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Abstract. We shall discuss the matrix geometric mean for the positive defi-
nite matrices. The set of all n× n matrices with a suitable inner product will
be a Hilbert space, and the matrix geometric mean can be considered as a path
between two positive matrices. In this paper, we shall obtain a matrix geo-
metric mean inequality, and as an application of it, a property of Riemannian
metric space is given. We also obtain some examples related to our result.

1. Introduction

Let Mn be the set of all n×n matrices on C. The set Mn will be a Hilbert space
with the inner product 〈A, B〉 = trB∗A for A, B ∈ Mn, and the associated norm

‖A‖2 = (trA∗A)
1
2 . The set of all Hermitian matrices Hn constitutes a real vector

space on Mn. The subset Pn of Mn consisting of positive definite matrices is an
open subset in Hn. Hence it is a differentiable manifold. The tangent space to
Pn at any of its points A is the space TAPn = {A}×Hn, identified for simplicity,
with Hn. The inner product on Hn leads to a Riemannian metric on the manifold
Pn. At the point A this metric is given by the differential

ds = ‖A
−1
2 dAA

−1
2 ‖2 =

[
tr(A−1dA)2

] 1
2 .
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This is a mnemonic for computing the length of a (piecewise) differentiable path
in Pn. If γ : [a, b] −→ Pn is such a path, we define its length as

L(γ) =

∫ b

a

‖γ
−1
2 (t)γ′(t)γ

−1
2 (t)‖2dt.

For any two points A and B in Pn, let

δ2(A, B) = inf{L(γ) : γ is a path from A to B}.
Bhatia and Holbrook [3] show that the infimum is attained at a unique path
joining A and B. This path is called geodesic from A to B, and it is denoted
by [A, B]. This gives a metric on Pn, and concrete form of δ2(A, B) is given as
follows:

Theorem 1.1 ([2]). Let A and B be any two elements of Pn. Then there exists
a unique geodesic [A, B] joining A and B. This geodesic has a parametrization

γ(t) = A
1
2 (A

−1
2 BA

−1
2 )tA

1
2 , 0 ≤ t ≤ 1,

which is natural in the sense that

δ2(A, γ(t)) = tδ2(A, B)

for each t ∈ [0, 1]. Furthermore, the metric is precisely estimated by

δ2(A, B) = ‖ log A
−1
2 BA

−1
2 ‖2.

We remark that the geodesic from A to B is known as the generalized geometric
mean A]tB of A and B, that is,

γ(t) = A
1
2 (A

−1
2 BA

−1
2 )tA

1
2 = A]tB for t ∈ [0, 1].

In particular, A] 1
2
B (denoted by A]B, simply) is called the matrix geometric

mean, simply, and it has many good properties. We shall introduce some prop-
erties of the generalized geometric mean in the next section. The metric δ2 has
an important property which is called exponential metric increasing property as
follows:

Theorem 1.2 ([2, 3]). For each pair of points A, B in Pn, we have

δ2(A, B) ≥ ‖ log A− log B‖2.

In other words, for any two matrices H and K in Hn,

δ2(e
H , eK) ≥ ‖H −K‖2.

So the map
exp : (Hn, ‖ · ‖2) −→ (Pn, δ2) (1.1)

increases distances, or is metric increasing.

It is known that Pn is a Riemannian manifold of nonpositive curvature [4].
Another essential feature of this geometry is the semiparallelogram law for the
metric δ2. To understand this, recall the parallelogram law in a Hilbert space H.
Let a and b be any two points in H and let m = a+b

2
be their midpoint. Given

any other points c and d consider the parallelogram, one of whose diagonals is
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[a, b] and the other [c, d]. The two diagonals intersect at m and the parallelogram
law is the equality

‖a− b‖2 + ‖c− d‖2 = 2(‖a− c‖2 + ‖b− c‖2).

Upon rearrangement this can be written as

‖c−m‖2 =
‖a− c‖2 + ‖b− c‖2

2
− ‖a− b‖2

4
.

