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LINEAR ISOMETRIES OF FINITE CODIMENSIONS ON
BANACH ALGEBRAS OF HOLOMORPHIC FUNCTIONS

OSAMU HATORI1∗ AND KAZUHIRO KASUGA2

Communicated by J. M. Isidro

Abstract. Let K be a compact subset of the complex n-space and A(K) the
algebra of all continuous functions on K which are holomorphic on the interior
of K. In this paper we show that under some hypotheses on K, there exists
no linear isometry of finite codimension on A(K). Several compact subsets
including the closure of strictly pseudoconvex domain and the product of the
closure of plane domains which are bounded by a finite number of disjoint
smooth curves satisfy the hypotheses.

1. Introduction and preliminaries

In this paper we study non-existence theorems for finite codimension linear isome-
tries on certain algebras of holomorphic functions of several complex variables,
especially on the ball algebras and the polydisk algebras.

1.1. Linear isometries of finite codimensions on function algebras. A
linear operator T on a Banach space B is said to be a shift operator (cf. [2]) if
(1) T is an isometry; (2) the codimension of T (B) in B is 1; (3) ∩∞n=1T

n(B) =
{0}. A unilateral shift operator on a Hilbert space is a shift operator in the
sense of Crownover [2]. On the other hand there is a Banach space on which
no shift operators are admitted. A linear operator which satisfies the above
conditions (1) and (2) is called a codimension 1 linear isometry. If T is an linear
isometry on a Banach space B and the codimension of T (B) in B is a positive
integer l for an linear isometry T on a Banach space B, then T is said to be
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a codimension l linear isometry, or simply a finite codimension linear isometry.
Araujo and Font [1] studied and gave a structure theorem for codimension 1
linear isometries on function algebras. Here a function algebra on a compact
Hausdorff space X is a uniformly closed subalgebra of the algebra C(X) of all
complex valued continuous functions on X which separates the points of X and
contains constant functions. Izuchi [5] gave a condition for Douglas algebras which
admit codimension 1 linear isometries. Takayama and Wada [11] characterized
codimension 1 linear isometries on the disk algebra. They gave a sufficient and
necessary condition for a codimension 1 linear isometry to be a shift operator.
For the case of algebras of holomorphic functions of several complex variables,
one of the authors showed that there is no codimension 1 linear isometry on the
ball algebra and the polydisk algebra [6].

Font [3] studied finite codimension linear isometries on function algebras. For
every positive integer l, there exists a function algebra on which codimension k
linear isometries are admitted for every k ≥ l + 1, but are not admitted for every
1 ≤ k ≤ l. We will give such an example in section 2. Thus it is interesting to
study linear isometries on function algebras not only in the case of codimension
1 but also in the case of a finite codimension.

2. Propositions

In this section we give notations, definitions and some propositions.
Let S be a subset of Cn, S̄ the closure, ∂S the topological boundary and intS

the interior. Let B(p, ε) = {z ∈ Cn : |z − p| < ε}, where p ∈ Cn and ε > 0. The
space of all holomorphic functions on an open subset D of Cn is denoted by O(D).
Let K be a compact subset of Cn. Let A(K) = C(K) ∩O( intK). Let H(K) be
the closure in C(K) of the functions that are holomorphic in a neighborhood of
K. Let ∆ be the open unit disc in the complex plane. Then A(∆̄) is called the
disk algebra on the disk. Note that A(∆̄) = H(∆̄).

Let X be a compact Hausdorff space. Let E be a linear subspace of C(X). A
subset Y of X is called a boundary for E if the absolute value of each function in
E assumes its maximum on Y . If there exists a unique minimal closed boundary
for E, it is called the Shilov boundary for E and it is denoted by ∂E. Note that
function algebras admit the Shilov boundaries.

Let A be a function algebra on X and K a non-empty closed subset of X. We
say that K is a peak set if there is a function f ∈ A such that f(x) = 1 for x ∈ K
and |f(y)| < 1 for y ∈ X \K. We also say that K is a p-set if it is the intersection
of peak sets. A point x ∈ X is a p-point if the singleton {x} is a p-set.

For a positive integer l, put

Al = {f ∈ A(∆̄) : f (k)(0) = 0 for every 1 ≤ k ≤ l},

where f (k)(0) is the k-th derivative of f at the origin 0.
Then Al is a function algebra on ∆̄ such that the unit circle Γ = {z ∈ C : |z| =

1} is the Choquet boundary. In fact, for w ∈ Γ, put f(z) = 1+w̄l+1zl+1

2
. Then

f ∈ Al. Since f(w) = 1 and |f(z)| < 1 for z ∈ ∆̄ with z 6= w, a representing
measure on Al is only the Dirac measure δw. Then Γ ⊂ Ch(Al), where Ch(Al)



LINEAR ISOMETRIES OF FINITE CODIMENSIONS 111

is the Choquet boundary for Al. On the other hand Ch(Al) ⊂ Ch(A(∆̄)) = Γ.
Hence Ch(Al) = Γ. In general for a function algebra A on X the set which
consists of all the p-points coincides with the Choquet boundary for A. Note
that the closure of the Choquet boundary is the Shilov boundary.

Proposition 2.1. Let l be a positive integer. Then for every integer m with
m ≥ l + 1 there exists a codimension m linear isometry on Al. On the other
hand, for every integer k with 1 ≤ k ≤ l, there is no codimension k linear
isometry on Al.

Proof. Let m ≥ l + 1. Then the operator T defined by T (f) = zmf for f ∈ Al is
obviously a codimension m linear isometry on Al.

On the other hand, suppose that T is a codimension k linear isometry on Al

for some positive integer k. We will show that k ≥ l + 1. Since the Choquet
boundary for Al is the unit circle Γ and Γ has no isolated point, we see by the
similar way to the used one in the proof of Theorem 1.1 in [11] that there exist
a continuous map τ from Γ onto itself and a function u ∈ A(∆̄) with |u| = 1 on
Γ such that

Tf = u(f ◦ τ)

on Γ for every f ∈ Al. Since u = T1|Γ is unimodular on Γ and u ∈ Al, we see
that u is a constant of absolute value 1 or u = zl+1g, where g is a finite-Blaschke
product or a constant of absolute value 1. We will show that τ is a Möbius
transformation. For a function v ∈ A(∆̄)|Γ, we denote by ṽ the function in A(∆̄)
with ṽ|Γ = v.

First we consider the case where u is a constant and will show that the case
does not occur. For each positive integer j, τ l+j ∈ Al|Γ since Tzl+j = uτ l+j and
u is a constant. Then we see that

(τ̃ l+1)k−1τ̃ l+k+1 = (τ̃ l+2)k

holds for every positive integer k since (τ l+1)k−1τ l+k+1 = (τ l+2)k on Γ. Thus zeros

of τ̃ l+1 are zeros of τ̃ l+2. Let a be a zero of τ̃ l+1 with the order n1 and n2 the order

of a as a zero of τ̃ l+2. Then by the above equation we have that (k− 1)n1 ≤ kn2

holds for every k, so we see that n1 ≤ n2. It follows that τ̃ l+2/τ̃ l+1 ∈ A(∆̄).

