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UNIQUENESS OF ROTATION INVARIANT NORMS

J. ALAMINOS1, J. EXTREMERA2 AND A. R. VILLENA3∗

Communicated by M. Brešar

Abstract. If N ≥ 2, then there exist finitely many rotations of the sphere SN

such that the set of the corresponding rotation operators on Lp(SN ) determines
the norm topology for 1 < p ≤ ∞. For N = 1 the situation is different:
the norm topology of L2(S1) cannot be determined by the set of operators
corresponding to the rotations by elements of any ‘thin’ set of rotations of S1.

1. Introduction

K. Jarosz showed in [8] that the set of operators on Lp(S1), with 1 < p < ∞,
corresponding to all rotations on the circle S1 determines the norm topology of
Lp(S1). Following [8] we say that a set T of continuous linear operators on a given
Banach space X determines the norm topology of X if any complete norm | · | on
X such that the operator T : (X, | · |) → (X, | · |) is continuous for each T ∈ T is
equivalent to the given norm ‖·‖ on X. In [13] we found out the complete analogue
for Jarosz’s result for all the N -dimensional Euclidean spheres SN : for N ≥ 2 the
set of operators on Lp(SN), with 1 < p ≤ ∞, corresponding to all the rotations
on SN determines the norm topology of Lp(SN). It seems natural to study the
following question: how many rotation operators are required to determine the
norm topology of Lp(SN) with 1 < p ≤ ∞ and N ≥ 1? This is the question we
address in this paper. It turns out that there exists a strong dichotomy in the
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answer to this question depending on whether N = 1 or N ≥ 2. We prove that
while the norm topology of Lp(SN) with N ≥ 2 can be determined by the set of
operators corresponding to appropriate finitely many rotations of SN , the norm
topology of L2(S1) cannot be determined by the set of operators corresponding
to the rotations by elements of any ‘thin’ set of rotations of S1. It is worth
pointing out that the special feature of SN which is behind this phenomenon is
that the sets of operators on Lp(SN) (1 < p ≤ ∞) corresponding to the so-called
finite Kazhdan’s sets of the group SO(N + 1) of all rotations of SN determine
the norm topology of Lp(SN) and that SO(N + 1) has such sets for N ≥ 2 (see
Section 2 for the details). On the other hand, if E ⊂ R is such that there is a
trigonometric series

∑
[an cos(nθ) + bn sin(nθ)] which converges absolutely in E

but not everywhere, then the set of those operators on L2(S1) corresponding to
the rotations of S1 with angles from E does not determine the norm topology of
L2(S1) (see Section 3 for the details).

It seems appropriate to point out that the results of this paper are related to
some results contained in our previous paper [1] and the third’s author paper
[13]. Nevertheless it is important to know that throughout this paper we are not
using at all the techniques developed in the seminal paper [13], which are still on
the basis of [1].

2. The space Lp(SN) with N ≥ 2

Throughout this section, N ≥ 2 and SN stands for the N -dimensional Euclidean
sphere endowed with the Lebesgue measure. We denote by Lp(SN) (1 ≤ p ≤ ∞)
the Banach space of all complex-valued functions f (or rather, equivalence classes
thereof) on SN with

‖f‖p =

(∫
SN

|f(x)|p dx

)1/p

< ∞ (p < ∞)

‖f‖∞ = inf

{
sup

x∈SN\Z
|f(x)| : Z has zero measure

}
< ∞.

Also, G stands for the so-called special orthogonal group SO(N + 1) consisting
of all rotations of SN . Of course, such rotations are nothing but the restriction
to SN of the linear isometries of RN+1 which preserve the orientation. One may
also think of SO(N + 1) as the set of those (N + 1) × (N + 1) real matrices A
with AtA = I and det A = 1. Thus it is easy to see that it is a compact group
(with respect to the relative topology as a subset of R(N+1)2). Accordingly, there
is a non-zero, regular (positive) Borel measure λ on G which is left invariant,
i.e. λ(tE) = λ(E) for each t ∈ G and each Borel subset E of G. This is the
so-called Haar measure of G and it is unique up to a constant multiple (we refer
the reader to [5, Section 2.2] for a full account about such a measure). From now
on, we endow G with the Haar measure λ normalized so that λ(G) = 1 and we
simply write

∫
G
(·)dt for the integral with respect to this measure. We define the

rotations of every function f : SN → C by
(
τ(t)f

)
(x) = f (t−1(x)) for all x ∈ SN
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and t ∈ G. It is easily seen that

‖τ(t)f‖p = ‖f‖p, (1 ≤ p ≤ ∞, f ∈ Lp(SN), t ∈ G).

