NOTE ON EXTREME POINTS IN MARCINKIEWICZ FUNCTION SPACES

ANNA KAMIŃSKA ${ }^{1 *}$ AND ANCA M. PARRISH ${ }^{1}$
Dedicated to Professor Lars-Erik Persson on his 65th birthday

Communicated by L. Maligranda

Abstract

We show that the unit ball of the subspace M_{W}^{0} of ordered continuous elements of M_{W} has no extreme points, where M_{W} is the Marcinkiewicz function space generated by a decreasing weight function w over the interval $(0, \infty)$ and $W(t)=\int_{0}^{t} w, t \in(0, \infty)$. We also present here a proof of the fact that a function f in the unit ball of M_{W} is an extreme point if and only if $f^{*}=w$.

1. Introduction and preliminaries

In [9, 10], Ryff considered extreme points of the convex set $\Omega(w)$ of functions on $[0,1]$ that is an orbit of a given function w. An orbit of a decreasing weight function w is in fact a unit ball of the Marcinkiewicz space M_{W} corresponding to the weight w. Thus the Ryff's description can be applied directly to the characterization of extreme points of the unit ball of the Marcinkiewicz function space M_{W} on the interval $[0,1]$. Further in [3], the analogous description has been given in the spaces of functions on the interval $(0, \infty)$. Here we consider the Marcinkiewicz spaces M_{W} over $(0, \infty)$. We first show that the unit ball in the subspace M_{W}^{0} of all ordered continuous elements of M_{W} has no extreme points. Moreover we provide a detailed proof, different than that given in [3, 9, 10], of the fact that f is an extreme point of the unit ball in M_{W} if and only if $f^{*}=w$.

[^0]Extreme and smooth points of the unit ball in Lorentz and Marcinkiewicz spaces have been a subject of investigation already for some time. The characterization of the extreme points in (Orlicz)-Lorentz function spaces has been done in [4], while the extreme and smooth points in both Lorentz and Marcinkiewicz sequence spaces corresponding to decreasing weight have been described in [6]. Smooth points in Marcinkiewicz function spaces over $(0, \infty)$ have been determined in [7].

We will start by agreeing on some notations. Let L^{0} be the set of all real-valued $|\cdot|$-measurable functions defined on $(0, \infty)$, where $|\cdot|$ is the Lebesgue measure on \mathbb{R}. By supp f we denote the support of f, i.e. $\{t: f(t) \neq 0\}$. Given $A \subset(0, \infty)$, denote by $A^{c}=(0, \infty) \backslash A$.

The distribution function d_{f} of a function $f \in L^{0}$ is given by $d_{f}(\lambda)=\mid\{t>0$: $|f(t)|>\lambda\} \mid$, for all $\lambda \geq 0$. For $f \in L^{0}$ we define its decreasing rearrangement as $f^{*}(t)=\inf \left\{s>0: d_{f}(s) \leq t\right\}, t>0$. The functions d_{f} and f^{*} are rightcontinuous on $(0, \infty)$ (see $[2,8]$).

Let $w:(0, \infty) \rightarrow(0, \infty)$ be the weight function, with $\lim _{t \rightarrow 0^{+}} w(t)=\infty$ and $\lim _{t \rightarrow \infty} w(t)=0$. Denoting by $W(t):=\int_{0}^{t} w, t>0$, we assume that $W(t)<\infty$ for all $t>0$ and $W(\infty)=\infty$. We assume also here that w is decreasing.

The Marcinkiewicz space $M_{W}[8,5]$ is the space of all functions $f \in L^{0}$ satisfying

$$
\|f\|_{W}=\sup _{t>0} \frac{\int_{0}^{t} f^{*}(s) d s}{W(t)}<\infty
$$

We also define the subspace

$$
M_{W}^{0}=\left\{f \in M_{W}: \lim _{t \rightarrow 0^{+}, \infty} \frac{\int_{0}^{t} f^{*}}{W(t)}=0\right\}
$$

The space M_{W} equipped with the norm $\|\cdot\|_{W}$ is a Banach function space. The set M_{W}^{0} is a closed subspace of M_{W} and it consists of all order continuous elements of M_{W} which also coincides with the closure of all bounded functions of finite measure supports $[8,5]$.

Given a Banach space $(X,\|\cdot\|)$, we will denote by S_{X} and B_{X} respectively, the unit sphere and the unit ball of the space. An element $x \in S_{X}$ is an extreme point of the ball B_{X} if $x=\left(x_{1}+x_{2}\right) / 2$ with $x_{1}, x_{2} \in S_{X}$ implies that $x=x_{1}=x_{2}$.

2. Main Results

Lemma 2.1. Let $f \in M_{W}^{0}$ with $\|f\|_{W} \leq 1$ or $f \in S_{M_{W}}$ with $|\operatorname{supp} f|<\infty$. Then there exists a measurable set G with $\left|G^{c}\right|<\infty$ and there exists $\varepsilon>0$ such that for all functions g with $\|g\|_{W} \leq 1,\|g\|_{\infty} \leq 1$ and $\operatorname{supp} g \subset G$, we have that

$$
\|f+\lambda g\|_{W} \leq 1, \quad \text { for all }|\lambda|<\varepsilon
$$

Proof. The case when $f \in M_{W}^{0}$ with $\|f\|_{W} \leq 1$ is proved in [1, Proposition 2]. So we only discuss here the case when $f \in S_{M_{W}}$ with $|\operatorname{supp} f|<\infty$. Since $\|f\|_{W}=1$, denote by

$$
T:=\sup \left\{t>0: \frac{\int_{0}^{t} f^{*}}{W(t)}=1\right\}
$$

and let $S:=|\operatorname{supp} f|$. So by assumption $\operatorname{supp} f^{*}=[0, S)$ and $S<\infty$. Since $|\operatorname{supp} f|<\infty$,

$$
\lim _{t \rightarrow \infty} \frac{\int_{0}^{t} f^{*}}{W(t)}=\lim _{t \rightarrow \infty} \frac{\int_{0}^{S} f^{*}}{W(t)}=0
$$

so $0 \leq T<\infty$.
If $T=0$, then $f^{*}(T)=f^{*}(0)=\lim _{t \rightarrow 0^{+}} f^{*}(t)>0$.
If $T>0$, consider $0<c<T$. Then

$$
1=\frac{\int_{0}^{T} f^{*}}{\int_{0}^{T} w}=\frac{\int_{0}^{T-c} f^{*}}{\int_{0}^{T-c} w} \frac{\int_{0}^{T-c} w}{\int_{0}^{T} w}+\frac{\int_{T-c}^{T} f^{*}}{\int_{0}^{T} w} \leq \frac{\int_{0}^{T-c} w}{\int_{0}^{T} w}+\frac{\int_{T-c}^{T} f^{*}}{\int_{0}^{T} w} .
$$

