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Abstract. Let (Ω,Σ, µ) be a complete probability measure space, E be a
real separable Banach space, K a nonempty closed convex subset of E. Let
T : Ω×K → K, such that {Ti}N

i=1, be N-uniformly Li-Lipschitzian asymptoti-

cally hemicontractive random maps of K with F =
N⋂

i=1

F (Ti) 6= ∅. We construct

an explicit iteration scheme and prove neccessary and sufficient conditions for
approximating common fixed points of finite family of asymptotically hemicon-
tractive random maps.

1. Introduction and preliminaries

Let E be a real normed linear space, E∗ its daul and let the map J : E → 2E∗

denote the generalized daulity mapping define for each x ∈ E by

J(x) = {f ∗ ∈ E∗ : 〈x, f ∗〉 = ‖x‖2 = ‖f ∗‖2}

where 〈, 〉denotes the daulity pairing between elements of E and E∗. It is well
know that if E is smooth, then J is single-valued. In the sequel we shall denote
the single-valued normalized daulity map by j.
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Let (Ω, Σ, µ) be a complete probability measure space with Σ, a σ-algebra of
subset of Ω and µ a probability measure on Σ. Let E be a (separable) normed
linear space. A map ξ : Ω → E is measurable if ξ−1(K) ∈ Σ for each open subset
K of E; alternatively, ξ−1 ∈ Σ for each open ball B in E. A map T : Ω×E → E
is said to be a random map if for fixed ξ ∈ E the map T (ω)ξ(ω) : Ω → E is
measurable. A measurable map ξ : Ω → E is called a random fixed point of the
random map T : Ω×E → E if µ({ω ∈ Ω : T (ω)ξ(ω) = ξ(ω)}) = 1; that is Tξ = ξ
almost surely (a.s.) in Ω. The nth iterate, n ∈ N of the map T : Ω × E → E is
given by T n(ω) = T (ω)T n−1(ω); that is , T n(ω)ξ(ω) = T n(ω)(T n−1(ω)ξ(ω). Let
ξ, η : Ω → E be measurable maps.

A random map T : Ω× E → E is said to be nonexpansive if

‖T (ω)ξ(ω)− T (ω)η(ω)‖ ≤ ‖ξ(ω)− η(ω)‖ (ω ∈ Ω)

and is L-Lipschitzian if for all ω ∈ Ω there exists L(ω) ≥ 0 such that

‖T (ω)ξ(ω)− T (ω)η(ω)‖ ≤ L(ω)‖ξ(ω)− η(ω)‖

where L(ω) ≤ L a.s. in Ω that is µ({ω ∈ Ω : L(ω) ≤ L}) = 1 The map T is said
to be uniformly L-Lipschzian if for all ω ∈ Ω, there exists L(ω) ≥ 0, such that
L(ω) ≤ L a.s. a constant such that for all ξ(ω), η(ω) ∈ E, ω ∈ Ω, n ∈ N,

‖T n(ω)ξ(ω)− T n(ω)η(ω)‖ ≤ L(ω)‖ξ(ω)− η(ω)‖

A map T is said to be asymptotically nonexpansive if for all ω ∈ Ω, there exists
{kn(ω)}n≥0 ⊂ [1, +∞) with lim

n→∞
kn(ω) = 1 a.s. such that

‖T n(ω)ξ(ω)− T n(ω)η(ω)‖ ≤ kn(ω)‖ξ(ω)− η(ω)‖ (n ∈ N)

and T is said to be asymptotically pseudocontractive if for all ω ∈ Ω, there exists
{kn(ω)}n≥0 ⊂ [1, +∞) with lim

n→∞
kn(ω) = 1 a.s. and for all ξ(ω), η(ω) ∈ E, there

exists j(ξ(ω)− η(ω)) ∈ J(ξ(ω)− η(ω)) such that

〈T n(ω)ξ(ω)− T n(ω)η(ω), j(ξ(ω)− η(ω))〉 ≤ kn(ω)‖ξ(ω)− η(ω)‖2(n ∈ N). (1.1)

