LINEAR ISOMETRIES OF FINITE CODIMENSIONS ON BANACH ALGEBRAS OF HOLOMORPHIC FUNCTIONS

OSAMU HATORI ${ }^{1 *}$ AND KAZUHIRO KASUGA ${ }^{2}$
Communicated by J. M. Isidro

Abstract

Let K be a compact subset of the complex n-space and $A(K)$ the algebra of all continuous functions on K which are holomorphic on the interior of K. In this paper we show that under some hypotheses on K, there exists no linear isometry of finite codimension on $A(K)$. Several compact subsets including the closure of strictly pseudoconvex domain and the product of the closure of plane domains which are bounded by a finite number of disjoint smooth curves satisfy the hypotheses.

1. Introduction and preliminaries

In this paper we study non-existence theorems for finite codimension linear isometries on certain algebras of holomorphic functions of several complex variables, especially on the ball algebras and the polydisk algebras.
1.1. Linear isometries of finite codimensions on function algebras. A linear operator T on a Banach space B is said to be a shift operator (cf. [2]) if (1) T is an isometry; (2) the codimension of $T(B)$ in B is 1 ; (3) $\cap_{n=1}^{\infty} T^{n}(B)=$ $\{0\}$. A unilateral shift operator on a Hilbert space is a shift operator in the sense of Crownover [2]. On the other hand there is a Banach space on which no shift operators are admitted. A linear operator which satisfies the above conditions (1) and (2) is called a codimension 1 linear isometry. If T is an linear isometry on a Banach space B and the codimension of $T(B)$ in B is a positive integer l for an linear isometry T on a Banach space B, then T is said to be

[^0]a codimension l linear isometry, or simply a finite codimension linear isometry. Araujo and Font [1] studied and gave a structure theorem for codimension 1 linear isometries on function algebras. Here a function algebra on a compact Hausdorff space X is a uniformly closed subalgebra of the algebra $C(X)$ of all complex valued continuous functions on X which separates the points of X and contains constant functions. Izuchi [5] gave a condition for Douglas algebras which admit codimension 1 linear isometries. Takayama and Wada [11] characterized codimension 1 linear isometries on the disk algebra. They gave a sufficient and necessary condition for a codimension 1 linear isometry to be a shift operator. For the case of algebras of holomorphic functions of several complex variables, one of the authors showed that there is no codimension 1 linear isometry on the ball algebra and the polydisk algebra [6].

Font [3] studied finite codimension linear isometries on function algebras. For every positive integer l, there exists a function algebra on which codimension k linear isometries are admitted for every $k \geq l+1$, but are not admitted for every $1 \leq k \leq l$. We will give such an example in section 2 . Thus it is interesting to study linear isometries on function algebras not only in the case of codimension 1 but also in the case of a finite codimension.

2. Propositions

In this section we give notations, definitions and some propositions.
Let S be a subset of \mathbb{C}^{n}, \bar{S} the closure, ∂S the topological boundary and int S the interior. Let $B(p, \varepsilon)=\left\{z \in \mathbb{C}^{n}:|z-p|<\varepsilon\right\}$, where $p \in \mathbb{C}^{n}$ and $\varepsilon>0$. The space of all holomorphic functions on an open subset D of \mathbb{C}^{n} is denoted by $\mathcal{O}(D)$. Let K be a compact subset of \mathbb{C}^{n}. Let $A(K)=C(K) \cap \mathcal{O}(\operatorname{int} K)$. Let $H(K)$ be the closure in $C(K)$ of the functions that are holomorphic in a neighborhood of K. Let Δ be the open unit disc in the complex plane. Then $A(\bar{\Delta})$ is called the disk algebra on the disk. Note that $A(\bar{\Delta})=H(\bar{\Delta})$.

Let X be a compact Hausdorff space. Let E be a linear subspace of $C(X)$. A subset Y of X is called a boundary for E if the absolute value of each function in E assumes its maximum on Y. If there exists a unique minimal closed boundary for E, it is called the Shilov boundary for E and it is denoted by ∂E. Note that function algebras admit the Shilov boundaries.

Let A be a function algebra on X and K a non-empty closed subset of X. We say that K is a peak set if there is a function $f \in A$ such that $f(x)=1$ for $x \in K$ and $|f(y)|<1$ for $y \in X \backslash K$. We also say that K is a p-set if it is the intersection of peak sets. A point $x \in X$ is a p-point if the singleton $\{x\}$ is a p-set.

For a positive integer l, put

$$
A_{l}=\left\{f \in A(\bar{\Delta}): f^{(k)}(0)=0 \text { for every } 1 \leq k \leq l\right\}
$$

where $f^{(k)}(0)$ is the k-th derivative of f at the origin 0 .
Then A_{l} is a function algebra on $\bar{\Delta}$ such that the unit circle $\Gamma=\{z \in \mathbb{C}:|z|=$ $1\}$ is the Choquet boundary. In fact, for $w \in \Gamma$, put $f(z)=\frac{1+\bar{w}^{l+1} z^{l+1}}{2}$. Then $f \in A_{l}$. Since $f(w)=1$ and $|f(z)|<1$ for $z \in \bar{\Delta}$ with $z \neq w$, a representing measure on A_{l} is only the Dirac measure δ_{w}. Then $\Gamma \subset C h\left(A_{l}\right)$, where $\operatorname{Ch}\left(A_{l}\right)$
is the Choquet boundary for A_{l}. On the other hand $C h\left(A_{l}\right) \subset C h(A(\bar{\Delta}))=\Gamma$. Hence $C h\left(A_{l}\right)=\Gamma$. In general for a function algebra A on X the set which consists of all the p-points coincides with the Choquet boundary for A. Note that the closure of the Choquet boundary is the Shilov boundary.
Proposition 2.1. Let l be a positive integer. Then for every integer m with $m \geq l+1$ there exists a codimension m linear isometry on A_{l}. On the other hand, for every integer k with $1 \leq k \leq l$, there is no codimension k linear isometry on A_{l}.
Proof. Let $m \geq l+1$. Then the operator T defined by $T(f)=z^{m} f$ for $f \in A_{l}$ is obviously a codimension m linear isometry on A_{l}.

On the other hand, suppose that T is a codimension k linear isometry on A_{l} for some positive integer k. We will show that $k \geq l+1$. Since the Choquet boundary for A_{l} is the unit circle Γ and Γ has no isolated point, we see by the similar way to the used one in the proof of Theorem 1.1 in [11] that there exist a continuous map τ from Γ onto itself and a function $u \in A(\bar{\Delta})$ with $|u|=1$ on Γ such that

$$
T f=u(f \circ \tau)
$$

on Γ for every $f \in A_{l}$. Since $u=T 1 \mid \Gamma$ is unimodular on Γ and $u \in A_{l}$, we see that u is a constant of absolute value 1 or $u=z^{l+1} g$, where g is a finite-Blaschke product or a constant of absolute value 1 . We will show that τ is a Möbius transformation. For a function $v \in A(\bar{\Delta}) \mid \Gamma$, we denote by \tilde{v} the function in $A(\bar{\Delta})$ with $\tilde{v} \mid \Gamma=v$.

First we consider the case where u is a constant and will show that the case does not occur. For each positive integer $j, \tau^{l+j} \in A_{l} \mid \Gamma$ since $T z^{l+j}=u \tau^{l+j}$ and u is a constant. Then we see that

$$
\left(\widetilde{\tau^{l+1}}\right)^{k-1} \widetilde{\tau^{l+k+1}}=\left(\widetilde{\tau^{l+2}}\right)^{k}
$$

holds for every positive integer k since $\left(\tau^{l+1}\right)^{k-1} \tau^{l+k+1}=\left(\tau^{l+2}\right)^{k}$ on Γ. Thus zeros of $\widetilde{\tau^{l+1}}$ are zeros of $\widetilde{\tau^{l+2}}$. Let a be a zero of $\widetilde{\tau^{l+1}}$ with the order n_{1} and n_{2} the order of a as a zero of $\widetilde{\tau^{l+2}}$. Then by the above equation we have that $(k-1) n_{1} \leq k n_{2}$ holds for every k, so we see that $n_{1} \leq n_{2}$. It follows that $\widetilde{\tau^{l+2}} / \widetilde{\tau^{l+1}} \in A(\bar{\Delta})$. Hence $\tau \in A(\bar{\Delta}) \mid \Gamma$ since $\tau=\widetilde{\tau^{l+2}} / \widetilde{\tau^{l+1}}$ on Γ. Clearly $|\tau|=1$ on Γ and $\tau(\Gamma)=\Gamma$, τ is a finite-Blaschke product. If the number of the factor of τ is greater than 1 , say m_{1}, then $\tau^{-1}\left(z_{0}\right)$ consists of m_{1} points for every $z_{0} \in \Gamma$. It follows that the codimension of $\left\{u(f \circ \tau): f \in A_{l} \mid \Gamma\right\}$ in $A_{l} \mid \Gamma$ is infinite, which is a contradiction. Hence we see that τ is a Möbius transformation. Since $\tilde{\tau}^{l+1}=\widetilde{\tau^{l+1}} \in A_{l}$, we have

$$
0=\left(\tilde{\tau}^{l+1}\right)^{(1)}(0)=(l+1) \tilde{\tau}^{l}(0) \tilde{\tau}^{(1)}(0)
$$

so $\tilde{\tau}(0)=0$, that is, $\tau(z)=c z$ with a unimodular constant c. Thus we have that T is invertible, which is a contradiction since T is of finite codimension.