Therefore

$$
\int_{T-c}^{T} w \leq \int_{T-c}^{T} f^{*}
$$

and it follows that

$$
1 \leq \frac{\int_{T-c}^{T} f^{*}}{\int_{T-c}^{T} w} \leq \frac{f^{*}(T-c) c}{w(T) c}
$$

So we have that $0<w(T) \leq f^{*}(T-c)$, for all $0<c<T$. Then

$$
f_{-}^{*}(T):=\lim _{t \rightarrow T^{-}} f^{*}(t) \geq w(T)>0
$$

Case 1: Let $T=S$. Then $f^{*}(T)=\lim _{t \rightarrow T^{+}} f^{*}(t)=0$ and $T>0$.
Let $t_{1}>T$ and let

$$
0<\varepsilon<\min \left\{\frac{W\left(t_{1}\right)-W(T)}{t_{1}-T}, f_{-}^{*}(T), 1-a\right\}
$$

where $0<a<1$ such that $\frac{\int_{0}^{t} f^{*}}{W(t)} \leq a$, for all $t \geq t_{1}$. Let $G=(\operatorname{supp} f)^{c}$ and choose g such that $\operatorname{supp} g \subset G,\|g\|_{\infty} \leq 1$ and $\|g\|_{W} \leq 1$. If $0<t \leq T$, then by $\varepsilon<f_{-}^{*}(T)$ we have

$$
\frac{\int_{0}^{t}(|f|+\varepsilon|g|)^{*}}{W(t)}=\frac{\int_{0}^{t} f^{*}}{W(t)} \leq 1
$$

If $T<t \leq t_{1}$, then from the choice of ε we have that

$$
\begin{aligned}
\frac{\int_{0}^{t}(|f|+\varepsilon|g|)^{*}}{W(t)} & \leq \frac{\int_{0}^{t}\left(|f|+\varepsilon \chi_{\left.(0, \infty) \backslash \operatorname{supp} f^{*}\right)^{*}}^{W(t)}=\frac{\int_{0}^{t}\left(f^{*}+\varepsilon \chi_{[T, \infty)}\right)}{W(t)}\right.}{} \\
& \leq \frac{\int_{0}^{t} f^{*}}{W(t)}+\varepsilon \frac{t-T}{W(t)}=\frac{\int_{0}^{T} f^{*}}{W(T)} \frac{W(T)}{W(t)}+\varepsilon \frac{t-T}{W(t)} \\
& \leq \frac{W(T)}{W(t)}+\frac{W(t)-W(T)}{t-T} \frac{t-T}{W(t)}=1
\end{aligned}
$$

If $t>t_{1}$, then by the subadditivity of the functional $f \mapsto \int_{0}^{t} f^{*}$ and the choice of ε,

$$
\frac{\int_{0}^{t}(|f|+\varepsilon|g|)^{*}}{W(t)} \leq \frac{\int_{0}^{t} f^{*}}{W(t)}+\varepsilon \frac{\int_{0}^{t} g^{*}}{W(t)} \leq 1
$$

So we have that $\|f+\varepsilon g\|_{W} \leq 1$.

Case 2: Assume now that $0 \leq T<S$.
If $T=0, \sup _{t>0} \frac{\int_{0}^{t} f^{*}}{W(t)}=\varlimsup_{t \rightarrow 0^{+}} \frac{\int_{0}^{t} f^{*}}{W(t)}=1$ and for all $t \in(0, S), \frac{\int_{0}^{t} f^{*}}{W(t)}<1$. Since $T<S$, we have that $f^{*}(T)>0$, so there exists $t_{1}>T$ such that $f^{*}\left(t_{1}\right)>0$. Let

$$
0<\varepsilon<\min \left\{\frac{f^{*}\left(t_{1}\right)}{2}, 1-a\right\}
$$

where $0<a<1$ is such that $\frac{\int_{0}^{t} f^{*}}{W(t)} \leq a$, for all $t>t_{1}$. Let $G=\{t>0:|f(t)|<$ $\left.\frac{f^{*}\left(t_{1}\right)}{2}-\varepsilon\right\}$. So

$$
\left|G^{c}\right|=\left|\left\{t>0:|f(t)| \geq \frac{f^{*}\left(t_{1}\right)}{2}-\varepsilon\right\}\right|<\infty .
$$

Let g be such that $\operatorname{supp} g \subset G,\|g\|_{\infty} \leq 1,\|g\|_{W} \leq 1$. If $0<t \leq t_{1}$, then

$$
\frac{\int_{0}^{t}(|f|+\varepsilon|g|)^{*}}{W(t)}=\frac{\int_{0}^{t} f^{*}}{W(t)} \leq 1
$$

If $t>t_{1}$, then

$$
\frac{\int_{0}^{t}(|f|+\varepsilon|g|)^{*}}{W(t)} \leq \frac{\int_{0}^{t} f^{*}}{W(t)}+\varepsilon \frac{\int_{0}^{t} g^{*}}{W(t)} \leq 1
$$

so again we have that $\|f+\varepsilon g\|_{W} \leq 1$.
Let $f \in S_{M_{W}^{0}}$ or $f \in S_{M_{W}}$ with $|\operatorname{supp} f|<\infty$. Choose g satisfying the assumptions of Lemma 2.1 and let $h_{1}=f+\varepsilon g$ and $h_{2}=f-\varepsilon g$. Then $h_{1} \neq h_{2}$, $\left\|h_{1}\right\|_{W}=\left\|h_{2}\right\|_{W} \leq 1$ and $f=\frac{h_{1}+h_{2}}{2}$, so f is not an extreme point. So we have proved the following corollaries.
Corollary 2.2. The unit sphere in M_{W}^{0} has no extreme points.
Corollary 2.3. If $f \in S_{M_{W}}$ and $|\operatorname{supp} f|<\infty$, then f is not an extreme point.
The next lemma is well know [3, 9], but for the sake of completeness we provide its proof here.