So τ(t) gives an isometry from Lp(SN) onto itself for each 1 ≤ p ≤ ∞ and we
write τp(t) for this restriction. These operators are the rotation operators and it
was shown in [13] that the set

{
τp(t) : Lp(SN) → Lp(SN), t ∈ G

}
of all rotation

operators on Lp(SN) determines the norm topology of Lp(SN) for 1 < p ≤ ∞.
As usual, a unitary representation of G is a group homomorphism π from G

into the group of all unitary operators U(Hπ) on some complex Hilbert space
Hπ, which is continuous with respect to the given topology of G and the strong
operator topology on U(Hπ). The Banach–Ruziewicz problem for the spheres asks
whether the Lebesgue measure on SN is the unique normalized, finitely additive
rotation invariant measure on all Lebesgue measurable subsets of SN . When
solving this problem it was shown that G has the so-called strong Kazhdan’s
property (T ) for N ≥ 2 ([4] in the cases N = 2, 3 and [10, 12] in the case N ≥ 4).
This means that there exists a finite set K of G and a positive ε with the property
that, whenever a unitary representation π of G satisfies supt∈K ‖π(t)u − u‖ < ε
for some unit vector u ∈ Hπ, then π has a non-zero invariant vector. In this case,
K is called a Kazhdan’s set, ε a Kazhdan’s constant, and (K, ε) a Kazhdan’s pair
for G. We refer the reader to [6] for a thorough discussion of Kazhdan’s property
(T ). It turned out in [1] that the strong Kazhdan’s property (T ) has applications
to automatic continuity.

Let π be a unitary representation of G on a finite-dimensional Hilbert space
Hπ (whose norm we denote by | · |π). We denote by Lp(SN , Hπ) (1 ≤ p ≤ ∞) the
Banach space of all (equivalence classes of) functions F : SN → Hπ with

‖F‖p =

(∫
SN

|F (x)|pπ dx

)1/p

< ∞ (p < ∞),

‖F‖∞ = inf

{
sup

x∈SN\Z
|F (x)|π : Z has zero measure

}
< ∞.

For every t ∈ G and every function F : SN → Hπ we define

(τ ⊗ π)(t)F : SN → Hπ,
(
(τ ⊗ π)(t)F

)
(x) = π(t)

(
F
(
t−1(x)

))
, (x ∈ SN).

It is straightforward to check that

‖(τ ⊗ π)(t)F‖p = ‖F‖p, (1 ≤ p ≤ ∞, F ∈ Lp(SN , Hπ), t ∈ G).

We write (τp ⊗ π)(t) for the restriction of (τ ⊗ π)(t) to Lp(SN , Hπ), which gives
an isometry from Lp(SN , Hπ) onto itself. It should be pointed out that the space
Lp(SN , Hπ) can be algebraically identified with the tensor product Lp(SN)⊗Hπ

by means of the natural map f ⊗ u 7→ f(·)u and, with this identification, it is
clear that (τp ⊗ π)(t) = τp(t) ⊗ π(t) for each t ∈ G. We now define, for every
1 ≤ p ≤ ∞, a continuous linear operator

τp � π : Lp(SN , Hπ) → Lp(SN , Hπ)



88 J. ALAMINOS, J. EXTREMERA, A.R. VILLENA

by (
(τp � π)F

)
(x) =

∫
G

π(t)
(
F
(
t−1(x)

))
dt, (F ∈ Lp(SN , Hπ), x ∈ SN).

Lemma 2.1. Let 1 ≤ p ≤ ∞ and let π be a unitary representation of G on a
finite-dimensional Hilbert space Hπ. Then

(τp � π) ◦
(
(τp ⊗ π)(t)

)
=
(
(τp ⊗ π)(t)

)
◦ (τp � π) = τp � π

for each t ∈ G and the operator τ � π is a continuous linear projection of norm
one from Lp(SN , Hπ) onto

Np
π =

{
F ∈ Lp(SN , Hπ) : (τp ⊗ π)(t)F = F, ∀t ∈ G

}
.

Furthermore, dim Np
π < ∞.

Proof. We begin by proving that

‖(τp � π)F‖p ≤ ‖F‖p

for each F ∈ Lp(SN , Hπ). If 1 ≤ p < ∞, then∣∣((τp � π)F
)
(x)
∣∣
π
≤
∫

G

∣∣∣π(t)
(
F
(
t−1(x)

))∣∣∣
π
dt =

∫
G

∣∣F (t−1(x)
)∣∣

π
dt ≤

(∫
G

∣∣F (t−1(x)
)∣∣p

π
dt

)1/p

and therefore

‖(τp � π)F‖p
p =

∫
SN

∣∣((τp � π)F
)
(x)
∣∣p
π
dx ≤

∫
SN

∫
G

∣∣F (t−1(x)
)∣∣p

π
dtdx =∫

G

∫
SN

∣∣F (t−1(x)
)∣∣p

π
dxdt =

∫
G

∫
SN

|F (y)|pπ dydt =

∫
G

‖F‖p
pdt = ‖F‖p

p.

