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Abstract. We introduce notions of compactness and weak compactness for
multilinear maps from a product of normed spaces to a normed space, and
prove some general results about these notions. We then consider linear maps
T : A → B between Banach algebras that are “close to multiplicative” in
the following senses: the failure of multiplicativity, defined by ST (a, b) =
T (a)T (b) − T (ab) (a, b ∈ A), is compact [respectively weakly compact]. We
call such maps cf-homomorphisms [respectively wcf-homomorphisms]. We also
introduce a number of other, related definitions. We state and prove some
general theorems about these maps when they are bounded, showing that they
form categories and are closed under inversion of mappings and we give a va-
riety of examples. We then turn our attention to commutative C∗-algebras
and show that the behaviour of the various types of “close-to-multiplicative”
maps depends on the existence of isolated points in the maximal ideal space.
Finally, we look at the splitting of Banach extensions when considered in the
category of Banach algebras with bounded cf-homomorphisms [respectively
wcf-homomorphisms] as the arrows. This relates to the (weak) compactness of
2-cocycles in the Hochschild-Kamowitz cohomology complex. We prove “com-
pact” analogues of a number of established results in the Hochschild-Kamowitz
cohomology theory.
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1. Introduction

For Banach algebras, A and B, and a linear map T : A → B we call the
bilinear map ST : A×A→ B given by ST (a, b) = T (a)T (b)−T (ab) the failure of
multiplicativity of T . Our focus in this paper will be new notions of “smallness” for
the failure of multiplicativity of a bounded linear map T , based on compactness.
We will use these notions to produce new results in function theory and in the
theory of Hochschild-Kamowitz cohomology of Banach algebras. In order to
provide some motivation we will first give a brief discussion of a well-studied
notion of smallness for the failure of multiplicativity: namely that the norm of
ST be less than some small δ > 0.

Let A and B be Banach algebras and denote by B(A,B) the space of all
bounded linear maps from A to B. Let δ > 0. We call a bounded linear map
T : A → B δ-multiplicative if ‖ST‖ < δ. Now let M(A,B) be the set of all
multiplicative, bounded linear maps from A to B and, for T ∈ B(A,B), let
d(T ) = inf{‖T − S‖ : S ∈M(A,B)}. In [12], Johnson proved the following.

Proposition 1.1. Let A and B be Banach algebras and let T : A → B be a
bounded linear map. Then

‖ST‖ ≤ (1 + d(T ) + 2 ‖T‖)d(T ).

This implies that for every δ > 0 there exists ε > 0, such that all linear maps T :
A→ B with ‖T‖ < 1 that are within distance ε of some multiplicative bounded
linear map are δ-multiplicative. Research on δ-multiplicativity has focused on
when the converse of this holds. We call (A,B) an AMNM pair (an “almost
multiplicative bounded linear maps are near multiplicative bounded linear maps
pair”) if for every ε > 0 there exists δ > 0 such that all δ-multiplicative bounded
linear maps T : A→ B with ‖T‖ < 1 are within distance ε of some multiplicative
bounded linear map. If (A,C) is an AMNM-pair we call A AMNM. AMNM
algebras are studied in [11], [16], [9], [3] and [7], and a good source for AMNM
pairs is [12].

1.1. Notation. Let X be a topological space and S ⊂ X. We write S for the
closure of S. In the case that X is a normed space then the closure is taken in
the norm topology unless specifically stated otherwise.

For a normed space E we write ball(E) for the open unit ball of E and ball(E)

for the closed unit ball of E (i.e. ball(E) = ball(E)).
For Banach spaces E1, . . . , En, F we let B(E1, . . . , En : F ) be the space of all

bounded multilinear maps from E1 × En to F . In the case that E1, . . . , En := E
we write Bn(E,F ) for B(E1, . . . , En : F ).

The notions of smallness on which we shall concentrate in this paper are based
on concepts of compactness for multilinear maps which we shall define and discuss
in the following section.
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2. Compactness of multilinear maps

We start with the following definition, which will be important in this paper.
In the special case of the norm topology the same condition is considered by
Krikorian in [14]. We made the more general version below independently.

Definition 2.1. Let E1, . . . , En be normed spaces and F a vector space with a
topology T defined on it. An n-linear map T : E1 × · · · × En → F is compact
with respect to T if the closure in T of

T ({(x1, . . . , xn) : xi ∈ ball(Ei)})
is compact when considered as topological space with the subspace topology
induced by T . If T is the norm topology we call T compact. If T is the weak
topology we call T weakly compact. Let E1, . . . , En be normed spaces. We denote
the set of all compact n-linear maps from E1×· · ·×En to F by Kn(E1, . . . , En;F );
in the case where E1 = · · · = En = E we denote Kn(E1, . . . , En;F ) by Kn(E,F ).
We denote the set of all weakly-compact n-linear maps from E1 × · · · × En to
F by wKn(E1, . . . , En;F ); in the case where E1 = · · · = En = E we denote
wKn(E1, . . . , En;F ) by wKn(E,F ).

We note that weakly compact multilinear maps are necessarily bounded.
We mention the following interesting source of examples of compact multilinear

maps, due to Krikorian ([14]).

Example 2.2. Let E and F be Banach spaces, U be an open subset of E,
n ∈ N, and f : U → F be an n-times-continuously-differentiable function that
maps bounded sets to relatively compact sets. Then, for x ∈ U and k ∈ {1, . . . , n}
the kth derivative of f at x is a compact k-linear map from E × · · · × E to F .