Hence τ ∈ A(∆̄)|Γ since τ = τ̃ l+2/τ̃ l+1 on Γ. Clearly |τ | = 1 on Γ and τ(Γ) = Γ,
τ is a finite-Blaschke product. If the number of the factor of τ is greater than 1,
say m1, then τ−1(z0) consists of m1 points for every z0 ∈ Γ. It follows that the
codimension of {u(f ◦ τ) : f ∈ Al|Γ} in Al|Γ is infinite, which is a contradiction.

Hence we see that τ is a Möbius transformation. Since τ̃ l+1 = τ̃ l+1 ∈ Al, we have

0 = (τ̃ l+1)(1)(0) = (l + 1)τ̃ l(0)τ̃ (1)(0),

so τ̃(0) = 0, that is, τ(z) = cz with a unimodular constant c. Thus we have that
T is invertible, which is a contradiction since T is of finite codimension.

Next we consider the case where u = zl+1g, g is a finite-Blaschke product or

a constant. Since ũk−1ũτ kl+k = (ũτ l+1)k holds for every positive integer k, we

see that ũτ l+1/ũ ∈ A(∆̄) in the similar way to the above. Thus we see that
τ l+1 ∈ A(∆̄)|Γ and in the same way we see that τ l+j ∈ A(∆̄)|Γ for every positive
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integer j. So we see that τ is a Möbius tansformation as in the same way as
before. Then we have that

u(Al|Γ) ◦ τ ⊂ u(A(∆̄)|Γ) ◦ τ = uA(∆̄)|Γ ⊂ zl+1A(∆̄)|Γ ⊂ Al|Γ.

Since dim Al|Γ/zl+1A(∆̄)|Γ = 1 and dim u(A(∆̄)|Γ) ◦ τ/u(Al|Γ) ◦ τ = l, we see
that dim Al|Γ/u(Al|Γ) ◦ τ ≥ l + 1. We conclude that dim Al/T (Al) ≥ l + 1 since
Al is isometrically isomorphic to Al|Γ and (T (Al))|Γ = u(Al|Γ) ◦ τ . �

Proposition 2.2. Let D be a bounded domain in Cn . Let A = A(D̄). Let
T : A → A be a codimension l linear isometry for a positive integer l. Then
(∂A)0 = ∂A, where (∂A)0 is the closed boundary for T (A) described in Theorem
1 in [3].

Proof. Suppose that (∂A)0 6= ∂A. By Proposition 1 in [3], ∂A\(∂A)0 has at most
l points. Clearly (∂A)0 is closed and ∂A \ (∂A)0 is open, each point of ∂A \ (∂A)0

is an isolated point of ∂A. Since the set of p-points is dense in ∂A, each point
x of ∂A \ (∂A)0 is a p-point. Since D̄ is metrizable, the singleton {x} is a peak
set, that is, there is a function f ∈ A such that f(x) = 1, and |f(y)| < 1 for
y ∈ ∂A\{x}. Therefore f j → χ{x} uniformly on ∂A as j →∞, where χ{x} denotes
the characteristic function of {x}. Now χ{x} ∈ A and χ2

{x} = χ{x}. Therefore the

Gelfand transform χ̂{x} attains 1 or 0 on the maximal ideal space MA. Since
D ⊂ MA and D is connected, χ̂{x} = 1 on D or χ̂{x} = 0 on D. In either case we
arrive at a contradiction. �

Proposition 2.3. Let K be a nonempty compact subset of Cn which satisfies
K = ∩∞j=1Dj where Dj is a bounded and holomorphically convex open subset of

Cn and Dj ⊃ Dj+1. Then, for any z0 ∈ ∂K, any ε > 0, there exists an integer
jε such that Sj \ Kj 6= ∅ for any j > jε, where Sj is a connected component of
B(z0, ε) ∩ Dj which contains z0 and Kj = {z ∈ Dj : |f(z)| ≤ ||f ||∞(K) for any
f ∈ O(Dj)}.
Proof. Let dj = d(z0, D

c
j), where d(z0, D

c
j) = inf{|z0 − w| : w ∈ Dc

j}. Then
there exists a point wj ∈ ∂Dj such that |z0 − wj| = dj. In fact, there exists a
sequence {ak} ⊂ Dc

j such that lim
k→∞

|z0 − ak| = dj. Since {ak} is a bounded set,

there exists a subsequence {akj
} ⊂ {ak} and a point a0 such that lim

j→∞
akj

= a0.

Then |z0 − a0| = dj. Since Dc
j is closed, a0 ∈ Dc

j . Therefore a0 ∈ ∂Dj. In fact, if
a0 6∈ ∂Dj, then a0 ∈int(Dc

j). Then there exists an ε0 > 0 such that B(a0, ε0) ⊂ Dc
j .

On the other hand |a0 − z0| ε0
2dj

= ε0
2

< ε0. Then |a0 − (a0 − (a0 − z0)
ε0
2dj

)| < ε0.

Hence a0 − (a0 − z0)
ε0
2dj

∈ B(a0, ε0) ⊂ Dc
j . Then |z0 − (a0 − (a0 − z0)

ε0
2dj

)| =

|z0 − a0||1− ε0
2dj
| = dj − ε0

2
. This is a contradiction.

Clearly Dj ⊃ Dj+1, D
c
j ⊂ Dc

j+1. Then dj ≥ dj+1. Therefore limj→∞ dj = 0. In
fact, since the sequence {dj} is positive and monotone decreasing, there exists a
d ≥ 0, lim

j→∞
dj = d. Suppose d > 0. Then B(z0,

d
2
) ⊂ Dj for any j. Therefore

B(z0,
d
2
) ⊂ ∩∞j=1Dj = K. Since z0 ∈ ∂K, this is a contradiction. Hence lim

j→∞
dj = 0

There exists an integer jε > 0 such that dj < ε for any j > jε. Fix j > jε. Put
inf{t > 0 : z0 + t(wj − z0) 6∈ Sj} = t0. Now wj ∈ ∂Dj and Dj is open. Therefore
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wj 6∈ Sj. Hence t0 ≤ 1. Since B(z0, ε)∩Dj is open, Sj is open. Hence t0 > 0. Put
a0 = z0 + t0(wj − z0). Suppose a0 ∈ Sj. Since Sj is open, there exists δ > 0 such
that z0 + t(wj − z0) ∈ Sj for any t with t0 < t < t0 + δ. This is a contradiction.
Hence a0 6∈ Sj.