Next we consider the case where $u=z^{l+1} g, g$ is a finite-Blaschke product or a constant. Since $\tilde{u}^{k-1} \widetilde{u \tau^{k l+k}}=\left(\widetilde{u \tau^{l+1}}\right)^{k}$ holds for every positive integer k, we see that $\widetilde{u \tau^{l+1}} / \tilde{u} \in A(\bar{\Delta})$ in the similar way to the above. Thus we see that $\tau^{l+1} \in A(\bar{\Delta}) \mid \Gamma$ and in the same way we see that $\tau^{l+j} \in A(\bar{\Delta}) \mid \Gamma$ for every positive
integer j. So we see that τ is a Möbius tansformation as in the same way as before. Then we have that

$$
u\left(A_{l} \mid \Gamma\right) \circ \tau \subset u(A(\bar{\Delta}) \mid \Gamma) \circ \tau=u A(\bar{\Delta})\left|\Gamma \subset z^{l+1} A(\bar{\Delta})\right| \Gamma \subset A_{l} \mid \Gamma
$$

Since $\operatorname{dim} A_{l}\left|\Gamma / z^{l+1} A(\bar{\Delta})\right| \Gamma=1$ and $\operatorname{dim} u(A(\bar{\Delta}) \mid \Gamma) \circ \tau / u\left(A_{l} \mid \Gamma\right) \circ \tau=l$, we see that $\operatorname{dim} A_{l} \mid \Gamma / u\left(A_{l} \mid \Gamma\right) \circ \tau \geq l+1$. We conclude that $\operatorname{dim} A_{l} / T\left(A_{l}\right) \geq l+1$ since A_{l} is isometrically isomorphic to $A_{l} \mid \Gamma$ and $\left(T\left(A_{l}\right)\right) \mid \Gamma=u\left(A_{l} \mid \Gamma\right) \circ \tau$.
Proposition 2.2. Let D be a bounded domain in \mathbb{C}^{n}. Let $A=A(\bar{D})$. Let $T: A \rightarrow A$ be a codimension l linear isometry for a positive integer l. Then $(\partial A)_{0}=\partial A$, where $(\partial A)_{0}$ is the closed boundary for $T(A)$ described in Theorem 1 in [3].
Proof. Suppose that $(\partial A)_{0} \neq \partial A$. By Proposition 1 in [3], $\partial A \backslash(\partial A)_{0}$ has at most l points. Clearly $(\partial A)_{0}$ is closed and $\partial A \backslash(\partial A)_{0}$ is open, each point of $\partial A \backslash(\partial A)_{0}$ is an isolated point of ∂A. Since the set of p-points is dense in ∂A, each point x of $\partial A \backslash(\partial A)_{0}$ is a p-point. Since \bar{D} is metrizable, the singleton $\{x\}$ is a peak set, that is, there is a function $f \in A$ such that $f(x)=1$, and $|f(y)|<1$ for $y \in \partial A \backslash\{x\}$. Therefore $f^{j} \rightarrow \chi_{\{x\}}$ uniformly on ∂A as $j \rightarrow \infty$, where $\chi_{\{x\}}$ denotes the characteristic function of $\{x\}$. Now $\chi_{\{x\}} \in A$ and $\chi_{\{x\}}^{2}=\chi_{\{x\}}$. Therefore the Gelfand transform $\widehat{\chi}_{\{x\}}$ attains 1 or 0 on the maximal ideal space M_{A}. Since $D \subset M_{A}$ and D is connected, $\widehat{\chi}_{\{x\}}=1$ on D or $\widehat{\chi}_{\{x\}}=0$ on D. In either case we arrive at a contradiction.
Proposition 2.3. Let K be a nonempty compact subset of \mathbb{C}^{n} which satisfies $K=\cap_{j=1}^{\infty} D_{j}$ where D_{j} is a bounded and holomorphically convex open subset of \mathbb{C}^{n} and $D_{j} \supset \overline{D_{j+1}}$. Then, for any $z_{0} \in \partial K$, any $\epsilon>0$, there exists an integer j_{ϵ} such that $S_{j} \backslash K_{j} \neq \emptyset$ for any $j>j_{\epsilon}$, where S_{j} is a connected component of $B\left(z_{0}, \epsilon\right) \cap D_{j}$ which contains z_{0} and $K_{j}=\left\{z \in D_{j}:|f(z)| \leq\|f\|_{\infty(K)}\right.$ for any $\left.f \in \mathcal{O}\left(D_{j}\right)\right\}$.
Proof. Let $d_{j}=d\left(z_{0}, D_{j}^{c}\right)$, where $d\left(z_{0}, D_{j}^{c}\right)=\inf \left\{\left|z_{0}-w\right|: w \in D_{j}^{c}\right\}$. Then there exists a point $w_{j} \in \partial D_{j}$ such that $\left|z_{0}-w_{j}\right|=d_{j}$. In fact, there exists a sequence $\left\{a_{k}\right\} \subset D_{j}^{c}$ such that $\lim _{k \rightarrow \infty}\left|z_{0}-a_{k}\right|=d_{j}$. Since $\left\{a_{k}\right\}$ is a bounded set, there exists a subsequence $\left\{a_{k_{j}}\right\} \subset\left\{a_{k}\right\}$ and a point a_{0} such that $\lim _{j \rightarrow \infty} a_{k_{j}}=a_{0}$. Then $\left|z_{0}-a_{0}\right|=d_{j}$. Since D_{j}^{c} is closed, $a_{0} \in D_{j}^{c}$. Therefore $a_{0} \in \partial D_{j}$. In fact, if $a_{0} \notin \partial D_{j}$, then $a_{0} \in \operatorname{int}\left(D_{j}^{c}\right)$. Then there exists an $\epsilon_{0}>0$ such that $B\left(a_{0}, \epsilon_{0}\right) \subset D_{j}^{c}$. On the other hand $\left|a_{0}-z_{0}\right| \frac{\epsilon_{0}}{2 d_{j}}=\frac{\epsilon_{0}}{2}<\epsilon_{0}$. Then $\left|a_{0}-\left(a_{0}-\left(a_{0}-z_{0}\right) \frac{\epsilon_{0}}{2 d_{j}}\right)\right|<\epsilon_{0}$. Hence $a_{0}-\left(a_{0}-z_{0}\right) \frac{\epsilon_{0}}{2 d_{j}} \in B\left(a_{0}, \epsilon_{0}\right) \subset D_{j}^{c}$. Then $\left|z_{0}-\left(a_{0}-\left(a_{0}-z_{0}\right) \frac{\epsilon_{0}}{2 d_{j}}\right)\right|=$ $\left|z_{0}-a_{0}\right|\left|1-\frac{\epsilon_{0}}{2 d_{j}}\right|=d_{j}-\frac{\epsilon_{0}}{2}$. This is a contradiction.

Clearly $D_{j} \supset D_{j+1}, D_{j}^{c} \subset D_{j+1}^{c}$. Then $d_{j} \geq d_{j+1}$. Therefore $\lim _{j \rightarrow \infty} d_{j}=0$. In fact, since the sequence $\left\{d_{j}\right\}$ is positive and monotone decreasing, there exists a $d \geq 0, \lim _{j \rightarrow \infty} d_{j}=d$. Suppose $d>0$. Then $B\left(z_{0}, \frac{d}{2}\right) \subset D_{j}$ for any j. Therefore $B\left(z_{0}, \frac{d}{2}\right) \subset \cap_{j=1}^{\infty} D_{j}=K$. Since $z_{0} \in \partial K$, this is a contradiction. Hence $\lim _{j \rightarrow \infty} d_{j}=0$

There exists an integer $j_{\epsilon}>0$ such that $d_{j}<\epsilon$ for any $j>j_{\epsilon}$. Fix $j>j_{\epsilon}$. Put $\inf \left\{t>0: z_{0}+t\left(w_{j}-z_{0}\right) \notin S_{j}\right\}=t_{0}$. Now $w_{j} \in \partial D_{j}$ and D_{j} is open. Therefore
$w_{j} \notin S_{j}$. Hence $t_{0} \leq 1$. Since $B\left(z_{0}, \epsilon\right) \cap D_{j}$ is open, S_{j} is open. Hence $t_{0}>0$. Put $a_{0}=z_{0}+t_{0}\left(w_{j}-z_{0}\right)$. Suppose $a_{0} \in S_{j}$. Since S_{j} is open, there exists $\delta>0$ such that $z_{0}+t\left(w_{j}-z_{0}\right) \in S_{j}$ for any t with $t_{0}<t<t_{0}+\delta$. This is a contradiction. Hence $a_{0} \notin S_{j}$.

Suppose $a_{0} \in \operatorname{int}\left(S_{j}^{c}\right)$. Then there exists a $\delta>0$ such that $z_{0}+t\left(w_{j}-\right.$ $\left.z_{0}\right) \in \operatorname{int}\left(S_{j}^{c}\right) \subset S_{j}^{c}$ for any t with $t_{0}-\delta<t<t_{0}$. Therefore $z_{0}+t\left(w_{j}-z_{0}\right) \notin S_{j}$. This is a contradiction. Hence $a_{0} \notin \operatorname{int}\left(S_{j}^{c}\right)$.

Then $a_{0} \in \partial S_{j}$. Now $\left|a_{0}-z_{0}\right|=\left|t_{0}\left(w_{j}-z_{0}\right)\right| \leq\left|w_{j}-z_{0}\right|=d_{j}<\epsilon$. Therefore $a_{0} \in B\left(z_{0}, \epsilon\right)$. Hence $a_{0} \in\left(\partial S_{j}\right) \cap B\left(z_{0}, \epsilon\right)$. Note that $a_{0} \notin K_{j}$. In fact, if $a_{0} \in K_{j}, a_{0} \in D_{j}$. Then $a_{0} \in B\left(z_{0}, \epsilon\right) \cap D_{j}$. Therefore there exists a $\delta>0$ such that $B\left(a_{0}, \delta\right) \subset B\left(z_{0}, \epsilon\right) \cap D_{j}$. On the other hand, for any t with $0<t<t_{0}$, $z_{0}+t\left(w_{j}-z_{0}\right) \in S_{j}$. Then $B\left(a_{0}, \delta\right) \cup S_{j}$ is connected and open. And $B\left(a_{0}, \delta\right) \cup S_{j} \subset$ $B\left(z_{0}, \epsilon\right) \cap D_{j}$. Since S_{j} is a connected component, $B\left(a_{0}, \delta\right) \subset S_{j}$. Since $a_{0} \in \partial S_{j}$, this is a contradiction. Hence $a_{0} \notin K_{j}$.

Since K_{j} is compact, there exists $\delta>0$ such that $B\left(a_{0}, \delta\right) \cap K_{j}=\emptyset$. Now $a_{0} \in \partial S_{j}$. Therefore there exists a point $b_{0} \in B\left(a_{0}, \delta\right) \cap S_{j}$. Hence $b_{0} \in S_{j} \backslash K_{j}$.

3. Main Result

In this section we show that there is no linear isometry of finite codimensions on $A(K)$ for certain compact subsets K of \mathbb{C}^{n}, especially in the case where K is a closed ball or a closed polydisk. In particular, we show that for such compact sets K a linear isometry with the codimension at most finite on $A(K)$ is surjective and represented by constant times of the composition operator induced by a holomorphic automorphism of int K.

Theorem 3.1. Let $n>1$ be a positive integer and K a non-empty compact subset of \mathbb{C}^{n} which satisfies the following five conditions.
(i) int K is connected and $\overline{\operatorname{int} K}=K$.
(ii) $K=\cap_{j=1}^{\infty} D_{j}$ where D_{j} is a bounded and holomorphically convex open subset of \mathbb{C}^{n} and $D_{j} \supset \overline{D_{j+1}}$.
(iii) For every point p in K there exists an $\varepsilon_{p}>0$ such that $B(p, \varepsilon) \cap \operatorname{int} K$ is connected for every ε with $0<\varepsilon<\varepsilon_{p}$.
(iv) $A(K)=H(K)$.
(v) If a function u is in $A(K)$ and $|u|=1$ on $\partial A(K)$, then u is constant or u has a zero in int K.
Suppose that T is a linear isometry on $A(K)$ such that the codimension of $T(A(K))$ in $A(K)$ is at most finite. Then T is surjective. In particular, there exist a complex number a of absolute value 1 and a homeomorphism φ of K onto itself which is a biholomorphic map of int K onto itself such that $T f=a(f \circ \varphi)$ for every $f \in A(K)$.

