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Abstract. We show that the unit ball of the subspace M0
W of ordered contin-

uous elements of MW has no extreme points, where MW is the Marcinkiewicz
function space generated by a decreasing weight function w over the interval
(0,∞) and W (t) =

∫ t

0
w, t ∈ (0,∞). We also present here a proof of the fact

that a function f in the unit ball of MW is an extreme point if and only if
f∗ = w.

1. Introduction and preliminaries

In [9, 10], Ryff considered extreme points of the convex set Ω(w) of functions
on [0, 1] that is an orbit of a given function w. An orbit of a decreasing weight
function w is in fact a unit ball of the Marcinkiewicz space MW corresponding
to the weight w. Thus the Ryff’s description can be applied directly to the
characterization of extreme points of the unit ball of the Marcinkiewicz function
space MW on the interval [0, 1]. Further in [3], the analogous description has
been given in the spaces of functions on the interval (0,∞). Here we consider the
Marcinkiewicz spaces MW over (0,∞). We first show that the unit ball in the
subspace M0

W of all ordered continuous elements of MW has no extreme points.
Moreover we provide a detailed proof, different than that given in [3, 9, 10], of
the fact that f is an extreme point of the unit ball in MW if and only if f ∗ = w.
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Extreme and smooth points of the unit ball in Lorentz and Marcinkiewicz
spaces have been a subject of investigation already for some time. The character-
ization of the extreme points in (Orlicz)-Lorentz function spaces has been done
in [4], while the extreme and smooth points in both Lorentz and Marcinkiewicz
sequence spaces corresponding to decreasing weight have been described in [6].
Smooth points in Marcinkiewicz function spaces over (0,∞) have been determined
in [7].

We will start by agreeing on some notations. Let L0 be the set of all real-valued
| · |-measurable functions defined on (0,∞), where | · | is the Lebesgue measure on
R. By supp f we denote the support of f , i.e. {t : f(t) 6= 0}. Given A ⊂ (0,∞),
denote by Ac = (0,∞) \ A.

The distribution function df of a function f ∈ L0 is given by df (λ) = |{t > 0 :
|f(t)| > λ}|, for all λ ≥ 0. For f ∈ L0 we define its decreasing rearrangement
as f ∗(t) = inf{s > 0 : df (s) ≤ t}, t > 0. The functions df and f ∗ are right-
continuous on (0,∞) (see [2, 8]).

Let w : (0,∞) → (0,∞) be the weight function, with limt→0+ w(t) = ∞ and

limt→∞ w(t) = 0. Denoting by W (t) :=
∫ t

0
w, t > 0, we assume that W (t) < ∞

for all t > 0 and W (∞) = ∞. We assume also here that w is decreasing.
The Marcinkiewicz space MW [8, 5] is the space of all functions f ∈ L0 satisfying

‖f‖W = sup
t>0

∫ t

0
f ∗(s)ds

W (t)
< ∞.

We also define the subspace

M0
W =

{
f ∈ MW : lim

t→0+,∞

∫ t

0
f ∗

W (t)
= 0

}
.

The space MW equipped with the norm ‖·‖W is a Banach function space. The set
M0

W is a closed subspace of MW and it consists of all order continuous elements
of MW which also coincides with the closure of all bounded functions of finite
measure supports [8, 5].

Given a Banach space (X, ‖ · ‖), we will denote by SX and BX respectively,
the unit sphere and the unit ball of the space. An element x ∈ SX is an extreme
point of the ball BX if x = (x1 +x2)/2 with x1, x2 ∈ SX implies that x = x1 = x2.

2. Main results

Lemma 2.1. Let f ∈ M0
W with ‖f‖W ≤ 1 or f ∈ SMW

with | supp f | < ∞. Then
there exists a measurable set G with |Gc| < ∞ and there exists ε > 0 such that
for all functions g with ‖g‖W ≤ 1, ‖g‖∞ ≤ 1 and supp g ⊂ G, we have that

‖f + λg‖W ≤ 1, for all |λ| < ε.