T is said to be asymptotically hemicontractive if F (T ) = {ξ(ω) ∈ D(T ) :
T (ω)ξ(ω) = ξ(ω)} 6= ∅ and (1.1) is satisfied for all ξ(ω) ∈ D(T ) and η(ω) =
ξ∗(ω) ∈ F (T ), kn(ω) = an(ω)

and there exists j(ξ(ω)− ξ∗(ω)) ∈ J(ξ(ω)− ξ∗(ω)) such that

〈T n(ω)ξ(ω)− ξ∗(ω), j(ξ(ω)− ξ∗(ω))〉 ≤ an(ω)‖ξ(ω)− ξ∗(ω)‖2(n ∈ N).

In late 50’s Spacek [12] and Hans [7] initated works on random operator theory
or probabilistic analysis. since then, it has been an area for active research, a host
of other researchers have done several work on random (probabilistic) fixed point
theorems and applications (see e.g., Beg [1], Beg and Shahzad [2, 3], Benavides
et.al [4], Bharucha-Reid [5, 6], Itoh [8, 9], Lin [10], Tan and Yuan [13], Xu [14, 15],)
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In recent time, some authors have obtained solutions to real life problems using
the deterministic model (see e.g., Bharuch-Reid [5, 6]).

Moore and Ofoedu [11] extended results of Beg [1] from the class of asymptotically
nonexpansive random maps to more general class of asymptotically hemicontrac-
tive random maps.

In this paper, it is our purpose to construct a random explicit iteration scheme
for approximation of common fixed points of finite families of N-uniformly Li-
Lipschitzian asymptotically hemicontractive maps.
Our theorems extended that of Moore and Ofoedu [11] from a single operator to
a finite families of the operator and a host of others.

2. Preliminaries

We shall make use of the following lemmas.

Lemma 2.1. Let {βn}∞n=0 and {bn}∞n=0 be sequences of nonnegetive real numbers
satisfying the inequality

βn+1 ≤ βn + bn, n ≥ 0

if
∞∑

n≥0

bn < ∞ then lim
n→∞

βn exists.

Lemma 2.2. Let E be a real normed linear space. Then for all ξ(ω), η(ω) ∈ E
and j(ξ(ω) + η(ω)) ∈ J(ξ(ω) + η(ω)) the following inequality holds.

‖ξ(ω) + η(ω)‖2 ≤ ‖ξ(ω)‖2 + 2〈η(ω), j(ξ(ω) + η(ω))〉

3. Main results

If K is a nonempty closed convex subset of E and {Ti}N
i=1 is a family of N uni-

formly Li-Lipschitzian asymptotically hemicontractive self mappings of K, then
ξ0(ω) ∈ K and {αn}n≥0 ⊂ (0, 1), the iteration process is generated as follows

ξ1(ω) = (1− α0)ξ0(ω) + α0T1(ω)ξ0(ω),

ξ2(ω) = (1− α1)ξ1(ω) + α1T2(ω)ξ1(ω),
...

ξN(ω) = (1− αN−1)ξN−1(ω) + αN−1TN(ω)ξN−1(ω),

ξN+1(ω) = (1− αN)ξN(ω) + αNT 2
1 (ω)ξN(ω),

...

ξ2N(ω) = (1− α2N−1)ξ2N−1 + α2N−1T
2
N(ω)ξ2N−1(ω),

ξ2N+1(ω) = (1− α2N)ξ2N(ω) + α2NT 3
1 (ω)ξ2N(ω),

...
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Then the compact form of the iteration process is

ξn+1(ω) = (1− αn)ξn(ω) + αnT
k
i (ω)ξn(ω), n ≥ 0, ω ∈ Ω (3.1)

where k = {n−i
N
}+ 1.

Theorem 3.1. Let E be a real Banach space and K, a nonempty closed convex
subset of E. Let {Ti}N

i=1 be N uniformly Li-Lipschitzian asymptotically hemicon-

tractive self mappings of K such that F =
⋂N

i=1 F (Ti) 6= ∅. Let {αn}n≥0 be a
sequence in (0,1) satisfying the conditions

(i)
∑
n≥0

αn = ∞;

(ii)
∑
n≥0

α2
n < ∞;

(iii)
∑
n≥0

αn(ain(ω)− 1) < ∞.