In the semiparallelogram law this last equality is replaced by an inequality.

Theorem 1.3 (The Semiparallelogram Law [2, 3]). Let A and B be any two
points of Pn and let M = A]B be the midpoint of the geodesic [A, B]. Then for
any C in Pn we have

δ2
2(C, M) ≤ δ2

2(A, C) + δ2
2(B, C)

2
− δ2

2(A, B)

4
.

In the Euclidean space, the distance between the midpoints of two sides of a
triangle is equal to half the length of the third side. In a space whose metric
satisfies the semiparallelogram law this is replaced by an inequality as follows:

Theorem 1.4 ([2]). Let A, B and C be any three points in Pn. Then

δ2(A]B, A]C) ≤ δ2(B, C)

2
.

By Theorem 1.1, the matrix geometric mean is closely related to Riemannian
metric on the manifold Pn. So we can expect that many results of the matrix
geometric mean can be applied for the study of Riemannian metric in the manifold
Pn. As a property of the matrix geometric mean, the following result is obtained
by Ando–Li–Mathias in [1]:

Theorem 1.5 ([1]). For positive definite matrices A, B, C,D, A]B = C]D im-
plies

(A]C)](B]D) = A]B.

Roughly speaking, Theorem 1.5 says that for four points A, B, C,D ∈ Pn, if
the diagonals [A, B] and [C, D] have the same midpoint G = A]B = C]D in
a quadrilateral ADBC, then the line joining their midpoints in opposite sides
[A, C] and [D, B] pass through the point G.

In this paper, we shall discuss an extension of Theorem 1.5. In section 2, we
shall introduce some properties of matrix means. In section 3, we will give an
extension of Theorem 1.5. In section 4, we give examples related to the result in
section 3.

2. Matrix mean

In this section, we shall introduce some properties of matrix means. Let M be
a binary operation M : Pn × Pn −→ Pn. Then M is called a matrix mean if
and only if the following conditions hold:

(1) M(A, B) ≤ M(C, D) if 0 ≤ A ≤ C and 0 ≤ B ≤ D (monotonicity),
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(2) XM(A, B)X ≤ M(XAX, XBX) holds for X ≥ 0 (transformer inequal-
ity),

(3) M is upper semicontinuous, and
(4) M(I, I) = I.

We remark that if X is invertible, then the transformer inequality (2) can be
replaced into the transformer equality. It is well known that the matrix arithmetic
and geometric means are typical examples of matrix mean. In this paper, we write
the matrix arithmetic and the geometric means by

A∇B =
A + B

2
and A]B = A

1
2 (A

−1
2 BA

−1
2 )

1
2 A

1
2 ,

respectively. More generally, the generalized matrix arithmetic mean A∇tB and
the geometric mean A]tB are defined as follows: For t ∈ [0, 1],

A∇tB = (1− t)A + tB and A]tB = A
1
2 (A

−1
2 BA

−1
2 )tA

1
2 .

We remark that if t 6∈ [0, 1], then A
1
2 (A

−1
2 BA

−1
2 )tA

1
2 is not a matrix mean, but

we write it A\tB for the sake of convenience.

Here we introduce some properties of the generalized matrix arithmetic and
geometric means. Firstly, the famous arithmetic–geometric means inequality
holds, i.e.,

A]tB ≤ A∇tB for t ∈ [0, 1]. (2.1)

Next property is shown by operator concavity of xr for r ∈ [0, 1].

Ar∇tB
r ≤ (A∇tB)r for r ∈ [0, 1] and t ∈ [0, 1]. (2.2)

We remark that in the case r = −1, the sign of inequality in (2.2) is reversed,
i.e.,

A−1∇tB
−1 ≥ (A∇tB)−1 for t ∈ [0, 1]. (2.3)

In general, a matrix mean does not satisfy the commutative law, but the matrix
arithmetic and the geometric means satisfy

A∇tB = B∇1−tA and A]tB = B]1−tA (2.4)

for t ∈ [0, 1], (A\tB = B\1−tA for t 6∈ [0, 1] also holds.) The former equality is
obvious, and the latter one is given by

(AB2A)α = AB(BA2B)α−1BA for A, B ≥ 0 and real number α.

in [7, Lemma 1]. We remark that an argument over general matrix means is in
[5, 8].