Suppose a0 ∈int(Sc
j ). Then there exists a δ > 0 such that z0 + t(wj −

z0) ∈int(Sc
j ) ⊂ Sc

j for any t with t0 − δ < t < t0. Therefore z0 + t(wj − z0) 6∈ Sj.
This is a contradiction. Hence a0 6∈int(Sc

j ).
Then a0 ∈ ∂Sj. Now |a0 − z0| = |t0(wj − z0)| ≤ |wj − z0| = dj < ε. Therefore

a0 ∈ B(z0, ε). Hence a0 ∈ (∂Sj) ∩ B(z0, ε). Note that a0 6∈ Kj. In fact, if
a0 ∈ Kj, a0 ∈ Dj. Then a0 ∈ B(z0, ε) ∩ Dj. Therefore there exists a δ > 0
such that B(a0, δ) ⊂ B(z0, ε)∩Dj. On the other hand, for any t with 0 < t < t0,
z0+t(wj−z0) ∈ Sj. Then B(a0, δ)∪Sj is connected and open. And B(a0, δ)∪Sj ⊂
B(z0, ε)∩Dj. Since Sj is a connected component, B(a0, δ) ⊂ Sj. Since a0 ∈ ∂Sj,
this is a contradiction. Hence a0 6∈ Kj.

Since Kj is compact, there exists δ > 0 such that B(a0, δ) ∩ Kj = ∅. Now
a0 ∈ ∂Sj. Therefore there exists a point b0 ∈ B(a0, δ)∩Sj. Hence b0 ∈ Sj\Kj. �

3. Main result

In this section we show that there is no linear isometry of finite codimensions
on A(K) for certain compact subsets K of Cn, especially in the case where K is a
closed ball or a closed polydisk. In particular, we show that for such compact sets
K a linear isometry with the codimension at most finite on A(K) is surjective
and represented by constant times of the composition operator induced by a
holomorphic automorphism of intK.

Theorem 3.1. Let n > 1 be a positive integer and K a non-empty compact subset
of Cn which satisfies the following five conditions.

(i) intK is connected and intK = K.
(ii) K = ∩∞j=1Dj where Dj is a bounded and holomorphically convex open

subset of Cn and Dj ⊃ Dj+1.
(iii) For every point p in K there exists an εp > 0 such that B(p, ε)∩intK is

connected for every ε with 0 < ε < εp.
(iv) A(K) = H(K).
(v) If a function u is in A(K) and |u| = 1 on ∂A(K), then u is constant or u

has a zero in intK.
Suppose that T is a linear isometry on A(K) such that the codimension of T (A(K))
in A(K) is at most finite. Then T is surjective. In particular, there exist a com-
plex number a of absolute value 1 and a homeomorphism ϕ of K onto itself which
is a biholomorphic map of intK onto itself such that Tf = a(f ◦ ϕ) for every
f ∈ A(K).

Proof. We will simply write A instead of A(K).
First we consider the case where T is surjective. In this case we see by a

theorem of de Leeuw, Rudin and Wermer [7] that T has the form

Tf = aT1f,
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where a ∈ A, a−1 ∈ A, |a(z)| = 1 for all x ∈ K, and T1 is an automorphism of
A. Since intK 6= ∅, a is a constant function. By (ii), (iv) and Theorem 2.12 in
[9], the maximal ideal space of A is K. Since T1 is an automorphism of A, by a
routine argument, there is a homeomorphism ϕ from K onto itself such that

T1f = f ◦ ϕ

holds for every f ∈ A. It follows that ϕ is a biholomorphic map from intK onto
itself. We see that Tf = a(f ◦ ϕ) holds for every f ∈ A.

Next we will show that there is no codimension l linear isometry on A for
any positive integer l. Suppose that for some positive integer l there exists a
codimension l linear isometry, say T : A → A. We will show a contradiction. By
Theorem A in [1] and Proposition 2.2, there exist a continuous map h from ∂A
onto ∂A and a continuous map a : ∂A → C, such that |a(x)| = 1 for all x ∈ ∂A,
and

(Tf)(x) = a(x)f(h(x))

for all x ∈ ∂A and all f ∈ A. So by (v), T1 is constant or T1 has a zero in intK.
Claim 1. T1 is constant.

To prove this, suppose that T1 has a zero in intK. Let F = {x ∈ intK:
(T1)(x) = 0}. We show that

T (A) ⊂ {f ∈ A : f = 0 on F}. (3.1)

Fix f ∈ A. Set

f̃ =
Tf

T1
on intK \ F.

We note that for any α ∈ C

α̃f =
T (αf)

T1
=

αT (f)

T1
= αf̃ . (3.2)

Put ||f ||∞(K) = supz∈K |f(z)|, the supremum norm of f . Then we see that the

inequality |f̃(x)| ≤ ||f ||∞(K) holds for every x ∈ intK \ F . To prove this, we
may asssume that ||f ||∞(K) = 1 by (3.2). Suppose that there exists a point x0 in

intK \F such that |f̃(x0)| > 1. Let k be a positive integer. Then T (fk) = afk ◦h
on ∂A. and (Tf)k = (af ◦ h)k = ak(f ◦ h)k = akfk ◦ h on ∂A. Therefore
(Tf)k = ak−1T (fk) on ∂A. Then (Tf)k = (T1)k−1T (fk) on ∂A. Hence we have

(Tf)k

(T1)k
=

T (fk)

T1

on intK \ F . Therefore (f̃)k = f̃k on intK \ F , and so we have T1(f̃)k =

(T1)f̃k = T (fk) on intK \ F . Recall that T is a linear isometry. Hence we have

||T (fk)||∞(K) = ||fk||∞(K) = ||f ||k∞(K) = 1. Since T1(f̃)k(x0) = T1(x0)(f̃)k(x0),

where T1(x0) 6= 0 and |f̃(x0)| > 1, we see that

|T1(f̃)k(x0)| → ∞
as k →∞. Hence |T (fk)(x0)| → ∞ as k →∞. This is a contradiction. It follows

that f̃ is bounded and holomorphic on intK \F . There is g ∈ O(intK) such that

g = f̃ on intK \ F by Theorem I.3.4 in [8] since F is a thin set. Clearly Tf and
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(T1)g are holomorphic on intK, Tf = (T1)f̃ = (T1)g on intK \ F and intK \ F
is dense in intK, it holds that Tf = (T1)g on intK.

If x ∈ F , then Tf(x) = (T1)(x)g(x) = 0. Hence (3.1) holds. Since n > 1, F
is an infinite set. Then dim A/TA ≥ dim A/{f ∈ A : f = 0 on F} = ∞. This is
a contradiction. We conclude that T1 has no zero in intK. Thus, by (v), we see
that T1 is constant, that is, a is a constant of absolute value 1. So we see that
Claim 1 holds.

Define the operator T̃ : A → A by

T̃ f = āT f

for f ∈ A. Then T̃ f = f ◦h on ∂A. By Remark 3.2 in [1], T̃ is a homomorphism.
Let πj be the jth coordinate function; πj(z) = zj, for z = (z1, . . . , zn), 1 ≤ j ≤ n.

Since K is closed and bounded, πj ∈ A. Put ϕj = T̃ πj, ϕ = (ϕ1, . . . , ϕn). Since
ϕj ∈ A, ϕ : K → Cn is continuous on K and holomorphic on intK. We claim

that ϕ(K) ⊂ K. To prove this, let z0 ∈ K. Define the map T̃z0 : A → C by

T̃z0f = (T̃ f)(z0), (f ∈ A).