Then the explicit iterative sequence {ξn(ω)}n≥0 generated from an arbitrary ξ0(ω) ∈
K by (3.1) converges strongly surely to a random common fixed point of the fam-
ily {Ti}N

i=1 if and only if lim inf
n→∞

d(ξn(ω), F ) = 0 almost surely in Ω.

Proof. We have that

‖ξn+1(ω)− ξ∗(ω)‖2 = ‖(1− αn)(ξn(ω)− ξ∗(ω)) + αn(T k
i (ω)ξn(ω)− ξ∗(ω))‖2

and

‖ξn+1(ω) − ξ∗(ω)‖2

≤ ‖(1− αn)(ξn(ω)− ξ∗(ω))‖2

+2αn〈(T k
i (ω)ξn(ω)− ξ∗(ω)), j(ξn+1(ω)− ξ∗(ω))〉

≤ (1− αn)2‖ξn(ω)− ξ∗(ω)‖2

−2αn〈ξn+1(ω)− T k
i (ω)ξn+1(ω), j(ξn+1(ω)− ξ∗(ω))〉

+2αn〈T k
i (ω)ξn(ω)− T k

i (ω)ξn+1(ω), j(ξn+1(ω)− ξ∗(ω))〉
+2αn〈ξn+1(ω)− ξ∗(ω), j(ξn+1(ω)− ξ∗(ω))〉

= (1− αn)2‖ξn(ω)− ξ∗(ω)‖2 + 2αn{(ain(ω)− 1)‖ξn+1(ω)− ξ∗(ω)‖2}
+2αn‖T k

i (ω)ξn(ω)− T k
i (ω)ξn+1‖‖ξn+1(ω)− ξ∗(ω)‖

+2αn‖ξn+1(ω)− ξ∗(ω)‖2. (3.2)

Moreover

‖T k
i (ω)ξn(ω)− T k

i (ω)ξn+1(ω)‖ ≤ Li(1 + Li)αn‖ξn(ω)− ξ∗(ω)‖

Also,

‖ξn+1(ω)− ξ∗(ω)‖ = [1 + (1 + Li)αn]‖ξn(ω)− ξ∗(ω)‖

Therefore, (3.2) gives
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‖ξn+1(ω)− ξ∗(ω)‖2 ≤ (1− αn)2‖ξn(ω)− ξ∗(ω)‖2

+2αn(ain(ω)− 1)(αn + αnLi + 1)2‖ξn(ω)− ξ∗(ω)‖2

+2α2
n(1 + Li)Li[αn(Li + 1) + 1]‖ξn(ω)− ξ∗(ω)‖2

+2αn[α2
n(Li + 1)2 + 2αn(1 + Li)]‖ξn(ω)− ξ∗(ω)‖2

+2αn‖ξn(ω)− ξ∗(ω)‖2

= (1 + α2
n)‖ξn(ω)− ξ∗(ω)‖2

+2αn(ain(ω)− 1)[αn(Li + 1) + 1]2‖ξn(ω)− ξ∗(ω)‖2

+2α2
n(1 + Li)Li[αn(Li + 1) + 1]‖ξn(ω)− ξ∗(ω)‖2

+2αn[α2
n(Li + 1)2 + 2αn(1 + Li)]‖ξn(ω)− ξ∗(ω)‖2

= (1 + γin)‖ξn(ω)− ξ∗(ω)‖2 , (3.3)

where

γin(ω) = {α2
n + 2αn(ain(ω)− 1)[αn(1 + Li) + 1]2

+2α2
n(Li + 1)Li[αn(1 + Li) + 1] + 2αn[α2

n(1 + Li)
2 + 2αn(1 + Li)]}

We observe that
∞∑

n≥0

γin(ω) < ∞ almost surely in Ω

therefore, from (3.3) we have

‖ξn+1(ω)− ξ∗(ω)‖2 ≤
n∏

j=0

(1 + γij(ω))‖ξ0(ω)− ξ∗(ω)‖2

≤ e

∞∑
j=0

γij(ω)

‖ξ0(ω)− ξ∗(ω)‖2

therefore,

‖ξn+1(ω)− ξ∗(ω)‖ ≤ M (n ∈ N)

since ‖ξn+1(ω)− ξ∗(ω)‖ ≤ M for some M > 0, now, we observe that if we set

βn = ‖ξn(ω)− ξ∗(ω)‖2 and bn = γin(ω)M2.