We shall now prove that T being (weakly) compact is equivalent to the asso-
ciated linear map from the n-fold projective tensor product of E with itself to F
being (weakly) compact. We refer the reader unfamiliar with this construction to
[5, Appendix A1] for definitions and notation. We shall need the following result.
The case where n = 2 it is [5, A.3.69] and the general version is similar.

Proposition 2.3. Let E1, . . . En be normed spaces and F be a Banach space,
and let T ∈ B(E1, . . . , En;F ). Then there is a unique, bounded, linear map

T̃ :
⊗̂n

i=1Ei → F such that

T̃ (x1⊗̂ . . . ⊗̂xn) = T (x1, . . . , xn) (xj ∈ Ej, j ∈ {1, . . . , n}).

Furthermore, the map T 7→ T̃ , Bn(E1, . . . , En;F ) → B
(⊗̂n

i=1Ei, F
)
, is an iso-

metric Banach space isomorphism.

The following is elementary.

Lemma 2.4. Let E1, . . . , En be normed spaces. Then ball
(⊗̂n

i=1Ei

)
is the closed

convex hull of {x1⊗̂ . . . ⊗̂xn : xi ∈ ball(Ei)}.

The following is a special case of [2, Theorem IV.5] (Krein’s Theorem).
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Proposition 2.5. Let F be a Banach space and T a topology on F for which a
functional on F is T -continuous if and only if it is norm continuous (equivalently
T contains the weak topology and is contained in the norm topology). Let S be
a subset of of F which is compact with respect to T . Then the closed convex
balanced hull (and therefore the closed convex hull) of S is compact with respect
to T .

In particular if T is the norm topology or the weak topology the above holds.
In the special case where n = 2 and T is the norm topology, the following

theorem and corollary were proven in [14]. We proved this more general version
independently.

Theorem 2.6. Let F and T be as in Proposition 2.5 and let E1, . . . , En be
normed spaces. A multilinear map T ∈ B(E1, . . . , En;F ) is compact with respect

to T if and only if the linear map T̃ ∈ B
(⊗̂n

i=1Ei, F
)

with T̃ (x1⊗̂ . . . ⊗̂xn) =

T (x1, . . . , xn) is compact with respect to T .

Proof. In this proof “T -compact” will mean “compact with respect to T ”. First
assume that T is T -compact. Then

T ({(x1, . . . , xn) : xi ∈ ball(Ei)}) = T̃ ({x1⊗̂ . . . ⊗̂xn : xi ∈ ball(Ei)})

is T -compact. We call this set S. By Proposition 2.5, co(S) is also T -compact.

K : = T̃ (co({x1⊗̂ . . . ⊗̂xn : xi ∈ ball(Ei)}))

= T̃ (co({x1⊗̂ . . . ⊗̂xn : xi ∈ ball(Ei)}))

= co(T̃ ({x1⊗̂ . . . ⊗̂xn : xi ∈ ball(Ei)})) ⊆ co(S),

and so the K is T -compact. By Lemma 2.4, we have K = T̃
(
ball(

⊗̂n

i=1Ei)
)

and

hence T̃ is T -compact.

We now assume that T̃ is compact. We have,

T
(
{(x1, . . . , xn) : xi ∈ ball(Ei)}

)
= T̃

(
{(x1⊗̂ . . . ⊗̂xn) : xi ∈ ball(Ei)}

)
⊆ T̃

(
{z ∈

⊗̂n

i=1Ei : ‖z‖ < 1}
)
.

The right-hand side of the above expression is compact and hence so is the left
hand side; the result follows. �

In the following corollary and its proof “closed” means “closed with respect to
the norm topology”.

Corollary 2.7. Let E1, . . . , En and F be Banach spaces; then Kn(E1, . . . , En;F )
and wKn(E1, . . . , En;F ) are closed subspaces of Bn(E1, . . . , En;F ) such that

Kn(E1, . . . , En;F ) is isometrically isomorphic to K
(⊗̂n

i=1Ei, F
)

and

wKn(E1, . . . , En;F ) is isometrically isomorphic to wK
(⊗̂n

i=1Ei, F
)
.
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Proof. Let E and F be Banach spaces. Then it is standard that K(E,F ) and

wK(E,F ) are closed subspaces of B(E,F ). Thus K
(⊗̂n

i=1Ei, F
)

and

wK
(⊗̂n

i=1Ei, F
)

are Banach spaces. By Proposition 2.3 and Theorem 2.6,

Kn(E1, . . . , En;F ) is isometrically isomorphic to K
(⊗̂n

i=1Ei, F
)

and

wKn(E1, . . . , En;F ) is isometrically isomorphic to wK
(⊗̂n

i=1Ei, F
)
. Hence, they

are complete, and therefore closed, subspaces of Bn(E1, . . . , En;F ) and the result
follows. �

2.1. (Weakly) compact failure of multiplicativity for linear maps. In this
subsection we introduce a class of functions between Banach algebras which are,
in a certain sense, “close” to being homomorphisms.

Definition 2.8. Let A and B be normed algebras and let T : A → B be a
linear map. Recall the definition of the failure of multiplicativity ST . We call T a
cf-homomorphism (where “cf” stands for “compact from”) if ST is compact and
a wcf-homomorphism (where “wcf” stands for “weakly compact from”) if ST is
weakly compact. If ST is finite-dimensional we call T an fdf-homomorphism and
if for n ∈ N we have ST at most n-dimensional we call T an ndf-homomorphism.

