

Banach J. Math. Anal. 4 (2010), no. 1, 1–12

BANACH JOURNAL OF MATHEMATICAL ANALYSIS ISSN: 1735-8787 (electronic) www.emis.de/journals/BJMA/

NOTE ON EXTREME POINTS IN MARCINKIEWICZ FUNCTION SPACES

ANNA KAMIŃSKA^{1*} AND ANCA M. PARRISH¹

Dedicated to Professor Lars-Erik Persson on his 65th birthday

Communicated by L. Maligranda

ABSTRACT. We show that the unit ball of the subspace M_W^0 of ordered continuous elements of M_W has no extreme points, where M_W is the Marcinkiewicz function space generated by a decreasing weight function w over the interval $(0, \infty)$ and $W(t) = \int_0^t w, t \in (0, \infty)$. We also present here a proof of the fact that a function f in the unit ball of M_W is an extreme point if and only if $f^* = w$.

1. INTRODUCTION AND PRELIMINARIES

In [9, 10], Ryff considered extreme points of the convex set $\Omega(w)$ of functions on [0, 1] that is an orbit of a given function w. An orbit of a decreasing weight function w is in fact a unit ball of the Marcinkiewicz space M_W corresponding to the weight w. Thus the Ryff's description can be applied directly to the characterization of extreme points of the unit ball of the Marcinkiewicz function space M_W on the interval [0, 1]. Further in [3], the analogous description has been given in the spaces of functions on the interval $(0, \infty)$. Here we consider the Marcinkiewicz spaces M_W over $(0, \infty)$. We first show that the unit ball in the subspace M_W^0 of all ordered continuous elements of M_W has no extreme points. Moreover we provide a detailed proof, different than that given in [3, 9, 10], of the fact that f is an extreme point of the unit ball in M_W if and only if $f^* = w$.

* Corresponding author.

Date: Received: 30 October 2009; Accepted: 30 November 2009.

²⁰⁰⁰ Mathematics Subject Classification. Primary 46B20; Secondary 46E30. Key words and phrases. Marcinkiewicz function spaces, extreme points.

Extreme and smooth points of the unit ball in Lorentz and Marcinkiewicz spaces have been a subject of investigation already for some time. The characterization of the extreme points in (Orlicz)-Lorentz function spaces has been done in [4], while the extreme and smooth points in both Lorentz and Marcinkiewicz sequence spaces corresponding to decreasing weight have been described in [6]. Smooth points in Marcinkiewicz function spaces over $(0, \infty)$ have been determined in [7].

We will start by agreeing on some notations. Let L^0 be the set of all real-valued $|\cdot|$ -measurable functions defined on $(0, \infty)$, where $|\cdot|$ is the Lebesgue measure on \mathbb{R} . By supp f we denote the support of f, i.e. $\{t : f(t) \neq 0\}$. Given $A \subset (0, \infty)$, denote by $A^c = (0, \infty) \setminus A$.

The distribution function d_f of a function $f \in L^0$ is given by $d_f(\lambda) = |\{t > 0 : |f(t)| > \lambda\}|$, for all $\lambda \ge 0$. For $f \in L^0$ we define its decreasing rearrangement as $f^*(t) = \inf\{s > 0 : d_f(s) \le t\}, t > 0$. The functions d_f and f^* are right-continuous on $(0, \infty)$ (see [2, 8]).

Let $w : (0, \infty) \to (0, \infty)$ be the weight function, with $\lim_{t\to 0^+} w(t) = \infty$ and $\lim_{t\to\infty} w(t) = 0$. Denoting by $W(t) := \int_0^t w, t > 0$, we assume that $W(t) < \infty$ for all t > 0 and $W(\infty) = \infty$. We assume also here that w is decreasing.

The Marcinkiewicz space $M_W[8, 5]$ is the space of all functions $f \in L^0$ satisfying

$$||f||_W = \sup_{t>0} \frac{\int_0^t f^*(s)ds}{W(t)} < \infty.$$

We also define the subspace

$$M_W^0 = \Big\{ f \in M_W : \lim_{t \to 0^+, \infty} \frac{\int_0^t f^*}{W(t)} = 0 \Big\}.$$

The space M_W equipped with the norm $\|\cdot\|_W$ is a Banach function space. The set M_W^0 is a closed subspace of M_W and it consists of all order continuous elements of M_W which also coincides with the closure of all bounded functions of finite measure supports [8, 5].

Given a Banach space $(X, \|\cdot\|)$, we will denote by S_X and B_X respectively, the unit sphere and the unit ball of the space. An element $x \in S_X$ is an extreme point of the ball B_X if $x = (x_1 + x_2)/2$ with $x_1, x_2 \in S_X$ implies that $x = x_1 = x_2$.

