ¢ < min{f}(d) —
fx(b), K}, for d=0. Let

9= F"Xdu(eo0) + (fF+ 5)X(d,%) +(f = 5)X(%,d)a

and
h = f"X0.dueo) + (fF — E)X(d’%) + (" 4 €)X (e -

Then f* = 2% and g* = g = h*. Since g*(t) < w(t) forallt € (d,c), g*(t) = f*(t),
for all t ¢ (d,c) and [, g* = [7 f*, we can prove that fot g* < W(t), for all t > 0,
so |lgllw <1 and ||h|lw < 1.

(a-ii) If d > 0 and f* is continuous at d, then for all 0 < ¢t < d, f*(t) > fi(d) =
f*(d) and by continuity of f* at d, we shall find 0 < dy < d; < d such that

inf (w(t) — f*(t)) >0

t€[dz2,d]
and
fild) > f*(dy) > f2(d) = f*(d).
However, this is the situation (2.2), so we are done.
(b) Now let the alternative to (2.6) be satisfied, that is

PO = (@) = fil),  forall t€ fo,b)
(b-i) If d > 0 and f* is continuous at d, then we have the situation (a-ii).
(b-ii) Assume that either d = 0 or f* is discontinuous at d > 0. Let

by = sup{t : f*(t) = [*(a)}.
Let d <t < byg. Then, for d > 0,

R (E5)W(@) + f (@)t - a) _AW(d) + f*(d)(t — d)

FO =35 = W = W) !
WhereO<>\:%§1, and for d =0,
“(d)(t — d
P = HOE,

that is the same formula as for d > 0 if we agree that A > 0 and W (0) = 0. We
have for all d <t < by that F(t) <1, so

t—d .
W(t) — )\W(d)f (@) =<1
Let, for t € (d, by),
t—d
HO = v =

For t € (d, by), since w is strictly decreasing, we have

W(t) — \W(d) > /tw > (t = dyw(?).
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Hence for t € (d, by),
W(t) — AW (d) — (t — d)w(t)
(W(t) = AW(d))*
thus H is strictly increasing on (d,by). H(t) is strictly increasing on (d, by) and
H(by)f*(d) < 1, so H(t)f*(d) < 1 for all t € (d,by), which is equivalent to
F(t) < 1on (d,b).
e Assume first that f* is discontinuous at by. We first observe that K =

MaXe(dts,0—6] F'(t) < 1 for any § > 0. We first choose § > 0 and &; > 0 such that
H(d+6)(f*(d)+¢e1) < 1. With the same § we then choose 0 < € < ¢; such that

e < fr(d) = fi(d) (only in the case d =0), e < f7(bo) — f*(bo), (2.7)

H'(t) = >0,

H(d4+0)(f"(d)+¢) <1, (2.8)

K+ Wié) <1, (2.9)
€0

K+ g =5 =1 (2.10)

Define
9= "Xw.a + (" +)X@atrs) + (f" — €)X(ars,da+20) T F X (d+26,00)5 (2.11)

and
h=f"Xoa + (f" = )X@drs) + (f + E)X(drsdras) + [ X(dr26.00)5 (2.12)
Then by (2.7)
9" = "X + ([ +)Xddrs) + [ Xarspo—5) T (" — €)X bo=560) + f X (Boso0)-
For t € (0,d), [o g* = [o f* < W ().
For t € (d,d + ¢),
[o _ I @ o)t —d) _ AW(d) + (f7(d) +e)(t - d)
W (t) W (t) W (t) B
if and only if

t—d
W (t) — AW (d)
Since by (2.8), for all ¢t € (d,d + ¢),
H®)(f*(d)+¢e) < H(d+0)(f*(d) +¢) < 1,
we have that fg gt < W(t).
For t € (d+ d,by — 9), by (2.9) we have

bha _Jof | e 2
we - we  we =N T waL)

(f*(d) +¢) = H(t)(f*(d) +¢) < L.