If, for each a ∈ A, we have that ST (a, ·) and ST (·, a) are compact linear maps,
we say that T is a semi-cf-homomorphism. We define “semi-wcf-homomorphism”,
“semi-fdf-homomorphism” and “semi-ndf-homomorphism” similarly.

We note some obvious relationships between these conditions. The set of cf-
homomorphisms from A to B contains all homomorphisms from A to B and all
compact linear maps from A to B. The set of wcf-homomorphisms from A to B
contains all weakly compact linear maps from A to B. Adding “w” or “semi-” to a
condition makes it weaker. An ndf-homomorphism is an (n+1)df-homomorphism
and a continuous fdf-homomorphism is a cf-homomorphism.

Let E and F be Banach spaces. We say a map T : E → F is weak-weak
continuous, if it is continuous when considered as a map from E equipped with
the weak topology to F equipped with the weak topology. The following is part
of [8, 27.6].

Proposition 2.9. Let E and F be Banach spaces and T : E → F a bounded
linear map. Then T is weak-weak continuous.

We shall need the following lemma.

Lemma 2.10. Let E, F and G be Banach spaces, T1 ∈ B(G,E), T2 ∈ B(F,G)
and S ∈ B2(E,F ). We define a map R ∈ B2(G,F ) by R(g1, g2) = S(T1(g1), T2(g1)).
Suppose that S ∈ K2(E,F ). Then R ∈ K2(G,F ) and T2 ◦S ∈ K2(E,G). Suppose
instead that S ∈ wK2(E,F ). Then R ∈ wK2(G,F ) and T2 ◦ S ∈ wK2(E,G).
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Proof. In this proof we shall write “X(2)” for the Cartesian product of a set X
with itself. Closures will initially be in the norm topology. Suppose S ∈ K2(E,F ).

R (ball(G)(2)) = S({(T1(g1), T1(g2)) : g1, g2 ∈ ball(G)})
⊆ S({(e1, e2) : e1, e2 ∈ ‖T‖1 ball(E)})
= ‖T1‖2 S (ball(E)(2)), (2.1)

but S (ball(E)(2)) is compact and soR(ball(G)(2)) is a closed subset of the compact

set ‖T1‖2 S (ball(E)(2)) and thus is compact. Hence R ∈ K2(G,F ). Also,

T2 ◦ S(ball(E)(2)) = T2(S(ball(E)(2))) = T2

(
S(ball(E)(2))

)
, (2.2)

but S(ball(E)(2)) is compact, and so (since T2 is bounded)

T2 ◦ S(ball(E)(2)) = T2

(
S(ball(E)(2))

)
= T2

(
S(ball(E)(2))

)
, (2.3)

is compact. Hence, T2 ◦ S ∈ K2(E,G).
Now suppose S ∈ wK2(E,F ). By Proposition 2.9, T1 and T2 are continuous

when E, F and G are considered with the weak topology. Hence, each of (2.2),
(2.3) and (2.1) holds with the closure taken in the weak topology and so the result
follows as in the norm topology case. �

Theorem 2.11. Let A,B and C be Banach algebras and let T1 : A→ B and T2 :
B → C be bounded cf-homomorphisms [respectively bounded wcf-homomorphisms].
Then T2 ◦ T1 is a bounded cf-homomorphism [respectively bounded wcf-homo-
morphism].

Proof. Let a, b ∈ A. Then a direct calculation gives

ST2◦T1(a, b) = T2(ST1(a, b))− ST2(T1(a), T1(b)).

Thence the result is immediate from Lemma 2.10 and Corollary 2.7. �

Hence we have that the class of Banach algebras together with bounded cf-
homomorphisms and the class of Banach algebras together with bounded wcf-
homomorphism form concrete categories.

Theorem 2.12. Let A and B be Banach algebras and T be a bounded cf-homo-
morphism [respectively a bounded wcf-homomorphism] that is bijective. Then the
inverse mapping T−1 : B → A is a bounded cf-homomorphism [respectively a
bounded wcf-homomorphism].

Proof. By the Banach isomorphism theorem, T−1 is a bounded linear map. Also,
for b, b′ ∈ B a direct calculation yields,

ST−1(b, b′) = −T−1 ◦ ST (T−1(b), T−1(b′)).

Thus the result follows from Lemma 2.10. �

Hence, a morphism in the category of Banach algebras with bounded cf-homo-
morphisms or in the category of Banach algebras with bounded wcf-homomorph-
isms is an isomorphism if and only if it is bijective.
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3. Some examples

We give an example to show that bounded semi-cf-isomorphisms need not be
wcf-homomorphisms.

Example 3.1. Following [15] we say a Banach algebra, A has compact multipli-
cation if, for each a ∈ A, left and right multiplication by a, which we denote La

and Ra respectively, are both compact operators on A. Let A and B be Banach
algebras with compact multiplication and let T : A → B be a bounded linear
map. Then it is clear that T is automatically a semi-cf-homomorphism. Now let
A = c0, with pointwise multiplication. Then A has compact multiplication since
if we take (an) ⊂ c00 such that an → a then Lan → La = Ra and each Lan has
finite rank. Let T : A → A be given by T (a) = 2a; then ST is surjective. Since
the unit ball of c0 is not relatively compact in the weak topology, it follows that
T is not a wcf-homomorphism.