Since T̃1 = āT1 = 1, T̃z0 is a non-zero complex homomorphism. Since MA =
MH(K) = K, there is a point w0 ∈ K such that (T̃ f)(z0) = T̃z0f = f(w0)

for every f ∈ A. In particular, πj(w0) = (T̃ πj)(z0) = ϕj(z0). Then ϕ(z0) =
(ϕ1(z0), . . . , ϕn(z0)) = (π1(w0), . . . , πn(w0)) = w0 ∈ K. Hence we see that
ϕ(K) ⊂ K.
Claim 2. T̃ f = f ◦ ϕ on K for every f ∈ A.

To prove this, fix f ∈ A and z0 ∈ K. By (iv), there are a sequence {Ωm}
of neighborhoods of K and a sequence {fm} of functions such that each fm is
in O(Ωm) and {fm} converges to f uniformly on K. Then, for each integer m,
there is an integer Nm such that ∩Nm

j=1D̄j ⊂ Ωm by the condition (ii). Therefore
fm ∈ O(DNm). By Theorem VII.4.1 in [8], there are Q1, . . . , Qn ∈ O(DNm×DNm)
such that

fm(z)− fm(w) =
n∑

j=1

(zj − wj)Qj(z, w)

for all z, w ∈ DNm . Then

fm(z)− fm(ϕ(z0)) =
n∑

j=1

(πj(z)− ϕj(z0))Qj(z, ϕ(z0))

holds for all z ∈ DNm . Since T̃ is a homomorphism, we see that

(T̃ (fm))(z0)− fm(ϕ(z0)) =
n∑

j=1

(ϕj(z0)− ϕj(z0))(T̃ (Qj(·, ϕ(z0))(z0))

= 0.

Hence we have (T̃ (fm))(z0) = fm(ϕ(z0)). Recall that T̃ is an isometry. Hence
we see that ||T̃ (fm) − T̃ (f)||∞(K) → 0 as m → ∞. Then (T̃ (f))(z0) = f(ϕ(z0)).

Since z0 ∈ K is arbitrary, we conclude that T̃ (f) = f ◦ ϕ holds on K. So we see
that Claim 2 holds.
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Claim 3. ϕ is locally one-to-one in K, that is, each point x ∈ K has a neighbor-
hood on which ϕ is one-to-one.

To prove this, suppose that ϕ is not locally one-to-one in K. Then there are
a point x0 ∈ K, and two sequences {xj} and {yj} in K such that limj→∞ xj =
x0, limj→∞ yj = x0, ϕ(xj) = ϕ(yj), |xj − x0| > |xj+1 − x0| > 0 and |yj − x0| >
|yj+1 − x0| > 0 for all j. We can find l + 1 functions {g1, g2, . . . , gl+1} ⊂ A such
that

gj(xi) =

{
1 j = i
0 j 6= i

and gj(yi) = 0 for every i and j with 1 ≤ i ≤ l + 1, 1 ≤ j ≤ l + 1. Suppose that

g = α1g1 + . . .+αl+1gl+1 is in T̃A for some α1, α2, . . . , αl+1 ∈ C, that is, g = h◦ϕ
for some h ∈ A. Then g(xj) = αj and g(yj) = 0 for each 1 ≤ j ≤ l + 1. Since
ϕ(xj) = ϕ(yj) and g = h ◦ ϕ, we have g(xj) = g(yj). Hence αj = 0 for every

1 ≤ j ≤ l+1. Thus {g1+T̃A, . . . , gl+1+T̃A} are linearly independent. Therefore
the codimension of T̃A in A is greater than l + 1. This is a contradiction. Hence
we have shown that for every point x ∈ K there is an open neighborhood Gx of
x in K such that ϕ is one-to-one in Gx. So we see that Claim 3 holds.

If x ∈ intK, we may assume that Gx ⊂ intK. We see by Theorem I.2.14 in
[8] that ϕ is biholomorphic from Gx onto ϕ(Gx). Since ϕ(Gx) is open in Cn and
ϕ(Gx) ⊂ intK, we see that ϕ( int K) ⊂ intK. Let k ∈ N and πk = (πk

1 , . . . , π
k
n).

Put F = (F1, . . . , Fn) =
∑N

k=1 akπ
k. Then there is an open set U in intK such

that F is univalent on U . In fact, put J = [∂Fi

∂zj
]. Since J =

[ N∑
k=1

ak
∂πk

i

∂zj

]
,

det J =
N∑

k=1

akkπk−1
1

N∑
k=1

akkπk−1
2 . . .

N∑
k=1

akkπk−1
n .

For j,
∑N

k=1 akkπk−1
j 6≡ 0, since

∑N
k=1 akπ

k
j is not a constant. Therefore det J 6≡ 0.

By Theorem I.1.19 in [8], {z = (z1, . . . , zn) ∈ D : (det J)(z) = 0} is a closed set
and does not contain an open subset of D. Then there exists a point a ∈ D such
that (det J)(a) 6= 0. By Theorem I.2.5 in [8], there exists an open set U in intK
such that F is univalent on U .
Claim 4. ϕ is univalent on intK.

To pove this, suppose that ϕ is not univalent on intK. Then there are two
different points p, p′ ∈ intK such that ϕ(p) = ϕ(p′). Put b = ϕ(p). Recall that
ϕ is locally univalent. Hence there are open neighborhoods Up and Up′ of p and
p′ respectively with Up ∩ Up′ = ∅ such that both ϕ|Up and ϕ|U ′

p
are univalent.

By Theorem I.2.14 in [8], ϕ(Up) is open. Since ϕ(p) ∈ ϕ(Up), ϕ(Up) is an open
neighborhood of b. Since ϕ(p) = ϕ(p′), ϕ(Up′) is also an open neighborhood of b.
So there is a sequence {wj} of different points in ϕ(Up) ∩ ϕ(Up′) with wj → b as
j → ∞, so there are points zj ∈ Up and z′j ∈ Up′ such that ϕ(zj) = ϕ(z′j) = wj.
Then we can find l + 1 functions {g1, g2, . . . , gl+1} ⊂ A such that

gj(zi) =

{
1, j = i
0, j 6= i,
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gj(z
′
i) = 0 for 1 ≤ j ≤ l + 1, 1 ≤ i ≤ l + 1.

In the same way as before, this implies that {g1 + T̃A, . . . , gl+1 + T̃A} is linearly
independent, which is a contradiction since the codimension of T̃A in A is l. So
we see that Claim 4 holds.

Let An = {(f1, . . . , fn) : fk ∈ A} and An ◦ ϕ = {(f1 ◦ ϕ, . . . , fn ◦ ϕ) : fk ∈ A}.
Then dim An/An ◦ϕ = ln. In fact, there exist gj,1, . . . , gj,n ∈ A\A ◦ϕ (1 ≤ j ≤ l)
such that

An = An ◦ ϕ + C(g1,1, g1,2, . . . , g1,n) + C(g2,1, g2,2, . . . , g2,n) + · · ·
+ C(gl,1, gl,2, . . . , gl,n).