2. Main results

Lemma 2.1. Let $f \in M_W^0$ with $||f||_W \leq 1$ or $f \in S_{M_W}$ with $|\operatorname{supp} f| < \infty$. Then there exists a measurable set G with $|G^c| < \infty$ and there exists $\varepsilon > 0$ such that for all functions g with $||g||_W \leq 1$, $||g||_{\infty} \leq 1$ and $\operatorname{supp} g \subset G$, we have that

$$||f + \lambda g||_W \le 1, \quad \text{for all } |\lambda| < \varepsilon.$$

Proof. The case when $f \in M_W^0$ with $||f||_W \leq 1$ is proved in [1, Proposition 2]. So we only discuss here the case when $f \in S_{M_W}$ with $|\operatorname{supp} f| < \infty$. Since $||f||_W = 1$, denote by

$$T := \sup\{t > 0 : \frac{\int_0^t f^*}{W(t)} = 1\}$$

and let $S := |\operatorname{supp} f|$. So by assumption $\operatorname{supp} f^* = [0, S)$ and $S < \infty$. Since $|\operatorname{supp} f| < \infty$,

$$\lim_{t \to \infty} \frac{\int_0^t f^*}{W(t)} = \lim_{t \to \infty} \frac{\int_0^S f^*}{W(t)} = 0,$$

so $0 \leq T < \infty$.

If $\overline{T} = 0$, then $f^*(T) = f^*(0) = \lim_{t \to 0^+} f^*(t) > 0$. If T > 0, consider 0 < c < T. Then

$$1 = \frac{\int_0^T f^*}{\int_0^T w} = \frac{\int_0^{T-c} f^*}{\int_0^{T-c} w} \frac{\int_0^{T-c} w}{\int_0^T w} + \frac{\int_{T-c}^T f^*}{\int_0^T w} \le \frac{\int_0^{T-c} w}{\int_0^T w} + \frac{\int_{T-c}^T f^*}{\int_0^T w}.$$

Therefore

$$\int_{T-c}^{T} w \le \int_{T-c}^{T} f^*,$$

and it follows that

$$1 \le \frac{\int_{T-c}^{T} f^*}{\int_{T-c}^{T} w} \le \frac{f^*(T-c)c}{w(T)c},$$

So we have that $0 < w(T) \le f^*(T-c)$, for all 0 < c < T. Then

$$f_{-}^{*}(T) := \lim_{t \to T^{-}} f^{*}(t) \ge w(T) > 0.$$

Case 1: Let T = S. Then $f^*(T) = \lim_{t \to T^+} f^*(t) = 0$ and T > 0. Let $t_1 > T$ and let

$$0 < \varepsilon < \min \Big\{ \frac{W(t_1) - W(T)}{t_1 - T}, f_-^*(T), 1 - a \Big\},\$$

where 0 < a < 1 such that $\frac{\int_0^t f^*}{W(t)} \leq a$, for all $t \geq t_1$. Let $G = (\text{supp } f)^c$ and choose g such that $\text{supp } g \subset G$, $\|g\|_{\infty} \leq 1$ and $\|g\|_W \leq 1$. If $0 < t \leq T$, then by $\varepsilon < f^*_-(T)$ we have

$$\frac{\int_0^t (|f| + \varepsilon |g|)^*}{W(t)} = \frac{\int_0^t f^*}{W(t)} \le 1$$

If $T < t \le t_1$, then from the choice of ε we have that

$$\frac{\int_0^t (|f| + \varepsilon |g|)^*}{W(t)} \le \frac{\int_0^t (|f| + \varepsilon \chi_{(0,\infty)\setminus \text{supp } f^*})^*}{W(t)} = \frac{\int_0^t (f^* + \varepsilon \chi_{[T,\infty)})}{W(t)}$$
$$\le \frac{\int_0^t f^*}{W(t)} + \varepsilon \frac{t - T}{W(t)} = \frac{\int_0^T f^*}{W(T)} \frac{W(T)}{W(t)} + \varepsilon \frac{t - T}{W(t)}$$
$$\le \frac{W(T)}{W(t)} + \frac{W(t) - W(T)}{t - T} \frac{t - T}{W(t)} = 1.$$

If $t > t_1$, then by the subadditivity of the functional $f \mapsto \int_0^t f^*$ and the choice of ε ,

$$\frac{\int_0^t (|f| + \varepsilon |g|)^*}{W(t)} \le \frac{\int_0^t f^*}{W(t)} + \varepsilon \frac{\int_0^t g^*}{W(t)} \le 1.$$

So we have that $||f + \varepsilon g||_W \leq 1$.

Case 2: Assume now that $0 \leq T < S$. If T = 0, $\sup_{t>0} \frac{\int_0^t f^*}{W(t)} = \overline{\lim}_{t\to 0^+} \frac{\int_0^t f^*}{W(t)} = 1$ and for all $t \in (0, S)$, $\frac{\int_0^t f^*}{W(t)} < 1$. Since T < S, we have that $f^*(T) > 0$, so there exists $t_1 > T$ such that $f^*(t_1) > 0$. Let

$$0 < \varepsilon < \min\left\{\frac{f^*(t_1)}{2}, 1 - a\right\},\$$

where 0 < a < 1 is such that $\frac{\int_{0}^{t} f^{*}}{W(t)} \leq a$, for all $t > t_{1}$. Let $G = \{t > 0 : |f(t)| < \frac{f^{*}(t_{1})}{2} - \varepsilon\}$. So

$$|G^{c}| = |\{t > 0 : |f(t)| \ge \frac{f^{*}(t_{1})}{2} - \varepsilon\}| < \infty.$$

Let g be such that supp $g \subset G$, $||g||_{\infty} \leq 1$, $||g||_{W} \leq 1$. If $0 < t \leq t_1$, then

$$\frac{\int_0^t (|f| + \varepsilon |g|)^*}{W(t)} = \frac{\int_0^t f^*}{W(t)} \le 1.$$

If $t > t_1$, then

$$\frac{\int_0^t (|f| + \varepsilon |g|)^*}{W(t)} \le \frac{\int_0^t f^*}{W(t)} + \varepsilon \frac{\int_0^t g^*}{W(t)} \le 1,$$

so again we have that $||f + \varepsilon g||_W \leq 1$.