<1
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Now let t € (by — 0,bp). Then

t

Tt e — ) BW(by) — (F*(d) — £)(bo — 1)
W) Wi(t) - W(t) ’

b *
where 3 = {?,(zb{)) < 1. We have that for t € (by — 9, by),

t o
mgé)§1 ifand only it~ < (2.13)

where

bo —t
We have that S is strictly decreasing for ¢ < by. Indeed, since w is strictly
decreasing,

BW (bo) — W (t) < W(by) — W (t) < w(t)(by —t).
Hence S’(t) < 0 for t < by, and so S(t) is strictly decreasing. Hence, in order to
show that fot g" < W(t) for t € (by — 6,bp), it is enough to prove that

S(by — 5)ﬁ <1

This is equivalent to

d
/0 £ () (bo — d) — (7 (d) — €) < W (bo — 6),

that is

bo—9d
f* €d
0 < 1.
W(ho—0) Wb —0) =

But by (2.10),

I3 I3
F(bg— 0 —_ <K+ ——— <1
Go=0+ =5 S Kt W =1

which implies that for all ¢t € (by — 6, by),

S(t) < S(bo — 9) <1
frd)—e ™ f(d) -«
which in turn yields that [} g* < W (t) by (2.13).

If t € (by, 00), then
t t
[o=[r=wo
0 0

So |lgllw = |hllw < 1, f* = 2", and f* cannot be extreme point.

b0
e Let f* be continuous at by and let F'(by) = {?/(Ebﬁ) = 1. Hence we have that

for all € > 0, there exists by < t < by + ¢ such that f*(t) < w(t). Indeed, if
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not, then there exists ¢ > 0 such that f*(¢) > w(t), for all t € (by, by + €). Let
t e (bg, by + E), then

i W)+ fy £ W)+ fyw

W) W) w7
which is a contradiction. Hence f*(a) = fi(by) = lim, e ) <w(by) < w(t)
for all t < by.
Let 0 < § < 22 Since w is strictly decreasing, w(d + §) — f*(d) > 0. Let

0 < < min{f*(d) — £1(d), £*(d), w(d+6) — F*(d)}.

where the first term inside the minimum does not exist if d = 0.
Let € be also chosen such that there exists d; < § such that §; = min{dy, d3} > 0,
where

0y = max(f*)[(f*(d) =&, f*(d))] and & = maxw ' [(f(d) — &, f*(d))].
Let g and h be given by (2.11) and (2.12). Then % = f* and g* = h*, where in
this case

9" () = ["Xxa () + (f* + &)X (@a+6)(t) + [ X(d+650-6)(1) (2.14)
+ " Xwo,bo+o0) (t +0) + (f*(d) — €)X (bo—5+61,b0+61) (E) + "X (bo+61,00) (£)-
If t € (0,d), then [, g* = [ f* < W ().

If t € (d,by + d1), then g*(t) < w(t), so Otg* < fotw =W(t).
If t € (by + 91, 00), first compute

bo+61 d+6 bo—0 bo+01 bo+01
/ g = f*+65+/ f*+/ f*+/ () — 26
d d d

+6 bo bo—d+61

d+6 bg—0 bo+51 bo bo+9d1
S AR NV R VAR Rt

+6 bo bg—9d

Then [) g* = [i f* < W(t), so ||g]lw < 1, and similarly ||h]ly < 1.

e Let f* be continuous at by and let F'(by) < 1. Since F'(by) < 1,s0 H(by) f*(d) <
1 and by the fact that H is strictly increasing on (d, by) we get that H(t)f*(d) < 1
on (d, by).
Hence F(t) < 1 on (d,by), and by F(by) < 1 and continuity of F' we find
0 < § < 24 such that L := maxje(asp46) F(t) < 1. Pick up then ¢ > 0
satisfying the following conditions

e < fr(d) — fi(d) (onlyif d =0)

H(bo)(f*(d) +¢) <1, (2.16)
€0
L+—W(d+5) <1. (2.17)

Finally let 0 < é; < § be such that
(bos bo +01) € (f)7H(f*(a) =&, f7(a))].



12 A. KAMINSKA, A.M. PARRISH

Then define g and h as in (2.11) and (2.12), and so ¢* = h* have the form (2.14).
Clearly if ¢t € (0, d), then f(f gt = fg fr<Wi(t).

If t € (d,d+9), then by (2.16), H(t)(f*(d) +¢) < 1forall t € (d,d+ J). But it
implies that

hha _ Jof tet—d)

W(t) W(t) B
For t € (d+ d,by + 61), g*(t) < f*(t) and by (2.17)
L A S AR £
TR ) st wasy <t

Now let ¢ € (by + d1,00). Since ¢g* has exactly the same form as in the previous
case, we have by (2.15) that [J g* = [ f* < W(t). This completes the proof. [
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