Lemma 2.4. Let $\|f\|_{W}=1$ and $\operatorname{supp} f^{*}=(0, \infty)$. If f is an extreme point of M_{W}, then f^{*} is also an extreme point.

Proof. By [2, Corollary 7.6], there exists $\tau: \operatorname{supp} f \rightarrow \operatorname{supp} f^{*}$, a measure preserving transformation from $\operatorname{supp} f$ onto $\operatorname{supp} f^{*}$, such that for all $t>0$, $|f(t)|=f^{*}(\tau(t))$.
Assume that $f^{*}(t)=\frac{h(t)+g(t)}{2}$, for all $t>0, g \neq h$ and $\|g\|_{W}=\|h\|_{W}=\|f\|_{W}=1$. Then

$$
f(t)=\frac{\operatorname{sign} f(t) g(\tau(t))+\operatorname{sign} f(t) h(\tau(t))}{2} .
$$

Define

$$
\bar{g}(t)= \begin{cases}\operatorname{sign} f(t) g(\tau(t)), & \text { if } t \in \operatorname{supp} f \\ 0, & \text { if } t \notin \operatorname{supp} f\end{cases}
$$

and

$$
\bar{h}(t)= \begin{cases}\operatorname{sign} f(t) h(\tau(t)), & \text { if } t \in \operatorname{supp} f \\ 0, & \text { if } t \notin \operatorname{supp} f\end{cases}
$$

Since τ is a measure preserving transformation, \bar{g} and \bar{h} are equimeasurable to g and h respectively, so $\|\bar{g}\|_{W}=\|\bar{h}\|_{W}=\|g\|_{W}=\|h\|_{W}=1$. Since the range of τ is $(0, \infty)$ and $g \neq h$, there exists $A \subset(0, \infty)$ such that $|A|>0$ and

$$
\bar{g}(t)=g(\tau(t)) \neq h(\tau(t))=\bar{h}(t), \quad \text { for all } t \in A
$$

therefore $\bar{g} \neq \bar{h}$ and $f(t)=\frac{\bar{g}(t)+\bar{h}(t)}{2}$, for all $t>0$, which is a contradiction.
Theorem 2.5. If $f \in M_{W}$ is such that $f^{*}=w$, then f is an extreme point of $B_{M_{W}}$.

Proof. Let $f=\frac{g+h}{2}$, where $\|g\|_{W}=\|h\|_{W}=1$, and $f^{*}=w$. Then $f^{*}=w=$ $\left(\frac{g+h}{2}\right)^{*}$ and for all $s>0$,

$$
1=\frac{\int_{0}^{s} w}{W(s)}=\frac{\int_{0}^{s} f^{*}}{W(s)}=\frac{\int_{0}^{s}\left(\frac{g+h}{2}\right)^{*}}{W(s)} \leq \frac{1}{2} \frac{\int_{0}^{s} g^{*}}{W(s)}+\frac{1}{2} \frac{\int_{0}^{s} h^{*}}{W(s)} \leq 1
$$

So for all $s>0$,

$$
\int_{0}^{s} w=\int_{0}^{s}\left(\frac{g}{2}\right)^{*}+\int_{0}^{s}\left(\frac{h}{2}\right)^{*}
$$

and it follows that $w=\frac{g^{*}+h^{*}}{2}$ a.e. Since w is decreasing, we can assume it is right-continuous. The functions g^{*} and h^{*} are right-continuous.

Claim 1: We wish to show that $w=g^{*}=h^{*}$.
Assume that $w(t) \neq h^{*}(t)$. Then there exists an interval $(a, b) \subset(0, \infty)$ such that either $w(t)>h^{*}(t)$ on (a, b) or $w(t)<h^{*}(t)$ on (a, b). Let's assume first that $a=0$. If $w(t)>h^{*}(t)$, for all $t \in(0, b)$, then $g^{*}(t)=2 w(t)-h^{*}(t)>$ $2 w(t)-w(t)=w(t)$ and in this case,

$$
\frac{\int_{0}^{t} g^{*}}{W(t)}>\frac{\int_{0}^{t} w}{W(t)}=1
$$

which is a contradiction. If $w(t)<h^{*}(t)$, for all $t \in(0, b)$, then again a contradiction since

$$
\frac{\int_{0}^{t} h^{*}}{W(t)}>\frac{\int_{0}^{t} w}{W(t)}=1
$$

Assume now that there exist $b>a>0$ such that $w(t)=h^{*}(t)=g^{*}(t)$, for all $t \in(0, a)$ and for all $t \in(a, b), w(t)>h^{*}(t)$ or $w(t)<h^{*}(t)$. If $w(t)>h^{*}(t)$ for all $t \in(a, b)$, then $g^{*}(t)>w(t)$, for all $t \in(a, b)$ and so

$$
1 \geq \frac{\int_{0}^{a} g^{*}}{W(t)}+\frac{\int_{a}^{t} g^{*}}{W(t)}=\frac{\int_{0}^{a} w}{W(a)} \frac{W(a)}{W(t)}+\frac{\int_{a}^{t} g^{*}}{W(t)}>\frac{W(a)}{W(t)}+\frac{\int_{a}^{t} w}{W(t)}=1
$$

a contradiction. Similarly we get a contradiction if $w(t)<h^{*}(t)$ for all $t \in(a, b)$, since then

$$
1 \geq \frac{\int_{0}^{t} h^{*}}{W(t)}=\frac{\int_{0}^{a} h^{*}}{W(t)}+\frac{\int_{a}^{t} h^{*}}{W(t)}>\frac{W(a)}{W(t)}+\frac{\int_{a}^{t} w}{W(t)}=1
$$

So we have shown that $w=g^{*}=h^{*}$ a.e.
Claim 2: It holds that $g=h$ a.e.