Proof. We will simply write A instead of $A(K)$.
First we consider the case where T is surjective. In this case we see by a theorem of de Leeuw, Rudin and Wermer [7] that T has the form

$$
T f=a T_{1} f
$$

where $a \in A, a^{-1} \in A,|a(z)|=1$ for all $x \in K$, and T_{1} is an automorphism of A. Since $\operatorname{int} K \neq \emptyset, a$ is a constant function. By (ii), (iv) and Theorem 2.12 in [9], the maximal ideal space of A is K. Since T_{1} is an automorphism of A, by a routine argument, there is a homeomorphism φ from K onto itself such that

$$
T_{1} f=f \circ \varphi
$$

holds for every $f \in A$. It follows that φ is a biholomorphic map from $\operatorname{int} K$ onto itself. We see that $T f=a(f \circ \varphi)$ holds for every $f \in A$.

Next we will show that there is no codimension l linear isometry on A for any positive integer l. Suppose that for some positive integer l there exists a codimension l linear isometry, say $T: A \rightarrow A$. We will show a contradiction. By Theorem \mathcal{A} in [1] and Proposition 2.2, there exist a continuous map h from ∂A onto ∂A and a continuous map $a: \partial A \rightarrow \mathbb{C}$, such that $|a(x)|=1$ for all $x \in \partial A$, and

$$
(T f)(x)=a(x) f(h(x))
$$

for all $x \in \partial A$ and all $f \in A$. So by (v), $T 1$ is constant or $T 1$ has a zero in int K. Claim 1. T1 is constant.

To prove this, suppose that $T 1$ has a zero in int K. Let $F=\{x \in \operatorname{intK}$: $(T 1)(x)=0\}$. We show that

$$
\begin{equation*}
T(A) \subset\{f \in A: f=0 \text { on } F\} \tag{3.1}
\end{equation*}
$$

Fix $f \in A$. Set

$$
\tilde{f}=\frac{T f}{T 1} \text { on } \operatorname{int} K \backslash F .
$$

We note that for any $\alpha \in \mathbb{C}$

$$
\begin{equation*}
\widetilde{\alpha f}=\frac{T(\alpha f)}{T 1}=\frac{\alpha T(f)}{T 1}=\alpha \tilde{f} \tag{3.2}
\end{equation*}
$$

Put $\|f\|_{\infty(K)}=\sup _{z \in K}|f(z)|$, the supremum norm of f. Then we see that the inequality $|\tilde{f}(x)| \leq\|f\|_{\infty(K)}$ holds for every $x \in \operatorname{int} K \backslash F$. To prove this, we may asssume that $\|f\|_{\infty(K)}=1$ by (3.2). Suppose that there exists a point x_{0} in $\operatorname{int} K \backslash F$ such that $\left|\tilde{f}\left(x_{0}\right)\right|>1$. Let k be a positive integer. Then $T\left(f^{k}\right)=a f^{k} \circ h$ on ∂A. and $(T f)^{k}=(a f \circ h)^{k}=a^{k}(f \circ h)^{k}=a^{k} f^{k} \circ h$ on ∂A. Therefore $(T f)^{k}=a^{k-1} T\left(f^{k}\right)$ on ∂A. Then $(T f)^{k}=(T 1)^{k-1} T\left(f^{k}\right)$ on ∂A. Hence we have

$$
\frac{(T f)^{k}}{(T 1)^{k}}=\frac{T\left(f^{k}\right)}{T 1}
$$

on $\operatorname{int} K \backslash F$. Therefore $(\tilde{f})^{k}=\widetilde{f^{k}}$ on $\operatorname{int} K \backslash F$, and so we have $T 1(\tilde{f})^{k}=$ $(T 1) \widetilde{f^{k}}=T\left(f^{k}\right)$ on $\operatorname{int} K \backslash F$. Recall that T is a linear isometry. Hence we have $\left\|T\left(f^{k}\right)\right\|_{\infty(K)}=\left\|f^{k}\right\|_{\infty(K)}=\|f\|_{\infty(K)}^{k}=1$. Since $T 1(\tilde{f})^{k}\left(x_{0}\right)=T 1\left(x_{0}\right)(\tilde{f})^{k}\left(x_{0}\right)$, where $T 1\left(x_{0}\right) \neq 0$ and $\left|\tilde{f}\left(x_{0}\right)\right|>1$, we see that

$$
\left|T 1(\tilde{f})^{k}\left(x_{0}\right)\right| \rightarrow \infty
$$

as $k \rightarrow \infty$. Hence $\left|T\left(f^{k}\right)\left(x_{0}\right)\right| \rightarrow \infty$ as $k \rightarrow \infty$. This is a contradiction. It follows that \tilde{f} is bounded and holomorphic on $\operatorname{int} K \backslash F$. There is $g \in \mathcal{O}(\operatorname{int} K)$ such that $g=\tilde{f}$ on $\operatorname{int} K \backslash F$ by Theorem I.3.4 in [8] since F is a thin set. Clearly $T f$ and
$(T 1) g$ are holomorphic on $\operatorname{int} K, T f=(T 1) \tilde{f}=(T 1) g$ on $\operatorname{int} K \backslash F$ and $\operatorname{int} K \backslash F$ is dense in $\operatorname{int} K$, it holds that $T f=(T 1) g$ on int K.

If $x \in F$, then $T f(x)=(T 1)(x) g(x)=0$. Hence (3.1) holds. Since $n>1, F$ is an infinite set. Then $\operatorname{dim} A / T A \geq \operatorname{dim} A /\{f \in A: f=0$ on $F\}=\infty$. This is a contradiction. We conclude that $T 1$ has no zero in int K. Thus, by (v), we see that $T 1$ is constant, that is, a is a constant of absolute value 1 . So we see that Claim 1 holds.

Define the operator $\tilde{T}: A \rightarrow A$ by

$$
\tilde{T} f=\bar{a} T f
$$

for $f \in A$. Then $\tilde{T} f=f \circ h$ on ∂A. By Remark 3.2 in [1], \tilde{T} is a homomorphism. Let π_{j} be the jth coordinate function; $\pi_{j}(z)=z_{j}$, for $z=\left(z_{1}, \ldots, z_{n}\right), 1 \leq j \leq n$. Since K is closed and bounded, $\pi_{j} \in A$. Put $\varphi_{j}=\tilde{T} \pi_{j}, \varphi=\left(\varphi_{1}, \ldots, \varphi_{n}\right)$. Since $\varphi_{j} \in A, \varphi: K \rightarrow \mathbb{C}^{n}$ is continuous on K and holomorphic on int K. We claim that $\varphi(K) \subset K$. To prove this, let $z_{0} \in K$. Define the map $\tilde{T}_{z_{0}}: A \rightarrow \mathbb{C}$ by

$$
\tilde{T}_{z_{0}} f=(\tilde{T} f)\left(z_{0}\right), \quad(f \in A)
$$

Since $\tilde{T} 1=\bar{a} T 1=1, \tilde{T}_{z_{0}}$ is a non-zero complex homomorphism. Since $M_{A}=$ $M_{H(K)}=K$, there is a point $w_{0} \in K$ such that $(\tilde{T} f)\left(z_{0}\right)=\tilde{T}_{z_{0}} f=f\left(w_{0}\right)$ for every $f \in A$. In particular, $\pi_{j}\left(w_{0}\right)=\left(\tilde{T} \pi_{j}\right)\left(z_{0}\right)=\varphi_{j}\left(z_{0}\right)$. Then $\varphi\left(z_{0}\right)=$ $\left(\varphi_{1}\left(z_{0}\right), \ldots, \varphi_{n}\left(z_{0}\right)\right)=\left(\pi_{1}\left(w_{0}\right), \ldots, \pi_{n}\left(w_{0}\right)\right)=w_{0} \in K$. Hence we see that $\varphi(K) \subset K$.
Claim 2. $\tilde{T} f=f \circ \varphi$ on K for every $f \in A$.
To prove this, fix $f \in A$ and $z_{0} \in K$. By (iv), there are a sequence $\left\{\Omega_{m}\right\}$ of neighborhoods of K and a sequence $\left\{f_{m}\right\}$ of functions such that each f_{m} is in $\mathcal{O}\left(\Omega_{m}\right)$ and $\left\{f_{m}\right\}$ converges to f uniformly on K. Then, for each integer m, there is an integer N_{m} such that $\cap_{j=1}^{N_{m}} \bar{D}_{j} \subset \Omega_{m}$ by the condition (ii). Therefore $f_{m} \in \mathcal{O}\left(D_{N_{m}}\right)$. By Theorem VII.4.1 in [8], there are $Q_{1}, \ldots, Q_{n} \in \mathcal{O}\left(D_{N_{m}} \times D_{N_{m}}\right)$ such that

$$
f_{m}(z)-f_{m}(w)=\sum_{j=1}^{n}\left(z_{j}-w_{j}\right) Q_{j}(z, w)
$$

for all $z, w \in D_{N_{m}}$. Then

$$
f_{m}(z)-f_{m}\left(\varphi\left(z_{0}\right)\right)=\sum_{j=1}^{n}\left(\pi_{j}(z)-\varphi_{j}\left(z_{0}\right)\right) Q_{j}\left(z, \varphi\left(z_{0}\right)\right)
$$

holds for all $z \in D_{N_{m}}$. Since \tilde{T} is a homomorphism, we see that

$$
\begin{aligned}
\left(\tilde{T}\left(f_{m}\right)\right)\left(z_{0}\right)-f_{m}\left(\varphi\left(z_{0}\right)\right) & =\sum_{j=1}^{n}\left(\varphi_{j}\left(z_{0}\right)-\varphi_{j}\left(z_{0}\right)\right)\left(\tilde{T}\left(Q_{j}\left(\cdot, \varphi\left(z_{0}\right)\right)\left(z_{0}\right)\right)\right. \\
& =0
\end{aligned}
$$

Hence we have $\left(\tilde{T}\left(f_{m}\right)\right)\left(z_{0}\right)=f_{m}\left(\varphi\left(z_{0}\right)\right)$. Recall that \tilde{T} is an isometry. Hence we see that $\left\|\tilde{T}\left(f_{m}\right)-\tilde{T}(f)\right\|_{\infty(K)} \rightarrow 0$ as $m \rightarrow \infty$. Then $(\tilde{T}(f))\left(z_{0}\right)=f\left(\varphi\left(z_{0}\right)\right)$. Since $z_{0} \in K$ is arbitrary, we conclude that $\tilde{T}(f)=f \circ \varphi$ holds on K. So we see that Claim 2 holds.