Let $f \in S_{M_W^0}$ or $f \in S_{M_W}$ with $|\operatorname{supp} f| < \infty$. Choose g satisfying the assumptions of Lemma 2.1 and let $h_1 = f + \varepsilon g$ and $h_2 = f - \varepsilon g$. Then $h_1 \neq h_2$, $\|h_1\|_W = \|h_2\|_W \leq 1$ and $f = \frac{h_1+h_2}{2}$, so f is not an extreme point. So we have proved the following corollaries.

Corollary 2.2. The unit sphere in M_W^0 has no extreme points.

Corollary 2.3. If $f \in S_{M_W}$ and $|\operatorname{supp} f| < \infty$, then f is not an extreme point.

The next lemma is well know [3, 9], but for the sake of completeness we provide its proof here.

Lemma 2.4. Let $||f||_W = 1$ and supp $f^* = (0, \infty)$. If f is an extreme point of M_W , then f^* is also an extreme point.

Proof. By [2, Corollary 7.6], there exists τ : supp $f \to \text{supp } f^*$, a measure preserving transformation from supp f onto supp f^* , such that for all t > 0, $|f(t)| = f^*(\tau(t))$.

Assume that $f^*(t) = \frac{h(t)+g(t)}{2}$, for all $t > 0, g \neq h$ and $||g||_W = ||h||_W = ||f||_W = 1$. Then

$$f(t) = \frac{\operatorname{sign} f(t)g(\tau(t)) + \operatorname{sign} f(t)h(\tau(t))}{2}$$

Define

$$\bar{g}(t) = \begin{cases} \operatorname{sign} f(t)g(\tau(t)), & \text{if } t \in \operatorname{supp} f; \\ 0, & \text{if } t \notin \operatorname{supp} f, \end{cases}$$

and

$$\bar{h}(t) = \begin{cases} \operatorname{sign} f(t)h(\tau(t)), & \text{if } t \in \operatorname{supp} f; \\ 0, & \text{if } t \notin \operatorname{supp} f. \end{cases}$$

Since τ is a measure preserving transformation, \bar{g} and h are equimeasurable to gand h respectively, so $\|\bar{g}\|_W = \|\bar{h}\|_W = \|g\|_W = \|h\|_W = 1$. Since the range of τ is $(0, \infty)$ and $g \neq h$, there exists $A \subset (0, \infty)$ such that |A| > 0 and

$$\bar{g}(t) = g(\tau(t)) \neq h(\tau(t)) = \bar{h}(t), \quad \text{for all } t \in A,$$

therefore $\bar{g} \neq \bar{h}$ and $f(t) = \frac{\bar{g}(t) + \bar{h}(t)}{2}$, for all t > 0, which is a contradiction. \Box

Theorem 2.5. If $f \in M_W$ is such that $f^* = w$, then f is an extreme point of B_{M_W} .

Proof. Let $f = \frac{g+h}{2}$, where $||g||_W = ||h||_W = 1$, and $f^* = w$. Then $f^* = w = \left(\frac{g+h}{2}\right)^*$ and for all s > 0,

$$1 = \frac{\int_0^s w}{W(s)} = \frac{\int_0^s f^*}{W(s)} = \frac{\int_0^s \left(\frac{g+h}{2}\right)^*}{W(s)} \le \frac{1}{2} \frac{\int_0^s g^*}{W(s)} + \frac{1}{2} \frac{\int_0^s h^*}{W(s)} \le 1.$$

So for all s > 0,

$$\int_{0}^{s} w = \int_{0}^{s} \left(\frac{g}{2}\right)^{*} + \int_{0}^{s} \left(\frac{h}{2}\right)^{*},$$

and it follows that $w = \frac{g^* + h^*}{2}$ a.e. Since w is decreasing, we can assume it is right-continuous. The functions g^* and h^* are right-continuous.

Claim 1: We wish to show that $w = g^* = h^*$.

Assume that $w(t) \neq h^*(t)$. Then there exists an interval $(a, b) \subset (0, \infty)$ such that either $w(t) > h^*(t)$ on (a, b) or $w(t) < h^*(t)$ on (a, b). Let's assume first that a = 0. If $w(t) > h^*(t)$, for all $t \in (0, b)$, then $g^*(t) = 2w(t) - h^*(t) > 2w(t) - w(t) = w(t)$ and in this case,

$$\frac{\int_{0}^{t} g^{*}}{W(t)} > \frac{\int_{0}^{t} w}{W(t)} = 1,$$

which is a contradiction. If $w(t) < h^*(t)$, for all $t \in (0, b)$, then again a contradiction since