Proof. The case when f ∈ M0
W with ‖f‖W ≤ 1 is proved in [1, Proposition 2]. So

we only discuss here the case when f ∈ SMW
with | supp f | < ∞. Since ‖f‖W = 1,

denote by

T := sup{t > 0 :

∫ t

0
f ∗

W (t)
= 1}
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and let S := | supp f |. So by assumption supp f ∗ = [0, S) and S < ∞. Since
| supp f | < ∞ ,

lim
t→∞

∫ t

0
f ∗

W (t)
= lim

t→∞

∫ S

0
f ∗

W (t)
= 0,

so 0 ≤ T < ∞.
If T = 0, then f ∗(T ) = f ∗(0) = limt→0+ f ∗(t) > 0.
If T > 0, consider 0 < c < T . Then

1 =

∫ T

0
f ∗∫ T

0
w

=

∫ T−c

0
f ∗∫ T−c

0
w

∫ T−c

0
w∫ T

0
w

+

∫ T

T−c
f ∗∫ T

0
w

≤
∫ T−c

0
w∫ T

0
w

+

∫ T

T−c
f ∗∫ T

0
w

.

Therefore ∫ T

T−c

w ≤
∫ T

T−c

f ∗,

and it follows that

1 ≤
∫ T

T−c
f ∗∫ T

T−c
w
≤ f ∗(T − c)c

w(T )c
,

So we have that 0 < w(T ) ≤ f ∗(T − c), for all 0 < c < T . Then

f ∗−(T ) := lim
t→T−

f ∗(t) ≥ w(T ) > 0.

Case 1: Let T = S. Then f ∗(T ) = limt→T+ f ∗(t) = 0 and T > 0.
Let t1 > T and let

0 < ε < min
{W (t1)−W (T )

t1 − T
, f∗−(T ), 1− a

}
,

where 0 < a < 1 such that
R t
0 f∗

W (t)
≤ a, for all t ≥ t1. Let G = (supp f)c and choose

g such that supp g ⊂ G, ‖g‖∞ ≤ 1 and ‖g‖W ≤ 1.
If 0 < t ≤ T , then by ε < f ∗−(T ) we have∫ t

0
(|f |+ ε|g|)∗

W (t)
=

∫ t

0
f ∗

W (t)
≤ 1.

If T < t ≤ t1, then from the choice of ε we have that∫ t

0
(|f |+ ε|g|)∗

W (t)
≤

∫ t

0
(|f |+ εχ(0,∞)\supp f∗)

∗

W (t)
=

∫ t

0
(f ∗ + εχ[T,∞))

W (t)

≤
∫ t

0
f ∗

W (t)
+ ε

t− T

W (t)
=

∫ T

0
f ∗

W (T )

W (T )

W (t)
+ ε

t− T

W (t)

≤ W (T )

W (t)
+

W (t)−W (T )

t− T

t− T

W (t)
= 1.

If t > t1, then by the subadditivity of the functional f 7→
∫ t

0
f ∗ and the choice of

ε, ∫ t

0
(|f |+ ε|g|)∗

W (t)
≤

∫ t

0
f ∗

W (t)
+ ε

∫ t

0
g∗

W (t)
≤ 1.

So we have that ‖f + εg‖W ≤ 1.
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Case 2: Assume now that 0 ≤ T < S .

If T = 0, supt>0

R t
0 f∗

W (t)
= limt→0+

R t
0 f∗

W (t)
= 1 and for all t ∈ (0, S),

R t
0 f∗

W (t)
< 1. Since

T < S, we have that f ∗(T ) > 0, so there exists t1 > T such that f ∗(t1) > 0. Let

0 < ε < min
{f ∗(t1)

2
, 1− a

}
,

where 0 < a < 1 is such that
R t
0 f∗

W (t)
≤ a, for all t > t1. Let G = {t > 0 : |f(t)| <

f∗(t1)
2

− ε}. So

|Gc| = |{t > 0 : |f(t)| ≥ f ∗(t1)

2
− ε}| < ∞.