In the case where p = ∞ the proof is straightforward and is left to the reader.
Since the linearity of τp � π is obvious, it may be concluded that τp � π is

continuous with ‖τp � π‖ ≤ 1.
On the other hand, for every F ∈ Lp(SN , Hπ), we have(

(τp � π)
(
(τp � π)F

))
(x) =

∫
G

π(t)
((

(τp � π)F
) (

t−1(x)
))

dt =∫
G

π(t)

(∫
G

π(s)
(
F
(
s−1
(
t−1(x)

)))
ds

)
dt =∫

G

∫
G

π(ts)
(
F
(
(ts)−1(x)

))
dsdt =∫

G

∫
G

π(r)
(
F
(
r−1(x)

))
dr︸ ︷︷ ︸

=
(
(τp�π)F

)
(x)

dt =

∫
G

(
(τp � π)F

)
(x)dt =

(
(τp � π)F

)
(x).

This entails that (τp � π)2 = τp � π.
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Let t ∈ G, F ∈ Lp(SN , Hπ), and x ∈ SN . Then(
(τp � π)

(
(τp ⊗ π)(t)F

))
(x) =

∫
G

π(s)
((

(τp ⊗ π)(t)F
) (

s−1(x)
))

ds =∫
G

π(s)
(
π(t)

(
F
(
t−1
((

s−1(x)
)))))

ds =

∫
G

π(st)
(
F
(
(st)−1(x)

))
ds =∫

G

π(r)
(
F
(
r−1(x)

))
dr =

(
(τp � π)F

)
(x),

which shows that (τp � π) ◦
(
(τp ⊗ π)(t)

)
= τp � π. On the other hand, we have(

(τp ⊗ π)(t)
(
(τp � π)F

))
(x) = π(t)

((
(τp � π)F

) (
t−1(x)

))
=

π(t)

(∫
G

π(s)
(
F
(
s−1
(
t−1(x)

))))
ds =

∫
G

π(ts)
(
F
(
(ts)−1(x)

))
ds =∫

G

π(r)
(
F
(
r−1(x)

) )
dr =

(
(τp � π)F

)
(x)

which yields
(
(τp ⊗ π)(t)

)
◦ (τp � π) = τp � π. Moreover, this identity obviously

entails that the range of τp � π is contained in Np
π. Now, if F ∈ Np

π, then(
(τp � π)F

)
(x) =

∫
G

(
(τp ⊗ π)(t)F

)
(x)dt =

∫
G

F (x)dt = F (x),

and so F is in the range of τp � π.
Finally, we check that dim Np

π < ∞. To this end we consider the linear operator

Ψ: Lp(SN , Hπ) → Lp(G, Hπ),

Ψ(F )(t) = π(t−1)
(
F (t(north pole))

)
, (F ∈ Lp(SN , Hπ), t ∈ G),

which is easily seen to be injective. Furthermore, if F ∈ Lp(SN , Hπ) and s, t ∈ G,
then

Ψ
(
(τp ⊗ π)(t)F

)
(s) = π(s−1)

(
π(t)

(
F (t−1(s(north pole)))

))
=

π((t−1s)−1)
(
F ((t−1s)(north pole))

)
= Ψ(F )(t−1s).

Hence, if F lies in Np
π, then

Ψ(F )(t−1 ·) = Ψ(F )(·), (t ∈ G),

which clearly forces that Ψ(F ) is constant. Consequently,

dim Np
π ≤ dim Ψ(Np

π) ≤ dim Hπ.

�

Lemma 2.2. Let 1 ≤ p ≤ ∞ and let f ∈ Lp(SN) such that

(τp � π)(f ⊗ u) = 0

for each unitary representation π of G on a finite-dimensional Hilbert space Hπ

and for each u ∈ Hπ. Then f = 0.
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Proof. Let 1 ≤ q ≤ ∞ with 1
p

+ 1
q

= 1 and g ∈ Lq(SN). Take a unitary represen-

tation π of G on a finite-dimensional Hilbert space Hπ and u, v ∈ Hπ. For every
x ∈ SN , we have

0 =
〈(

(τp � π)(f ⊗ u
)
(x), v

〉
π

=

∫
G

f
(
t−1(x)

)
〈π(t)u, v〉πdt

and hence

0 =

∫
SN

(∫
G

f
(
t−1(x)

)
〈π(t)u, v〉πdt

)
g(x)dx =∫

G

(∫
SN

f
(
t−1(x)

)
g(x)dx

)
〈π(t)u, v〉πdt.