Suppose

c1,1g1,1e1 + c1,2g1,2e2 + · · ·+ c1,ng1,nen

+ c2,1g2,1e1 + · · ·+ c2,ng2,nen + · · ·
+ cl,1gl,1e1 + · · ·+ cl,ngl,nen = 0,

where e1, . . . , en are the standard orthonormal basis elements in Cn and ci,j (1 ≤
i ≤ l, 1 ≤ j ≤ n) is constant. Since dim A/(A◦ϕ) = l, we have c1,1 = c1,2 = · · · =
cl,n = 0. Hence dim An/An ◦ ϕ = ln.

Put l′ = ln. Since {π1+An◦ϕ, . . . , πl′+1+An◦ϕ} are linearly dependent, there

exist l′ + 1 constants (not all zero) α1, . . . , αl′+1 such that
∑l′+1

j=1 αjπ
j ∈ An ◦ ϕ.

Then there exists u = (u1, . . . , un) ∈ An such that
∑l′+1

j=1 αjπ
j = u ◦ ϕ. Put

f =
∑l′+1

j=1 αjπ
j. Put D = intK and

M =

{
z ∈ D :

(
det

[
∂ui

∂zj

])
(z) = 0

}
.

By Theorem I.3.8 in [8], M = D or M is a thin subset of D. In the same way
as before, there is an open subset U of D such that f is univalent on U . Since
ϕ is univalent on D, f ◦ ϕ−1 = u is univalent on ϕ(U). By Theorem I.2.14 in
[8], det

[
∂ui

∂zj

]
6= 0 on ϕ(U). Then M 6= D. Hence M is a thin subset of D. For

a subset X of D we denote by ∂X the topological boundary of X in D. We
consider two cases: (a) ∂ϕ(D) ⊂ M ; (b) ∂ϕ(D) 6⊂ M . We will show that there
is a thin subset E of D such that ϕ(D) = D \ E in the case (a). We will also
show that (b) never happens.

First we consider the case (a). Recall that M is a thin subset of D. Hence
∂ϕ(D) is a thin subset of D. By Corollary I.3.6 in [8], D \ ∂ϕ(D) is connected.
Since ϕ(D) is an open subset of D, it holds that

D \ ∂ϕ(D) = ϕ(D) ∪ {(D \ ϕ(D)) \ ∂ϕ(D)}.
Clearly the closure ϕ(D) of ϕ(D) in D equals to ϕ(D) ∪ ∂ϕ(D), we see that

D \ ∂ϕ(D) = ϕ(D) ∪ (D \ ϕ(D)). Note that ϕ(D) and D \ ϕ(D) are disjoint
open subsets of D. Since D \ ∂ϕ(D) is connected and ϕ(D) 6= ∅, we see that

D \ ϕ(D) = ∅. Therefore D \ ∂ϕ(D) = ϕ(D). Let E = ∂ϕ(D). Recall that
∂ϕ(D) ⊂ M . Hence E is a thin subset of D.
Claim 5. Case (b) never happens.
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To prove this, we consider Case (b). Since ∂ϕ(D) 6⊂ M , there is a point
w0 ∈ ∂ϕ(D) ∩M c. Since det

[
∂ui

∂zj
(w0)

]
6= 0, by Theorem I.2.5 in [8], there is an

open neighborhood Uw0 of w0 in D such that u : Uw0 → u(Uw0) is biholomorphic.
Recall that w0 ∈ ∂ϕ(D). Hence there is a sequence {wj} of different points in
ϕ(D) ∩ Uw0 such that wj → w0 as j → ∞. Put zj = ϕ−1(wj) for every positive
integer j. By passing to a subsequence, we may suppose that there is a point
z0 ∈ K such that zj → z0 as j → ∞. Since ϕ(zj) = wj, we have ϕ(z0) = w0. If
z0 6∈ ∂K, then w0 = ϕ(z0) ∈ ϕ(D). This contradicts that w0 ∈ ∂ϕ(D). Hence
z0 ∈ ∂K.

Since f = u ◦ ϕ on K, f(z0) = u ◦ ϕ(z0) = u(w0). Put Vz0 = f−1(u(Uw0)).
Since u is univalent on Uw0 , then u(Uw0) is open, so Vz0 is an open neighborhood
of z0 in Cn. By the hypothesis (iii), there exists an ε > 0 such that V ′

z0
⊂ Vz0

and V ′
z0
∩ D is connected, where we denote V ′

z0
= {z ∈ Cn : |z − z0| < ε}.

Define the function ϕ0 : V ′
z0
→ D by ϕ0(z) = (u|Uw0)

−1 ◦ f(z) for z ∈ V ′
z0

.
Clearly f(V ′

z0
) ⊂ f(Vz0) ⊂ u(Uw0) and u is biholomorphic on Uw0 , ϕ0 is well-

defined and holomorphic on V ′
z0

into Uw0 . Now D 3 zj → z0 as j → ∞ and
V ′

z0
is an open neighborhood of z0. Therefore there is an integer j0 such that

zj0 ∈ V ′
z0
∩D. Recall that ϕ(zj0) = wj0 ∈ Uw0 and ϕ is a biholomorphic map from

D onto ϕ(D). Hence there is an open neighborhood Vzj0
of zj0 in D such that

Vzj0
⊂ V ′

z0
and ϕ(Vzj0

) ⊂ Uw0 . Let z ∈ Vzj0
. Since Vzj0

⊂ D, f(z) = u ◦ ϕ(z).

On the other hand, since ϕ0(z) = (u|Uw0)
−1 ◦ f(z), we have f(z) = u ◦ ϕ0(z).

Therefore u(ϕ(z)) = u(ϕ0(z)). Clearly ϕ0(V
′
z0

) ⊂ Uw0 and Vzj0
⊂ V ′

z0
, we see that

ϕ0(z) ∈ Uw0 . Since ϕ(Vzj0
) ⊂ Uw0 , we see that ϕ(z) ∈ Uw0 . Recall that u is

univalent on Uw0 . Hence we have ϕ(z) = ϕ0(z) for z ∈ Vzj0
. Since Vzj0

is an open
subset of V ′

z0
∩ D, we see that ϕ = ϕ0 on V ′

z0
∩ D by Theorem I.1.19. in [8], so

ϕ = ϕ0 on V ′
z0
∩K. Define the function ϕ̃ : K ∪ V ′

z0
→ K by

ϕ̃(z) =

{
ϕ(z), z ∈ K

ϕ0(z), z ∈ V ′
z0

.

Recall that ϕ0(V
′
z0

) ⊂ Uw0 ⊂ D. Hence ϕ̃ is a holomorphic map from D∪V ′
z0

into
D. We will show a contradiction. Put

B0 = {g ∈ A : ∃g̃ : holomorphic on V ′
z0
∪D such that g̃|D = g on D}.

Then dim A/B0 = ∞. In fact, fix ε > 0 such that B(z0, ε) ⊂ V ′
z0

. For any
j, we may assume that dj < ε. By Proposition 2.3, S1 \ K1 6= ∅. Fix z1 ∈
S1 \ K1. Then there exists a f1 ∈ O(D1) such that |f1(z1)| > ||f1||∞(K). By
Proposition 2.3, S2 \K2 6= ∅. Since S2 \K2 is open and f−1

1 (f1(z1)) is a thin set,
S2 \ K2 \ f−1

1 (f1(z1)) 6= ∅. Fix z2 ∈ S2 \ K2 \ f−1
1 (f1(z1)). Then there exists a

f2 ∈ O(D2) such that |f2(z2)| > ||f2||∞(K). By induction, fix

zk ∈ Sk \Kk \ f−1
1 (f1(z1)) ∪ . . . ∪ f−1

k−1(fk−1(zk−1)).