By the assumption and claim 1,

$$
g^{*}=h^{*}=w=f^{*}=\left(\frac{g+h}{2}\right)^{*}=\frac{g^{*}+h^{*}}{2}
$$

By [8, 7,9 page 64], $\left(\frac{g+h}{2}\right)^{*}=\frac{g^{*}+h^{*}}{2}$ if and only if $|h(t)+g(t)|=|h(t)|+|g(t)|$ a.e. and furthermore, for all $s>0$, there exists a measurable set $e(s)$ such that $|e(s)|=s$ and

$$
\int_{e(s)}\left|\frac{g+h}{2}\right|=\int_{e(s)}|g|=\int_{e(s)}|h|=\int_{0}^{s} g^{*}=\int_{0}^{s} h^{*}=\int_{0}^{s} w
$$

So in particular, for all $s>0$,

$$
\int_{e(s)}(|g|-|h|)=0
$$

and so $|g|=|h|$ a.e. Since $|h(t)+g(t)|=|h(t)|+|g(t)|$ a.e., we have that $\operatorname{sign} g=\operatorname{sign} h$ a.e., so $h=g$ a.e. and f is an extreme point.

The following theorem is the converse of Theorem 2.5.
Theorem 2.6. If w is strictly decreasing and $f \in S_{M_{W}}$ is an extreme point of $B_{M_{W}}$, then $f^{*}=w$.

Proof. Let $\|f\|_{W}=1$ and $f^{*} \neq w$. In view of Lemma 2.4, it is enough to show that f^{*} is not an extreme point. We can assume without loss of generality that w is right-continuous. Also, we can assume that $\left|\operatorname{supp} f^{*}\right|=\infty$, since otherwise by Corollary 2.3, f is not an extreme point.

We claim first that there exists an interval $[a, b]$ such that

$$
\begin{equation*}
K:=\inf _{t \in[a, b]}\left(w(t)-f^{*}(t)\right)>0 \quad \text { and } \quad f^{*}(b)>0 \tag{2.1}
\end{equation*}
$$

Suppose that $f^{*}(s)>w(s)$ for every $s>0$. Then

$$
W(t) \geq \int_{0}^{t} f^{*} \geq \int_{0}^{t} w=W(t), \quad \text { for all } t>0
$$

so $f^{*}=w$, which is a contradiction, since $f^{*} \neq w$. Thus there exists $a_{0}>0$ such that $f^{*}\left(a_{0}\right)<w\left(a_{0}\right)$. By right-continuity of w there exists $\delta>0$ such that for all $t \in\left[a_{0}, a_{0}+\delta\right]$

$$
w\left(a_{0}\right)-w(t)<\frac{w\left(a_{0}\right)-f^{*}\left(a_{0}\right)}{2}
$$

Hence for all $t \in\left[a_{0}, a_{0}+\delta\right]$

$$
w(t)-f^{*}(t)>-\frac{w\left(a_{0}\right)-f^{*}\left(a_{0}\right)}{2}+w\left(a_{0}\right)-f^{*}\left(a_{0}\right)+f^{*}\left(a_{0}\right)-f^{*}(t) \geq \frac{w\left(a_{0}\right)-f^{*}\left(a_{0}\right)}{2}
$$

Setting $a=a_{0}$ and $b=a_{0}+\delta$, we have (2.1).
Case 1: Assume now that there exists $c \in(a, b)$ such that

$$
\begin{equation*}
f_{+}^{*}(a)>f^{*}(c)>f_{-}^{*}(b) \tag{2.2}
\end{equation*}
$$

Let $\varepsilon>0$ be such that

$$
\begin{equation*}
0<\varepsilon<\frac{1}{2} \min \left\{f_{+}^{*}(a)-f^{*}(c), f^{*}(c)-f_{-}^{*}(b)\right\}, \quad \varepsilon<\frac{K}{2} \tag{2.3}
\end{equation*}
$$

Let

$$
\begin{array}{ll}
a_{1}=\inf \left\{t: f^{*}(t) \leq f^{*}(c)+\varepsilon\right\}, & a_{2}=\inf \left\{t: f^{*}(t) \leq f^{*}(c)+2 \varepsilon\right\} \\
b_{1}=\sup \left\{t: f^{*}(t) \geq f^{*}(c)-\varepsilon\right\}, & b_{2}=\sup \left\{t: f^{*}(t) \geq f^{*}(c)-2 \varepsilon\right\}
\end{array}
$$

By conditions (2.2) and (2.3) and right-continuity of f^{*} we have $a<a_{2} \leq a_{1} \leq$ $c<b_{1} \leq b_{2}<b$. Let $\alpha=\frac{a_{1}+b_{1}}{2}$, and define

$$
g=f^{*} \chi_{\left(0, a_{1}\right)}+\left(f^{*}+\varepsilon\right) \chi_{\left(a_{1}, \alpha\right)}+\left(f^{*}-\varepsilon\right) \chi_{\left(\alpha, b_{1}\right)}+f^{*} \chi_{\left(b_{1}, \infty\right)},
$$

and

$$
h=f^{*} \chi_{\left(0, a_{1}\right)}+\left(f^{*}-\varepsilon\right) \chi_{\left(a_{1}, \alpha\right)}+\left(f^{*}+\varepsilon\right) \chi_{\left(\alpha, b_{1}\right)}+f^{*} \chi_{\left(b_{1}, \infty\right)} .
$$