This implies that ∫
G

(∫
SN

f
(
t−1(x)

)
g(x)dx

)
ξ(t)dt = 0

for each ξ in the linear span E of the functions t 7→ 〈π(t)u, v〉π as π ranges
over all unitary representations of G on a finite-dimensional Hilbert space Hπ

and u, v ranges over Hπ. The functions in E are the so-called trigonometric
polynomials on G and E is dense in C(G) (the Banach space of all complex-
valued continuous functions on G) (see [5, Section 5.2]) . We now claim that
the function t 7→

∫
SN f (t−1(x)) g(x)dx is continuous, in which case it follows that

vanishes everywhere on G, because of the density of E on C(G). Indeed, if p < ∞,
then the claim follows from [2, Chapter VIII, §2, Example 5]. In the case when
p = ∞ we write ∫

SN

f
(
t−1(x)

)
g(x)dx =

∫
SN

f(y)g(t(y))dy

and then we can apply the preceding case.
Since

∫
SN f (t−1(x)) g(x)dx = 0 ∀t ∈ G, by taking t = 1 we arrive at∫

SN

f(x)g(x)dx = 0.

Since the preceding identity holds for each g ∈ Lq(SN), we conclude that f = 0,
as required. �

Now it is important to know that [1, Lemma 4] can be rephrased as follows.

Lemma 2.3. Let (K, ε) be a Kazhdan’s pair for G with K finite and let 1 ≤ p <
∞. If π is a unitary representation of G on a finite-dimensional Hilbert space
Hπ, then

sup
t∈K

‖(τp ⊗ π)(t)F − F‖p ≥
(
3323p+7p

)−1
ε2‖F‖p

for each F ∈ Lp(SN , Hπ) such that (τp � π)F = 0.

Lemma 2.4. Let {t1, . . . , tJ} be a Kazhdan’s set for G and let 1 < p ≤ ∞. If π
is a unitary representation of G on a finite-dimensional Hilbert space Hπ, then
the range of the continuous linear operator

Ψp
π : Lp(SN , Hπ)× J. . . ×Lp(SN , Hπ) → Lp(SN , Hπ)



UNIQUENESS OF ROTATION INVARIANT NORMS 91

defined by

Ψp
π(F1, . . . , FJ) =

J∑
j=1

[
Fj − (τp ⊗ π)(t−1

j )Fj

]
, (F1, . . . , FJ ∈ Lp(SN , Hπ))

is Mp
π =

{
F ∈ Lp(SN , Hπ) : (τp � π)F = 0

}
.

Proof. We begin the proof by observing that Lp(SN , Hπ) can be identified in
a natural way with the dual Lq(SN , Hπ)∗ of Lq(SN , Hπ) where, of course, q is
such that 1

p
+ 1

q
= 1 and π is the so-called conjugate representation of π. Such

a representation is defined as follows. The Hilbert space Hπ is the conjugate
Hilbert space of Hπ, which is nothing but Hπ with scalar multiplication replaced
by (λ, u) 7→ λu and inner product replaced by 〈u, v〉π = 〈v, u〉π. Then π(t) is the
operator on Hπ such that coincides with π(t) as a set-theoretical transformation
on Hπ for each t ∈ G. The duality between the spaces Lp(SN , Hπ) and Lq(SN , Hπ)
is given by

〈F, G〉 =

∫
SN

〈F (x), G(x)〉π dx, (F ∈ Lp(SN , Hπ), G ∈ Lq(SN , Hπ)).

We now consider the spaces

Mq
π =

{
F ∈ Lq(SN , Hπ) : (τq � π)F = 0

}
,

Nq
π =

{
F ∈ Lq(SN , Hπ) : (τq � π)F = F

}
,

and the continuous linear operator

∆q
π : Mq

π → Lq(SN , Hπ)× J· · · ×Lq(SN , Hπ)

defined by

∆q
π(F ) =

(
F − (τq ⊗ π)(t1)F, . . . , F − (τq ⊗ π)(tJ)F

)
, (F ∈ Mq

π).

On account of Lemma 2.3, there exists δ > 0 such that

‖∆q
π(F )‖q ≥ δ‖F‖q, (F ∈ Mq

π).