Let g be such that supp g ⊂ G, ‖g‖∞ ≤ 1, ‖g‖W ≤ 1. If 0 < t ≤ t1, then∫ t

0
(|f |+ ε|g|)∗

W (t)
=

∫ t

0
f ∗

W (t)
≤ 1.

If t > t1, then ∫ t

0
(|f |+ ε|g|)∗

W (t)
≤

∫ t

0
f ∗

W (t)
+ ε

∫ t

0
g∗

W (t)
≤ 1,

so again we have that ‖f + εg‖W ≤ 1. �

Let f ∈ SM0
W

or f ∈ SMW
with | supp f | < ∞. Choose g satisfying the

assumptions of Lemma 2.1 and let h1 = f + εg and h2 = f − εg. Then h1 6= h2,
‖h1‖W = ‖h2‖W ≤ 1 and f = h1+h2

2
, so f is not an extreme point. So we have

proved the following corollaries.

Corollary 2.2. The unit sphere in M0
W has no extreme points.

Corollary 2.3. If f ∈ SMW
and | supp f | < ∞, then f is not an extreme point.

The next lemma is well know [3, 9], but for the sake of completeness we provide
its proof here.

Lemma 2.4. Let ‖f‖W = 1 and supp f ∗ = (0,∞). If f is an extreme point of
MW , then f ∗ is also an extreme point.

Proof. By [2, Corollary 7.6], there exists τ : supp f → supp f ∗, a measure
preserving transformation from supp f onto supp f ∗, such that for all t > 0,
|f(t)| = f ∗(τ(t)).

Assume that f ∗(t) = h(t)+g(t)
2

, for all t > 0, g 6= h and ‖g‖W = ‖h‖W = ‖f‖W = 1.
Then

f(t) =
sign f(t)g(τ(t)) + sign f(t)h(τ(t))

2
.

Define

ḡ(t) =

{
sign f(t)g(τ(t)), if t ∈ supp f ;
0, if t /∈ supp f ,

and

h̄(t) =

{
sign f(t)h(τ(t)), if t ∈ supp f ;
0, if t /∈ supp f .
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Since τ is a measure preserving transformation, ḡ and h̄ are equimeasurable to g
and h respectively, so ‖ḡ‖W = ‖h̄‖W = ‖g‖W = ‖h‖W = 1. Since the range of τ
is (0,∞) and g 6= h, there exists A ⊂ (0,∞) such that |A| > 0 and

ḡ(t) = g(τ(t)) 6= h(τ(t)) = h̄(t), for all t ∈ A,

therefore ḡ 6= h̄ and f(t) = ḡ(t)+h̄(t)
2

, for all t > 0, which is a contradiction. �

Theorem 2.5. If f ∈ MW is such that f ∗ = w, then f is an extreme point of
BMW

.

Proof. Let f = g+h
2

, where ‖g‖W = ‖h‖W = 1, and f ∗ = w. Then f ∗ = w =(
g+h

2

)∗
and for all s > 0,

1 =

∫ s

0
w

W (s)
=

∫ s

0
f ∗

W (s)
=

∫ s

0

(
g+h

2

)∗
W (s)

≤ 1

2

∫ s

0
g∗

W (s)
+

1

2

∫ s

0
h∗

W (s)
≤ 1.

So for all s > 0, ∫ s

0

w =

∫ s

0

(g

2

)∗
+

∫ s

0

(h

2

)∗
,

and it follows that w = g∗+h∗

2
a.e. Since w is decreasing, we can assume it is

right-continuous. The functions g∗ and h∗ are right-continuous.
Claim 1: We wish to show that w = g∗ = h∗.
Assume that w(t) 6= h∗(t). Then there exists an interval (a, b) ⊂ (0,∞) such

that either w(t) > h∗(t) on (a, b) or w(t) < h∗(t) on (a, b). Let’s assume first
that a = 0. If w(t) > h∗(t), for all t ∈ (0, b), then g∗(t) = 2w(t) − h∗(t) >
2w(t)− w(t) = w(t) and in this case,∫ t

0
g∗

W (t)
>

∫ t

0
w

W (t)
= 1,

which is a contradiction. If w(t) < h∗(t), for all t ∈ (0, b), then again a contra-
diction since ∫ t

0
h∗

W (t)
>

∫ t

0
w

W (t)
= 1.