Then $f^{*}=\frac{g+h}{2}$. Now we have

$$
g^{*}=f^{*} \chi_{\left(0, a_{2}\right)}+g^{*} \chi_{\left(a_{2}, \alpha\right)}+g^{*} \chi_{\left(\alpha, b_{2}\right)}+f^{*} \chi_{\left(b_{2}, \infty\right)}
$$

where $g^{*} \chi_{\left(a_{2}, \alpha\right)}$ is equimeasurable to $f^{*} \chi_{\left(a_{2}, a_{1}\right)}+\left(f^{*}+\varepsilon\right) \chi_{\left(a_{1}, \alpha\right)}$ and $g^{*} \chi_{\left(\alpha, b_{2}\right)}$ is equimeasurable to $\left(f^{*}-\varepsilon\right) \chi_{\left(\alpha, b_{1}\right)}+f^{*} \chi_{\left(b_{1}, b_{2}\right)}$. It follows that

$$
\int_{a_{2}}^{\alpha} g^{*}=\int_{a_{2}}^{\alpha} f^{*}+\varepsilon\left(\alpha-a_{1}\right) \quad \text { and } \quad \int_{\alpha}^{b_{2}} g^{*}=\int_{\alpha}^{b_{2}} f^{*}-\varepsilon\left(b_{1}-\alpha\right)
$$

Hence

$$
\begin{equation*}
\int_{a}^{b} g^{*}=\int_{a}^{a_{2}} f^{*}+\int_{a_{2}}^{\alpha} f^{*}+\varepsilon\left(\alpha-a_{1}\right)+\int_{\alpha}^{b_{2}} f^{*}-\varepsilon\left(b_{1}-\alpha\right)+\int_{b_{2}}^{b} f^{*}=\int_{a}^{b} f^{*} \tag{2.4}
\end{equation*}
$$

Moreover, by (2.1) and (2.3) we have that

$$
\begin{equation*}
g^{*}(t) \leq w(t), \quad \text { for all } t \in(a, b) \tag{2.5}
\end{equation*}
$$

If $t \in(0, a)$, then $\int_{0}^{t} g^{*}=\int_{0}^{t} f^{*} \leq W(t)$. If $t \in(a, b)$ or $t \in(b, \infty)$, then by (2.4) and (2.5), $\int_{0}^{t} g^{*} \leq W(t)$. So $\|g\|_{W} \leq 1$, and similarly, $\|h\|_{W} \leq 1$.

Case 2: Suppose now that (2.2) is not satisfied. Then

$$
f_{+}^{*}(a)=f^{*}(c) \quad \text { or } \quad f_{-}^{*}(b)=f^{*}(c), \quad \text { for all } c \in(a, b) .
$$

We shall consider several cases.
(a) Let $f_{+}^{*}(a)>f_{-}^{*}(b)$ and there exists $c \in(a, b)$ such that

$$
\begin{equation*}
f^{*} \chi_{(a, c)}=f_{+}^{*}(a) \quad \text { and } \quad f^{*} \chi_{(c, b)}=f_{-}^{*}(b) . \tag{2.6}
\end{equation*}
$$

Let

$$
d=\inf \left\{t: f^{*}(t)=f^{*}(a)\right\} .
$$

Since w is decreasing, we will also have similarly to (2.1) that

$$
\inf _{t \in[d, b]}\left(w(t)-f^{*}(t)\right) \geq K>0
$$

(a-i) If f^{*} is not continuous at $d>0$ or $d=0$, then pick up $0<\varepsilon<$ $\min \left\{f_{-}^{*}(d)-f_{+}^{*}(d), f_{+}^{*}(d)-f_{-}^{*}(b), K\right\}$, for $d>0$, and $0<\varepsilon<\min \left\{f_{+}^{*}(d)-\right.$ $\left.f_{-}^{*}(b), K\right\}$, for $d=0$. Let

$$
g=f^{*} \chi_{(0, d) \cup(c, \infty)}+\left(f^{*}+\varepsilon\right) \chi_{\left(d, \frac{d+c}{2}\right)}+\left(f^{*}-\varepsilon\right) \chi_{\left(\frac{d+c}{2}, d\right)},
$$

and

$$
h=f^{*} \chi_{(0, d) \cup(c, \infty)}+\left(f^{*}-\varepsilon\right) \chi_{\left(d, \frac{d+c}{2}\right)}+\left(f^{*}+\varepsilon\right) \chi_{\left(\frac{d+c}{2}, c\right)} .
$$

Then $f^{*}=\frac{g+h}{2}$ and $g^{*}=g=h^{*}$. Since $g^{*}(t) \leq w(t)$ for all $t \in(d, c), g^{*}(t)=f^{*}(t)$, for all $t \notin(d, c)$ and $\int_{d}^{c} g^{*}=\int_{d}^{c} f^{*}$, we can prove that $\int_{0}^{t} g^{*} \leq W(t)$, for all $t \geq 0$, so $\|g\|_{W} \leq 1$ and $\|h\|_{W} \leq 1$.
(a-ii) If $d>0$ and f^{*} is continuous at d, then for all $0<t<d, f^{*}(t)>f_{+}^{*}(d)=$ $f_{-}^{*}(d)$ and by continuity of f^{*} at d, we shall find $0<d_{2}<d_{1}<d$ such that

$$
\inf _{t \in\left[d_{2}, d\right]}\left(w(t)-f^{*}(t)\right)>0
$$

and

$$
f_{+}^{*}\left(d_{2}\right)>f^{*}\left(d_{1}\right)>f_{-}^{*}(d)=f^{*}(d) .
$$