3. Results

In this section, we shall give an extension of Theorem 1.5 as follows:

Theorem 3.1. Let A, B, C,D be positive invertible matrices with 0 < mI ≤
A, B, C,D ≤ MI for some positive numbers m and M . If A]αB = C]αD = G
holds for a positive number α ∈ (0, 1), then for each β ∈ [0, 1],{

(h
2− 1

α0 + 1)2

4h
2− 1

α0

}−α0

G ≤ (A]βC)]α(B]βD) ≤

{
(h

2− 1
α0 + 1)2

4h
2− 1

α0

}α0

G (3.1)
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holds, where h = M
m

and α0 = min{α, 1− α}.

By putting α = 1
2

in Theorem 3.1, we obtain a slight extension of Theorem 1.5
as follows:

Corollary 3.2. Let A, B, C,D be positive invertible matrices. If A]B = C]D =
G holds, then for each β ∈ [0, 1],

(A]βC)](B]βD) = G (3.2)

holds.

Roughly speaking, Corollary 3.2 says that when we consider a quadrilateral
ADBC with the same midpoints G in each diagonals, for each internal ratio of
1−β to β for β ∈ [0, 1], the line joining their internally dividing point in opposite
sides [A, C] and [D, B] pass through the midpoint G. We would like to remark
that for any α ∈ (0, 1)− {1

2
}, “]” in the center of the left hand side in (3.2) can

not be replaced into “]α”. Concrete example and discussion will appear in the
next section. From the viewpoint of Riemannian metric, Theorem 3.1 can be
written by the following form:

Theorem 3.1’. Let A, B, C,D be positive invertible matrices with 0 < mI ≤
A, B, C,D ≤ MI for some positive numbers m and M . If A]αB = C]αD = G
holds for a positive number α ∈ (0, 1), then for each β ∈ [0, 1],

δ2((A]βC)]α(B]βD), G) ≤
√

n log

{
(h

2− 1
α0 + 1)2

4h
2− 1

α0

}α0

holds, where h = M
m

and α0 = min{α, 1− α}.
To prove Theorem 3.1, we need the following lemma which is a kind of reverse

inequality of (2.3).

Lemma 3.3 ([6, 9]). Let A and B be positive invertible matrices satisfying 0 <
m1I ≤ A ≤ M1I and 0 < m2I ≤ B ≤ M2I for some positive numbers 0 < m1 <
M1 and 0 < m2 < M2. Then

A∇tB ≤ (h + 1)2

4h
(A−1∇tB

−1)−1 (3.3)

holds for t ∈ [0, 1], where h = max{M2

m1
, M1

m2
}.

It is a known result, but for the reader’s convenient, we give a proof.

Proof. Let X = A
−1
2 BA

−1
2 , and

X =

∫
λdEλ

be the spectral decomposition of X. Since h = max{M2

m1
, M1

m2
}, then we have

1
h
≤ λ ≤ h. We remark that for t ∈ (0, 1) and h > 0, since h + 1

h
≥ 2,

(1−t)2+t(1−t)(h+
1

h
)+t2 = (2−h− 1

h
)

(
t− 1

2

)2

+
(h + 1)2

4h
≤ (h + 1)2

4h
. (3.4)



ON A GEOMETRIC PROPERTY OF POSITIVE DEFINITE MATRICES CONE 69

Moreover λ + 1
λ
≤ h + 1

h
for 1

h
≤ λ ≤ h. Then for t ∈ [0, 1],

(1− t) + tX =

∫
{(1− t) + tλ}dEλ

=

∫
{(1− t) + tλ}

{(1− t) + tλ−1}−1
· {(1− t) + tλ−1}−1dEλ

=

∫
{(1− t)2 + t(1− t)(λ +

1

λ
) + t2} · {(1− t) + tλ−1}−1dEλ

≤
∫
{(1− t)2 + t(1− t)(h +

1

h
) + t2} · {(1− t) + tλ−1}−1dEλ

≤
∫

(h + 1)2

4h
· {(1− t) + tλ−1}−1dEλ by (3.4)

=
(1 + h)2

4h
· {(1− t) + tX−1}−1.