Assume now that there exist b > a > 0 such that w(t) = h∗(t) = g∗(t), for all
t ∈ (0, a) and for all t ∈ (a, b), w(t) > h∗(t) or w(t) < h∗(t). If w(t) > h∗(t) for
all t ∈ (a, b), then g∗(t) > w(t), for all t ∈ (a, b) and so

1 ≥
∫ a

0
g∗

W (t)
+

∫ t

a
g∗

W (t)
=

∫ a

0
w

W (a)

W (a)

W (t)
+

∫ t

a
g∗

W (t)
>

W (a)

W (t)
+

∫ t

a
w

W (t)
= 1,

a contradiction. Similarly we get a contradiction if w(t) < h∗(t) for all t ∈ (a, b),
since then

1 ≥
∫ t

0
h∗

W (t)
=

∫ a

0
h∗

W (t)
+

∫ t

a
h∗

W (t)
>

W (a)

W (t)
+

∫ t

a
w

W (t)
= 1.

So we have shown that w = g∗ = h∗ a.e.
Claim 2: It holds that g = h a.e.
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By the assumption and claim 1,

g∗ = h∗ = w = f ∗ =
(g + h

2

)∗
=

g∗ + h∗

2
.

By [8, 7,9 page 64],
(

g+h
2

)∗
= g∗+h∗

2
if and only if |h(t) + g(t)| = |h(t)| + |g(t)|

a.e. and furthermore, for all s > 0, there exists a measurable set e(s) such that
|e(s)| = s and∫

e(s)

∣∣∣g + h

2

∣∣∣ =

∫
e(s)

|g| =
∫

e(s)

|h| =
∫ s

0

g∗ =

∫ s

0

h∗ =

∫ s

0

w.

So in particular, for all s > 0, ∫
e(s)

(|g| − |h|) = 0

and so |g| = |h| a.e. Since |h(t) + g(t)| = |h(t)| + |g(t)| a.e., we have that
sign g = sign h a.e., so h = g a.e. and f is an extreme point.

�

The following theorem is the converse of Theorem 2.5.

Theorem 2.6. If w is strictly decreasing and f ∈ SMW
is an extreme point of

BMW
, then f ∗ = w.

Proof. Let ‖f‖W = 1 and f ∗ 6= w. In view of Lemma 2.4, it is enough to show
that f ∗ is not an extreme point. We can assume without loss of generality that
w is right-continuous. Also, we can assume that | supp f ∗| = ∞, since otherwise
by Corollary 2.3, f is not an extreme point.

We claim first that there exists an interval [a, b] such that

K := inf
t∈[a,b]

(w(t)− f ∗(t)) > 0 and f ∗(b) > 0. (2.1)

Suppose that f ∗(s) > w(s) for every s > 0. Then

W (t) ≥
∫ t

0

f ∗ ≥
∫ t

0

w = W (t), for all t > 0,

so f ∗ = w, which is a contradiction, since f ∗ 6= w. Thus there exists a0 > 0 such
that f ∗(a0) < w(a0). By right-continuity of w there exists δ > 0 such that for all
t ∈ [a0, a0 + δ]

w(a0)− w(t) <
w(a0)− f ∗(a0)

2
.

Hence for all t ∈ [a0, a0 + δ]

w(t)−f ∗(t) > −w(a0)− f ∗(a0)

2
+w(a0)−f ∗(a0)+f ∗(a0)−f ∗(t) ≥ w(a0)− f ∗(a0)

2
.