This implies that ∆q
π is injective and that its range is closed, which entails that

the adjoint operator
(
∆q

π

)∗
is surjective (see [3, Proposition 1.8 and Theorem 1.10

in Chap. 6, §1]).
If F ∈ Lp(SN , Hπ), G ∈ Lq(SN , Hπ), and t ∈ G, then

〈F, (τq ⊗ π)(t)G〉 =

∫
SN

〈
F (x), π(t)

(
G
(
t−1(x)

))〉
π
dx =∫

SN

〈
π(t−1)

(
F (x)

)
, G
(
t−1(x)

)〉
π
dx =∫

SN

〈
π(t−1)

(
F
(
t(y)

))
, G(y)

〉
π
dy = 〈(τp ⊗ π)(t−1)F, G〉

and

〈F, (τq � π)G〉 =

∫
SN

〈
F (x),

∫
G

π(t)
(
G
(
t−1(x)

))
dt

〉
π

dx =
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∫
G

〈
F (x), π(t)

(
G
(
t−1(x)

))〉
π
dtdx =∫

G

∫
SN

〈
F (x), π(t)

(
G
(
t−1(x)

))〉
π
dxdt =∫

G

∫
SN

〈
F
(
t(y)

)
, π(t)

(
G(y)

)〉
π
dydt =∫

G

∫
SN

〈
π(t−1)

(
F
(
t(y)

))
, G(y)

〉
π
dydt =∫

SN

〈∫
G

π(t−1)
(
F
(
t(y)

))
dt, G(y)

〉
π

dy =

∫
SN

〈∫
G

π(s)
(
F
(
s−1(y)

))
ds, G(y)

〉
π

dy = 〈(τp � π)F, G〉,

which show that the adjoint operators (τq ⊗ π)(t)∗ and (τq � π)∗ are nothing but

the operators (τp ⊗ π)(t−1) y τp � π, respectively. The space
(
Mq

π

)∗
is identified

in a natural way with the quotient space Lp(SN , Hπ)/
(
Mq

π

)0
, where (·)0 stands

for the polar. On the other hand, since τq � π is a projection from Lq(SN , Hπ)
onto Nq

π, it follows that τp � π = (τq � π)∗ is a projection from Lp(SN , Hπ) onto(
ker(τq �π)

)0
=
(
Mq

π

)0
. Accordingly, Np

π =
(
Mq

π

)0
and

(
∆q

π

)∗
can be thought of

as the operator

Lp(SN , Hπ)× J· · · ×Lp(SN , Hπ) → Lp(SN , Hπ)

Np
π

given by (
∆q

π

)∗
(F1, . . . , FJ) =

J∑
j=1

[
Fj − (τp ⊗ π)(t−1

j )Fj

]
+ Np

π

for all F1, . . . , FJ ∈ Lp(SN , Hπ). On the other hand, the operator

Λp
π :

Lp(SN , Hπ)

Np
π

→ Mp
π, Λp

π(F + Np
π) = F − (τp � π)F, (F ∈ Lp(SN , Hπ))

is an isomorphism and clearly we have

Λp
π ◦ (∆q

π)∗ = Ψp
π,

which proves the lemma. �

Theorem 2.5. Let N be a positive integer with N ≥ 2. Then there exist finitely
many rotations of SN such that the set consisting of the corresponding rotation
operators on Lp(SN) determines the norm topology of that space for 1 < p ≤
∞. Specifically, the set of operators on Lp(SN) corresponding to the rotations
{t1, . . . , tJ} of any Kazhdan set for SO(N + 1) determines the norm topology of
Lp(SN).
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Proof. Let K = {t1, . . . , tJ} be a Kazhdan set for G and let ‖ · ‖ be a complete
norm on Lp(SN) with the property that the operator τp(tj) from (Lp(SN), ‖ · ‖)
into itself is continuous for each j = 1, . . . , J . It is an immediate restatement of
the closed graph theorem that the norms ‖ · ‖ and ‖ · ‖p are equivalent if and
only if 0 is the only function f in Lp(SN) with the property that there exists a
sequence of functions (fn) in Lp(SN) converging to 0 with respect to ‖ · ‖ and
converging to f with respect to ‖ · ‖p. Our procedure consists in proving that for
such a function f , we have τp � π(f ⊗ u) = {0} for each unitary representation π
of G on a finite-dimensional Hilbert space Hπ and for each u ∈ Hπ. Then Lemma
2.2 yields f = 0 and so the equivalence of ‖ · ‖ and ‖ · ‖p.

It should be noted that the Banach isomorphism theorem entails that the
operators τp (tj

−1) : (Lp(SN), ‖ · ‖) → (Lp(SN), ‖ · ‖) (j = 1, . . . , J) are also
continuous.