Then there exists a fk ∈ O(Dk) such that |fk(zk)| > ||fk||∞(K). Put hk = 1
fk−fk(zk)

on Dk\f−1
k (fk(zk)). By the hypothesis (ii), MA(K) = K. Since Kk∩f−1

k (fk(zk)) =
∅, hk ∈ A(K). Then {h1 + B0, . . . , hk + B0} are linearly independent. In fact,
suppose {h1 + B0, . . . , hk + B0} are not linearly independent. Then there exist
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k1, . . . , kj with k1 < . . . < kj and α1, . . . , αj ∈ C with α1 · · ·αj 6= 0 such that
α1hk1 + · · · + αjhkj

∈ B0. Therefore there exists a holomorphic function H on
V ′

z0
∪ D such that H = α1hk1 + · · · + αjhkj

on D. On the other hand, Skj
is

connected component of B(z0, ε) ∩ Dkj
which contains z0. Furthermore, Skj

⊂
B(z0, ε) and Skj

\ f−1
k1

(fk1(z1))∪ . . .∪ f−1
kj

(fkj
(zkj

)) is a nonempty connected open

set. In fact, f−1
k1

(fk1(z1)) ∪ . . . ∪ f−1
kj

(fkj
(zkj

)) is a thin set. Note that Skj
is the

connected open set. By Corollary I.3.6 in [8], Skj
\f−1

k1
(fk1(z1))∪· · ·∪f−1

kj
(fkj

(zkj
))

is connected. Since

K ∩ f−1
k1

(fk1(z1)) ∪ · · · ∪ f−1
kj

(fkj
(zkj

)) = ∅

and

Skj
\ f−1

k1
(fk1(z1)) ∪ · · · ∪ f−1

kj
(fkj

(zkj
)) 3 z0,

H and α1hk1 + · · ·+αjhkj
is holomorphic on Skj

\f−1
k1

(fk1(z1))∪ . . .∪f−1
kj

(fkj
(zkj

)).

Furthermore

z0 ∈ Skj
\ f−1

k1
(fk1(z1)) ∪ . . . ∪ f−1

kj
(fkj

(zkj
))

and

D ∩ (Skj
) \ f−1

k1
(fk1(z1)) ∪ . . . ∪ f−1

kj
(fkj

(zkj
)) 6= ∅.

Then

H = α1hk1 + · · ·+ αjhkj

on

Skj
\ f−1

k1
(fk1(z1)) ∪ . . . ∪ f−1

kj
(fkj

(zkj
)).

Since

zkj
∈ Skj

\Kkj
\ f−1

k1
(fk1(z1)) ∪ . . . ∪ f−1

kj−1(fkj
(zkj−1))

and kj−1 ≤ kj − 1,

lim
z→zkj

α1hk1(z) + · · ·+ αj−1hkj−1
(z) = α1hk1(zkj

) + · · ·+ αj−1hkj−1
(zkj

).

And |αjhkj
(z)| → ∞ as z → zkj

. Since lim
z→zkj

H(z) = H(zkj
), this is a contradic-

tion.
We also see that A◦ϕ ⊂ B0. Suppose that h ∈ A◦ϕ. Then there is g ∈ A with

g ◦ ϕ = h. Put g̃ = g ◦ ϕ̃. Then g̃ is well-defined and holomorphic on V ′
z0
∪ D.

Since ϕ̃|D = ϕ, g̃|D = g ◦ ϕ = h. It follows that h ∈ B0. We have proved that
A ◦ ϕ ⊂ B0. Thus we see that dim(A/B0) < ∞ since dim A/(A ◦ ϕ) < ∞. This
is a contradiction. We conclude that the case (b) never occurs. So we see that
Claim 5 holds. It follows that only the case (a) occurs.

We consider the case (a) from now on. As we already showed, ϕ(D) = D \ E
for a thin set E. Therefore ϕ is a continuous map from K onto K.
Claim 6. ϕ is one-to-one on K.

To prove this, suppose that ϕ is not one-to-one. Then there exists a point
b1 ∈ K such that ϕ−1(b1) contains at least two points. We will show that ϕ−1(b1)
contains at most l + 1 points. To prove this, suppose that ϕ−1(b1) contains at
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least l + 2 points. Take l + 2 points {a1, . . . , al+2} in ϕ−1(b1) . We can find l + 1
functions {g1, g2, . . . , gl+1} ⊂ A such that

gj(ai) =

{
1, j = i
0, j 6= i

for 1 ≤ j ≤ l + 1, 1 ≤ i ≤ l + 2. We will show that {g1 + T̃A, . . . , gl+1 + T̃A} is
linearly independent. Let α1g1 + . . . + αl+1gl+1 ∈ T̃A with α1, α2, . . . , αl+1 ∈ C.
Then there is a function g ∈ A such that g ◦ ϕ = α1g1 + . . . + αl+1gl+1. Then
g ◦ ϕ(aj) = g(b1) for 1 ≤ j ≤ l + 2. Since gj(al+2) = 0 for 1 ≤ j ≤ l + 2,
we have that g ◦ ϕ(al+2) = 0, so αj = α1g1(aj) + . . . + αl+1gl+1(aj) = 0 for

1 ≤ j ≤ l+1. Then {g1+T̃A, . . . , gl+1+T̃A} are linearly independent. Therefore
the codimension of T̃A in A is greater than l + 1. This is a contradiction. Hence
we have ϕ−1(b1) = {a1, . . . , aj} for some j with 2 ≤ j ≤ l + 1. In a similar way
to the above we see that the set {x ∈ K : ϕ−1(x) contains at least two points}
consists of at most l points. Therefore there exists an ε > 0 such that BK(ak, ε)′s
are disjoint, where BK(ak, ε) = {x ∈ K : |x− ak| < ε}, and ϕ−1(ϕ(x)) = {x} for
every x ∈ BK(ak, ε) \ {ak} and 1 ≤ k ≤ j. We can easily see that

K \ ϕ(K \ (BK(ak, ε) \ {ak})) = ϕ(BK(ak, ε) \ {ak}). (3.3)

It follows that ϕ((BK(ak, ε) \ {ak})) is open in K. By the way of the choice of
the number ε > 0, we can also easily show that for a sufficiently small number
δ > 0,