Then by Lemma 2.1

lim
n→∞

‖ξn(ω)− ξ∗(ω)‖ exists almost surely in Ω (3.4)

If from (3.3), we have that

‖ξn+1(ω)− ξ∗(ω)‖2 ≤ [1 + α2
n + λin(ω)]‖ξn(ω)− ξ∗(ω)‖2

where λin(ω) = γin(ω)− α2
n, i.e. α2

n + λin(ω) = γin(ω) then
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‖ξn+1(ω)− ξ∗(ω)‖ ≤ [1 + α2
n + λin(ω)]

1
2‖ξn(ω)− ξ∗(ω)‖

≤ (1 + α2
n)‖ξn(ω)− ξ∗(ω)‖+ λin(ω)‖ξn(ω)− ξ∗(ω)‖

≤ (1 + α2
n)‖ξn(ω)− ξ∗(ω)‖+ µin(ω)

where µin(ω) = λin(ω)M = (γin(ω)− α2
n)M so we observe that

∞∑
n≥0

µin(ω) < ∞ almost surely in Ω

And for all n, m ∈ N we have

‖ξn+m(ω)− ξ∗(ω)‖ ≤ (1 + α2
n+m−1)‖ξn+m+1(ω)− ξ∗(ω)‖+ µin+m−1(ω)

≤ (1 + α2
n+m−1)(1 + α2

n+m−2)‖ξn+m+2(ω)− ξ∗(ω)‖
+(1 + α2

n+m−1)µin+m−2(ω) + µin+m−1(ω)

=
n+m−1∏

j=n

(1 + α2
j )‖ξn(ω)− ξ∗(ω)‖+

n+m−1∏
j=n

(1 + α2
j )

n+m−1∑
j=n

µij(ω)

≤ e
Pn+m−1

j=n α2
j‖ξn(ω)− ξ∗(ω)‖+ e

Pn+m−1
j=n α2

j

n+m−1∑
j=n

µij(ω)

= D‖ξn(ω)− ξ∗(ω)‖+ D
n+m−1∑

j=n

µij(ω) < ∞ (3.5)

where D = exp

(
∞∑

j=1

α2
j

)
.

Thus,taking infimum over ξ∗(ω) ∈ F (ω), we obtain

d(ξn+1(ω), F (ω)) ≤ (1 + α2
n)d(ξn(ω), F (ω)) + µin(ω)

since the lim inf
n→∞

d(ξn(ω), F (ω)) = 0 almost surely in Ω.

Thus, we have from (3.4), that lim
n→∞

d(ξn(ω), F (ω)) = 0 almost surely in Ω. That

is

µ
(
{ω ∈ Ω : lim inf

n→∞
d(ξ(ω), F (ω)) = 0}

)
= 1

implies

µ
(
{ω ∈ Ω : lim

n→∞
d(ξ(ω), F (ω)) = 0}

)
= 1

It suffices to show that {ξn(ω)}n≥0 is Cauchy.
Let ε > 0 be given, since lim

n→∞
d(ξn(ω), F (ω)) = 0 almost surely in Ω and

∞∑
i=1

δi(ω) < ∞ there exists a positive integer N1 such that for all n ≥ N1,

d(ξn(ω), F (ω)) <
ε

3D
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and
∞∑
i=1

δi(ω) <
ε

6D
.

In particular there exists ξ∗(ω) ∈ F (ω) such that d(ξN1(ω), ξ∗(ω)) < ε
3D

.