Claim 3. φ is locally one-to-one in K, that is, each point $x \in K$ has a neighborhood on which φ is one-to-one.

To prove this, suppose that φ is not locally one-to-one in K. Then there are a point $x_{0} \in K$, and two sequences $\left\{x_{j}\right\}$ and $\left\{y_{j}\right\}$ in K such that $\lim _{j \rightarrow \infty} x_{j}=$ $x_{0}, \lim _{j \rightarrow \infty} y_{j}=x_{0}, \varphi\left(x_{j}\right)=\varphi\left(y_{j}\right),\left|x_{j}-x_{0}\right|>\left|x_{j+1}-x_{0}\right|>0$ and $\left|y_{j}-x_{0}\right|>$ $\left|y_{j+1}-x_{0}\right|>0$ for all j. We can find $l+1$ functions $\left\{g_{1}, g_{2}, \ldots, g_{l+1}\right\} \subset A$ such that

$$
g_{j}\left(x_{i}\right)= \begin{cases}1 & j=i \\ 0 & j \neq i\end{cases}
$$

and $g_{j}\left(y_{i}\right)=0$ for every i and j with $1 \leq i \leq l+1,1 \leq j \leq l+1$. Suppose that $g=\alpha_{1} g_{1}+\ldots+\alpha_{l+1} g_{l+1}$ is in $\tilde{T} A$ for some $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l+1} \in \mathbb{C}$, that is, $g=h \circ \varphi$ for some $h \in A$. Then $g\left(x_{j}\right)=\alpha_{j}$ and $g\left(y_{j}\right)=0$ for each $1 \leq j \leq l+1$. Since $\varphi\left(x_{j}\right)=\varphi\left(y_{j}\right)$ and $g=h \circ \varphi$, we have $g\left(x_{j}\right)=g\left(y_{j}\right)$. Hence $\alpha_{j}=0$ for every $1 \leq j \leq l+1$. Thus $\left\{g_{1}+\tilde{T} A, \ldots, g_{l+1}+\tilde{T} A\right\}$ are linearly independent. Therefore the codimension of $\tilde{T} A$ in A is greater than $l+1$. This is a contradiction. Hence we have shown that for every point $x \in K$ there is an open neighborhood G_{x} of x in K such that φ is one-to-one in G_{x}. So we see that Claim 3 holds.

If $x \in \operatorname{int} K$, we may assume that $G_{x} \subset \operatorname{int} K$. We see by Theorem I.2.14 in [8] that φ is biholomorphic from G_{x} onto $\varphi\left(G_{x}\right)$. Since $\varphi\left(G_{x}\right)$ is open in \mathbb{C}^{n} and $\varphi\left(G_{x}\right) \subset \operatorname{int} K$, we see that $\varphi(\operatorname{int} K) \subset \operatorname{int} K$. Let $k \in \mathbb{N}$ and $\pi^{k}=\left(\pi_{1}^{k}, \ldots, \pi_{n}^{k}\right)$. Put $F=\left(F_{1}, \ldots, F_{n}\right)=\sum_{k=1}^{N} a_{k} \pi^{k}$. Then there is an open set U in int K such that F is univalent on U. In fact, put $J=\left[\frac{\partial F_{i}}{\partial z_{j}}\right]$. Since $J=\left[\sum_{k=1}^{N} a_{k} \frac{\partial \pi_{i}^{k}}{\partial z_{j}}\right]$,

$$
\operatorname{det} J=\sum_{k=1}^{N} a_{k} k \pi_{1}^{k-1} \sum_{k=1}^{N} a_{k} k \pi_{2}^{k-1} \ldots \sum_{k=1}^{N} a_{k} k \pi_{n}^{k-1}
$$

For $j, \sum_{k=1}^{N} a_{k} k \pi_{j}^{k-1} \not \equiv 0$, since $\sum_{k=1}^{N} a_{k} \pi_{j}^{k}$ is not a constant. Therefore $\operatorname{det} J \not \equiv 0$. By Theorem I.1.19 in [8], $\left\{z=\left(z_{1}, \ldots, z_{n}\right) \in D:(\operatorname{det} J)(z)=0\right\}$ is a closed set and does not contain an open subset of D. Then there exists a point $a \in D$ such that $(\operatorname{det} J)(a) \neq 0$. By Theorem I.2.5 in [8], there exists an open set U in int K such that F is univalent on U.
Claim 4. φ is univalent on int K.
To pove this, suppose that φ is not univalent on $\operatorname{int} K$. Then there are two different points $p, p^{\prime} \in \operatorname{int} K$ such that $\varphi(p)=\varphi\left(p^{\prime}\right)$. Put $b=\varphi(p)$. Recall that φ is locally univalent. Hence there are open neighborhoods U_{p} and $U_{p^{\prime}}$ of p and p^{\prime} respectively with $U_{p} \cap U_{p^{\prime}}=\emptyset$ such that both $\left.\varphi\right|_{U_{p}}$ and $\left.\varphi\right|_{U_{p}^{\prime}}$ are univalent. By Theorem I.2.14 in [8], $\varphi\left(U_{p}\right)$ is open. Since $\varphi(p) \in \varphi\left(U_{p}\right), \varphi\left(U_{p}\right)$ is an open neighborhood of b. Since $\varphi(p)=\varphi\left(p^{\prime}\right), \varphi\left(U_{p^{\prime}}\right)$ is also an open neighborhood of b. So there is a sequence $\left\{w_{j}\right\}$ of different points in $\varphi\left(U_{p}\right) \cap \varphi\left(U_{p^{\prime}}\right)$ with $w_{j} \rightarrow b$ as $j \rightarrow \infty$, so there are points $z_{j} \in U_{p}$ and $z_{j}^{\prime} \in U_{p^{\prime}}$ such that $\varphi\left(z_{j}\right)=\varphi\left(z_{j}^{\prime}\right)=w_{j}$. Then we can find $l+1$ functions $\left\{g_{1}, g_{2}, \ldots, g_{l+1}\right\} \subset A$ such that

$$
g_{j}\left(z_{i}\right)= \begin{cases}1, & j=i \\ 0, & j \neq i\end{cases}
$$

$$
g_{j}\left(z_{i}^{\prime}\right)=0 \text { for } 1 \leq j \leq l+1,1 \leq i \leq l+1 .
$$

In the same way as before, this implies that $\left\{g_{1}+\tilde{T} A, \ldots, g_{l+1}+\tilde{T} A\right\}$ is linearly independent, which is a contradiction since the codimension of $\tilde{T} A$ in A is l. So we see that Claim 4 holds.

Let $A^{n}=\left\{\left(f_{1}, \ldots, f_{n}\right): f_{k} \in A\right\}$ and $A^{n} \circ \varphi=\left\{\left(f_{1} \circ \varphi, \ldots, f_{n} \circ \varphi\right): f_{k} \in A\right\}$. Then $\operatorname{dim} A^{n} / A^{n} \circ \varphi=\ln$. In fact, there exist $g_{j, 1}, \ldots, g_{j, n} \in A \backslash A \circ \varphi(1 \leq j \leq l)$ such that

$$
\begin{aligned}
A^{n}=A^{n} \circ \varphi+\mathbb{C}\left(g_{1,1}, g_{1,2}, \ldots, g_{1, n}\right)+\mathbb{C}\left(g_{2,1}, g_{2,2}, \ldots,\right. & \left.g_{2, n}\right) \\
& +\cdots \\
& +\mathbb{C}\left(g_{l, 1}, g_{l, 2}, \ldots, g_{l, n}\right) .
\end{aligned}
$$

Suppose

$$
\begin{aligned}
& c_{1,1} g_{1,1} e_{1}+c_{1,2} g_{1,2} e_{2}+\cdots+c_{1, n} g_{1, n} e_{n} \\
&+c_{2,1} g_{2,1} e_{1}+\cdots+c_{2, n} g_{2, n} e_{n}+\cdots \\
&+c_{l, 1} g_{l, 1} e_{1}+\cdots+c_{l, n} g_{l, n} e_{n}=0
\end{aligned}
$$

where e_{1}, \ldots, e_{n} are the standard orthonormal basis elements in \mathbb{C}^{n} and $c_{i, j}(1 \leq$ $i \leq l, 1 \leq j \leq n)$ is constant. Since $\operatorname{dim} A /(A \circ \varphi)=l$, we have $c_{1,1}=c_{1,2}=\cdots=$ $c_{l, n}=0$. Hence $\operatorname{dim} A^{n} / A^{n} \circ \varphi=\ln$.

Put $l^{\prime}=\ln$. Since $\left\{\pi^{1}+A^{n} \circ \varphi, \ldots, \pi^{l^{\prime}+1}+A^{n} \circ \varphi\right\}$ are linearly dependent, there exist $l^{\prime}+1$ constants (not all zero) $\alpha_{1}, \ldots, \alpha_{l^{\prime}+1}$ such that $\sum_{j=1}^{l^{\prime}+1} \alpha_{j} \pi^{j} \in A^{n} \circ \varphi$. Then there exists $u=\left(u_{1}, \ldots, u_{n}\right) \in A^{n}$ such that $\sum_{j=1}^{l^{\prime}+1} \alpha_{j} \pi^{j}=u \circ \varphi$. Put $f=\sum_{j=1}^{l^{\prime}+1} \alpha_{j} \pi^{j}$. Put $D=\operatorname{int} K$ and

$$
M=\left\{z \in D:\left(\operatorname{det}\left[\frac{\partial u_{i}}{\partial z_{j}}\right]\right)(z)=0\right\} .
$$

By Theorem I.3.8 in [8], $M=D$ or M is a thin subset of D. In the same way as before, there is an open subset U of D such that f is univalent on U. Since φ is univalent on $D, f \circ \varphi^{-1}=u$ is univalent on $\varphi(U)$. By Theorem I.2.14 in [8], $\operatorname{det}\left[\frac{\partial u_{i}}{\partial z_{z}}\right] \neq 0$ on $\varphi(U)$. Then $M \neq D$. Hence M is a thin subset of D. For a subset X of D we denote by ∂X the topological boundary of X in D. We consider two cases: (a) $\partial \varphi(D) \subset M$; (b) $\partial \varphi(D) \not \subset M$. We will show that there is a thin subset E of D such that $\varphi(D)=D \backslash E$ in the case (a). We will also show that (b) never happens.