We now show that weakly compact linear maps need not be semi-cf-homo-
morphisms.

Example 3.2. Let A be an infinite-dimensional, unital Banach algebra, which is
reflexive as a Banach space. For example, let A0 be `2 with pointwise multiplica-
tion and let A be the one-dimensional unitisation of A0. Denote the unit of A by
e. Now let T : A→ A be given by T (a) = 2a for each a ∈ A. Then ST (e, ·) = T
which is bijective, and so not compact.

We now give examples to show that two Banach algebras may be isomorphic in
the category of Banach algebras with bounded cf-homomorphisms without being
isomorphic in the usual category of Banach algebras.

Example 3.3. Let n ∈ N and let A and B be non-isomorphic Banach algebras,
each with underlying vector space Cn. Clearly, the identity map from Cn to itself
defines a compact linear bijection from A to B and so it defines an isomorphism in
the category of Banach algebras with bounded cf-homomorphisms. In particular
we may take A to be C with the usual product and B to be C with zero product.
If we let A = C({1, 2, 3, 4}) and B = B(`2({1, 2})) (the algebra of 2× 2 matrices
over C) we have an example where both algebras are unital C∗-algebras.

Example 3.4. Let A = `∞ with the pointwise product and let B be the vector
space B(`2({1, 2}))⊕A with the norm ‖(A, a)‖ = max{‖A‖ , ‖a‖} and the prod-
uct (A, a)(B, b) = (AB, ab) (A,B ∈ B(`2({1, 2}), a, b ∈ A). Then B is a Banach
algebra. We define a linear map T : A→ B by

(an)n∈N →
([

a1, a2

a3, a4

]
, (an−4)n∈N

)
.

It is easy to check that T is a bounded linear bijection. Also

ST ((an)n∈N, (bn)n∈N) =

([
a1, a2

a3, a4

] [
b1, b2
b3, b4

]
−

[
a1b1, a2b2
a3b3, a4b4

]
, 0

)
and so ST is of finite rank. Thus T is an isomorphism in the category of Banach
algebras and cf-homomorphisms. Clearly, A is commutative and B is not so they
are not isomorphic as Banach algebras.
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We now give an example of a bounded 1df-homomorphism (and hence of a
cf-homomorphism) that is neither a homomorphism nor a compact linear map.

Example 3.5. Let A be `∞ with the pointwise product. For k ∈ N let ek ∈ A be
the sequence with 1 in the kth place and 0 in all other places. Define a bounded
linear map T : A→ A by T (a) = a+ a1e1, (a = (ak)k∈N ∈ A). Then T is a linear
bijection from `∞ onto itself and, hence, is not weakly-compact. Also, e21 = e1
and T (e1) = 2e1, so

T (2e1e1) = T (2e1) = 4e1 6= 8e1 = T (2e1)T (e1).

Hence, T is not a homomorphism. However, for a = (ak)k∈N, b = (bk)k∈N ∈ A,

ST (a, b) = T (ab)− T (a)T (b)

= ab+ a1b1e1 − (a+ a1e1)(b+ b1e1)

= ab+ a1b1e1 − (ab+ 3a1b1e1) = −2a1b1e1.

This has rank 1 and so is compact.

Since cf-homomorphisms are “a compact map away from being homomorph-
isms” one may conjecture that if A and B are Banach algebras, T1 : A → B
is a continuous homomorphism and T2 : A → B is a compact linear map then
T := T1 + T2 must be a cf-homomorphism. The following example shows that
this is not true, even if T2 is a rank 1 homomorphism.

Example 3.6. Let A and ek ∈ A be as in Example 3.5 and denote the identity
element of A by 1. Let T1 : A → A be the identity homomorphism T1(a) = a,
a ∈ A and let T2 : A → A be the bounded, rank 1, linear map given by T2(a) =
a11. Then, if T = T1 + T2,

T (ek) =

{
e1 + 1 if k = 1,
ek otherwise.

Hence, for k > 1,

ST (e1, ek) = T (e1)T (ek)− T (e1ek) = ek,

so

(ek)
∞
k=2 ⊆ ST

(
ball(A)

(2)
)
⊆ ST (ball(A)(2)),

but (ek)
∞
k=2 has no convergent subsequence, so T is not a cf-homomorphism.

4. Commutative C∗-algebras

In this section we discuss how these notions relate to functions on locally-
compact, Hausdorff topological spaces. Many of the results could be extended
to more general classes of Banach function algebras, but to avoid having to give
a large number of definitions we shall restrict to the case of commutative C∗-
algebras.
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4.1. Nowhere-zero preserving maps. The following is the Gleason-Kahane-
Żelazko theorem, which may be found as [10, Theorem 2.3]. The author would
like to thank Joel Feinstein for pointing him towards this result.

Proposition 4.1. Let A be a Banach algebra with unit denoted 1 and let φ be a
linear functional on A. Assume that for each invertible f ∈ A, φ(f) 6= 0. Then
φ/φ(1) is multiplicative.

This has the following corollary.

Corollary 4.2. Let A be a Banach algebra with unit denoted 1, B be a com-
mutative, unital, semisimple Banach algebra and T : A → B be a linear map.
Assume that for each invertible f ∈ A, T (f) is invertible in B. Then T/T (1) is
multiplicative.