However, this is the situation (2.2), so we are done.
(b) Now let the alternative to (2.6) be satisfied, that is

$$
f^{*}(t)=f^{*}(a)=f_{+}^{*}(a), \quad \text { for all } t \in[a, b)
$$

(b-i) If $d>0$ and f^{*} is continuous at d, then we have the situation (a-ii).
(b-ii) Assume that either $d=0$ or f^{*} is discontinuous at $d>0$. Let

$$
b_{0}=\sup \left\{t: f^{*}(t)=f^{*}(a)\right\} .
$$

Let $d<t<b_{0}$. Then, for $d>0$,

$$
F(t)=\frac{\int_{0}^{t} f^{*}}{W(t)}=\frac{\left(\frac{\int_{0}^{d} f^{*}}{W(d)}\right) W(d)+f^{*}(d)(t-d)}{W(t)}=\frac{\lambda W(d)+f^{*}(d)(t-d)}{W(t)},
$$

where $0<\lambda=\frac{\int_{0}^{d} f^{*}}{W(d)} \leq 1$, and for $d=0$,

$$
F(t)=\frac{f^{*}(d)(t-d)}{W(t)}
$$

that is the same formula as for $d>0$ if we agree that $\lambda>0$ and $W(0)=0$. We have for all $d<t<b_{0}$ that $F(t) \leq 1$, so

$$
\frac{t-d}{W(t)-\lambda W(d)} f^{*}(d) \leq 1
$$

Let, for $t \in\left(d, b_{0}\right)$,

$$
H(t)=\frac{t-d}{W(t)-\lambda W(d)}
$$

For $t \in\left(d, b_{0}\right)$, since w is strictly decreasing, we have

$$
W(t)-\lambda W(d) \geq \int_{d}^{t} w>(t-d) w(t)
$$

Hence for $t \in\left(d, b_{0}\right)$,

$$
H^{\prime}(t)=\frac{W(t)-\lambda W(d)-(t-d) w(t)}{(W(t)-\lambda W(d))^{2}}>0
$$

thus H is strictly increasing on $\left(d, b_{0}\right) . H(t)$ is strictly increasing on $\left(d, b_{0}\right)$ and $H\left(b_{0}\right) f^{*}(d) \leq 1$, so $H(t) f^{*}(d)<1$ for all $t \in\left(d, b_{0}\right)$, which is equivalent to $F(t)<1$ on $\left(d, b_{0}\right)$.

- Assume first that f^{*} is discontinuous at b_{0}. We first observe that $K=$ $\max _{t \in\left[d+\delta, b_{0}-\delta\right]} F(t)<1$ for any $\delta>0$. We first choose $\delta>0$ and $\varepsilon_{1}>0$ such that $H(d+\delta)\left(f^{*}(d)+\varepsilon_{1}\right)<1$. With the same δ we then choose $0<\varepsilon \leq \varepsilon_{1}$ such that

$$
\begin{equation*}
\varepsilon<f_{-}^{*}(d)-f_{+}^{*}(d) \quad(\text { only in the case } d=0), \quad \varepsilon<f_{+}^{*}\left(b_{0}\right)-f_{-}^{*}\left(b_{0}\right) \tag{2.7}
\end{equation*}
$$

$$
\begin{gather*}
H(d+\delta)\left(f^{*}(d)+\varepsilon\right) \leq 1 \tag{2.8}\\
K+\frac{\varepsilon \delta}{W(d+\delta)} \leq 1 \tag{2.9}\\
K+\frac{\varepsilon \delta}{W\left(b_{0}-\delta\right)} \leq 1 \tag{2.10}
\end{gather*}
$$

Define

$$
\begin{equation*}
g=f^{*} \chi_{(0, d)}+\left(f^{*}+\varepsilon\right) \chi_{(d, d+\delta)}+\left(f^{*}-\varepsilon\right) \chi_{(d+\delta, d+2 \delta)}+f^{*} \chi_{(d+2 \delta, \infty)}, \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
h=f^{*} \chi_{(0, d)}+\left(f^{*}-\varepsilon\right) \chi_{(d, d+\delta)}+\left(f^{*}+\varepsilon\right) \chi_{(d+\delta, d+2 \delta)}+f^{*} \chi_{(d+2 \delta, \infty)}, \tag{2.12}
\end{equation*}
$$

Then by (2.7)

$$
g^{*}=f^{*} \chi_{(0, d)}+\left(f^{*}+\varepsilon\right) \chi_{(d, d+\delta)}+f^{*} \chi_{\left(d+\delta, b_{0}-\delta\right)}+\left(f^{*}-\varepsilon\right) \chi_{\left(b_{0}-\delta, b_{0}\right)}+f^{*} \chi_{\left(b_{0}, \infty\right)} .
$$

For $t \in(0, d), \int_{0}^{t} g^{*}=\int_{0}^{t} f^{*} \leq W(t)$.
For $t \in(d, d+\delta)$,

$$
\frac{\int_{0}^{t} g^{*}}{W(t)}=\frac{\int_{0}^{d} f^{*}+\left(f^{*}(d)+\varepsilon\right)(t-d)}{W(t)}=\frac{\lambda W(d)+\left(f^{*}(d)+\varepsilon\right)(t-d)}{W(t)} \leq 1
$$

if and only if

$$
\frac{t-d}{W(t)-\lambda W(d)}\left(f^{*}(d)+\varepsilon\right)=H(t)\left(f^{*}(d)+\varepsilon\right) \leq 1 .
$$

Since by (2.8), for all $t \in(d, d+\delta)$,

$$
H(t)\left(f^{*}(d)+\varepsilon\right)<H(d+\delta)\left(f^{*}(d)+\varepsilon\right)<1
$$

we have that $\int_{0}^{t} g^{*} \leq W(t)$.
For $t \in\left(d+\delta, b_{0}-\delta\right)$, by (2.9) we have

$$
\frac{\int_{0}^{t} g^{*}}{W(t)}=\frac{\int_{0}^{t} f^{*}}{W(t)}+\frac{\varepsilon \delta}{W(t)} \leq K+\frac{\varepsilon \delta}{W(d+\delta)} \leq 1
$$