First we consider the case (a). Recall that M is a thin subset of D. Hence $\partial \varphi(D)$ is a thin subset of D. By Corollary I.3.6 in [8], $D \backslash \partial \varphi(D)$ is connected. Since $\varphi(D)$ is an open subset of D, it holds that

$$
D \backslash \partial \varphi(D)=\varphi(D) \cup\{(D \backslash \varphi(D)) \backslash \partial \varphi(D)\}
$$

Clearly the closure $\overline{\varphi(D)}$ of $\varphi(D)$ in D equals to $\varphi(D) \cup \partial \varphi(D)$, we see that $D \backslash \partial \varphi(D)=\varphi(D) \cup(D \backslash \overline{\varphi(D)})$. Note that $\varphi(D)$ and $D \backslash \overline{\varphi(D)}$ are disjoint open subsets of D. Since $D \backslash \partial \varphi(D)$ is connected and $\varphi(D) \neq \emptyset$, we see that $D \backslash \overline{\varphi(D)}=\emptyset$. Therefore $D \backslash \partial \varphi(D)=\varphi(D)$. Let $E=\partial \varphi(D)$. Recall that $\partial \varphi(D) \subset M$. Hence E is a thin subset of D.
Claim 5. Case (b) never happens.

To prove this, we consider Case (b). Since $\partial \varphi(D) \not \subset M$, there is a point $w_{0} \in \partial \varphi(D) \cap M^{c}$. Since $\operatorname{det}\left[\frac{\partial u_{i}}{\partial z_{j}}\left(w_{0}\right)\right] \neq 0$, by Theorem I.2.5 in [8], there is an open neighborhood $U_{w_{0}}$ of w_{0} in D such that $u: U_{w_{0}} \rightarrow u\left(U_{w_{0}}\right)$ is biholomorphic. Recall that $w_{0} \in \partial \varphi(D)$. Hence there is a sequence $\left\{w_{j}\right\}$ of different points in $\varphi(D) \cap U_{w_{0}}$ such that $w_{j} \rightarrow w_{0}$ as $j \rightarrow \infty$. Put $z_{j}=\varphi^{-1}\left(w_{j}\right)$ for every positive integer j. By passing to a subsequence, we may suppose that there is a point $z_{0} \in K$ such that $z_{j} \rightarrow z_{0}$ as $j \rightarrow \infty$. Since $\varphi\left(z_{j}\right)=w_{j}$, we have $\varphi\left(z_{0}\right)=w_{0}$. If $z_{0} \notin \partial K$, then $w_{0}=\varphi\left(z_{0}\right) \in \varphi(D)$. This contradicts that $w_{0} \in \partial \varphi(D)$. Hence $z_{0} \in \partial K$.

Since $f=u \circ \varphi$ on $K, f\left(z_{0}\right)=u \circ \varphi\left(z_{0}\right)=u\left(w_{0}\right)$. Put $V_{z_{0}}=f^{-1}\left(u\left(U_{w_{0}}\right)\right)$. Since u is univalent on $U_{w_{0}}$, then $u\left(U_{w_{0}}\right)$ is open, so $V_{z_{0}}$ is an open neighborhood of z_{0} in \mathbb{C}^{n}. By the hypothesis (iii), there exists an $\varepsilon>0$ such that $\overline{V_{z_{0}}^{\prime}} \subset V_{z_{0}}$ and $V_{z_{0}}^{\prime} \cap D$ is connected, where we denote $V_{z_{0}}^{\prime}=\left\{z \in \mathbb{C}^{n}:\left|z-z_{0}\right|<\varepsilon\right\}$. Define the function $\varphi_{0}: V_{z_{0}}^{\prime} \rightarrow D$ by $\varphi_{0}(z)=\left(u \mid U_{w_{0}}\right)^{-1} \circ f(z)$ for $z \in V_{z_{0}}^{\prime}$. Clearly $f\left(V_{z_{0}}^{\prime}\right) \subset f\left(V_{z_{0}}\right) \subset u\left(U_{w_{0}}\right)$ and u is biholomorphic on $U_{w_{0}}, \varphi_{0}$ is welldefined and holomorphic on $V_{z_{0}}^{\prime}$ into $U_{w_{0}}$. Now $D \ni z_{j} \rightarrow z_{0}$ as $j \rightarrow \infty$ and $V_{z_{0}}^{\prime}$ is an open neighborhood of z_{0}. Therefore there is an integer j_{0} such that $z_{j_{0}} \in V_{z_{0}}^{\prime} \cap D$. Recall that $\varphi\left(z_{j_{0}}\right)=w_{j_{0}} \in U_{w_{0}}$ and φ is a biholomorphic map from D onto $\varphi(D)$. Hence there is an open neighborhood $V_{z_{0}}$ of $z_{j_{0}}$ in D such that $V_{z_{0}} \subset V_{z_{0}}^{\prime}$ and $\varphi\left(V_{z_{j_{0}}}\right) \subset U_{w_{0}}$. Let $z \in V_{z_{j_{0}}}$. Since $V_{z_{j_{0}}} \subset D, f(z)=u \circ \varphi(z)$. On the other hand, since $\varphi_{0}(z)=\left(u \mid U_{w_{0}}\right)^{-1} \circ f(z)$, we have $f(z)=u \circ \varphi_{0}(z)$. Therefore $u(\varphi(z))=u\left(\varphi_{0}(z)\right)$. Clearly $\varphi_{0}\left(V_{z_{0}}^{\prime}\right) \subset U_{w_{0}}$ and $V_{z_{0}} \subset V_{z_{0}}^{\prime}$, we see that $\varphi_{0}(z) \in U_{w_{0}}$. Since $\varphi\left(V_{z_{0}}\right) \subset U_{w_{0}}$, we see that $\varphi(z) \in U_{w_{0}}$. Recall that u is univalent on $U_{w_{0}}$. Hence we have $\varphi(z)=\varphi_{0}(z)$ for $z \in V_{z_{j_{0}}}$. Since $V_{z_{j_{0}}}$ is an open subset of $V_{z_{0}}^{\prime} \cap D$, we see that $\varphi=\varphi_{0}$ on $V_{z_{0}}^{\prime} \cap D$ by Theorem I.1.19. in [8], so $\varphi=\varphi_{0}$ on $V_{z_{0}}^{\prime} \cap K$. Define the function $\tilde{\varphi}: K \cup V_{z_{0}}^{\prime} \rightarrow K$ by

$$
\tilde{\varphi}(z)=\left\{\begin{aligned}
\varphi(z), & z \in K \\
\varphi_{0}(z), & z \in \overline{V_{z_{0}}^{\prime}}
\end{aligned}\right.
$$

Recall that $\varphi_{0}\left(V_{z_{0}}^{\prime}\right) \subset U_{w_{0}} \subset D$. Hence $\tilde{\varphi}$ is a holomorphic map from $D \cup V_{z_{0}}^{\prime}$ into D. We will show a contradiction. Put

$$
B_{0}=\left\{g \in A: \exists \tilde{g}: \text { holomorphic on } V_{z_{0}}^{\prime} \cup D \text { such that }\left.\tilde{g}\right|_{D}=g \text { on } D\right\} .
$$

Then $\operatorname{dim} A / B_{0}=\infty$. In fact, fix $\epsilon>0$ such that $B\left(z_{0}, \epsilon\right) \subset V_{z_{0}}^{\prime}$. For any j, we may assume that $d_{j}<\epsilon$. By Proposition 2.3, $S_{1} \backslash K_{1} \neq \emptyset$. Fix $z_{1} \in$ $S_{1} \backslash K_{1}$. Then there exists a $f_{1} \in \mathcal{O}\left(D_{1}\right)$ such that $\left|f_{1}\left(z_{1}\right)\right|>\left\|f_{1}\right\|_{\infty(K)}$. By Proposition 2.3, $S_{2} \backslash K_{2} \neq \emptyset$. Since $S_{2} \backslash K_{2}$ is open and $f_{1}^{-1}\left(f_{1}\left(z_{1}\right)\right)$ is a thin set, $S_{2} \backslash K_{2} \backslash f_{1}^{-1}\left(f_{1}\left(z_{1}\right)\right) \neq \emptyset$. Fix $z_{2} \in S_{2} \backslash K_{2} \backslash f_{1}^{-1}\left(f_{1}\left(z_{1}\right)\right)$. Then there exists a $f_{2} \in \mathcal{O}\left(D_{2}\right)$ such that $\left|f_{2}\left(z_{2}\right)\right|>\left\|f_{2}\right\|_{\infty(K)}$. By induction, fix

$$
z_{k} \in S_{k} \backslash K_{k} \backslash f_{1}^{-1}\left(f_{1}\left(z_{1}\right)\right) \cup \ldots \cup f_{k-1}^{-1}\left(f_{k-1}\left(z_{k-1}\right)\right) .
$$

Then there exists a $f_{k} \in \mathcal{O}\left(D_{k}\right)$ such that $\left|f_{k}\left(z_{k}\right)\right|>\left\|f_{k}\right\|_{\infty(K)}$. Put $h_{k}=\frac{1}{f_{k}-f_{k}\left(z_{k}\right)}$ on $D_{k} \backslash f_{k}^{-1}\left(f_{k}\left(z_{k}\right)\right)$. By the hypothesis (ii), $M_{A(K)}=K$. Since $K_{k} \cap f_{k}^{-1}\left(f_{k}\left(z_{k}\right)\right)=$ $\emptyset, h_{k} \in A(K)$. Then $\left\{h_{1}+B_{0}, \ldots, h_{k}+B_{0}\right\}$ are linearly independent. In fact, suppose $\left\{h_{1}+B_{0}, \ldots, h_{k}+B_{0}\right\}$ are not linearly independent. Then there exist
k_{1}, \ldots, k_{j} with $k_{1}<\ldots<k_{j}$ and $\alpha_{1}, \ldots, \alpha_{j} \in \mathbb{C}$ with $\alpha_{1} \cdots \alpha_{j} \neq 0$ such that $\alpha_{1} h_{k_{1}}+\cdots+\alpha_{j} h_{k_{j}} \in B_{0}$. Therefore there exists a holomorphic function H on $V_{z_{0}}^{\prime} \cup D$ such that $H=\alpha_{1} h_{k_{1}}+\cdots+\alpha_{j} h_{k_{j}}$ on D. On the other hand, $S_{k_{j}}$ is connected component of $B\left(z_{0}, \epsilon\right) \cap D_{k_{j}}$ which contains z_{0}. Furthermore, $S_{k_{j}} \subset$ $B\left(z_{0}, \epsilon\right)$ and $S_{k_{j}} \backslash f_{k_{1}}^{-1}\left(f_{k_{1}}\left(z_{1}\right)\right) \cup \ldots \cup f_{k_{j}}^{-1}\left(f_{k_{j}}\left(z_{k_{j}}\right)\right)$ is a nonempty connected open set. In fact, $f_{k_{1}}^{-1}\left(f_{k_{1}}\left(z_{1}\right)\right) \cup \ldots \cup f_{k_{j}}^{-1}\left(f_{k_{j}}\left(z_{k_{j}}\right)\right)$ is a thin set. Note that $S_{k_{j}}$ is the connected open set. By Corollary I.3.6 in [8], $S_{k_{j}} \backslash f_{k_{1}}^{-1}\left(f_{k_{1}}\left(z_{1}\right)\right) \cup \cdots \cup f_{k_{j}}^{-1}\left(f_{k_{j}}\left(z_{k_{j}}\right)\right)$ is connected. Since

$$
K \cap f_{k_{1}}^{-1}\left(f_{k_{1}}\left(z_{1}\right)\right) \cup \cdots \cup f_{k_{j}}^{-1}\left(f_{k_{j}}\left(z_{k_{j}}\right)\right)=\emptyset
$$

and

$$
S_{k_{j}} \backslash f_{k_{1}}^{-1}\left(f_{k_{1}}\left(z_{1}\right)\right) \cup \cdots \cup f_{k_{j}}^{-1}\left(f_{k_{j}}\left(z_{k_{j}}\right)\right) \ni z_{0}
$$