Setting a = a0 and b = a0 + δ, we have (2.1).
Case 1: Assume now that there exists c ∈ (a, b) such that

f ∗+(a) > f ∗(c) > f ∗−(b). (2.2)
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Let ε > 0 be such that

0 < ε <
1

2
min{f ∗+(a)− f ∗(c), f∗(c)− f ∗−(b)}, ε <

K

2
. (2.3)

Let

a1 = inf{t : f ∗(t) ≤ f ∗(c) + ε}, a2 = inf{t : f ∗(t) ≤ f ∗(c) + 2ε},

b1 = sup{t : f ∗(t) ≥ f ∗(c)− ε}, b2 = sup{t : f ∗(t) ≥ f ∗(c)− 2ε}.
By conditions (2.2) and (2.3) and right-continuity of f ∗ we have a < a2 ≤ a1 ≤
c < b1 ≤ b2 < b. Let α = a1+b1

2
, and define

g = f ∗χ(0,a1) + (f ∗ + ε)χ(a1,α) + (f ∗ − ε)χ(α,b1) + f ∗χ(b1,∞),

and

h = f ∗χ(0,a1) + (f ∗ − ε)χ(a1,α) + (f ∗ + ε)χ(α,b1) + f ∗χ(b1,∞).

Then f ∗ = g+h
2

. Now we have

g∗ = f ∗χ(0,a2) + g∗χ(a2,α) + g∗χ(α,b2) + f ∗χ(b2,∞),

where g∗χ(a2,α) is equimeasurable to f ∗χ(a2,a1) + (f ∗ + ε)χ(a1,α) and g∗χ(α,b2) is
equimeasurable to (f ∗ − ε)χ(α,b1) + f ∗χ(b1,b2). It follows that∫ α

a2

g∗ =

∫ α

a2

f ∗ + ε(α− a1) and

∫ b2

α

g∗ =

∫ b2

α

f ∗ − ε(b1 − α).

Hence∫ b

a

g∗ =

∫ a2

a

f ∗+

∫ α

a2

f ∗+ε(α−a1)+

∫ b2

α

f ∗−ε(b1−α)+

∫ b

b2

f ∗ =

∫ b

a

f ∗. (2.4)

Moreover, by (2.1) and (2.3) we have that

g∗(t) ≤ w(t), for all t ∈ (a, b). (2.5)

If t ∈ (0, a), then
∫ t

0
g∗ =

∫ t

0
f ∗ ≤ W (t). If t ∈ (a, b) or t ∈ (b,∞), then by (2.4)

and (2.5),
∫ t

0
g∗ ≤ W (t). So ‖g‖W ≤ 1, and similarly, ‖h‖W ≤ 1.

Case 2: Suppose now that (2.2) is not satisfied. Then

f ∗+(a) = f ∗(c) or f ∗−(b) = f ∗(c), for all c ∈ (a, b).

We shall consider several cases.

(a) Let f ∗+(a) > f ∗−(b) and there exists c ∈ (a, b) such that

f ∗χ(a,c) = f ∗+(a) and f ∗χ(c,b) = f ∗−(b). (2.6)

Let

d = inf{t : f ∗(t) = f ∗(a)}.
Since w is decreasing, we will also have similarly to (2.1) that

inf
t∈[d,b]

(w(t)− f ∗(t)) ≥ K > 0.
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(a-i) If f ∗ is not continuous at d > 0 or d = 0, then pick up 0 < ε <
min{f ∗−(d) − f ∗+(d), f∗+(d) − f ∗−(b), K}, for d > 0, and 0 < ε < min{f ∗+(d) −
f ∗−(b), K}, for d = 0. Let

g = f ∗χ(0,d)∪(c,∞) + (f ∗ + ε)χ(d, d+c
2

) + (f ∗ − ε)χ( d+c
2

,d),

and
h = f ∗χ(0,d)∪(c,∞) + (f ∗ − ε)χ(d, d+c

2
) + (f ∗ + ε)χ( d+c

2
,c).