Let π be a unitary representation of G on a finite-dimensional Hilbert space
Hπ. We consider the norm ‖ · ‖π on Lp(SN , Hπ) defined by

‖F‖π = sup
{
‖〈F (·), u〉π‖ : u ∈ Hπ, |u|π = 1

}
.

Let Mp
π and Np

π the subspaces of Lp(SN , Hπ) introduced in Lemmas 2.1 and
2.4. On account of Lemma 2.1, we have

Lp(SN , Hπ) = Mp
π ⊕Np

π

and dim Np
π < ∞. We consider the operator Ψp

π given in Lemma 2.4 acting on
Lp(SN , Hπ) equipped with the new norm ‖ · ‖π, i.e.

Ψp
π :
(
Lp(SN , Hπ), ‖ · ‖π

)
× J. . . ×

(
Lp(SN , Hπ), ‖ · ‖π

)
→
(
Lp(SN , Hπ), ‖ · ‖π

)
,

Ψp
π(F1, . . . , FJ) =

J∑
j=1

[
Fj − (τp ⊗ π)(t−1

j )Fj

]
, (F1, . . . , FJ ∈ Lp(SN , Hπ)),

which, according to our hypothesis, is obviously continuous. On account of
Lemma 2.4, the range of that operator is Mp

π, which is finite-codimensional. From
[11, Lemma 3.3] it follows that Mp

π is a closed subspace of (Lp(SN , Hπ), ‖ · ‖π).
Since Np

π is also closed in (Lp(SN , Hπ), ‖ · ‖π) (because it is finite-dimensional), it
may be concluded that the map

(Mp
π, ‖ · ‖π)× (Np

π, ‖ · ‖π) →
(
Lp(SN , Hπ), ‖ · ‖π

)
, (F, G) 7→ F + G

is an isomorphism.
Let (fn) be a sequence of functions in Lp(SN) converging to zero with respect

to the norm ‖ · ‖ and converging to some function f ∈ Lp(SN) with respect to the
norm ‖ · ‖p. Let u ∈ Hπ. We now write

fn ⊗ u = Gn + Hn, Gn ∈ Mp
π, Hn ∈ Np

π, (n ∈ N)

with

‖ · ‖π − lim
n→∞

Gn = 0 and ‖ · ‖π − lim
n→∞

Hn = 0.

Since dim Np
π < ∞, it follows that the norms ‖·‖π and ‖·‖p are equivalent on this

space. Consequently, (Hn) also converges to zero with respect to the norm ‖ · ‖p
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and therefore (Gn) converges to f ⊗ u with respect to ‖ · ‖p. Since the operator
τp � π is continuous on (Lp(SN , Hπ), ‖ · ‖p), it follows that

‖ · ‖p − lim
n→∞

(τ � π)Gn︸ ︷︷ ︸
=0

= (τ � π)(f ⊗ u)

and so (τ � π)(f ⊗ u) = 0, as required. �

3. The space L2(S1) and thin sets of rotations

Throughout this section we restrict our attention to the spaces Lp(S1). As
in the preceding section, we denote by τp(t)f the rotation of f ∈ Lp(S1) by
t ∈ SO(2). Of course, S1 can be thought of as the set of complex numbers
T = {z ∈ C : |z| = 1}, which turns into a compact abelian group with respect to
the usual multiplication of complex numbers. This is the so-called circle group.

On the other hand, the map θ 7→
( cos(θ) − sin(θ)

sin(θ) cos(θ)

)
gives an isomorphism from the

group R/2πZ onto SO(2). Moreover, R/2πZ can be identified with the group T
by mean of the natural map θ 7→ eiθ, so that the action τp of T on Lp(S1) is given
by (

τp(z)f
)
(w) = f(z−1w), (f ∈ Lp(S1), z, w ∈ T).

A straightforward consequence of [8] is the following result.

Theorem 3.1. Let E be a subset of SO(2) for which one of the following asser-
tions holds:

i. E is a measurable set of positive Lebesgue measure.
ii. SO(2) \ E is of the first category.

Then the set of rotation operators on Lp(S1) corresponding to the rotations of S1

by elements of E determines the norm topology of Lp(S1) for each 1 < p < ∞.

Proof. Let 1 < p < ∞ and let | · | be any complete norm on Lp(S1). It is easily
seen that the set of those z ∈ SO(2) such that the rotation operator τp(z) from
(Lp(S1), | · |) into itself is continuous is a subgroup of SO(2).