Proof. Via the Gel′fand transform, we may assume that B is a Banach function
algebra on its character space. Therefore, b ∈ B is invertible if φ(b) 6= 0 for each
multiplicative linear functional φ on B, and T is multiplicative if and only if T ◦φ
is multiplicative for each multiplicative linear functional φ on B. Thus, the result
follows from Proposition 4.1. �

Definition 4.3. A topological space is perfect if it is non-empty and has no
isolated points.

Theorem 4.4. Let X and Y be infinite, locally-compact, Hausdorff spaces. If X
is perfect and T : C0(X) → C0(Y ) is a bounded semi-wcf-homomorphism, then T
is multiplicative and thus is of the form T (f) = f ◦ ψ for some homeomorphism
ψ : Y → X.

Proof. First, we reduce this to the unital case. Assume for now that the result
holds in the case where X and Y are both compact (i.e. that C0(X) = C(X) and
C0(Y ) = C(Y ) are unital). Let X and Y be locally-compact, Hausdorff spaces

and let T : C0(X) → C0(Y ) be a bounded semi-wcf-homomorphism. Let X̃ and

Ỹ be the unconditional one-point compactification of X and Y respectively (that
is, the compact space obtained by adjoining an extra point whether or not the
original space was compact). Let f ∈ C0(X). We define a map as follows:

T̃ : C(X̃) → C(Ỹ ), f + α1X̃ 7→ T (f) + α1Ỹ .

Now, let g ∈ C0(X) and (fi)i ⊂ C0(X) be a bounded net. Then (ST̃ (fi, g))i =

(ST (fi, g))i has a weakly convergent subnet. By symmetry it follows that T̃ is

a semi-wcf-homomorphism. Hence, by assumption, T̃ is multiplicative. Now let
f, g ∈ C0(X) and α, β ∈ C. We have

ST̃ ((f + α1X̃), (g + β1X̃)) = T̃ ((f + α1X̃)(g + β1X̃))− T̃ (f + α1X)T̃ (g + β1Y )

= T̃ (fg + βf + αg + αβ1X)−
T̃ (f)T̃ (g)− T̃ (αg)− T̃ (βf)− αβ1X

= T̃ (fg)− T̃ (f)T̃ (g)

= ST (f, g) = 0,
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and so T is multiplicative.
Henceforth we assume that X and Y are compact. Let T : C0(X) → C0(Y ) be

a bijective bounded semi-wcf-homomorphism. We show that T (1) = 1. Assume
otherwise; then

ST (1, ·) = T (1)T (·)− T (·) = (T (1)− 1)T (·) 6= 0.

Since T is a bounded linear bijection, it follows that multiplication by T (1) − 1
is weakly compact. Assume, towards contradiction, that (T (1) − 1)(y) is not
uniformly zero. Since Y is perfect there is an infinite, compact K ⊂ Y and
ε > 0 such that |(T (1)− 1)(y)| > ε for all y ∈ K. We take (yk)k∈N ⊂ K to be
a sequence of distinct points converging to a limit y0. By the Tietze Extension
Theorem, we may take a bounded sequence (gn)n∈N ⊂ C(Y ) such that

g(yk)(T (1)(yk)− 1) =

{
1 if k ≤ n,
0 otherwise.

.

Clearly (gn(T (1) − 1))n∈N has no weakly convergent subnet since the limit, g,
of any such net would have to have g(yk) = 1 for all k and g(y0) = 0. This
contradicts the weak compactness of multiplication by (T (1)−1). Thus T (1) = 1.

We now assume, towards a contradiction, that T is not multiplicative. Then
T−1 is also not multiplicative. By Corollary 4.2 it follows that there exists a
non-invertible f ∈ C(X) such that T (f) is invertible. Since the set of invertibles
in C(Y ) is open, and since for any x ∈ X,

{f ∈ C(X) : there is a neighbourhood U of x with f(U) = {0}}

is dense in {f ∈ C(X) : f(x) = 0}, we may assume without loss of generality that
there exists some non-empty, open subset U ⊂ X such that f(U) = {0}. We can
then take (gn) ⊂ C(X) such that, for each n, we have that gn(X \ U) ⊆ {0} and
(gn) has no weakly convergent subsequence. Thus, we have that fgn = 0 and so

ST (f, gn) = T (fgn)− T (f)T (gn) = −T (f)T (gn).

Since T is a Banach space isomorphism and T (f) is invertible, the map g 7→
−T (f)T (g) is a Banach space isomorphism. Thus ST (f, gn) has no weakly con-
vergent subsequence and so ST (f, ·) is not weakly compact, which contradicts our
original assumption that T is a semi-wcf-homomorphism.

It is standard that Banach algebra isomorphisms from C0(X) to C0(Y ) are of
the form f 7→ f ◦ ψ for some homeomorphism ψ : Y → X. �

For locally-compact Hausdorff spaces with isolated points the situation is quite
different. Indeed, we have the following.

Corollary 4.5. Let X be an infinite, locally-compact Hausdorff space. Then the
following are equivalent:

(a) every bounded semi-wcf-isomorphism from C0(X) to C0(X) is multiplica-
tive;

(b) every bounded 1df-isomorphism is nowhere-zero preserving;
(c) X is perfect.
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Proof. Clearly (a) implies (b) and it follows from Theorem 4.4 that (c) implies (a).
It remains to show that (b) implies (c). Assume that X is not perfect, let x0 ∈ X
be an isolated point and x1 ∈ X \ {x0}. Define ex0 ∈ C0(X) by ex0(x0) = 1
and ex0 (X \ {x0}) = {0}. Then we can define a Banach space isomorphism
T : C0(X) → C0(X) by

T (f)(x) =

{
f(x0)− f(x1) if x = x0,
f(x) otherwise.