Then f ∗ = g+h
2

and g∗ = g = h∗. Since g∗(t) ≤ w(t) for all t ∈ (d, c), g∗(t) = f ∗(t),

for all t /∈ (d, c) and
∫ c

d
g∗ =

∫ c

d
f ∗, we can prove that

∫ t

0
g∗ ≤ W (t), for all t ≥ 0,

so ‖g‖W ≤ 1 and ‖h‖W ≤ 1.

(a-ii) If d > 0 and f ∗ is continuous at d, then for all 0 < t < d, f ∗(t) > f ∗+(d) =
f ∗−(d) and by continuity of f ∗ at d, we shall find 0 < d2 < d1 < d such that

inf
t∈[d2,d]

(w(t)− f ∗(t)) > 0

and
f ∗+(d2) > f ∗(d1) > f ∗−(d) = f ∗(d).

However, this is the situation (2.2), so we are done.
(b) Now let the alternative to (2.6) be satisfied, that is

f ∗(t) = f ∗(a) = f ∗+(a), for all t ∈ [a, b)

(b-i) If d > 0 and f ∗ is continuous at d, then we have the situation (a-ii).
(b-ii) Assume that either d = 0 or f ∗ is discontinuous at d > 0. Let

b0 = sup{t : f ∗(t) = f ∗(a)}.
Let d < t < b0. Then, for d > 0,

F (t) =

∫ t

0
f ∗

W (t)
=

(R d
0 f∗

W (d)

)
W (d) + f ∗(d)(t− d)

W (t)
=

λW (d) + f ∗(d)(t− d)

W (t)
,

where 0 < λ =
R d
0 f∗

W (d)
≤ 1, and for d = 0,

F (t) =
f ∗(d)(t− d)

W (t)
,

that is the same formula as for d > 0 if we agree that λ > 0 and W (0) = 0. We
have for all d < t < b0 that F (t) ≤ 1, so

t− d

W (t)− λW (d)
f ∗(d) ≤ 1.

Let, for t ∈ (d, b0),

H(t) =
t− d

W (t)− λW (d)
.

For t ∈ (d, b0), since w is strictly decreasing, we have

W (t)− λW (d) ≥
∫ t

d

w > (t− d)w(t).
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Hence for t ∈ (d, b0),

H ′(t) =
W (t)− λW (d)− (t− d)w(t)

(W (t)− λW (d))2
> 0,

thus H is strictly increasing on (d, b0). H(t) is strictly increasing on (d, b0) and
H(b0)f

∗(d) ≤ 1, so H(t)f ∗(d) < 1 for all t ∈ (d, b0), which is equivalent to
F (t) < 1 on (d, b0).
• Assume first that f ∗ is discontinuous at b0. We first observe that K =

maxt∈[d+δ,b0−δ] F (t) < 1 for any δ > 0. We first choose δ > 0 and ε1 > 0 such that
H(d + δ)(f ∗(d) + ε1) < 1. With the same δ we then choose 0 < ε ≤ ε1 such that

ε < f ∗−(d)− f ∗+(d) (only in the case d = 0), ε < f ∗+(b0)− f ∗−(b0), (2.7)

H(d + δ)(f ∗(d) + ε) ≤ 1, (2.8)

K +
εδ

W (d + δ)
≤ 1, (2.9)

K +
εδ

W (b0 − δ)
≤ 1. (2.10)

Define

g = f ∗χ(0,d) + (f ∗ + ε)χ(d,d+δ) + (f ∗ − ε)χ(d+δ,d+2δ) + f ∗χ(d+2δ,∞), (2.11)

and

h = f ∗χ(0,d) + (f ∗ − ε)χ(d,d+δ) + (f ∗ + ε)χ(d+δ,d+2δ) + f ∗χ(d+2δ,∞), (2.12)

Then by (2.7)

g∗ = f ∗χ(0,d) + (f ∗ + ε)χ(d,d+δ) + f ∗χ(d+δ,b0−δ) + (f ∗ − ε)χ(b0−δ,b0) + f ∗χ(b0,∞).