If E satisfies one of the properties of the theorem, then it is well known that
the subgroup generated by E is SO(2) (see [15, Vol. I, p. 250], for example).
Consequently, if the norm | · | makes the operators τp(z) with z ∈ E continuous,
then it makes all operators τp(z) with z ∈ SO(2) continuous. Hence [8, Theorem
3.5] gives the desired conclusion. �

Our next objective is to prove that the set of operators corresponding to any
thin set of rotations of S1 does not determine the norm topology of L2(S1). To
this end we involve the following two results.

Lemma 3.2. Let T be a set of continuous linear operators on a Banach space
X. Suppose that there exist a non-zero vector x0 ∈ X, a discontinuous linear
functional φ on X, and a family (λT )T∈T of complex numbers such that

i. Tx0 = λT x0 for each T ∈ T ;
ii. φ(Tx) = λT φ(x) for all T ∈ T and x ∈ X.

Then T does not determine the norm of X.
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Proof. Pick α ∈ C \ {0, φ(x0)}. It is easily seen that the map Φ: X → X defined
by Φ(x) = αx − φ(x)x0 is a discontinuous invertible linear map. Consequently,
the map | · | defined on X by |x| = ‖Φ(x)‖ for each x ∈ X is a complete norm on
X which is not equivalent to the given norm ‖ · ‖. On the other hand, for every
T ∈ T we have

|T (x)| = ‖αT (x)− φ(Tx)x0‖ = ‖αT (x)− φ(x)λT x0‖ =

‖αT (x)− φ(x)T (x0)‖ = ‖T (Φ(x))‖ ≤ ‖T‖‖Φ(x)‖ = ‖T‖|x|
for each x ∈ X, which shows that T is continuous with respect to the norm
| · |. �

Lemma 3.3. Let (kn) be a strictly increasing sequence of positive integers and
let (ρn) be a sequence of real numbers such that ρn ≥ 0 and

∑∞
n=1 ρn = ∞.

Then there exists a discontinuous linear functional on L2(T) which vanishes on{
f ∈ L2(T) :

∑∞
n=1

√
ρn|f̂(kn)| < ∞

}
, where f̂(k) stands for the Fourier trans-

form of f at k for each k ∈ Z.

Proof. Write M =
{
x ∈ `2(Z) :

∑∞
n=1

√
ρn|xkn| < ∞

}
. It is clear that M is dense

in `2(Z). If it were M = `2(Z), a standard application of the uniform boundedness
theorem (see [14, Example 2 in Section 7.6]) would give

∑∞
n=1 ρn < ∞, contrary

to our assumption. Thus M 6= `2(Z) and there exists a discontinuous linear

functional φ on `2(Z) vanishing at M . Of course, the linear functional f 7→ φ(f̂ )
defined on L2(T) satisfies our requirements. �

Let us recall that a set E ⊂ R (or rather, E ⊂ R/2πZ thereof) is said to
be a N-set if there exists a trigonometric series

∑
[an cos(nθ) + bn sin(nθ)] which

converges absolutely in E but not everywhere (see [15, Vol. I, Chapter VI]). It
is well known that countable sets are N -sets. Let p > 0, let (kn) be a sequence
of positive integers, and let (an) be a sequence of real numbers with an ≥ 0 for
each n ∈ N and

∑∞
n=1 an = ∞. Then the set{

θ ∈ R :
∞∑

n=1

an

∣∣1− eiknθ
∣∣p < ∞

}
is shown in [7, Section 2.5] to be a Borel subgroup of R which is a N -set. Further-
more, this later group is uncountable in the case where

∑∞
n=1 an(kn/kn+1)

2 < ∞
and p = 2. It is well known that N -sets have Lebesgue measure zero. Never-
theless, it is also known that there are N -sets supporting continuous probability
measures. It is even known that there are N -sets which have Hausdorff dimension
1.

Theorem 3.4. Let E be a N-set of R/2πZ. Then the set of rotation operators
on L2(S1) corresponding to rotations of S1 by angles from E does not determine
the norm topology of L2(S1).

Proof. We first observe that τ2(z)(1) = 1 for each z ∈ T.
It is well known (see [15, Vol. I, Chapter VI]) that there exists a series of

sines
∑∞

n=1 ρn sin(nθ) converging absolutely on E but with ρn ≥ 0 (n ∈ N) and∑∞
n=1 ρn = ∞.
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Let θ1, . . . , θJ ∈ E, f1, . . . , fJ ∈ L2(T), and let f =
∑J

j=1(τ2(zj)−I)(fj), where

we are writing zj = eiθj for j = 1, . . . , J . Then

f̂(2n) =
J∑

j=1

(z−2n
j − 1)f̂j(2n)

and so

√
ρn

∣∣∣f̂(2n)
∣∣∣ ≤ J∑

j=1

√
ρn

∣∣z2n
j − 1

∣∣ ∣∣∣f̂j(2n)
∣∣∣ .