$$\frac{\int_0^t h^*}{W(t)} > \frac{\int_0^t w}{W(t)} = 1.$$

Assume now that there exist b > a > 0 such that $w(t) = h^*(t) = g^*(t)$, for all $t \in (0, a)$ and for all $t \in (a, b)$, $w(t) > h^*(t)$ or $w(t) < h^*(t)$. If $w(t) > h^*(t)$ for all $t \in (a, b)$, then $g^*(t) > w(t)$, for all $t \in (a, b)$ and so

$$1 \ge \frac{\int_0^a g^*}{W(t)} + \frac{\int_a^t g^*}{W(t)} = \frac{\int_0^a w}{W(a)} \frac{W(a)}{W(t)} + \frac{\int_a^t g^*}{W(t)} > \frac{W(a)}{W(t)} + \frac{\int_a^t w}{W(t)} = 1,$$

a contradiction. Similarly we get a contradiction if $w(t) < h^*(t)$ for all $t \in (a, b)$, since then

$$1 \ge \frac{\int_0^t h^*}{W(t)} = \frac{\int_0^a h^*}{W(t)} + \frac{\int_a^t h^*}{W(t)} > \frac{W(a)}{W(t)} + \frac{\int_a^t w}{W(t)} = 1.$$

So we have shown that $w = g^* = h^*$ a.e.

Claim 2: It holds that g = h a.e.

By the assumption and claim 1,

$$g^* = h^* = w = f^* = \left(\frac{g+h}{2}\right)^* = \frac{g^* + h^*}{2}$$

By [8, 7,9 page 64], $\left(\frac{g+h}{2}\right)^* = \frac{g^*+h^*}{2}$ if and only if |h(t) + g(t)| = |h(t)| + |g(t)|a.e. and furthermore, for all s > 0, there exists a measurable set e(s) such that |e(s)| = s and

$$\int_{e(s)} \left| \frac{g+h}{2} \right| = \int_{e(s)} |g| = \int_{e(s)} |h| = \int_0^s g^* = \int_0^s h^* = \int_0^s w.$$

So in particular, for all s > 0,

$$\int_{e(s)} (|g| - |h|) = 0$$

and so |g| = |h| a.e. Since |h(t) + g(t)| = |h(t)| + |g(t)| a.e., we have that sign $g = \operatorname{sign} h$ a.e., so h = g a.e. and f is an extreme point.

The following theorem is the converse of Theorem 2.5.

Theorem 2.6. If w is strictly decreasing and $f \in S_{M_W}$ is an extreme point of B_{M_W} , then $f^* = w$.

Proof. Let $||f||_W = 1$ and $f^* \neq w$. In view of Lemma 2.4, it is enough to show that f^* is not an extreme point. We can assume without loss of generality that w is right-continuous. Also, we can assume that $|\operatorname{supp} f^*| = \infty$, since otherwise by Corollary 2.3, f is not an extreme point.

We claim first that there exists an interval [a, b] such that

$$K := \inf_{t \in [a,b]} (w(t) - f^*(t)) > 0 \quad \text{and} \quad f^*(b) > 0.$$
(2.1)

Suppose that $f^*(s) > w(s)$ for every s > 0. Then

$$W(t) \ge \int_0^t f^* \ge \int_0^t w = W(t), \quad \text{for all } t > 0,$$

so $f^* = w$, which is a contradiction, since $f^* \neq w$. Thus there exists $a_0 > 0$ such that $f^*(a_0) < w(a_0)$. By right-continuity of w there exists $\delta > 0$ such that for all $t \in [a_0, a_0 + \delta]$

$$w(a_0) - w(t) < \frac{w(a_0) - f^*(a_0)}{2}$$

Hence for all $t \in [a_0, a_0 + \delta]$

$$w(t) - f^*(t) > -\frac{w(a_0) - f^*(a_0)}{2} + w(a_0) - f^*(a_0) + f^*(a_0) - f^*(t) \ge \frac{w(a_0) - f^*(a_0)}{2}.$$

Setting $a = a_0$ and $b = a_0 + \delta$, we have (2.1).

Case 1: Assume now that there exists $c \in (a, b)$ such that

$$f_{+}^{*}(a) > f^{*}(c) > f_{-}^{*}(b).$$
 (2.2)

Let $\varepsilon > 0$ be such that

$$0 < \varepsilon < \frac{1}{2} \min\{f_{+}^{*}(a) - f^{*}(c), f^{*}(c) - f_{-}^{*}(b)\}, \qquad \varepsilon < \frac{K}{2}.$$
 (2.3)

Let

$$a_{1} = \inf\{t : f^{*}(t) \le f^{*}(c) + \varepsilon\}, \qquad a_{2} = \inf\{t : f^{*}(t) \le f^{*}(c) + 2\varepsilon\}, \\ b_{1} = \sup\{t : f^{*}(t) \ge f^{*}(c) - \varepsilon\}, \qquad b_{2} = \sup\{t : f^{*}(t) \ge f^{*}(c) - 2\varepsilon\}.$$

By conditions (2.2) and (2.3) and right-continuity of f^* we have $a < a_2 \leq a_1 \leq a_1 \leq a_2 < a_2 \leq a_2 < a_2$ $c < b_1 \le b_2 < b$. Let $\alpha = \frac{a_1+b_1}{2}$, and define

$$g = f^* \chi_{(0,a_1)} + (f^* + \varepsilon) \chi_{(a_1,\alpha)} + (f^* - \varepsilon) \chi_{(\alpha,b_1)} + f^* \chi_{(b_1,\infty)},$$

and

$$h = f^* \chi_{(0,a_1)} + (f^* - \varepsilon) \chi_{(a_1,\alpha)} + (f^* + \varepsilon) \chi_{(\alpha,b_1)} + f^* \chi_{(b_1,\infty)}.$$