Now let $t \in\left(b_{0}-\delta, b_{0}\right)$. Then

$$
\frac{\int_{0}^{t} g^{*}}{W(t)}=\frac{\int_{0}^{b_{0}} f^{*}-\int_{t}^{b_{0}} f^{*}+\varepsilon\left(b_{0}-t\right)}{W(t)}=\frac{\beta W\left(b_{0}\right)-\left(f^{*}(d)-\varepsilon\right)\left(b_{0}-t\right)}{W(t)}
$$

where $\beta=\frac{\int_{0}^{b_{0} f^{*}}}{W\left(b_{0}\right)} \leq 1$. We have that for $t \in\left(b_{0}-\delta, b_{0}\right)$,

$$
\begin{equation*}
\frac{\int_{0}^{t} g^{*}}{W(t)} \leq 1 \quad \text { if and only if } \quad \frac{S(t)}{f^{*}(d)-\varepsilon} \leq 1 \tag{2.13}
\end{equation*}
$$

where

$$
S(t)=\frac{\beta W\left(b_{0}\right)-W(t)}{b_{0}-t}
$$

We have that S is strictly decreasing for $t<b_{0}$. Indeed, since w is strictly decreasing,

$$
\beta W\left(b_{0}\right)-W(t) \leq W\left(b_{0}\right)-W(t)<w(t)\left(b_{0}-t\right)
$$

Hence $S^{\prime}(t)<0$ for $t<b_{0}$, and so $S(t)$ is strictly decreasing. Hence, in order to show that $\int_{0}^{t} g^{*} \leq W(t)$ for $t \in\left(b_{0}-\delta, b_{0}\right)$, it is enough to prove that

$$
S\left(b_{0}-\delta\right) \frac{1}{f^{*}(d)-\varepsilon} \leq 1
$$

This is equivalent to

$$
\int_{0}^{d} f^{*}+f^{*}(d)\left(b_{0}-d\right)-\delta\left(f^{*}(d)-\varepsilon\right) \leq W\left(b_{0}-\delta\right)
$$

that is

$$
\frac{\int_{0}^{b_{0}-\delta} f^{*}}{W\left(b_{0}-\delta\right)}+\frac{\varepsilon \delta}{W\left(b_{0}-\delta\right)} \leq 1
$$

But by (2.10),

$$
F\left(b_{0}-\delta\right)+\frac{\varepsilon \delta}{W\left(b_{0}-\delta\right)} \leq K+\frac{\varepsilon \delta}{W\left(b_{0}-\delta\right)} \leq 1
$$

which implies that for all $t \in\left(b_{0}-\delta, b_{0}\right)$,

$$
\frac{S(t)}{f^{*}(d)-\varepsilon} \leq \frac{S\left(b_{0}-\delta\right)}{f^{*}(d)-\varepsilon} \leq 1,
$$

which in turn yields that $\int_{0}^{t} g^{*} \leq W(t)$ by (2.13).
If $t \in\left(b_{0}, \infty\right)$, then

$$
\int_{0}^{t} g^{*}=\int_{0}^{t} f^{*} \leq W(t)
$$

So $\|g\|_{W}=\|h\|_{W} \leq 1, f^{*}=\frac{g+h}{2}$, and f^{*} cannot be extreme point.

- Let f^{*} be continuous at b_{0} and let $F\left(b_{0}\right)=\frac{\int_{0}^{b_{0}} f^{*}}{W\left(b_{0}\right)}=1$. Hence we have that for all $\varepsilon>0$, there exists $b_{0}<t<b_{0}+\varepsilon$ such that $f^{*}(t) \leq w(t)$. Indeed, if
not, then there exists $\varepsilon>0$ such that $f^{*}(t)>w(t)$, for all $t \in\left(b_{0}, b_{0}+\varepsilon\right)$. Let $t \in\left(b_{0}, b_{0}+\varepsilon\right)$, then

$$
\frac{\int_{0}^{t} f^{*}}{W(t)}=\frac{W\left(b_{0}\right)+\int_{b_{0}}^{t} f^{*}}{W(t)}>\frac{W\left(b_{0}\right)+\int_{b_{0}}^{t} w}{W(t)}=1
$$

which is a contradiction. Hence $f^{*}(a)=f_{+}^{*}\left(b_{0}\right)=\lim _{t \rightarrow b_{0}^{+}} f^{*}(t) \leq w\left(b_{0}\right) \leq w(t)$ for all $t \leq b_{0}$.
Let $0<\delta<\frac{b_{0}-d}{4}$. Since w is strictly decreasing, $w(d+\delta)-f^{*}(d)>0$. Let

$$
0<\varepsilon<\min \left\{f_{-}^{*}(d)-f_{+}^{*}(d), f^{*}(d), w(d+\delta)-f^{*}(d)\right\}
$$

where the first term inside the minimum does not exist if $d=0$.
Let ε be also chosen such that there exists $\delta_{1}<\delta$ such that $\delta_{1}=\min \left\{\delta_{2}, \delta_{3}\right\}>0$, where

$$
\delta_{2}=\max \left(f^{*}\right)^{-1}\left[\left(f^{*}(d)-\varepsilon, f^{*}(d)\right)\right] \quad \text { and } \quad \delta_{3}=\max w^{-1}\left[\left(f^{*}(d)-\varepsilon, f^{*}(d)\right)\right] .
$$

Let g and h be given by (2.11) and (2.12). Then $\frac{g+h}{2}=f^{*}$ and $g^{*}=h^{*}$, where in this case

$$
\begin{align*}
g^{*}(t) & =f^{*} \chi_{(0, d)}(t)+\left(f^{*}+\varepsilon\right) \chi_{(d, d+\delta)}(t)+f^{*} \chi_{\left(d+\delta, b_{0}-\delta\right)}(t) \tag{2.14}\\
& +f^{*} \chi_{\left(b_{0}, b_{0}+\delta_{1}\right)}(t+\delta)+\left(f^{*}(d)-\varepsilon\right) \chi_{\left(b_{0}-\delta+\delta_{1}, b_{0}+\delta_{1}\right)}(t)+f^{*} \chi_{\left(b_{0}+\delta_{1}, \infty\right)}(t)
\end{align*}
$$