Hence we have

(1− t) + tX ≤ (1 + h)2

4h
· {(1− t) + tX−1}−1.

Multiplying both sides of this inequality by A
1
2 , we have

(1− t)A + tB ≤ (1 + h)2

4h
{(1− t)A−1 + tB−1}−1,

that is, (3.3). �

Proof of Theorem 3.1. Firstly, we prove the case α ∈ (0, 1
2
] (i.e., α0 = α).

A]αB = G ⇐⇒ A
1
2 (A

−1
2 BA

−1
2 )αA

1
2 = G

⇐⇒ (A
−1
2 BA

−1
2 )α = A

−1
2 GA

−1
2 .

Hence B = A
1
2 (A

−1
2 GA

−1
2 )

1
α A

1
2 = A\ 1

α
G. Similarly, by (2.4), we have

C]αD = G ⇐⇒ D]1−αC = G ⇐⇒ C = D\ 1
1−α

G.
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Then

G
−1
2 (A]βC)]α(B]βD)G

−1
2

= G
−1
2

{
A]β(D\ 1

1−α
G)

}
]α

{
(A\ 1

α
G)]βD

}
G
−1
2

=
{

(G
−1
2 AG

−1
2 )]β(G

−1
2 DG

−1
2 \ 1

1−α
I)

}
]α

{
(G

−1
2 AG

−1
2 \ 1

α
I)]βG

−1
2 DG

−1
2

}
=

{
(G

−1
2 AG

−1
2 )]β(G

−1
2 DG

−1
2 )1− 1

1−α

}
]α

{
(G

−1
2 AG

−1
2 )1− 1

α ]βG
−1
2 DG

−1
2

}
= (X]βY

−α
1−α )]α(X

α−1
α ]βY ) by putting X = G

−1
2 AG

−1
2 , Y = G

−1
2 DG

−1
2

≤ (X∇βY
−α
1−α )]α(X

α−1
α ∇βY ) by (2.1)

≤ (X
1−α

α ∇βY −1)
α

1−α ]α(X
α−1

α ∇βY ) by (2.2) and
α

1− α
∈ [0, 1]

≤ (X
1−α

α ∇βY −1)
α

1−α ]α

{
(h2− 1

α + 1)2

4h2− 1
α

(X
1−α

α ∇βY −1)−1

}

=

{
(h2− 1

α + 1)2

4h2− 1
α

}α

(X
α−1

α ∇βY )
α

1−α
(1−α)+(−α)

=

{
(h2− 1

α + 1)2

4h2− 1
α

}α

I,

where the last inequality holds since 1
h
I ≤ X, Y ≤ hI ensures

X
α−1

α ∇βY ≤ (h0 + 1)2

4h0

(X
1−α

α ∇βY −1)−1,

where h0 = max{ h
1

h
α−1

α

, h
α−1

α
1
h

} = h2− 1
α by Lemma 3.3. Hence we have

(A]βC)]α(B]βD) ≤

{
(h2− 1

α + 1)2

4h2− 1
α

}α

G. (3.5)

Now, we shall prove the lower bound of (3.1). By 0 < mI ≤ A, B, C,D ≤ MI,

we have 0 < M−1I ≤ A−1, B−1, C−1, D−1 ≤ m−1I, m−1

M−1 = M
m

= h. Hence by
(3.5), we obtain

(A−1]βC−1)]α(B−1]βD−1) ≤

{
(h2− 1

α + 1)2

4h2− 1
α

}α

G−1.