H and $\alpha_{1} h_{k_{1}}+\cdots+\alpha_{j} h_{k_{j}}$ is holomorphic on $S_{k_{j}} \backslash f_{k_{1}}^{-1}\left(f_{k_{1}}\left(z_{1}\right)\right) \cup \ldots \cup f_{k_{j}}^{-1}\left(f_{k_{j}}\left(z_{k_{j}}\right)\right)$. Furthermore

$$
z_{0} \in S_{k_{j}} \backslash f_{k_{1}}^{-1}\left(f_{k_{1}}\left(z_{1}\right)\right) \cup \ldots \cup f_{k_{j}}^{-1}\left(f_{k_{j}}\left(z_{k_{j}}\right)\right)
$$

and

$$
D \cap\left(S_{k_{j}}\right) \backslash f_{k_{1}}^{-1}\left(f_{k_{1}}\left(z_{1}\right)\right) \cup \ldots \cup f_{k_{j}}^{-1}\left(f_{k_{j}}\left(z_{k_{j}}\right)\right) \neq \emptyset .
$$

Then

$$
H=\alpha_{1} h_{k_{1}}+\cdots+\alpha_{j} h_{k_{j}}
$$

on

$$
S_{k_{j}} \backslash f_{k_{1}}^{-1}\left(f_{k_{1}}\left(z_{1}\right)\right) \cup \ldots \cup f_{k_{j}}^{-1}\left(f_{k_{j}}\left(z_{k_{j}}\right)\right)
$$

Since

$$
z_{k_{j}} \in S_{k_{j}} \backslash K_{k_{j}} \backslash f_{k_{1}}^{-1}\left(f_{k_{1}}\left(z_{1}\right)\right) \cup \ldots \cup f_{k_{j}-1}^{-1}\left(f_{k_{j}}\left(z_{k_{j}-1}\right)\right)
$$

and $k_{j-1} \leq k_{j}-1$,

$$
\lim _{z \rightarrow z_{k_{j}}} \alpha_{1} h_{k_{1}}(z)+\cdots+\alpha_{j-1} h_{k_{j-1}}(z)=\alpha_{1} h_{k_{1}}\left(z_{k_{j}}\right)+\cdots+\alpha_{j-1} h_{k_{j-1}}\left(z_{k_{j}}\right)
$$

And $\left|\alpha_{j} h_{k_{j}}(z)\right| \rightarrow \infty$ as $z \rightarrow z_{k_{j}}$. Since $\lim _{z \rightarrow z_{k_{j}}} H(z)=H\left(z_{k_{j}}\right)$, this is a contradiction.

We also see that $A \circ \varphi \subset B_{0}$. Suppose that $h \in A \circ \varphi$. Then there is $g \in A$ with $g \circ \varphi=h$. Put $\tilde{g}=g \circ \tilde{\varphi}$. Then \tilde{g} is well-defined and holomorphic on $V_{z_{0}}^{\prime} \cup D$. Since $\left.\tilde{\varphi}\right|_{D}=\varphi,\left.\tilde{g}\right|_{D}=g \circ \varphi=h$. It follows that $h \in B_{0}$. We have proved that $A \circ \varphi \subset B_{0}$. Thus we see that $\operatorname{dim}\left(A / B_{0}\right)<\infty \operatorname{since} \operatorname{dim} A /(A \circ \varphi)<\infty$. This is a contradiction. We conclude that the case (b) never occurs. So we see that Claim 5 holds. It follows that only the case (a) occurs.

We consider the case (a) from now on. As we already showed, $\varphi(D)=D \backslash E$ for a thin set E. Therefore φ is a continuous map from K onto K.
Claim 6. φ is one-to-one on K.
To prove this, suppose that φ is not one-to-one. Then there exists a point $b_{1} \in K$ such that $\varphi^{-1}\left(b_{1}\right)$ contains at least two points. We will show that $\varphi^{-1}\left(b_{1}\right)$ contains at most $l+1$ points. To prove this, suppose that $\varphi^{-1}\left(b_{1}\right)$ contains at
least $l+2$ points. Take $l+2$ points $\left\{a_{1}, \ldots, a_{l+2}\right\}$ in $\varphi^{-1}\left(b_{1}\right)$. We can find $l+1$ functions $\left\{g_{1}, g_{2}, \ldots, g_{l+1}\right\} \subset A$ such that

$$
g_{j}\left(a_{i}\right)= \begin{cases}1, & j=i \\ 0, & j \neq i\end{cases}
$$

for $1 \leq j \leq l+1,1 \leq i \leq l+2$. We will show that $\left\{g_{1}+\tilde{T} A, \ldots, g_{l+1}+\tilde{T} A\right\}$ is linearly independent. Let $\alpha_{1} g_{1}+\ldots+\alpha_{l+1} g_{l+1} \in \tilde{T} A$ with $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l+1} \in \mathbb{C}$. Then there is a function $g \in A$ such that $g \circ \varphi=\alpha_{1} g_{1}+\ldots+\alpha_{l+1} g_{l+1}$. Then $g \circ \varphi\left(a_{j}\right)=g\left(b_{1}\right)$ for $1 \leq j \leq l+2$. Since $g_{j}\left(a_{l+2}\right)=0$ for $1 \leq j \leq l+2$, we have that $g \circ \varphi\left(a_{l+2}\right)=0$, so $\alpha_{j}=\alpha_{1} g_{1}\left(a_{j}\right)+\ldots+\alpha_{l+1} g_{l+1}\left(a_{j}\right)=0$ for $1 \leq j \leq l+1$. Then $\left\{g_{1}+\tilde{T} A, \ldots, g_{l+1}+\tilde{T} A\right\}$ are linearly independent. Therefore the codimension of $\tilde{T} A$ in A is greater than $l+1$. This is a contradiction. Hence we have $\varphi^{-1}\left(b_{1}\right)=\left\{a_{1}, \ldots, a_{j}\right\}$ for some j with $2 \leq j \leq l+1$. In a similar way to the above we see that the set $\left\{x \in K: \varphi^{-1}(x)\right.$ contains at least two points $\}$ consists of at most l points. Therefore there exists an $\varepsilon>0$ such that $B_{K}\left(a_{k}, \varepsilon\right)^{\prime}$ s are disjoint, where $B_{K}\left(a_{k}, \varepsilon\right)=\left\{x \in K:\left|x-a_{k}\right|<\varepsilon\right\}$, and $\varphi^{-1}(\varphi(x))=\{x\}$ for every $x \in B_{K}\left(a_{k}, \varepsilon\right) \backslash\left\{a_{k}\right\}$ and $1 \leq k \leq j$. We can easily see that

$$
\begin{equation*}
K \backslash \varphi\left(K \backslash\left(B_{K}\left(a_{k}, \varepsilon\right) \backslash\left\{a_{k}\right\}\right)\right)=\varphi\left(B_{K}\left(a_{k}, \varepsilon\right) \backslash\left\{a_{k}\right\}\right) . \tag{3.3}
\end{equation*}
$$

It follows that $\varphi\left(\left(B_{K}\left(a_{k}, \varepsilon\right) \backslash\left\{a_{k}\right\}\right)\right)$ is open in K. By the way of the choice of the number $\epsilon>0$, we can also easily show that for a sufficiently small number $\delta>0$,

$$
\varphi^{-1}\left(B_{K}\left(b_{1}, \delta\right)\right) \subset \bigcup_{k=1}^{j} B_{K}\left(a_{k}, \varepsilon\right)
$$

where $B_{K}\left(b_{1}, \delta\right)=\left\{x \in K:\left|x-b_{1}\right|<\delta\right\}$. By the hypothesis (iii), we see that there exists a connected open neighborhood V of b_{1} in K such that $V \subset B_{K}\left(b_{1}, \delta\right)$. Then $V \backslash\left\{b_{1}\right\}$ is also connected. In fact, for any $p \in K$, any connected open neighborhood G in K of p, it is enough to prove that $G \backslash\{p\}$ is connected. Suppose this is false. Then there exists a point $p \in K$ and a connected open neighborhood G_{p} in K of p such that $G_{p} \backslash\{p\}$ is not connected. Note that $p \in \partial K$. Then there are two nonempty open sets V_{1}, V_{2} such that $V_{1} \cup V_{2}=G_{p} \backslash\{p\}, V_{1} \cap V_{2}=\emptyset$. Then there exists $0<\epsilon<\epsilon_{p}$ such that $B(p, \epsilon) \cap K \subset G_{p}$. Therefore $B(p, \epsilon) \cap V_{1} \neq \emptyset$ and $B(p, \epsilon) \cap V_{2} \neq \emptyset$. In fact, we suppose that $B(p, \epsilon) \cap V_{1}=\emptyset$. Let $\tilde{V}_{2}=$ $(B(p, \epsilon) \cap K) \cup V_{2}$. Then \tilde{V}_{2} is an open set in K and $\tilde{V}_{2} \cup V_{1}=G_{p}$. Therefore $\tilde{V}_{2} \cap V_{1}=\left((B(p, \epsilon) \cap K) \cup V_{2}\right) \cap V_{1}=\left(B(p, \epsilon) \cap K \cap V_{1}\right) \cup\left(V_{2} \cap V_{1}\right)=\emptyset$. Since $V_{1} \neq \emptyset$ and $\tilde{V}_{2} \neq \emptyset$, we have G_{p} is connected, which is a contradiction. Also $B(p, \epsilon) \cap V_{2} \neq$ \emptyset. Then $B(p, \epsilon) \cap \operatorname{int} K$ is not connected. In fact, $(B(p, \epsilon) \cap \operatorname{int} K) \cap V_{1} \neq \emptyset$, $(B(p, \epsilon) \cap \operatorname{int} K) \cap V_{2} \neq \emptyset$. Then

$$
\begin{aligned}
& \left((B(p, \epsilon) \cap \operatorname{int} K) \cap V_{1}\right) \cap\left((B(p, \epsilon) \cap \operatorname{int} K) \cap V_{2}\right) \\
& \quad=\left((B(p, \epsilon) \cap \operatorname{int} K) \cap\left(V_{1} \cap V_{2}\right)\right) \subset V_{1} \cap V_{2}=\emptyset
\end{aligned}
$$

and

$$
B(p, \epsilon) \cap \operatorname{int} K \subset G_{p}=V_{1} \cup V_{2}
$$

Therefore $B(p, \epsilon) \cap \operatorname{int} K$ is not connected, which is a contradiction. Then we have

$$
V \subset B_{K}\left(b_{1}, \delta\right) \subset \cup_{k=1}^{j} \varphi\left(B_{K}\left(a_{k}, \varepsilon\right)\right)
$$