For t ∈ (0, d),
∫ t

0
g∗ =

∫ t

0
f ∗ ≤ W (t).

For t ∈ (d, d + δ),∫ t

0
g∗

W (t)
=

∫ d

0
f ∗ + (f ∗(d) + ε)(t− d)

W (t)
=

λW (d) + (f ∗(d) + ε)(t− d)

W (t)
≤ 1

if and only if

t− d

W (t)− λW (d)
(f ∗(d) + ε) = H(t)(f ∗(d) + ε) ≤ 1.

Since by (2.8), for all t ∈ (d, d + δ),

H(t)(f ∗(d) + ε) < H(d + δ)(f ∗(d) + ε) < 1,

we have that
∫ t

0
g∗ ≤ W (t).

For t ∈ (d + δ, b0 − δ), by (2.9) we have∫ t

0
g∗

W (t)
=

∫ t

0
f ∗

W (t)
+

εδ

W (t)
≤ K +

εδ

W (d + δ)
≤ 1.
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Now let t ∈ (b0 − δ, b0). Then∫ t

0
g∗

W (t)
=

∫ b0
0

f ∗ −
∫ b0

t
f ∗ + ε(b0 − t)

W (t)
=

βW (b0)− (f ∗(d)− ε)(b0 − t)

W (t)
,

where β =
R b0
0 f∗

W (b0)
≤ 1. We have that for t ∈ (b0 − δ, b0),∫ t

0
g∗

W (t)
≤ 1 if and only if

S(t)

f ∗(d)− ε
≤ 1, (2.13)

where

S(t) =
βW (b0)−W (t)

b0 − t
.

We have that S is strictly decreasing for t < b0. Indeed, since w is strictly
decreasing,

βW (b0)−W (t) ≤ W (b0)−W (t) < w(t)(b0 − t).

Hence S ′(t) < 0 for t < b0, and so S(t) is strictly decreasing. Hence, in order to

show that
∫ t

0
g∗ ≤ W (t) for t ∈ (b0 − δ, b0), it is enough to prove that

S(b0 − δ)
1

f ∗(d)− ε
≤ 1.

This is equivalent to∫ d

0

f ∗ + f ∗(d)(b0 − d)− δ(f ∗(d)− ε) ≤ W (b0 − δ),

that is ∫ b0−δ

0
f ∗

W (b0 − δ)
+

εδ

W (b0 − δ)
≤ 1.

But by (2.10),

F (b0 − δ) +
εδ

W (b0 − δ)
≤ K +

εδ

W (b0 − δ)
≤ 1,

which implies that for all t ∈ (b0 − δ, b0),

S(t)

f ∗(d)− ε
≤ S(b0 − δ)

f ∗(d)− ε
≤ 1,

which in turn yields that
∫ t

0
g∗ ≤ W (t) by (2.13).

If t ∈ (b0,∞), then ∫ t

0

g∗ =

∫ t

0

f ∗ ≤ W (t).

So ‖g‖W = ‖h‖W ≤ 1, f ∗ = g+h
2

, and f ∗ cannot be extreme point.

• Let f ∗ be continuous at b0 and let F (b0) =
R b0
0 f∗

W (b0)
= 1. Hence we have that

for all ε > 0, there exists b0 < t < b0 + ε such that f ∗(t) ≤ w(t). Indeed, if
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not, then there exists ε > 0 such that f ∗(t) > w(t), for all t ∈ (b0, b0 + ε). Let
t ∈ (b0, b0 + ε), then∫ t

0
f ∗

W (t)
=

W (b0) +
∫ t

b0
f ∗

W (t)
>

W (b0) +
∫ t

b0
w

W (t)
= 1,

which is a contradiction. Hence f ∗(a) = f ∗+(b0) = limt→b+0
f ∗(t) ≤ w(b0) ≤ w(t)

for all t ≤ b0.
Let 0 < δ < b0−d

4
. Since w is strictly decreasing, w(d + δ)− f ∗(d) > 0. Let

0 < ε < min{f ∗−(d)− f ∗+(d), f∗(d), w(d + δ)− f ∗(d)},
where the first term inside the minimum does not exist if d = 0.
Let ε be also chosen such that there exists δ1 < δ such that δ1 = min{δ2, δ3} > 0,
where

δ2 = max(f ∗)−1[(f ∗(d)− ε, f ∗(d))] and δ3 = max w−1[(f ∗(d)− ε, f ∗(d))].