Now from (3.5), we have that for all n ≥ N1,

‖ξn+m(ω)− ξn(ω)‖ ≤ ‖ξn+m(ω)− ξ∗(ω)‖+ ‖ξn(ω)− ξ∗(ω)‖

≤ D‖ξN1(ω)− ξ∗(ω)‖+ D

N1+m−1∑
i=Ni

δi(ω)

+D‖ξN1(ω)− ξ∗(ω)‖+ D

N1+m−1∑
i=Ni

δi(ω)

< ε

Hence, lim
n→∞

ξn(ω) exists almost surely in Ω (Since E is complete).

Suppose that lim
n→∞

ξn(ω) = ξ∗(ω) we show that ξ∗(ω) ∈ F (ω). But given ε2 > 0

there exists a positive N2 ≥ N1 such that for all n ≥ N2

µ
(
{ω ∈ Ω : ‖ξn(ω)− ξ∗(ω)‖

<
ε2

2(1 + L)
} ∩ {ω ∈ Ω : d(ξn(ω), F (ω)) <

ε2

2(1 + 3L)
}
)

= 1

Thus, there exists η∗(ω) ∈ F (ω) such that

µ
(
{ω ∈ Ω : ‖ξN2(ω)− η∗(ω)‖

= d(ξN2(ω), η∗(ω))} ∩ {ω ∈ Ω : d(ξN2(ω), η∗(ω)) <
ε2

2(1 + 3L)
}
)

= 1

with the following estimates

‖T (ω)ξ∗(ω)− ξ∗(ω)‖ ≤ ‖T (ω)ξ∗(ω)− η∗(ω)‖+ 2‖T (ω)ξN2(ω)− η∗(ω)‖
+‖ξN2(ω)− η∗(ω)‖+ ‖ξN2(ω)− ξ∗(ω)‖

≤ L‖ξ∗(ω)− η∗(ω)‖+ 2L‖ξN2(ω)− η∗(ω)‖
+‖ξN2(ω)− η∗(ω)‖+ ‖ξN2(ω)− ξ∗(ω)‖

≤ (1 + L)‖ξN2(ω)− ξ∗(ω)‖+ (1 + 3L)‖ξN2(ω)− η∗(ω)‖
< ε2

Since ε2 > 0 is arbitrary we have that

µ ({ω ∈ Ω : T (ω)ξ∗(ω) = ξ∗(ω)}) = 1

�

Theorem 3.2. Let E be a real Banach space and K, a nonempty closed convex
subset of E. Let {Ti}N

i=1 be N uniformly Li-Lipschitzian asymptotically hemicon-

tractive self mappings of K such that F =
⋂N

i=1 F (Ti) 6= ∅. Let {αn}n≥0 be a
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sequence in (0,1) satisfying the conditions (i)
∑
n≥0

αn = ∞ (ii)
∑
n≥0

α2
n < ∞ (iii)∑

n≥0

αn(ain(ω) − 1) < ∞. Then the explicit iterative sequence {ξn(ω)}n≥0 gener-

ated from an arbitrary ξ0(ω) ∈ K, ω ∈ Ω by (3.1) converges strongly to a common
fixed point of the family {Ti}N

i=1 if and only if there exists an infinite subsequence
of {ξn(ω)}n≥0 which converges strongly to a random common fixed point ot the
family {Ti}N

i=1.

Proof. Let ξ∗(ω) ∈ F (ω) and {ξnj
(ω)}j≥0 be a subsequence of {ξn(ω)}n≥0 such

that lim
j→∞

‖ξnj
(ω) − ξ∗(ω)‖ = 0 almost surely, since lim

n→∞
‖ξn(ω) − ξ∗(ω)‖ exists

almost surely, then, lim
n→∞

‖ξn(ω)− ξ∗(ω)‖ = 0 almost surely. �

Remark 3.3. Our theorems unify, extend and generalize the corresponding results
of Beg [1], Beg and Shahzad [2], Moore and Ofoedu [11], Xu [14] and host of other
results recently announced, to more general class of finite families of N-uniformly
Li-Lipschitzian asymptotically hemicontractive Random maps.
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