.

Now ST (A × A) ∈ ex0C, and so T is a 1df-isomorphism. However, if f ∈ C0(X)
is nowhere zero, then g := f + (f(x1) − f(x0))ex0 ∈ A is also nowhere zero but
has T (g)(x0) = 0. The result follows. �

5. [W]cf-splitting of Banach extensions and compactness of
Kamowitz cocycles

These notions of compact failure of multiplicativity fit together nicely with
theory of Banach extensions and Kamowitz’s cohomology theory for Banach al-
gebras (see [13] and [1]). For definitions of terms from this theory and for the
notation we shall use, as well as for background, we point the reader towards [5,
Section 2.8]. Let A be a Banach algebra and Σ a Banach extension of A. We
denote the equivalence class, with respect to equivalence, of Σ by [Σ] and with
respect to strong equivalence by [Σ]s. The following is a slightly rewritten version
of [5, 2.8.12].

Proposition 5.1. Let A be a Banach algebra, E a Banach A-bimodule, and
T, T ′ ∈ Z2(A,E). Then:

(a) if T − T ′ ∈ Ñ2(A,E), ΣT is equivalent to ΣT ′. Moreover,

T + Ñ2(A,E) 7→ [ΣT ]

is a bijection from H̃2(A,E) to the family of equivalence classes, with
respect to equivalence, of singular, admissible Banach extensions of A by
E;

(b) if T − T ′ ∈ N 2(A,E), ΣT is strongly equivalent to ΣT ′. Moreover,

T +N 2(A,E) 7→ [ΣT ]s

is a bijection from H2(A,E) to the family of equivalence classes, with
respect to strong equivalence, of singular, admissible Banach extensions of
A by E.

Definition 5.2. We define the following vector spaces as analogues of the groups
appearing in the Kamowitz cohomology theory:

Zn
K(A,E) := Zn(A,E) ∩ Kn(A,E);

Nn
K(A,E) := N n(A,E) ∩ Kn(A,E)(= N n(A,E) ∩ Zn

K(A,E));

Ñn
K(A,E) := Nn(A,E) ∩ Kn(A,E)(= Nn(A,E) ∩ Zn

K(A,E));

Hn
K(A,E) := Zn

K(A,E)/Nn
K(A,E);

H̃n
K(A,E) := Zn

K(A,E)/Ñn
K(A,E).
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Similarly, we define the following weakly compact versions:

Zn
w(A,E) := Zn(A,E) ∩ wKn(A,E);

etcetera.

Note that H1
K(A,E) = H̃1

K(A,E), and is zero if and only if all compact deriva-
tions from A to E are inner. If A is a commutative Banach algebra and E is
a symmetric Banach A-bimodule, this is equivalent to there being no non-zero,

compact derivations from A to E. Similarly, H1
w(A,E) = H̃1

w(A,E) is zero if
and only if all weakly compact derivations from A to E are inner and, if A is
a commutative Banach algebra and E a symmetric Banach A-bimodule, this is
equivalent there being no non-zero weakly compact derivations from A to E.

As an example showing that these groups may be different to the usually contin-
uous cohomology groups, we note that, in [6, Theorem 5.7.3], the present author
showed that if we let A be the convolution algebra `1(Z+), then H1

K(A,A∗) is
isometrically isomorphic (via D 7→ (D(tk)(1))k∈N) to c0, while it is known that
H1(A,A∗) is isometrically isomorphic to `∞ via the same map. Related to this
is [4], in which Choi and the current author calculated the image of the weakly
compact derivations under this same map.

Definition 5.3. We say that a Banach extension

Σ : 0 → I
ι→ A

q→ A→ 0

cf-splits if there is a cf-homomorphism Q such that q ◦ Q = idA. We call Q :
A → A a splitting cf-homomorphism. We say Σ wcf-splits if there is a wcf-
homomorphism Q : A → A such that q ◦ Q = idA. In this case we call Q a
splitting wcf-homomorphism. If the extension Σ cf-splits [respectively wcf-splits]
with a bounded splitting cf-homomorphism [respectively wcf-homomorphism], we
say that Σ cf-splits strongly [respectively wcf-splits strongly ].

Note that “(w)cf-splitting strongly” can be thought of as “splitting in the cate-
gory of Banach algebras and bounded (w)cf-homomorphisms”. The statements in
the following lemma that refer to splitting and splitting strongly are well known
but do not seem to be explicitly stated in the standard textbooks. The statements
relating to (w)cf-splitting are new. The proofs are trivial and are omitted.

Lemma 5.4. Let A be an algebra and let Σ(A; I) and Σ(B; I) be equivalent
extensions of A. If Σ(A; I) splits, then Σ(B; I) splits.

Let A be a Banach algebra and let Σ(A; I) and Σ(B; I) be strongly equivalent
Banach extensions of A. Then the following hold:

• if Σ(A; I) splits strongly, then Σ(B; I) splits strongly;
• if Σ(A; I) cf-splits [respectively cf-splits strongly], then Σ(B; I) cf-splits

[respectively cf-splits strongly];
• if Σ(A; I) wcf-splits [respectively wcf-splits strongly], then Σ(B; I) wcf-

splits [respectively wcf-splits strongly].

For the remainder of this section we will refer only to the norm-topology case.
In all cases the weak-topology version of any result holds and the proof is basically
identical.
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The following is an analogue of 5.1 in this new setting.