If $t \in(0, d)$, then $\int_{0}^{t} g^{*}=\int_{0}^{t} f^{*} \leq W(t)$.
If $t \in\left(d, b_{0}+\delta_{1}\right)$, then $g^{*}(t) \leq w(t)$, so $\int_{0}^{t} g^{*} \leq \int_{0}^{t} w=W(t)$. If $t \in\left(b_{0}+\delta_{1}, \infty\right)$, first compute

$$
\begin{align*}
\int_{d}^{b_{0}+\delta_{1}} g^{*} & =\int_{d}^{d+\delta} f^{*}+\varepsilon \delta+\int_{d+\delta}^{b_{0}-\delta} f^{*}+\int_{b_{0}}^{b_{0}+\delta_{1}} f^{*}+\int_{b_{0}-\delta+\delta_{1}}^{b_{0}+\delta_{1}} f^{*}(d)-\varepsilon \delta \\
& =\int_{d}^{d+\delta} f^{*}+\int_{d+\delta}^{b_{0}-\delta} f^{*}+\int_{b_{0}}^{b_{0}+\delta_{1}} f^{*}+\int_{b_{0}-\delta}^{b_{0}} f^{*}=\int_{d}^{b_{0}+\delta_{1}} f^{*} \tag{2.15}
\end{align*}
$$

Then $\int_{0}^{t} g^{*}=\int_{0}^{t} f^{*} \leq W(t)$, so $\|g\|_{W} \leq 1$, and similarly $\|h\|_{W} \leq 1$.

- Let f^{*} be continuous at b_{0} and let $F\left(b_{0}\right)<1$. Since $F\left(b_{0}\right)<1$, so $H\left(b_{0}\right) f^{*}(d)<$ 1 and by the fact that H is strictly increasing on $\left(d, b_{0}\right)$ we get that $H(t) f^{*}(d)<1$ on $\left(d, b_{0}\right)$.
Hence $F(t)<1$ on $\left(d, b_{0}\right)$, and by $F\left(b_{0}\right)<1$ and continuity of F we find $0<\delta<\frac{b_{0}-d}{4}$, such that $L:=\max _{t \in\left(d+\delta, b_{0}+\delta\right)} F(t)<1$. Pick up then $\varepsilon>0$ satisfying the following conditions

$$
\begin{gather*}
\varepsilon<f_{-}^{*}(d)-f_{+}^{*}(d) \quad(\text { only if } d=0) \\
H\left(b_{0}\right)\left(f^{*}(d)+\varepsilon\right) \leq 1 \tag{2.16}\\
L+\frac{\varepsilon \delta}{W(d+\delta)} \leq 1 \tag{2.17}
\end{gather*}
$$

Finally let $0<\delta_{1}<\delta$ be such that

$$
\left(b_{0}, b_{0}+\delta_{1}\right) \subset\left(f^{*}\right)^{-1}\left[\left(f^{*}(a)-\varepsilon, f^{*}(a)\right)\right] .
$$

Then define g and h as in (2.11) and (2.12), and so $g^{*}=h^{*}$ have the form (2.14). Clearly if $t \in(0, d)$, then $\int_{0}^{t} g^{*}=\int_{0}^{t} f^{*} \leq W(t)$.
If $t \in(d, d+\delta)$, then by $(2.16), H(t)\left(f^{*}(d)+\varepsilon\right) \leq 1$ for all $t \in(d, d+\delta)$. But it implies that

$$
\frac{\int_{0}^{t} g^{*}}{W(t)}=\frac{\int_{0}^{t} f^{*}+\varepsilon(t-d)}{W(t)} \leq 1
$$

For $t \in\left(d+\delta, b_{0}+\delta_{1}\right), g^{*}(t) \leq f^{*}(t)$ and by (2.17)

$$
\frac{\int_{0}^{t} g^{*}}{W(t)} \leq \frac{\int_{0}^{d+\delta} f^{*}+\int_{d+\delta}^{t} f^{*}+\varepsilon \delta}{W(t)} \leq L+\frac{\varepsilon \delta}{W(d+\delta)}<1
$$

Now let $t \in\left(b_{0}+\delta_{1}, \infty\right)$. Since g^{*} has exactly the same form as in the previous case, we have by (2.15) that $\int_{0}^{t} g^{*}=\int_{0}^{t} f^{*} \leq W(t)$. This completes the proof.

References

1. M.D. Acosta and A. Kamińska, Norm attaining operators between Mrcinkiewicz and Lorentz spaces, Bull. Lond. Math. Soc. 40, No. 4 (2008), 581-592.
2. C. Bennett and R. Sharpley, Interpolation of Operators, Pure and Applied Mathematics series 129, Academic Press Inc., 1988.
3. V.I. Chilin, A.V. Krygin and F.A. Sukochev, Extreme points of convex fully symmetric sets of measurable operators, Integral Equations Operator Theory 15 (1992), 186-226.
4. A. Kamińska, Extreme points in Orlicz-Lorentz spaces, Arch. Math. (Basel) 55 , no. 2 (1990), 173-180.
5. A. Kamińska and H.J. Lee, M- ideal properties in Marcinkiewicz spaces, Comment. Math. Prace Mat. Tomus specialis in Honorem Juliani Musielak, (2004), 123-144.
6. A. Kamińska, H.J. Lee and G. Lewicki, Extreme and smooth points in Lorentz and Marcinkiewicz spaces with applications to contractive projections, Rocky Mountain J. Math. 39, No. 5 (2009), 1533-1572.
7. A. Kamińska and A.M. Parrish, Smooth points in Marcinkiewicz function spaces, to appear.
8. S.G. Kreı̆n, Yu.Ī. Petunīn and E.M. Semënov, Interpolation of Linear Operators, Translations of Mathematical Monographs Series 54, AMS. 1982.
9. J.V. Ryff, Orbits of L^{1}-functions under doubly stochastic transformations, Trans. Amer. Soc. 117 (1965), 92-100.
10. J.V. Ryff, Extreme points of some convex subsets of $L^{1}(0,1)$, Proc. Amer. Soc. 18 (1967), 1026-1034.
${ }^{1}$ Department of Mathematical Sciences, The University of Memphis, Memphis, TN 38152, USA.

E-mail address: kaminska@memphis.edu
E-mail address: abuican1@memphis.edu

[^0]: Date: Received: 30 October 2009; Accepted: 30 November 2009.

 * Corresponding author.

 2000 Mathematics Subject Classification. Primary 46B20; Secondary 46E30.
 Key words and phrases. Marcinkiewicz function spaces, extreme points.