Taking the inverse of both sides,

(A]βC)]α(B]βD) ≥

{
(h2− 1

α + 1)2

4h2− 1
α

}−α

G,

that is, we get the desired inequality.
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Next, we prove the case α ∈ [1
2
, 1) (i.e., α0 = 1− α). By A]αB = C]αD = G,

we have B]1−αA = D]1−αC = G. Since 1− α ∈ (0, 1
2
],{

(h2− 1
1−α + 1)2

4h2− 1
1−α

}−1+α

G ≤ (B]βD)]1−α(A]βC) ≤

{
(h2− 1

1−α + 1)2

4h2− 1
1−α

}1−α

G.

So that by (2.4),{
(h

2− 1
α0 + 1)2

4h
2− 1

α0

}−α0

G ≤ (A]βC)]α(B]βD) ≤

{
(h

2− 1
α0 + 1)2

4h
2− 1

α0

}α0

G.

�

4. Counterexamples

In the previous section, we prove Corollary 3.2 which is an extension of a result
by Ando–Li–Mathias. But we do not show that whether “]” in the center of the
left hand side in (3.2) can be replaced into “]α” for α 6= 1

2
or not. One might

think that Corollary 3.2 can be extended to more general form. The aim of this
section is to give a counterexample of the problem as follows:

Proposition 4.1. There exist positive invertible matrices A, B, C and D satis-
fying

A]αB = C]αD and (A]C)]α(B]D) 6= A]αB

for any α ∈ (0, 1)− {1
2
}.

To prove the above proposition is a little bit complicated, so we shall give a
concrete counterexample in the case α = 1

3
, firstly.

Example 4.2. There exist positive invertible matrices A, B, C and D satisfying

A] 1
3
B = C] 1

3
D and (A]C)] 1

3
(B]D) 6= A] 1

3
B.

Proof. Let A =

(
4 0
0 1

)
, B =

(
160 128
128 104

)
, C =

(
1 0
0 4

)
and D =

(
580 308
308 164

)
.

Then

A] 1
3
B = C] 1

3
D =

(
8 4
4 4

)
= G.

But

(A]C)] 1
3
(B]D) =

(
7.04103 · · · 3.12431 · · ·
3.12431 · · · 3.65874 · · ·

)
6= G.

�

The above example is not a counterexample for the general case α ∈ (0, 1)−{1
2
}.

Next, we shall prove Proposition 4.1, i.e., general case α ∈ (0, 1)− {1
2
}. To give

a proof of it, we prepare the following discussions:

Proposition 4.3. For α ∈ (0, 1), assume that positive invertible matrices A, B, C,D
with A]αB = C]αD = G satisfy (A]C)]α(B]D) = G. Then there exist positive
invertible matrices X and Y such that

X
1−α

α ]Y
1−α

α = (X]Y )
1−α

α .
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Proof. Let A]αB = C]αD = G. Then B = A\ 1
α
G and C = D\ 1

1−α
G. Then we

have

G
−1
2 {(A]C)]α(B]D)}G

−1
2

= G
−1
2

[{
A](D\ 1

1−α
G)

}
]α

{
(A\ 1

α
G)]D

}]
G
−1
2

=
{

(G
−1
2 AG

−1
2 )](G

−1
2 DG

−1
2 \ 1

1−α
I)

}
]α

{
(G

−1
2 AG

−1
2 \ 1

α
I)](G

−1
2 DG

−1
2 )

}
=

{
(G

−1
2 AG

−1
2 )](G

−1
2 DG

−1
2 )1− 1

1−α

}
]α

{
(G

−1
2 AG

−1
2 )1− 1

α ](G
−1
2 DG

−1
2 )

}
=

{
(G

−1
2 AG

−1
2 )](G

−1
2 DG

−1
2 )

−α
1−α

}
]α

{
(G

−1
2 AG

−1
2 )

α−1
α ](G

−1
2 DG

−1
2 )

}
,

so that (A]C)]α(B]D) = G is equivalent to{
(G

−1
2 AG

−1
2 )](G

−1
2 DG

−1
2 )

−α
1−α

}
]α

{
(G

−1
2 AG

−1
2 )

α−1
α ](G

−1
2 DG

−1
2 )

}
= I.