Let g and h be given by (2.11) and (2.12). Then g+h
2

= f ∗ and g∗ = h∗, where in
this case

g∗(t) = f ∗χ(0,d)(t) + (f ∗ + ε)χ(d,d+δ)(t) + f ∗χ(d+δ,b0−δ)(t) (2.14)

+ f ∗χ(b0,b0+δ1)(t + δ) + (f ∗(d)− ε)χ(b0−δ+δ1,b0+δ1)(t) + f ∗χ(b0+δ1,∞)(t).

If t ∈ (0, d), then
∫ t

0
g∗ =

∫ t

0
f ∗ ≤ W (t).

If t ∈ (d, b0 + δ1), then g∗(t) ≤ w(t), so
∫ t

0
g∗ ≤

∫ t

0
w = W (t).

If t ∈ (b0 + δ1,∞), first compute∫ b0+δ1

d

g∗ =

∫ d+δ

d

f ∗ + εδ +

∫ b0−δ

d+δ

f ∗ +

∫ b0+δ1

b0

f ∗ +

∫ b0+δ1

b0−δ+δ1

f ∗(d)− εδ

=

∫ d+δ

d

f ∗ +

∫ b0−δ

d+δ

f ∗ +

∫ b0+δ1

b0

f ∗ +

∫ b0

b0−δ

f ∗ =

∫ b0+δ1

d

f ∗. (2.15)

Then
∫ t

0
g∗ =

∫ t

0
f ∗ ≤ W (t), so ‖g‖W ≤ 1, and similarly ‖h‖W ≤ 1.

• Let f ∗ be continuous at b0 and let F (b0) < 1. Since F (b0) < 1, so H(b0)f
∗(d) <

1 and by the fact that H is strictly increasing on (d, b0) we get that H(t)f ∗(d) < 1
on (d, b0).
Hence F (t) < 1 on (d, b0), and by F (b0) < 1 and continuity of F we find
0 < δ < b0−d

4
, such that L := maxt∈(d+δ,b0+δ) F (t) < 1. Pick up then ε > 0

satisfying the following conditions

ε < f ∗−(d)− f ∗+(d) (only if d = 0)

H(b0)(f
∗(d) + ε) ≤ 1, (2.16)

L +
εδ

W (d + δ)
≤ 1. (2.17)

Finally let 0 < δ1 < δ be such that

(b0, b0 + δ1) ⊂ (f ∗)−1[(f ∗(a)− ε, f ∗(a))].
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Then define g and h as in (2.11) and (2.12), and so g∗ = h∗ have the form (2.14).

Clearly if t ∈ (0, d), then
∫ t

0
g∗ =

∫ t

0
f ∗ ≤ W (t).

If t ∈ (d, d + δ), then by (2.16), H(t)(f ∗(d) + ε) ≤ 1 for all t ∈ (d, d + δ). But it
implies that ∫ t

0
g∗

W (t)
=

∫ t

0
f ∗ + ε(t− d)

W (t)
≤ 1.

For t ∈ (d + δ, b0 + δ1), g∗(t) ≤ f ∗(t) and by (2.17)∫ t

0
g∗

W (t)
≤

∫ d+δ

0
f ∗ +

∫ t

d+δ
f ∗ + εδ

W (t)
≤ L +

εδ

W (d + δ)
< 1.

Now let t ∈ (b0 + δ1,∞). Since g∗ has exactly the same form as in the previous

case, we have by (2.15) that
∫ t

0
g∗ =

∫ t

0
f ∗ ≤ W (t). This completes the proof. �
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