Then $f^* = \frac{g+h}{2}$. Now we have

$$g^* = f^* \chi_{(0,a_2)} + g^* \chi_{(a_2,\alpha)} + g^* \chi_{(\alpha,b_2)} + f^* \chi_{(b_2,\infty)}$$

where $g^*\chi_{(a_2,\alpha)}$ is equimeasurable to $f^*\chi_{(a_2,a_1)} + (f^* + \varepsilon)\chi_{(a_1,\alpha)}$ and $g^*\chi_{(\alpha,b_2)}$ is equimeasurable to $(f^* - \varepsilon)\chi_{(\alpha,b_1)} + f^*\chi_{(b_1,b_2)}$. It follows that

$$\int_{a_2}^{\alpha} g^* = \int_{a_2}^{\alpha} f^* + \varepsilon(\alpha - a_1) \quad \text{and} \quad \int_{\alpha}^{b_2} g^* = \int_{\alpha}^{b_2} f^* - \varepsilon(b_1 - \alpha).$$

Hence

$$\int_{a}^{b} g^{*} = \int_{a}^{a_{2}} f^{*} + \int_{a_{2}}^{\alpha} f^{*} + \varepsilon(\alpha - a_{1}) + \int_{\alpha}^{b_{2}} f^{*} - \varepsilon(b_{1} - \alpha) + \int_{b_{2}}^{b} f^{*} = \int_{a}^{b} f^{*}. \quad (2.4)$$

Moreover, by (2.1) and (2.3) we have that

$$g^*(t) \le w(t), \qquad \text{for all } t \in (a, b).$$
 (2.5)

If $t \in (0, a)$, then $\int_0^t g^* = \int_0^t f^* \leq W(t)$. If $t \in (a, b)$ or $t \in (b, \infty)$, then by (2.4) and (2.5), $\int_0^t g^* \leq W(t)$. So $||g||_W \leq 1$, and similarly, $||h||_W \leq 1$. Case 2: Suppose now that (2.2) is not satisfied. Then

$$f_{+}^{*}(a) = f^{*}(c)$$
 or $f_{-}^{*}(b) = f^{*}(c)$, for all $c \in (a, b)$.

We shall consider several cases.

(a) Let
$$f_{+}^{*}(a) > f_{-}^{*}(b)$$
 and there exists $c \in (a, b)$ such that
 $f^{*}\chi_{(a,c)} = f_{+}^{*}(a)$ and $f^{*}\chi_{(c,b)} = f_{-}^{*}(b).$ (2.6)

Let

$$d = \inf\{t : f^*(t) = f^*(a)\}.$$

Since w is decreasing, we will also have similarly to (2.1) that

$$\inf_{t \in [d,b]} (w(t) - f^*(t)) \ge K > 0.$$

(a-i) If f^* is not continuous at d > 0 or d = 0, then pick up $0 < \varepsilon < \min\{f_-^*(d) - f_+^*(d), f_+^*(d) - f_-^*(b), K\}$, for d > 0, and $0 < \varepsilon < \min\{f_+^*(d) - f_-^*(b), K\}$, for d = 0. Let

$$g = f^* \chi_{(0,d) \cup (c,\infty)} + (f^* + \varepsilon) \chi_{(d,\frac{d+c}{2})} + (f^* - \varepsilon) \chi_{(\frac{d+c}{2},d)},$$

and

$$h = f^* \chi_{(0,d)\cup(c,\infty)} + (f^* - \varepsilon)\chi_{(d,\frac{d+c}{2})} + (f^* + \varepsilon)\chi_{(\frac{d+c}{2},c)}$$

Then $f^* = \frac{g+h}{2}$ and $g^* = g = h^*$. Since $g^*(t) \le w(t)$ for all $t \in (d, c)$, $g^*(t) = f^*(t)$, for all $t \notin (d, c)$ and $\int_d^c g^* = \int_d^c f^*$, we can prove that $\int_0^t g^* \le W(t)$, for all $t \ge 0$, so $\|g\|_W \le 1$ and $\|h\|_W \le 1$.

(a-ii) If d > 0 and f^* is continuous at d, then for all 0 < t < d, $f^*(t) > f^*_+(d) = f^*_-(d)$ and by continuity of f^* at d, we shall find $0 < d_2 < d_1 < d$ such that

$$\inf_{t \in [d_2,d]} (w(t) - f^*(t)) > 0$$

and

$$f_{+}^{*}(d_{2}) > f^{*}(d_{1}) > f_{-}^{*}(d) = f^{*}(d).$$

However, this is the situation (2.2), so we are done.

(ad)

(b) Now let the alternative to (2.6) be satisfied, that is

$$f^*(t) = f^*(a) = f^*_+(a),$$
 for all $t \in [a, b)$

(b-i) If d > 0 and f^* is continuous at d, then we have the situation (a-ii).