Let X = G
1
2 A−1G

1
2 and Y = (G

−1
2 DG

−1
2 )

α
1−α . Then it is equivalent to

(X−1]Y −1)]α(X
1−α

α ]Y
1−α

α ) = I. (4.1)

By the way, for positive invertible matrices S and T ,

S]αT = I ⇐⇒ T = S
α−1

α .

Hence (4.1) is equivalent to

X
1−α

α ]Y
1−α

α = (X−1]Y −1)
α−1

α = (X]Y )
1−α

α .

It completes the proof. �

Hence by Proposition 4.3, we have only to consider a counterexample of

Xr]Y r = (X]Y )r (4.2)

for a positive number r with r 6= 1.

Proposition 4.4. For positive 2×2 matrices X and Y with det(X) = det(Y ) = 1.
Then

X]Y =
X + Y√

det(X + Y )
.

It is a well-known formula (see [1]), but we shall give a proof for the reader’s
convenient.

Proof. Let D = X
−1
2 Y X

−1
2 . Then by the Cayley–Hamilton theorem, we have

D2 − trace(D)D + I = 0.

Then by

D =
(D + I)2

trace(D) + 2
≥ 0,

we obtain

D
1
2 =

D + I√
trace(D) + 2

.
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Hence

X]Y = X
1
2 D

1
2 X

1
2 =

X + Y√
trace(D) + 2

.

Here by det(X]Y ) = 1, we can get

X]Y =
X + Y√

det(X + Y )
.

�

Then we shall give a counterexample to prove Proposition 4.1 based on the
above discussions.

Example 4.5. Let

X =
1√
2

(
2 0
0 1

)
and Y =

1

2
√

2

(
3 1
1 3

)
.

Then (4.2) does not hold for all positive number r 6= 1.

Proof. It is easy to see det(X) = det(Y ) = 1. Then there exist real numbers α
and βr such that

X]Y = α(X + Y ), hence (X]Y )r = αr(X + Y )r,

Xr]Y r = βr(X
r + Y r)

by Proposition 4.4. Put

(X]Y )r = αr(X + Y )r =

(
X1(r) X2(r)
X2(r) X3(r)

)
,

Xr]Y r = βr(X
r + Y r) =

(
Y1(r) Y2(r)
Y2(r) Y3(r)

)
.

If (4.2) holds for some r, then we have X1(r) = Y1(r) and X2(r) = Y2(r), so that,

X1(r)

X2(r)
=

Y1(r)

Y2(r)
. (4.3)

Hence we have only to check that (4.3) does not hold for all positive number r
with r 6= 1.

Put a unitary matrix U as U =
1√
2

(
1 1
1 −1

)
. Then we have

Y = U · 1√
2

(
2 0
0 1

)
· U.

Hence we obtain

Xr + Y r =
1

2(
√

2)r

(
3 · 2r + 1 2r − 1
2r − 1 2r + 3

)
. (4.4)

By putting r = 1 in (4.4), we get

X + Y =
1

2
√

2

(
7 1
1 5

)
.
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Let V be a unitary matrix as follows:

V =
1√

4− 2
√

2

(
1

√
2− 1√

2− 1 −1

)
.

Then we have

V (X + Y )V =
1

2
√

2

(
6 +

√
2 0

0 6−
√

2

)
,

and then

(X + Y )r (4.5)

= k(r)

(
(6 +

√
2)r + (3− 2

√
2)(6−

√
2)r (

√
2− 1){(6 +

√
2)r − (6−

√
2)r}

(
√

2− 1){(6 +
√

2)r − (6−
√

2)r} (3− 2
√

2)(6 +
√

2)r + (6−
√

2)r

)
,

where k(r) = 1
(2
√

2)r(4−2
√

2)
.