Theorem 5.5. Let A be a Banach algebra, E a Banach A-bimodule, and T, T ′ ∈
Z2

K(A,E). Then:

(a) ΣT cf-splits strongly.

(b) if T − T ′ ∈ Ñ2
K(A,E), ΣT is equivalent to ΣT ′. Moreover,

T + Ñ2
K(A,E) 7→ [ΣT ]

is a bijection from H̃2
K(A,E) to the family of equivalence classes C, with

respect to equivalence, of singular, admissible Banach extensions of A by
E such that C contains an extension that cf-splits (or equivalently contains
an extension that cf-splits strongly);

(c) if T − T ′ ∈ N2
K(A,E), ΣT is strongly equivalent to ΣT ′. Moreover,

T +N2
K(A,E) 7→ [ΣT ]s

is a bijection from H2
K(A,E) to the family of equivalence classes, with

respect to strong equivalence, of singular, admissible Banach extensions of
A by E that cf-split strongly.

Proof. First, we prove part (a). Let T ∈ Z2
K(A,E) be arbitrary and define a

bounded linear map Q : A→ AT by Q(a) = (a, 0), (a ∈ A). Then, for a, b ∈ A,

SQ(a, b) : = Q(a)Q(b)−Q(ab) = (a, 0)(b, 0)− (ab, 0)

= (ab, T (a, b))− (ab, 0) = (0, T (a, b)),

and so SQ is compact. Clearly, q ◦Q = idA so ΣT cf-splits strongly with bounded
splitting cf-homomorphism Q and so part (a) holds.

Now we prove parts (b) and (c). Let T, T ′ ∈ Z2
K(A,E). Suppose that T −T ′ ∈

Ñ2
K(A,E). Then T − T ′ ∈ Ñ2(A,E), and so ΣT is equivalent to ΣT ′ by part (a)

of Proposition 5.1.
Suppose further that T −T ′ ∈ N2

K(A,E). Then T −T ′ ∈ N 2(A,E), and so ΣT

is strongly equivalent to ΣT ′ by part (a) of Proposition 5.1.

Now suppose instead that [ΣT ] = [ΣT ′ ]. Then T −T ′ ∈ Ñ2(A,E) by part (a) of

Proposition 5.1. Also, T − T ′ ∈ Z2
K(A,E) by assumption so T − T ′ ∈ Ñ2

K(A,E)

and T + Ñ2
K(A,E) 7→ [ΣT ] is injective.

Suppose further that [ΣT ]s = [ΣT ′ ]s. Then T − T ′ ∈ N 2(A,E) by part (a) of
Proposition 5.1. Also, T − T ′ ∈ Z2

K(A,E) by assumption so T − T ′ ∈ N2
K(A,E)

and T +N2
K(A,E) 7→ [ΣT ]s is injective.

That the two maps are into the collection of equivalence classes (with respect
to the relevant relation) of extensions that cf-split follows from part (a), proven
above.

It only remains to show that the maps are surjective, i.e. that, for each singular
Banach extension Σ of A by E that cf-splits, there exists T ∈ Z2

K(A,E) with ΣT

equivalent to Σ and that if Σ cf-splits strongly we may take ΣT to be strongly
equivalent to Σ. Let

Σ = Σ(A;E) : 0 → E
ι→ A

q→ A→ 0
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be a singular Banach extension of A by E with splitting cf-homomorphism Q. By
the definition of a cf-homomorphism, we have that SQ ∈ K2(A,A). Now, since q
is a homomorphism,

q ◦ SQ(a, b) = q(Q(a)Q(b)−Q(ab))

= q ◦Q(a)q ◦Q(b)− q ◦Q(ab)

= ab− ab = 0, (a, b ∈ A).

Hence, SQ(A(2)) ⊆ ker(q) = E and so we can define T ∈ K2(A,E) by T (a, b) =
SQ(a, b), (a, b ∈ A). Furthermore, a direct calculation yields,

δ2(T )(a, b, c) = 0

Hence, T ∈ Z2
K(A,E). We claim that the Banach extension ΣT is equivalent to

Σ. For a ∈ A, a−Q(q(a)) ∈ E so we may define a map

ψ : A → AT , a 7→ (q(a), a−Q(q(a))).

It is clear that ψ is linear. Furthermore, if Q is bounded (which we may assume if
Σ cf-splits strongly) then ψ is also bounded. Also, if we define a map φ : AT → A
by φ((b, e)) = Q(b) + e it is easily checked that φ and ψ are mutually inverse.
Further, qT ◦ ψ(a) = q(a), (a ∈ A). It remains only to show that ψ is an algebra
homomorphism. Let a, b ∈ A; then a direct calculation yields

ψ(a)ψ(b) =
(
q(ab), ab−Q(q(ab)) + (a−Q(q(a)))(b−Q(q(b)))

)
,

but a−Q(q(a)), b−Q(q(b)) ∈ E so (a−Q(q(a)))(b−Q(q(b))) = 0 and so

ψ(a)ψ(b) = (q(ab), ab−Q(q(ab))) = ψ(ab).

Thus the result holds. �

Note that part (b) of the above theorem implies that, if a singular, admissible
Banach extension of A by E cf-splits, then it is equivalent to a singular, admissible
Banach extension of A by E that cf-splits strongly.

This gives us the following corollaries.

Corollary 5.6. Let A be a Banach algebra, and let E be a Banach A-bimodule.