ϕ−1(BK(b1, δ)) ⊂
j⋃

k=1

BK(ak, ε),

where BK(b1, δ) = {x ∈ K : |x − b1| < δ}. By the hypothesis (iii), we see that
there exists a connected open neighborhood V of b1 in K such that V ⊂ BK(b1, δ).
Then V \ {b1} is also connected. In fact, for any p ∈ K, any connected open
neighborhood G in K of p, it is enough to prove that G\{p} is connected. Suppose
this is false. Then there exists a point p ∈ K and a connected open neighborhood
Gp in K of p such that Gp \ {p} is not connected. Note that p ∈ ∂K. Then there
are two nonempty open sets V1, V2 such that V1∪V2 = Gp\{p}, V1∩V2 = ∅. Then
there exists 0 < ε < εp such that B(p, ε) ∩K ⊂ Gp. Therefore B(p, ε) ∩ V1 6= ∅
and B(p, ε) ∩ V2 6= ∅. In fact, we suppose that B(p, ε) ∩ V1 = ∅. Let Ṽ2 =
(B(p, ε) ∩ K) ∪ V2. Then Ṽ2 is an open set in K and Ṽ2 ∪ V1 = Gp. Therefore

Ṽ2∩V1 = ((B(p, ε)∩K)∪V2)∩V1 = (B(p, ε)∩K∩V1)∪(V2∩V1) = ∅. Since V1 6= ∅
and Ṽ2 6= ∅, we have Gp is connected, which is a contradiction. Also B(p, ε)∩V2 6=
∅. Then B(p, ε) ∩ intK is not connected. In fact, (B(p, ε) ∩ intK) ∩ V1 6= ∅,
(B(p, ε) ∩ intK) ∩ V2 6= ∅. Then

((B(p, ε) ∩ intK) ∩ V1) ∩ ((B(p, ε) ∩ intK) ∩ V2)

= ((B(p, ε) ∩ intK) ∩ (V1 ∩ V2)) ⊂ V1 ∩ V2 = ∅

and

B(p, ε) ∩ intK ⊂ Gp = V1 ∪ V2.
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Therefore B(p, ε)∩ intK is not connected, which is a contradiction. Then we have

V ⊂ BK(b1, δ) ⊂ ∪j
k=1ϕ(BK(ak, ε)).

Since

V \ {b1} ⊂ ∪j
k=1(ϕ(BK(ak, ε)) \ {b1}) = ∪j

k=1(ϕ(BK(ak, ε) \ {ak})),
we have

V \ {b1} = ∪j
k=1((V \ {b1}) ∩ ϕ(BK(ak, ε) \ {ak}).

Let {xν} a sequence in BK(ak, ε) \ {ak} such that xν → ak as ν → ∞. Then
ϕ(xν) → ϕ(ak) = b1 as ν → ∞. For a sufficiently large ν, ϕ(xν) ∈ V . Since
xν 6= ak, ϕ(xν) 6= b1. Hence ϕ(xν) ∈ V \ {b1}. Therefore ϕ(xν) ∈ (V \ {b1}) ∩
ϕ(BK(ak, ε)) \ {ak}) 6= ∅. On the other hand, it is easy to see that

ϕ(BK(ak, ε)) \ {ak}) ∩ ϕ(BK(a′k, ε)) \ {a′k}) = ∅
holds if k 6= k′. Thus we have

((V \ {b1}) ∩ ϕ(BK(ak, ε)) \ {ak})) ∩ ((V \ {b1}) ∩ ϕ(BK(a′k, ε)) \ {a′k})) = ∅
if k 6= k′. Therefore V \ {b1} is not connected. This is a contradiction. We
conclude that ϕ is one-to-one. So we see that Claim 6 holds.

It follows that ϕ is a homeomorphism of K onto K and ϕ is holomorphic on
intK. Thus ϕ−1 is a homeomorphism of K onto K and ϕ−1 is holomorphic on
intK \ E. Define the operator S̃ : A → A by

S̃f = f ◦ ϕ−1 (f ∈ A).

Then T̃ S̃ = S̃T̃ is the identity operator. Hence the codimension of T̃A in A is 0.
This is a contradiction. �

4. Examples

In this section we give examples of domains which satisfy the five hypotheses
in Theorem in the previous section.

Let K be a compact subset of Cn. Recall that a point p ∈ ∂K is called a
peak point for A(K) if there is an h ∈ A(K) with h(p) = 1 and |h(z)| < 1 for
z ∈ K \ {p}. The family of invertible elements of A(K) is denoted by A(K)−1.

Example 4.1. Let n be a positive integer greater than 1. Let D be a bounded
strictly pseudoconvex domain with C2 boundary in Cn. Let K = D̄. Then K
satisfies the five hypotheses (i), (ii), (iii), (iv) and (v) in Theorem.

Proof. By the definition of K, (i) holds. Since D is strictly pseudoconvex, there
are a neighborhood U of ∂D and a strictly plurisubharmonic function r ∈ C2(U)
such that D∩U = {z ∈ U : r(z) < 0}. Put Dj = {z ∈ U : r(z) < 1

j
}. Then Dj is

strictly pseudoconvex. By Theorem VI.1.17 in [8], Dj is holomorphically convex.
Thus (ii) holds.

Suppose (iii) does not hold, that is, there exists p in K, for every εp > 0, there
exists ε such that 0 < ε < εp and B(p, ε) ∩ intK is not connected. Without
loss of generality we may assume p in ∂K. Since ∂D is of class C2, there are
an open neighborhood U of p and a real valued function r ∈ C2(U) such that
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U ∩ D = {x ∈ U : r(x) < 0} and dr(x) 6= 0 for x ∈ U . We may assume that
U ∩ D is not connected. Then there are two nonempty sets O1, O2 such that
O1∪O2 = U ∩D and O1∩O2 = ∅. Note that O1 and O2 are closed and bounded.
Then r has a local maximum or a local minimum on O1. Since dr(x) 6= 0 for
x ∈ U , this is a contradiction. Hence (iii) holds.

By Theorem VII.2.1 in [8], (iv) holds.
By Theorem VI.1.13 in [8], every p ∈ ∂K is a peak point, so ∂A(K) coincides

with the topological boundary ∂K of K in Cn. Let u ∈ A(K). Suppose that
|u| = 1 on ∂A(K) and u has no zero in intK. Then we have |u| ≤ 1 on K and
u ∈ A(K)−1, so |u−1| ≤ 1 on K since |u−1| = 1 on ∂A(K). It follows that |u| = 1
on K. Since |u| = 1 on K and intK = D 6= ∅, u is constant. �

Example 4.2. Let n be a positive integer greater than 1. Let K be a compact
and convex subset of Cn such that intK = K. Then K satisfies the five hypotheses
(i), (ii), (iii), (iv) and (v) in Theorem.

Proof. (i) is obvious. Without loss of generality we may assume that the origin
is in intK. Since K is convex, intK is convex, and so it is holomophically convex
by lemma II.3.6 in [8]. Let Dm =

(
1 + 1

m

)
intK for every positive integer m.

Then Dm is bounded and holomorphically convex since K is compact and Dm is
convex. We also see that K = ∩∞m=1Dm and Dm ⊃ Dm+1.

And (iii) clearly holds, because B(p, ε)∩intK is convex for all p ∈ K and all
ε > 0. Without loss of generality we may assume that 0 ∈int K. By the definitions
we have that H(K) ⊂ A(K). We will show that A(K) ⊂ H(K). Suppose that

f ∈ A(K). Put fj(z) = f
(

1
1+ 1

j

z
)
. Then fj is holomorphic on Dj = (1 + 1

j
)intK

and converges to f uniformly on K. Therefore we have that f ∈ H(K), so (iv)
holds.