If Xr]Y r = (X]Y )r for some r > 0 with r 6= 1, then by (4.3), (4.4) and (4.5)

3 · 2r + 1

2r − 1
=

(6 +
√

2)r + (3− 2
√

2)(6−
√

2)r

(
√

2− 1){(6 +
√

2)r − (6−
√

2)r}
, (4.6)

if and only if

(3 · 2r + 1)(
√

2− 1)(λr − 1)− (2r − 1){λr + (3− 2
√

2)} = 0, where λ =
6 +

√
2

6−
√

2
,

if and only if

(
√

2− 1)2(2λ)r − 2r + λr − (
√

2− 1)2 = 0.

Let f(r) = (
√

2 − 1)2(2λ)r − 2r + λr − (
√

2 − 1)2. Then we have only to show
f(r) 6= 0 for any r > 0 such that r 6= 1 by the above argument. By calculation,

f ′(r) = (
√

2− 1)2(2λ)r log(2λ)− 2r log 2 + λr log λ

= (2λ)r{(
√

2− 1)2 log(2λ)− λ−r log 2 + 2−r log λ}.

Put g(r) = (
√

2− 1)2 log(2λ)− λ−r log 2 + 2−r log λ. Then

g′(r) = −λ−r log λ−1 · log 2 + 2−r log 2−1 · log λ = log 2 · log λ · (λ−r − 2−r) > 0

for r > 0 since 1 < λ < 2. Therefore f ′(r) = (2λ)rg(r) is strictly increasing for
r ≥ 0, so that f(r) is a convex function for r ≥ 0. Hence f(r) 6= 0 for any r > 0
such that r 6= 1 since f(0) = f(1) = 0. �

Remark 4.6. The above calculation is a bit complicated, but only to prove the
existence of a counterexample, there is an easier calculation as follows:

For some r > 0, we assume that

Xr]Y r = (X]Y )r (4.2)

holds for any positive invertible matrices X and Y . Then by putting X1 = Xr

and Y1 = Y r, we have

(X1]Y1)
1
r = X

1
r
1 ]Y

1
r

1 .
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Hence (4.2) also holds for 1
r
. So we have only to consider the case r > 1. If (4.2)

holds for all X, Y > 0 and some r > 1, then we obtain

Xr2

]Y r2

= (Xr]Y r)r = (X]Y )r2

,

that is, (4.2) holds for r2. By the same way, (4.2) holds for rn. Hence we have
to check it for all sufficiently large r. Here, from the left and right hand sides of
(4.6), we have

lim
r→∞

3 · 2r + 1

2r − 1
= lim

r→∞

(
4

2r − 1
+ 3

)
= 3,

lim
r→∞

(6 +
√

2)r + (3− 2
√

2)(6−
√

2)r

(
√

2− 1){(6 +
√

2)r − (6−
√

2)r}
= lim

r→∞

{
2
√

2

(6+
√

2
6−
√

2
)r − 1

+
√

2 + 1

}
=
√

2 + 1.

Hence we obtain that (4.6) does not hold for all sufficiently large r since the above
limit points are different. It completes the proof.

Consequently we can prove Proposition 4.1 as follows:

Proof of Proposition 4.1. By Example 4.5, there exist positive invertible matrices
X and Y satisfying

X
1−α

α ]Y
1−α

α 6= (X]Y )
1−α

α

for all α ∈ (0, 1) − {1
2
}. Therefore, by scrutinizing the proof of Proposition 4.3,

we can get desired matrices A, B, C and D for a given positive invertible matrix
G as follows:

A = G
1
2 X−1G

1
2 , D = G

1
2 Y

1−α
α G

1
2 , B = A\ 1

α
G and C = D\ 1

1−α
G.

�
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