Since

$$
V \backslash\left\{b_{1}\right\} \subset \cup_{k=1}^{j}\left(\varphi\left(B_{K}\left(a_{k}, \varepsilon\right)\right) \backslash\left\{b_{1}\right\}\right)=\cup_{k=1}^{j}\left(\varphi\left(B_{K}\left(a_{k}, \varepsilon\right) \backslash\left\{a_{k}\right\}\right)\right),
$$

we have

$$
V \backslash\left\{b_{1}\right\}=\cup_{k=1}^{j}\left(\left(V \backslash\left\{b_{1}\right\}\right) \cap \varphi\left(B_{K}\left(a_{k}, \varepsilon\right) \backslash\left\{a_{k}\right\}\right)\right.
$$

Let $\left\{x_{\nu}\right\}$ a sequence in $B_{K}\left(a_{k}, \varepsilon\right) \backslash\left\{a_{k}\right\}$ such that $x_{\nu} \rightarrow a_{k}$ as $\nu \rightarrow \infty$. Then $\varphi\left(x_{\nu}\right) \rightarrow \varphi\left(a_{k}\right)=b_{1}$ as $\nu \rightarrow \infty$. For a sufficiently large $\nu, \varphi\left(x_{\nu}\right) \in V$. Since $x_{\nu} \neq a_{k}, \varphi\left(x_{\nu}\right) \neq b_{1}$. Hence $\varphi\left(x_{\nu}\right) \in V \backslash\left\{b_{1}\right\}$. Therefore $\varphi\left(x_{\nu}\right) \in\left(V \backslash\left\{b_{1}\right\}\right) \cap$ $\left.\varphi\left(B_{K}\left(a_{k}, \varepsilon\right)\right) \backslash\left\{a_{k}\right\}\right) \neq \emptyset$. On the other hand, it is easy to see that

$$
\left.\left.\varphi\left(B_{K}\left(a_{k}, \varepsilon\right)\right) \backslash\left\{a_{k}\right\}\right) \cap \varphi\left(B_{K}\left(a_{k}^{\prime}, \varepsilon\right)\right) \backslash\left\{a_{k}^{\prime}\right\}\right)=\emptyset
$$

holds if $k \neq k^{\prime}$. Thus we have

$$
\left.\left.\left(\left(V \backslash\left\{b_{1}\right\}\right) \cap \varphi\left(B_{K}\left(a_{k}, \varepsilon\right)\right) \backslash\left\{a_{k}\right\}\right)\right) \cap\left(\left(V \backslash\left\{b_{1}\right\}\right) \cap \varphi\left(B_{K}\left(a_{k}^{\prime}, \varepsilon\right)\right) \backslash\left\{a_{k}^{\prime}\right\}\right)\right)=\emptyset
$$

if $k \neq k^{\prime}$. Therefore $V \backslash\left\{b_{1}\right\}$ is not connected. This is a contradiction. We conclude that φ is one-to-one. So we see that Claim 6 holds.

It follows that φ is a homeomorphism of K onto K and φ is holomorphic on $\operatorname{int} K$. Thus φ^{-1} is a homeomorphism of K onto K and φ^{-1} is holomorphic on $\operatorname{int} K \backslash E$. Define the operator $\tilde{S}: A \rightarrow A$ by

$$
\tilde{S} f=f \circ \varphi^{-1} \quad(f \in A)
$$

Then $\tilde{T} \tilde{S}=\tilde{S} \tilde{T}$ is the identity operator. Hence the codimension of $\tilde{T} A$ in A is 0 . This is a contradiction.

4. Examples

In this section we give examples of domains which satisfy the five hypotheses in Theorem in the previous section.

Let K be a compact subset of \mathbb{C}^{n}. Recall that a point $p \in \partial K$ is called a peak point for $A(K)$ if there is an $h \in A(K)$ with $h(p)=1$ and $|h(z)|<1$ for $z \in K \backslash\{p\}$. The family of invertible elements of $A(K)$ is denoted by $A(K)^{-1}$.

Example 4.1. Let n be a positive integer greater than 1 . Let D be a bounded strictly pseudoconvex domain with C^{2} boundary in \mathbb{C}^{n}. Let $K=\bar{D}$. Then K satisfies the five hypotheses (i), (ii), (iii), (iv) and (v) in Theorem.

Proof. By the definition of K, (i) holds. Since D is strictly pseudoconvex, there are a neighborhood U of ∂D and a strictly plurisubharmonic function $r \in C^{2}(U)$ such that $D \cap U=\{z \in U: r(z)<0\}$. Put $D_{j}=\left\{z \in U: r(z)<\frac{1}{j}\right\}$. Then D_{j} is strictly pseudoconvex. By Theorem VI.1.17 in [8], D_{j} is holomorphically convex. Thus (ii) holds.

Suppose (iii) does not hold, that is, there exists p in K, for every $\epsilon_{p}>0$, there exists ϵ such that $0<\epsilon<\epsilon_{p}$ and $B(p, \epsilon) \cap \operatorname{int} K$ is not connected. Without loss of generality we may assume p in ∂K. Since ∂D is of class C^{2}, there are an open neighborhood U of p and a real valued function $r \in C^{2}(U)$ such that
$U \cap D=\{x \in U: r(x)<0\}$ and $d r(x) \neq 0$ for $x \in U$. We may assume that $U \cap D$ is not connected. Then there are two nonempty sets O_{1}, O_{2} such that $O_{1} \cup O_{2}=U \cap D$ and $O_{1} \cap O_{2}=\emptyset$. Note that O_{1} and O_{2} are closed and bounded. Then r has a local maximum or a local minimum on O_{1}. Since $d r(x) \neq 0$ for $x \in U$, this is a contradiction. Hence (iii) holds.

By Theorem VII.2.1 in [8], (iv) holds.
By Theorem VI.1.13 in [8], every $p \in \partial K$ is a peak point, so $\partial A(K)$ coincides with the topological boundary ∂K of K in \mathbb{C}^{n}. Let $u \in A(K)$. Suppose that $|u|=1$ on $\partial A(K)$ and u has no zero in int K. Then we have $|u| \leq 1$ on K and $u \in A(K)^{-1}$, so $\left|u^{-1}\right| \leq 1$ on K since $\left|u^{-1}\right|=1$ on $\partial A(K)$. It follows that $|u|=1$ on K. Since $|u|=1$ on K and $\operatorname{int} K=D \neq \emptyset, u$ is constant.

Example 4.2. Let n be a positive integer greater than 1 . Let K be a compact and convex subset of \mathbb{C}^{n} such that $\overline{\operatorname{int} K}=K$. Then K satisfies the five hypotheses (i), (ii), (iii), (iv) and (v) in Theorem.

Proof. (i) is obvious. Without loss of generality we may assume that the origin is in int K. Since K is convex, $\operatorname{int} K$ is convex, and so it is holomophically convex by lemma II.3.6 in [8]. Let $D_{m}=\left(1+\frac{1}{m}\right) \operatorname{int} K$ for every positive integer m. Then D_{m} is bounded and holomorphically convex since K is compact and D_{m} is convex. We also see that $K=\cap_{m=1}^{\infty} D_{m}$ and $D_{m} \supset \overline{D_{m+1}}$.

And (iii) clearly holds, because $B(p, \epsilon) \cap \operatorname{int} K$ is convex for all $p \in K$ and all $\epsilon>0$. Without loss of generality we may assume that $0 \in \operatorname{int} K$. By the definitions we have that $H(K) \subset A(K)$. We will show that $A(K) \subset H(K)$. Suppose that $f \in A(K)$. Put $f_{j}(z)=f\left(\frac{1}{1+\frac{1}{j}} z\right)$. Then f_{j} is holomorphic on $D_{j}=\left(1+\frac{1}{j}\right) \operatorname{int} K$ and converges to f uniformly on K. Therefore we have that $f \in H(K)$, so (iv) holds.

Suppose that $u \in A(K)$ and $|u|=1$ on $\partial A(K)$. Suppose that u has no zero in K. Then $u^{-1} \in A(K)$. Therefore $\left|u^{-1}\right| \leq 1$ on K since $\left|u^{-1}\right|=1$ on $\partial A(K)$. Hence $|u|=1$ on K, so u is constant since $\operatorname{int} K \neq \emptyset$.

Suppose that u has a zero in K and no zero in $\operatorname{int} K$. Then u has a zero in ∂K. Let $p \in \partial K$ such that $u(p)=0$. Put $u_{j}(z)=u\left(\frac{1}{1+\frac{1}{j}} z\right)$. Then u_{j} is holomorphic on D_{j} and has no zero on K. Therefore $\frac{1}{u_{j}} \in A(K)$. On the other hand $u_{j}(p)=u\left(\frac{1}{1+\frac{1}{j}} p\right) \rightarrow 0$ as $j \rightarrow \infty$. Then there is an integer N such that $\left|u_{j}(p)\right|<\frac{1}{2}$ if $j>N$. Since $|u|$ is uniformly continuous on K, there is an integer M such that $\left|u(z)-u_{j}(z)\right|<\frac{1}{3}$ if $j>M, z \in K$. In particular $\left|1-\left|u_{j}(z)\right|\right|<\frac{1}{3}$ if $j>M, z \in \partial A(K)$. Therefore $\frac{2}{3}<\left|u_{j}\right|$ on $\partial A(K)$ if $j>M$. Thus $\left|\frac{1}{u_{j}}\right|<\frac{3}{2}$ on $\partial A(K)$ if $j>M$. Recall that $\frac{1}{u_{j}} \in A(K)$. Hence $\left|\frac{1}{u_{j}}\right|<\frac{3}{2}$ on K if $j>M$. If $j>\max \{N, M\}$, then $\left|\frac{1}{u_{j}}\right|<\frac{3}{2}$ on K. Since $\left|\frac{1}{u_{j}(p)}\right|>2$, this is a contradiction. Hence u has a zero in int K.