(1) The following are equivalent:

(a) H̃2
K(A,E) = {0};

(b) each singular Banach extension of A by E, which cf-splits, does split.
(2) The following are equivalent:

(a) H2
K(A,E) = {0};

(b) each singular Banach extension of A by E, which cf-splits strongly,
does split strongly.

Proof. (1) To show that (a) implies (b), let H̃2
K(A,E) = {0} and let

Σ : 0 → I
ι→ A

q→ A→ 0

be a Banach extension of A by E which cf-splits. By Theorem 5.5, Σ is
equivalent to the Banach extension Σ0 (that is the Banach extension ΣT

where T is the zero map):

Σ0 : 0 → I
ι0→ A

q0→ A→ 0
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where, for x ∈ E and a ∈ A, ι0(x) = (0, x) and q0((a, x)) = a. The
extension Σ0 splits strongly with the continuous splitting homomorphism
θ : A→ A0, θ(a) = (a, 0), (a ∈ A). By Lemma 5.4, Σ splits.

To show that (b) implies (a), we assume that each singular Banach
extension of A by E, which cf-splits, splits and let T ∈ Z2

K(A,E). Then,
by Theorem 5.5, ΣT splits; let θ be a splitting homomorphism for ΣT .
Since, qT ◦ θ = idA it follows that there exists a linear map S : A → E
with θ(a) = (a, S(a)) (a ∈ A). Hence,

(ab, S(ab)) = θ(ab) = θ(a)θ(b)

= (a, S(a))(b, S(b)) = (ab, a · S(b) + S(a) · b+ T (a, b)),

so

S(ab) = a · S(b) + S(a) · b+ T (a, b),

and

T (a, b) = a · (−S(b)) + (−S(a)) · b− (−S(ab)) = δ1(−S)(a, b).

Thus T = δ1(−S) ∈ N2(A,E) and so H̃2
K(A,E) = {0}.

(2) To show (a) implies (b) let H2
K(A,E) = {0} and Σ be a singular Banach

extension of A by E, which cf-splits strongly. By Theorem 5.5, Σ is
strongly equivalent to Σ0 and so, by Lemma 5.4, Σ splits strongly.

To show that (b) implies (a), assume that each singular Banach ex-
tension of A by E, which cf-splits strongly, splits strongly and let T ∈
Z2

K(A,E). Then ΣT splits strongly; let θ be a continuous splitting ho-
momorphism for ΣT . Since, qT ◦ θ = idA it follows that there exists
S ∈ B(A,E) with θ(a) = (a, S(a)) (a ∈ A). As in the proof of the first part
of this result, T = δ1(−S) and so T ∈ N 2(A,E). Hence H2

K(A,E) = {0}.
�

The following result gives us a new way of showing that bounded cf-homomorph-
isms need not be homomorphisms or compact linear maps (which we showed
directly in Example 3.5).

Corollary 5.7. Let A be an infinite-dimensional Banach algebra and E a Banach
A-bimodule such that H2

K(A,E) 6= {0}. Then there exists a Banach algebra A with
underlying Banach space isomorphic to A⊕1 E and a bounded cf-homomorphism
Q : A→ A which is neither a homomorphism nor a compact linear map.

Proof. By Corollary 5.6 there exists a Banach extension,

Σ : 0 → E
ι→ A

q→ A→ 0,

of A by E which does not split strongly but such that there is a bounded cf-
homomorphism, Q : A→ A with q ◦Q = idA. Since Σ does not split strongly, Q
is not a homomorphism, and since q◦Q = idA is not a compact linear map, neither
is Q. By Theorem 5.5, Σ is strongly equivalent to ΣT for some T ∈ N2

K(A,E)
and so AT is isomorphic as a Banach space to A⊕1 E. �
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Below is an example of a choice of A and E(= A∗) satisfying the hypotheses of
Corollary 5.7. The author would like to thank Yemon Choi for sending him some
notes, which helped with the construction.

Example 5.8. Let A be `2 equipped with the pointwise product. A direct cal-
culation gives that the map γ1 : B(A,A∗) → B2(A,A∗) is injective. For N ∈ N
we set GN : A→ A∗ to be the bounded linear map given by

GN(ek)(ej) = gN,j,k =

{
1

3
√

2N+1
if |j| , |k| ≤ N

0 otherwise

and set FN := γ1(GN). We have that FN is finite rank and bounded (and thus
compact).

A direct calculation gives that, for each N ∈ N, ‖FN‖ ≤ 1 and ‖GN‖ → ∞
as N → ∞. It follows from an application of the Banach isomorphism theorem
that N2

K(A;A∗) cannot be complete. In particular N2
K(A;A∗) 6= Z2

K(A;A∗) i.e.
H2

K(A,A∗) 6= 0.

6. Open questions

We finish by listing some questions relating to the material in this paper.

Question 6.1. For well known examples of Banach algebras, A, what are the
automorphisms of A in the category of Banach algebras with cf-homomorphisms;
what are the automorphisms of A in the category of Banach algebras with wcf-
homomorphisms?

Question 6.2. Does there exist a wcf-homomorphism which is neither a weakly
compact linear map nor a cf-homomorphism?

Question 6.3. What can we say about (weakly) compact failure of other algebraic
identities: for example, commutativity?

Question 6.4. What do the groups Hn
K(A,E) (and the others introduced in Def-

inition 5.2) tell us about A and E when n > 2?
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