(b-ii) Assume that either d = 0 or f^* is discontinuous at d > 0. Let

$$b_0 = \sup\{t : f^*(t) = f^*(a)\}.$$

Let $d < t < b_0$. Then, for d > 0,

$$F(t) = \frac{\int_0^t f^*}{W(t)} = \frac{\left(\frac{\int_0^u f^*}{W(d)}\right) W(d) + f^*(d)(t-d)}{W(t)} = \frac{\lambda W(d) + f^*(d)(t-d)}{W(t)},$$

where $0 < \lambda = \frac{\int_0^d f^*}{W(d)} \le 1$, and for d = 0,

$$F(t) = \frac{f^*(d)(t-d)}{W(t)},$$

that is the same formula as for d > 0 if we agree that $\lambda > 0$ and W(0) = 0. We have for all $d < t < b_0$ that $F(t) \leq 1$, so

$$\frac{t-d}{W(t)-\lambda W(d)}f^*(d) \leq 1$$

Let, for $t \in (d, b_0)$,

$$H(t) = \frac{t-d}{W(t) - \lambda W(d)}.$$

For $t \in (d, b_0)$, since w is strictly decreasing, we have

$$W(t) - \lambda W(d) \ge \int_d^t w > (t - d)w(t).$$

Hence for $t \in (d, b_0)$,

$$H'(t) = \frac{W(t) - \lambda W(d) - (t - d)w(t)}{(W(t) - \lambda W(d))^2} > 0,$$

thus H is strictly increasing on (d, b_0) . H(t) is strictly increasing on (d, b_0) and $H(b_0)f^*(d) \leq 1$, so $H(t)f^*(d) < 1$ for all $t \in (d, b_0)$, which is equivalent to F(t) < 1 on (d, b_0) .

• Assume first that f^* is discontinuous at b_0 . We first observe that $K = \max_{t \in [d+\delta,b_0-\delta]} F(t) < 1$ for any $\delta > 0$. We first choose $\delta > 0$ and $\varepsilon_1 > 0$ such that $H(d+\delta)(f^*(d)+\varepsilon_1) < 1$. With the same δ we then choose $0 < \varepsilon \leq \varepsilon_1$ such that

$$\varepsilon < f_{-}^{*}(d) - f_{+}^{*}(d)$$
 (only in the case $d = 0$), $\varepsilon < f_{+}^{*}(b_{0}) - f_{-}^{*}(b_{0})$, (2.7)

$$H(d+\delta)(f^*(d)+\varepsilon) \le 1, \tag{2.8}$$

$$K + \frac{\varepsilon\delta}{W(d+\delta)} \le 1, \tag{2.9}$$

$$K + \frac{\varepsilon\delta}{W(b_0 - \delta)} \le 1. \tag{2.10}$$

Define

$$g = f^* \chi_{(0,d)} + (f^* + \varepsilon) \chi_{(d,d+\delta)} + (f^* - \varepsilon) \chi_{(d+\delta,d+2\delta)} + f^* \chi_{(d+2\delta,\infty)}, \qquad (2.11)$$

and

$$h = f^* \chi_{(0,d)} + (f^* - \varepsilon) \chi_{(d,d+\delta)} + (f^* + \varepsilon) \chi_{(d+\delta,d+2\delta)} + f^* \chi_{(d+2\delta,\infty)}, \qquad (2.12)$$

Then by (2.7)

$$g^{*} = f^{*}\chi_{(0,d)} + (f^{*} + \varepsilon)\chi_{(d,d+\delta)} + f^{*}\chi_{(d+\delta,b_{0}-\delta)} + (f^{*} - \varepsilon)\chi_{(b_{0}-\delta,b_{0})} + f^{*}\chi_{(b_{0},\infty)}.$$

For $t \in (0,d)$, $\int_{0}^{t} g^{*} = \int_{0}^{t} f^{*} \leq W(t).$
For $t \in (d,d+\delta)$,
$$\frac{\int_{0}^{t} g^{*}}{2} = \frac{\int_{0}^{d} f^{*} + (f^{*}(d) + \varepsilon)(t-d)}{2} = \frac{\lambda W(d) + (f^{*}(d) + \varepsilon)(t-d)}{2} \leq 1$$

$$\frac{\int_0^s g^*}{W(t)} = \frac{\int_0^s f^* + (f^*(d) + \varepsilon)(t - d)}{W(t)} = \frac{\lambda W(d) + (f^*(d) + \varepsilon)(t - d)}{W(t)}$$

if and only if

$$\frac{t-d}{W(t)-\lambda W(d)}(f^*(d)+\varepsilon) = H(t)(f^*(d)+\varepsilon) \le 1.$$

Since by (2.8), for all $t \in (d, d + \delta)$,

$$H(t)(f^*(d) + \varepsilon) < H(d + \delta)(f^*(d) + \varepsilon) < 1,$$

we have that $\int_0^t g^* \leq W(t)$. For $t \in (d + \delta, b_0 - \delta)$, by (2.9) we have

$$\frac{\int_0^t g^*}{W(t)} = \frac{\int_0^t f^*}{W(t)} + \frac{\varepsilon\delta}{W(t)} \le K + \frac{\varepsilon\delta}{W(d+\delta)} \le 1.$$