Therefore

∞∑
n=1

√
ρn

∣∣∣f̂(2n)
∣∣∣ ≤ J∑

j=1

( ∞∑
n=1

ρn

∣∣1− z2n
j

∣∣2)1/2( ∞∑
n=1

∣∣∣f̂j(2n)
∣∣∣2)1/2

 ≤
J∑

j=1

‖fj‖2

(
∞∑

n=1

ρn2
∣∣1− z2n

j

∣∣)1/2

=
J∑

j=1

‖fj‖2

(
∞∑

n=1

ρn4 |sin(nθj)|

)1/2

< ∞.

By Lemma 3.3, there is a discontinuous linear functional on L2(T) which vanishes
on
∑

θ∈E(τ2(e
iθ)−I)(L2(T)) and so it satisfies condition (ii) in Lemma 3.2, which

completes the proof. �

A closed subset E ⊂ R/2πZ is said to be a Dirichlet set if there is a strictly
increasing sequence (kn) of positive integers such that

lim
n→∞

sup
θ∈E

∣∣1− eiknθ
∣∣ = 0.

We refer the reader to [9] for a thorough discussion about such sets. Dirichlet
sets are N -sets and our next goal is to show that those thinner sets are useless for
determining the norm topology even when considering the convolution operators
corresponding to all the measures carried by such sets. Note that the convolution
operators corresponding to the point mass measures are nothing but the operators
corresponding to the rotations.

Theorem 3.5. Let E be a Dirichlet subset of E ⊂ R/2πZ. Then the set{
f 7→ 1

2π

∫ π

−π

f
(
e−iθ ·

)
dµ(θ)

}
of convolution operators on L2(S1) corresponding to all bounded complex-valued
regular Borel measures µ of R/2πZ which are concentrated on E does not deter-
mine the norm of L2(S1).

Proof. Let Θ denote the set of all measures described in the theorem and let
T = {Tµ : µ ∈ Θ} be the set of convolution operators corresponding to measures
of Θ.

Note that Tµ(1) = µ̂(0)1 for each µ ∈ Θ.
On account of the definition of Dirichlet set, we can construct a strictly in-

creasing sequence (kn) of positive integers such that
∣∣1− eiknθ

∣∣ < 4−n for all
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θ ∈ E and n ∈ N. Let µ1, . . . , µJ ∈ Θ, f1, . . . , fJ ∈ L2(S1), and let f =∑J
j=1(Tµj

− µ̂j(0)I)(fj). Then

f̂(kn) =
J∑

j=1

(µ̂j(kn)− µ̂j(0))f̂j(kn)

and so ∣∣∣f̂(kn)
∣∣∣ ≤ J∑

j=1

|µ̂j(kn)− µ̂j(0)|
∣∣∣f̂j(kn)

∣∣∣ .
On the other hand, if µ ∈ Θ, then

|µ̂(kn)− µ̂(0)| =
∣∣∣∣∫

E

(
e−iknθ − 1

)
dµ(θ)

∣∣∣∣ ≤ ∫
E

∣∣eiknθ − 1
∣∣ d|µ|(θ) ≤ 4−n‖µ‖

for each n ∈ N. Consequently, we deduce that∣∣∣f̂(kn)
∣∣∣ ≤ J∑

j=1

4−n‖µj‖
∣∣∣f̂j(kn)

∣∣∣ ,
which clearly implies that

∑∞
n=1 2n|f̂(kn)|2 < ∞. Lemma 3.3 yields a discon-

tinuous linear functional on L2(T) vanishing on
∑

µ∈Θ(Tµ − µ̂(0))(L2(T)). It is

straightforward to check that such a functional satisfies condition (ii) in Lemma
3.2 and therefore T does not determine the norm topology of L2(S1). �

Remark 3.6. One question still unanswered is whether or not there is a subgroup
of SO(2) of Lebesgue measure zero such that the set consisting of the correspond-
ing rotation operators on L2(S1) determines the norm topology of that space.
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[3] J.B. Conway, A Course in Functional Analysis, Graduate Texts in Mathematics, 96,

Springer-Verlag, New York, 1985.
[4] V.G. Drinfeld, Finitely additive measure on S2 and S3, invariant with respect to rotations,

Funct. Anal. Appl., 18 (1984), 245–246.
[5] G.B. Folland, A Course in Abstract Harmonic Analysis, Studies in Advanced Mathematics.

CRC Press, Boca Raton, FL, 1995.
[6] P. de la Harpe and A. Valette, La propriété (T) pour les groupes localement compacts,
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