Example 4.3. Let n be a positive integer greater than 1 and K_{j} a compact subset of \mathbb{C} such that ∂K_{j} consists of a finite number of disjoint smooth closed
curves. Let $K=\prod_{j=1}^{n} K_{j}$. Then K satisfies the five hypotheses (i), (ii), (iii), (iv) and (v) in Theorem.

Proof. (i) is obvious. We will show that (iii) holds. We consider only for $n=2$. A proof is similar for general n. It suffices to show the following : for every point $p=\left(p_{1}, p_{2}\right)$ in K there exists an $\epsilon_{p}>0$ such that $\left(D\left(p_{1}, \epsilon\right) \times D\left(p_{2}, \epsilon\right) \cap \operatorname{int} K\right.$ is connected for every ϵ with $0<\epsilon<\epsilon_{p}$, where $D\left(p_{1}, \epsilon\right)=\left\{z \in \mathbb{C}:\left|z-p_{1}\right|<\epsilon\right\}$. Fix $p \in K$. Write $\operatorname{int} K=\operatorname{int} K_{1} \times \operatorname{int} K_{2}$. Since ∂K_{j} consists of a finite number of disjoint smooth closed curves, there exists an $\epsilon_{p_{1}}>0$ such that $D\left(p_{1}, \epsilon\right) \cap \operatorname{int} K_{1}$ is connected for every ϵ with $0<\epsilon<\epsilon_{p_{1}}$. And there exists an $\epsilon_{p_{2}}>0$ such that $D\left(p_{2}, \epsilon\right) \cap \operatorname{int} K_{2}$ is connected for every ϵ with $0<\epsilon<\epsilon_{p_{2}}$. Put $\epsilon_{p}=\min \left\{\epsilon_{p_{1}}, \epsilon_{p_{2}}\right\}$. Then

$$
\begin{aligned}
& \left(D\left(p_{1}, \epsilon\right) \cap \operatorname{int} K_{1}\right) \times\left(D\left(p_{2}, \epsilon\right) \cap \operatorname{int} K_{2}\right) \\
& =\left(D\left(p_{1}, \epsilon\right) \times D\left(p_{2}, \epsilon\right)\right) \cap\left(\operatorname{int} K_{1} \times \operatorname{int} K_{2}\right) \\
& =\left(D\left(p_{1}, \epsilon\right) \times D\left(p_{2}, \epsilon\right)\right) \cap \operatorname{int} K
\end{aligned}
$$

is connected for every ϵ with $0<\epsilon<\epsilon_{p}$. Hence (iii) holds.
Let $D\left(K_{j}, \frac{1}{k}\right)=\left\{z \in \mathbb{C}: d\left(z, K_{j}\right)<\frac{1}{k}\right\}$, where

$$
d\left(z, K_{j}\right)=\inf \left\{|z-w|: w \in K_{j}\right\}, 1 \leq j \leq n
$$

and $D_{k}=\prod_{j=1}^{n} D\left(K_{j}, \frac{1}{k}\right)$. Then we have that $K=\cap_{k=1}^{\infty} D_{k}$ and $D_{k} \supset \overline{D_{k+1}}$. By Proposition II.3.8 in [8], D_{k} is holomorphically convex. Hence (ii) holds.

Let $R\left(K_{j}\right)$ be the algebra of all continuous functions on K_{j} which can be approximated uniformly on K_{j} by rational functions with poles off K_{j}. By Theorem II.10.4 in [4], $R\left(K_{j}\right)=A\left(K_{j}\right)$. Since $R\left(K_{j}\right) \subset H\left(K_{j}\right) \subset A\left(K_{j}\right), A\left(K_{j}\right)=H\left(K_{j}\right)$. By Corollaire 8 in [10], $A(K)=H(K)$. Hence (iv) holds.

Suppose $u \in A(K)$ such that $|u|=1$ on $\partial A(K)$. If u has no zero in K, then $\frac{1}{u} \in A(K)$. Hence $|u|=1$ on K. Since $\operatorname{int} K \neq \emptyset, u$ is constant. Now consider the case that u has a zero in K. We claim that u has a zero in int K. Suppose not. Then there exists a $p=\left(p_{1}, \ldots, p_{n}\right) \in \partial K$ with $u(p)=0$. We note that $\partial A(K)=\prod_{j=1}^{n} \partial K_{j}$. We consider only for $n=2$. A proof is similar for general n. Let U be a neighborhood of $x \in \partial K_{1}$. Then there exists $f \in A\left(K_{1}\right)$ such that $\|f\|_{\infty}=1$ and $|f|<1$ on $K_{1} \backslash U$. Let V be a neighborhood of $y \in \partial K_{2}$. Then there exists $g \in A\left(K_{2}\right)$ such that $\|g\|_{\infty}=1$ and $|g|<1$ on $K_{2} \backslash V$. Then $f g \in A\left(K_{1} \times K_{2}\right),\|f g\|_{\infty}=1$ and $|f g|<1$ on $K_{1} \times K_{2} \backslash U \times V$. Hence $(x, y) \in$ $\partial A\left(K_{1} \times K_{2}\right)$. Conversely for $F \in A\left(K_{1} \times K_{2}\right)$, there exists $(x, y) \in K_{1} \times K_{2}$ such that $|F(x, y)|=\|F\|_{\infty}$. Since $F(x, \cdot) \in A\left(K_{2}\right)$, there exists $y_{0} \in \partial A\left(K_{2}\right)$ such that $|F(x, \cdot)|=\left|F\left(x, y_{0}\right)\right|$. Since $F\left(\cdot, y_{0}\right) \in A\left(K_{1}\right)$, there exists $x_{0} \in \partial A\left(K_{1}\right)$ such that $|F(x, y)|=\left|F\left(x_{0}, y_{0}\right)\right|$. Therefore $\partial K_{1} \times \partial K_{2}$ is a boundary for $A\left(K_{1} \times K_{2}\right)$. Hence $\partial A\left(K_{1} \times K_{2}\right) \subset \partial K_{1} \times \partial K_{2}$.

Since $\partial A(K)=\prod_{j=1}^{n} \partial K_{j}$, we see that there exists a j with $1 \leq j \leq n$ such that $p_{j} \in \operatorname{int} K_{j}$. Without loss of generality we may suppose that there exists $1 \leq j_{0} \leq n-1$ such that $p_{j} \in \partial K_{j}$ for $1 \leq j \leq j_{0}$ and $p_{j} \in \operatorname{int} K_{j}$ for $j_{0}+1 \leq j \leq n$. Suppose that $\left\{\left(z_{1, m}, \ldots, z_{j_{0}, m}\right)\right\}$ is a sequence of $\prod_{j=1}^{j_{0}} \operatorname{int} K_{j}$ which converges to $\left(p_{1}, \ldots, p_{j_{0}}\right)$. Put $u_{m}: K_{j_{0}+1} \rightarrow \mathbb{C}\left(\right.$ resp. $\left.u_{\infty}: K_{j_{0}+1} \rightarrow \mathbb{C}\right)$ defined by $u_{m}(z)=$
$u\left(z_{1, m}, \ldots, z_{j_{0}, m}, z, p_{j_{0}+2}, \ldots, p_{n}\right)\left(\right.$ resp. $\left.u_{\infty}(z)=u\left(p_{1}, \ldots, p_{j_{0}}, z, p_{j_{0}+2}, \ldots, p_{n}\right)\right)$. Then $u_{m}, u_{\infty} \in A\left(K_{j_{0}+1}\right)$ and u_{m} has no zero in int $K_{j_{0}+1}$ since we have assumed that u has no zero in int K. We also see that u_{m} converges to u_{∞} uniformly on $K_{j_{0}+1}$. Since $u_{\infty}\left(p_{j_{0}+1}\right)=0$ and $p_{j_{0}+1} \in \operatorname{int} K_{j_{0}+1}$, we have that $u_{\infty}=0$ on $K_{j_{0}+1}$ by Rouché's theorem. It follows by induction we see that $u=0$ on $\left\{\left(p_{1}, \ldots, p_{j_{0}}, z_{j_{0}+1}, \ldots, z_{m}, \ldots, z_{n}\right) \in \mathbb{C}^{n}: z_{m} \in K_{m}\right.$ for every $\left.j_{0}+1 \leq m \leq n\right\}$. This is a contradiction since $|u|=1$ on $\prod_{j=1}^{n} \partial K_{j}$. We conclude that u has a zero in int K.

Acknowledgements. The first author was partially supported by Grants-In-Aid for Scientific Research, Japan Society for the Promotion of Science.

References

1. J. Araujo and J.J. Font, Codimension 1 linear isometries on function algebras., Proc. Amer. Math. Soc. 127 (1999), 2273-2281.
2. R.M. Crownover, Commutants of shifts on Banach spaces, Michigan Math. J. 19 (1972), 233-247.
3. J.J. Font, Isometries between function algebras with finite codimensional range, Manuscripta Math. 100 (1999), 13-21.
4. T. Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliffs, N. J., 1969.
5. K. Izuchi, Douglas algebras which admit codimension 1 linear isometries, Proc. Amer. Math. Soc. 129 (2001), 2069-2074.
6. K. Kasuga, There are no codimension 1 linear isometries on the ball and polydisk algebras, Sci. Math. Jpn. 54 (2001), 387-390; Correction, Sci. Math. Jpn. 56 (2002), 69-70.
7. K. de Leeuw, W. Rudin and J. Wermer, The isometries of some function spaces, Proc. Amer. Math. Soc. 11 (1960), 694-698.
8. R.M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, 108. Springer-Verlag, New York, 1986.
9. H. Rossi, Holomorphically convex sets in several complex variables, Ann. Math. 74 (1961), 470-493.
10. N. Sibony, Approximation de fonctions à valeurs dans un Fréchet, par des fonctions holomorphes, Ann. Inst. Fourier (Grenoble) 24 (1974), no.4, x-xi, 167-179 (1975).
11. T. Takayama and J. Wada, Isometric shift operators on the disc algebra, Tokyo J. Math. 21 (1998), 115-120.
${ }^{1}$ Department of Mathematics, Nilgata University, Nifgata 950-2181, Japan. E-mail address: hatori@math.sc.niigata-u.ac.jp

2 Academic Support Center, Kogakuin University, Tokyo 192-0015, Japan. E-mail address: kt13224@ns.kogakuin.ac.jp

[^0]: Date: Received: 19 June 2009; Revised: 18 September 2009; Accepted: 13 October 2009.

 * Corresponding author.

 2000 Mathematics Subject Classification. Primary 46B04; Secondary 32A38, 46J10.
 Key words and phrases. Shift operators, isometries, uniform algebra.