Now let $t \in (b_0 - \delta, b_0)$. Then

$$\frac{\int_0^t g^*}{W(t)} = \frac{\int_0^{b_0} f^* - \int_t^{b_0} f^* + \varepsilon(b_0 - t)}{W(t)} = \frac{\beta W(b_0) - (f^*(d) - \varepsilon)(b_0 - t)}{W(t)},$$

where $\beta = \frac{\int_0^{b_0} f^*}{W(b_0)} \leq 1$. We have that for $t \in (b_0 - \delta, b_0)$,

$$\frac{\int_0^t g^*}{W(t)} \le 1 \quad \text{if and only if} \quad \frac{S(t)}{f^*(d) - \varepsilon} \le 1, \tag{2.13}$$

where

$$S(t) = \frac{\beta W(b_0) - W(t)}{b_0 - t}$$

We have that S is strictly decreasing for $t < b_0$. Indeed, since w is strictly decreasing,

$$\beta W(b_0) - W(t) \le W(b_0) - W(t) < w(t)(b_0 - t).$$

Hence S'(t) < 0 for $t < b_0$, and so S(t) is strictly decreasing. Hence, in order to show that $\int_0^t g^* \leq W(t)$ for $t \in (b_0 - \delta, b_0)$, it is enough to prove that

$$S(b_0 - \delta) \frac{1}{f^*(d) - \varepsilon} \le 1.$$

This is equivalent to

$$\int_0^d f^* + f^*(d)(b_0 - d) - \delta(f^*(d) - \varepsilon) \le W(b_0 - \delta),$$

that is

$$\frac{\int_0^{b_0-\delta} f^*}{W(b_0-\delta)} + \frac{\varepsilon\delta}{W(b_0-\delta)} \le 1.$$

But by (2.10),

$$F(b_0 - \delta) + \frac{\varepsilon \delta}{W(b_0 - \delta)} \le K + \frac{\varepsilon \delta}{W(b_0 - \delta)} \le 1,$$

which implies that for all $t \in (b_0 - \delta, b_0)$,

$$\frac{S(t)}{f^*(d) - \varepsilon} \le \frac{S(b_0 - \delta)}{f^*(d) - \varepsilon} \le 1,$$

which in turn yields that $\int_0^t g^* \leq W(t)$ by (2.13). If $t \in (b_0, \infty)$, then

$$\int_0^t g^* = \int_0^t f^* \le W(t).$$

So $||g||_W = ||h||_W \le 1$, $f^* = \frac{g+h}{2}$, and f^* cannot be extreme point.

• Let f^* be continuous at b_0 and let $F(b_0) = \frac{\int_0^{b_0} f^*}{W(b_0)} = 1$. Hence we have that for all $\varepsilon > 0$, there exists $b_0 < t < b_0 + \varepsilon$ such that $f^*(t) \leq w(t)$. Indeed, if

not, then there exists $\varepsilon > 0$ such that $f^*(t) > w(t)$, for all $t \in (b_0, b_0 + \varepsilon)$. Let $t \in (b_0, b_0 + \varepsilon)$, then

$$\frac{\int_0^t f^*}{W(t)} = \frac{W(b_0) + \int_{b_0}^t f^*}{W(t)} > \frac{W(b_0) + \int_{b_0}^t w}{W(t)} = 1,$$

which is a contradiction. Hence $f^*(a) = f^*_+(b_0) = \lim_{t \to b_0^+} f^*(t) \le w(b_0) \le w(t)$ for all $t \le b_0$.

Let
$$0 < \delta < \frac{b_0 - d}{4}$$
. Since w is strictly decreasing, $w(d + \delta) - f^*(d) > 0$. Let $0 < \varepsilon < \min\{f^*_-(d) - f^*_+(d), f^*(d), w(d + \delta) - f^*(d)\},$

where the first term inside the minimum does not exist if d = 0. Let ε be also chosen such that there exists $\delta_1 < \delta$ such that $\delta_1 = \min\{\delta_2, \delta_3\} > 0$, where

$$\delta_2 = \max(f^*)^{-1}[(f^*(d) - \varepsilon, f^*(d))]$$
 and $\delta_3 = \max w^{-1}[(f^*(d) - \varepsilon, f^*(d))].$

Let g and h be given by (2.11) and (2.12). Then $\frac{g+h}{2} = f^*$ and $g^* = h^*$, where in this case

$$g^{*}(t) = f^{*}\chi_{(0,d)}(t) + (f^{*} + \varepsilon)\chi_{(d,d+\delta)}(t) + f^{*}\chi_{(d+\delta,b_{0}-\delta)}(t)$$

$$+ f^{*}\chi_{(b_{0},b_{0}+\delta_{1})}(t+\delta) + (f^{*}(d) - \varepsilon)\chi_{(b_{0}-\delta+\delta_{1},b_{0}+\delta_{1})}(t) + f^{*}\chi_{(b_{0}+\delta_{1},\infty)}(t).$$
(2.14)