Suppose that u ∈ A(K) and |u| = 1 on ∂A(K). Suppose that u has no zero
in K. Then u−1 ∈ A(K). Therefore |u−1| ≤ 1 on K since |u−1| = 1 on ∂A(K).
Hence |u| = 1 on K, so u is constant since intK 6= ∅.

Suppose that u has a zero in K and no zero in intK. Then u has a zero

in ∂K. Let p ∈ ∂K such that u(p) = 0. Put uj(z) = u
(

1
1+ 1

j

z
)
. Then uj is

holomorphic on Dj and has no zero on K. Therefore 1
uj
∈ A(K). On the other

hand uj(p) = u
(

1
1+ 1

j

p
)
→ 0 as j → ∞. Then there is an integer N such that

|uj(p)| < 1
2

if j > N . Since |u| is uniformly continuous on K, there is an integer

M such that |u(z)− uj(z)| < 1
3

if j > M, z ∈ K. In particular |1− |uj(z)|| < 1
3

if j > M, z ∈ ∂A(K). Therefore 2
3

< |uj| on ∂A(K) if j > M . Thus
∣∣ 1
uj

∣∣ < 3
2

on ∂A(K) if j > M . Recall that 1
uj
∈ A(K). Hence

∣∣ 1
uj

∣∣ < 3
2

on K if j > M . If

j > max{N, M}, then
∣∣ 1
uj

∣∣ < 3
2

on K. Since | 1
uj(p)

| > 2, this is a contradiction.

Hence u has a zero in intK. �

Example 4.3. Let n be a positive integer greater than 1 and Kj a compact
subset of C such that ∂Kj consists of a finite number of disjoint smooth closed
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curves. Let K =
∏n

j=1 Kj. Then K satisfies the five hypotheses (i), (ii), (iii), (iv)

and (v) in Theorem.

Proof. (i) is obvious. We will show that (iii) holds. We consider only for n = 2.
A proof is similar for general n. It suffices to show the following : for every point
p = (p1, p2) in K there exists an εp > 0 such that (D(p1, ε) × D(p2, ε)∩intK is
connected for every ε with 0 < ε < εp, where D(p1, ε) = {z ∈ C : |z − p1| < ε}.
Fix p ∈ K. Write intK=intK1×intK2. Since ∂Kj consists of a finite number of
disjoint smooth closed curves, there exists an εp1 > 0 such that D(p1, ε)∩intK1

is connected for every ε with 0 < ε < εp1 . And there exists an εp2 > 0 such that
D(p2, ε)∩intK2 is connected for every ε with 0 < ε < εp2 . Put εp = min{εp1 , εp2}.
Then

(D(p1, ε) ∩ intK1)× (D(p2, ε) ∩ intK2)

= (D(p1, ε)×D(p2, ε)) ∩ (intK1 × intK2)

= (D(p1, ε)×D(p2, ε)) ∩ intK

is connected for every ε with 0 < ε < εp. Hence (iii) holds.
Let D(Kj,

1
k
) = {z ∈ C : d(z, Kj) < 1

k
}, where

d(z, Kj) = inf{|z − w| : w ∈ Kj}, 1 ≤ j ≤ n

and Dk =
∏n

j=1 D(Kj,
1
k
). Then we have that K = ∩∞k=1Dk and Dk ⊃ Dk+1. By

Proposition II.3.8 in [8], Dk is holomorphically convex. Hence (ii) holds.
Let R(Kj) be the algebra of all continuous functions on Kj which can be ap-

proximated uniformly on Kj by rational functions with poles off Kj. By Theorem
II.10.4 in [4], R(Kj) = A(Kj). Since R(Kj) ⊂ H(Kj) ⊂ A(Kj), A(Kj) = H(Kj).
By Corollaire 8 in [10], A(K) = H(K). Hence (iv) holds.

Suppose u ∈ A(K) such that |u| = 1 on ∂A(K). If u has no zero in K, then
1
u
∈ A(K). Hence |u| = 1 on K. Since intK 6= ∅, u is constant. Now consider

the case that u has a zero in K. We claim that u has a zero in intK. Suppose
not. Then there exists a p = (p1, . . . , pn) ∈ ∂K with u(p) = 0. We note that
∂A(K) =

∏n
j=1 ∂Kj. We consider only for n = 2. A proof is similar for general

n. Let U be a neighborhood of x ∈ ∂K1. Then there exists f ∈ A(K1) such
that ||f ||∞ = 1 and |f | < 1 on K1\U . Let V be a neighborhood of y ∈ ∂K2.
Then there exists g ∈ A(K2) such that ||g||∞ = 1 and |g| < 1 on K2\V . Then
fg ∈ A(K1 ×K2), ||fg||∞ = 1 and |fg| < 1 on K1 ×K2\U × V . Hence (x, y) ∈
∂A(K1×K2). Conversely for F ∈ A(K1×K2), there exists (x, y) ∈ K1×K2 such
that |F (x, y)| = ||F ||∞. Since F (x, ·) ∈ A(K2), there exists y0 ∈ ∂A(K2) such
that |F (x, ·)| = |F (x, y0)|. Since F (·, y0) ∈ A(K1), there exists x0 ∈ ∂A(K1) such
that |F (x, y)| = |F (x0, y0)|. Therefore ∂K1× ∂K2 is a boundary for A(K1×K2).
Hence ∂A(K1 ×K2) ⊂ ∂K1 × ∂K2.

Since ∂A(K) =
∏n

j=1 ∂Kj , we see that there exists a j with 1 ≤ j ≤ n such
that pj ∈ intKj. Without loss of generality we may suppose that there exists
1 ≤ j0 ≤ n−1 such that pj ∈ ∂Kj for 1 ≤ j ≤ j0 and pj ∈ intKj for j0+1 ≤ j ≤ n.

Suppose that {(z1,m, . . . , zj0,m)} is a sequence of
∏j0

j=1 intKj which converges to

(p1, . . . , pj0). Put um : Kj0+1 → C (resp. u∞ : Kj0+1 → C) defined by um(z) =
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u(z1,m, . . . , zj0,m, z, pj0+2, . . . , pn) (resp. u∞(z) = u(p1, . . . , pj0 , z, pj0+2, . . . , pn)).
Then um, u∞ ∈ A(Kj0+1) and um has no zero in intKj0+1 since we have assumed
that u has no zero in intK. We also see that um converges to u∞ uniformly
on Kj0+1. Since u∞(pj0+1) = 0 and pj0+1 ∈ intKj0+1, we have that u∞ = 0
on Kj0+1 by Rouché’s theorem. It follows by induction we see that u = 0 on
{(p1, . . . , pj0 , zj0+1, . . . , zm, . . . , zn) ∈ Cn : zm ∈ Km for every j0 + 1 ≤ m ≤ n}.
This is a contradiction since |u| = 1 on

∏n
j=1 ∂Kj. We conclude that u has a zero

in intK. �
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