If $t \in (0, d)$, then $\int_0^t g^* = \int_0^t f^* \leq W(t)$. If $t \in (d, b_0 + \delta_1)$, then $g^*(t) \leq w(t)$, so $\int_0^t g^* \leq \int_0^t w = W(t)$. If $t \in (b_0 + \delta_1, \infty)$, first compute

$$\int_{d}^{b_{0}+\delta_{1}} g^{*} = \int_{d}^{d+\delta} f^{*} + \varepsilon \delta + \int_{d+\delta}^{b_{0}-\delta} f^{*} + \int_{b_{0}}^{b_{0}+\delta_{1}} f^{*} + \int_{b_{0}-\delta+\delta_{1}}^{b_{0}+\delta_{1}} f^{*}(d) - \varepsilon \delta$$
$$= \int_{d}^{d+\delta} f^{*} + \int_{d+\delta}^{b_{0}-\delta} f^{*} + \int_{b_{0}}^{b_{0}+\delta_{1}} f^{*} + \int_{b_{0}-\delta}^{b_{0}} f^{*} = \int_{d}^{b_{0}+\delta_{1}} f^{*}. \quad (2.15)$$

Then $\int_0^t g^* = \int_0^t f^* \leq W(t)$, so $\|g\|_W \leq 1$, and similarly $\|h\|_W \leq 1$.

• Let f^* be continuous at b_0 and let $F(b_0) < 1$. Since $F(b_0) < 1$, so $H(b_0)f^*(d) < 1$ and by the fact that H is strictly increasing on (d, b_0) we get that $H(t)f^*(d) < 1$ on (d, b_0) .

Hence F(t) < 1 on (d, b_0) , and by $F(b_0) < 1$ and continuity of F we find $0 < \delta < \frac{b_0-d}{4}$, such that $L := \max_{t \in (d+\delta,b_0+\delta)} F(t) < 1$. Pick up then $\varepsilon > 0$ satisfying the following conditions

$$\varepsilon < f_-^*(d) - f_+^*(d) \quad (\text{only if } d = 0)$$

$$H(b_0)(f^*(d) + \varepsilon) \le 1,$$
 (2.16)

$$L + \frac{\varepsilon \delta}{W(d+\delta)} \le 1. \tag{2.17}$$

Finally let $0 < \delta_1 < \delta$ be such that

$$(b_0, b_0 + \delta_1) \subset (f^*)^{-1}[(f^*(a) - \varepsilon, f^*(a))].$$

11

Then define g and h as in (2.11) and (2.12), and so $g^* = h^*$ have the form (2.14). Clearly if $t \in (0, d)$, then $\int_0^t g^* = \int_0^t f^* \leq W(t)$. If $t \in (d, d + \delta)$, then by (2.16), $H(t)(f^*(d) + \varepsilon) \leq 1$ for all $t \in (d, d + \delta)$. But it implies that

$$\frac{\int_0^t g^*}{W(t)} = \frac{\int_0^t f^* + \varepsilon(t-d)}{W(t)} \le 1.$$

For $t \in (d + \delta, b_0 + \delta_1), g^*(t) \leq f^*(t)$ and by (2.17)

$$\frac{\int_0^t g^*}{W(t)} \leq \frac{\int_0^{d+\delta} f^* + \int_{d+\delta}^t f^* + \varepsilon \delta}{W(t)} \leq L + \frac{\varepsilon \delta}{W(d+\delta)} < 1$$

Now let $t \in (b_0 + \delta_1, \infty)$. Since g^* has exactly the same form as in the previous case, we have by (2.15) that $\int_0^t g^* = \int_0^t f^* \leq W(t)$. This completes the proof. \Box

References

- M.D. Acosta and A. Kamińska, Norm attaining operators between Mrcinkiewicz and Lorentz spaces, Bull. Lond. Math. Soc. 40, No. 4 (2008), 581–592.
- C. Bennett and R. Sharpley, *Interpolation of Operators*, Pure and Applied Mathematics series 129, Academic Press Inc., 1988.
- V.I. Chilin, A.V. Krygin and F.A. Sukochev, Extreme points of convex fully symmetric sets of measurable operators, Integral Equations Operator Theory 15 (1992), 186–226.
- A. Kamińska, Extreme points in Orlicz-Lorentz spaces, Arch. Math. (Basel) 55, no. 2 (1990), 173–180.
- A. Kamińska and H.J. Lee, M- ideal properties in Marcinkiewicz spaces, Comment. Math. Prace Mat. Tomus specialis in Honorem Juliani Musielak, (2004), 123–144.
- A. Kamińska, H.J. Lee and G. Lewicki, Extreme and smooth points in Lorentz and Marcinkiewicz spaces with applications to contractive projections, Rocky Mountain J. Math. 39, No. 5 (2009), 1533–1572.
- 7. A. Kamińska and A.M. Parrish, Smooth points in Marcinkiewicz function spaces, to appear.
- S.G. Kreĭn, Yu.Ī. Petunīn and E.M. Semënov, Interpolation of Linear Operators, Translations of Mathematical Monographs Series 54, AMS. 1982.
- J.V. Ryff, Orbits of L¹-functions under doubly stochastic transformations, Trans. Amer. Soc. 117 (1965), 92–100.
- 10. J.V. Ryff, Extreme points of some convex subsets of $L^1(0, 1)$, Proc. Amer. Soc. 18 (1967), 1026–1034.

¹ DEPARTMENT OF MATHEMATICAL SCIENCES, THE UNIVERSITY OF MEMPHIS, MEMPHIS, TN 38152, USA.

E-mail address: kaminska@memphis.edu *E-mail address*: abuican1@memphis.edu