ON A CLASS OF UNIVALENT FUNCTIONS DEFINED BY SĂLĂGEAN DIFFERENTIAL OPERATOR

ADELA OLIMPIA TĂUT ${ }^{1 *}$, GEORGIA IRINA OROS ${ }^{2}$ AND ROXANA ŞENDRUŢIU ${ }^{3}$
Communicated by M. S. Moslehian

Abstract

By using a certain operator S^{n}, we introduce a class of holomorphic functions $S_{n}(\beta)$, and obtain some subordination results. We also show that the set $S_{n}(\beta)$ is convex and obtain some new differential subordinations related to certain integral operators.

1. Introduction and preliminaries

Denote by U the unit disc of the complex plane :

$$
U=\{z \in \mathbb{C}:|z|<1\} .
$$

Let $\mathcal{H}(U)$ be the space of holomorphic functions in U and let

$$
\mathcal{A}_{n}=\left\{f \in \mathcal{H}(U): f(z)=z+a_{n+1} z^{n+1}+\cdots, \quad z \in U\right\}
$$

with $\mathcal{A}_{1}=\mathcal{A}$. For $a \in \mathbb{C}$ and $n \in \mathbb{N}$, let

$$
\mathcal{H}[a, n]=\left\{f \in \mathcal{H}(U): f(z)=a+a_{n} z^{n}+a_{n+1} z^{n+1}+\cdots, z \in U\right\} .
$$

Let

$$
K=\left\{f \in \mathcal{A}: \operatorname{Re} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1>0, z \in U\right\}
$$

denote the class of normalized convex functions in U.
A function f, analytic in U, is said to be convex if it is univalent and $f(U)$ is convex.

Date: Received: 17 August 2008; Accepted: 5 September 2008.

* Corresponding author.

2000 Mathematics Subject Classification. Primary 30C80; Secondary 30C45, 30A20, 34A40.
Key words and phrases. Differential operator, differential subordination, dominant, best dominant.

If f and g are analytic functions in U, then we say that f is subordinate to g, written $f \prec g$, if there is a function w analytic in U, with $\omega(0)=0,|\omega(z)|<1$, for all $z \in U$ such that $f(z)=g[\omega(z)]$ for all $z \in U$. If g is univalent, then $f \prec g$ if and only if $f(0)=g(0)$ and $f(U) \subseteq g(U)$.
Let $\psi: \mathbb{C}^{3} \times U \rightarrow \mathbb{C}$ be a function and let h be univalent in U. If p is analytic in U and satisfies the (second-order) differential subordination

$$
\begin{equation*}
\psi\left(p(z), z p^{\prime}(z), z^{2} p^{\prime \prime}(z) ; z\right) \prec h(z) \quad(z \in U) \tag{i}
\end{equation*}
$$

then p is called a solution of the differential subordination.
The univalent function q is called a dominant of the solution of the differential subordination, or more simply a dominant, if $p \prec q$ for all p satisfying (i).
A dominant \widetilde{q}, which satisfies $\widetilde{q} \prec q$ for all dominants q of (i) is said to be the best dominant of (i). (Note that the best dominant is unique up to a rotation of $U)$.

In order to prove the original results we use the following lemmas.
Lemma 1.1. [3] Let h be a convex function, with $h(0)=a$ and let $\gamma \in \mathbb{C}^{*}$ be a complex number with $\operatorname{Re} \gamma \geq 0$. If $p \in \mathcal{H}[a, n]$ and

$$
p(z)+\frac{1}{\gamma} z p^{\prime}(z) \prec h(z) \quad(z \in U)
$$

then

$$
p(z) \prec q(z) \prec h(z) \quad(z \in U)
$$

where

$$
q(z)=\frac{\gamma}{n z^{\gamma / n}} \int_{0}^{z} h(t) t^{\frac{\gamma}{n}-1} d t \quad(z \in U) .
$$

Function q is convex in U and is the best dominant.
Lemma 1.2. [1] Let $\operatorname{Re} r>0$ and let

$$
\omega=\frac{k^{2}+|r|^{2}-\left|k^{2}-r^{2}\right|}{4 k \operatorname{Re} r} .
$$

Let h be an analytic function in U with $h(0)=1$ and suppose that

$$
\operatorname{Re}\left(\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}+1\right)>-\omega .
$$

If

$$
p(z)=1+p_{n} z^{n}+p_{n+1} z^{n+1}+\cdots
$$

is analytic in U and

$$
p(z)+\frac{1}{r} z p^{\prime}(z) \prec h(z),
$$

then $p(z) \prec q(z)$, where q is a solution of the differential equation

$$
q(z)+\frac{n}{r} z q^{\prime}(z)=h(z), \quad q(0)=1
$$

given by

$$
q(z)=\frac{r}{n z^{r / n}} \int_{0}^{z} t^{\frac{r}{n}-1} h(t) d t .
$$

Moreover q is the best dominant.

Definition 1.3. [2] For $f \in \mathcal{A}, n \in \mathbb{N}^{*} \cup\{0\}$, the operator $S^{n} f$ is defined by $S^{n}: \mathcal{A} \rightarrow \mathcal{A}$

$$
\begin{aligned}
& S^{0} f(z)=f(z) \\
& S^{1} f(z)=z f^{\prime}(z) \\
& \cdots \\
& S^{n+1} f(z)=z\left[S^{n} f(z)\right]^{\prime}(z \in U)
\end{aligned}
$$

Remark 1.4. [1] If $f \in \mathcal{A}$,

$$
f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}
$$

then

$$
S^{n} f(z)=z+\sum_{j=2}^{\infty} j^{n} a_{j} z^{j} \quad(z \in U)
$$

Definition 1.5. [1] If $0 \leq \beta<1$ and $n \in \mathbb{N}$, we let $S_{n}(\beta)$ stand for the class of functions $f \in \mathcal{A}$, which satisfy the inequality

$$
\operatorname{Re}\left(S^{n} f\right)^{\prime}(z)>\beta \quad(z \in U)
$$

2. Main Results

We start this section with the following theorem.
Theorem 2.1. The set $S_{n}(\beta)$ is convex.
Proof. Let the function

$$
f_{i}(z)=z+\sum_{k=2}^{\infty} a_{k i} z^{k}, \quad i=1,2 \quad(z \in U)
$$

be in the class $S_{n}(\beta)$. It is sufficient to show that the function

$$
h(z)=\mu_{1} f_{1}(z)+\mu_{2} f_{2}(z)
$$

with μ_{1} and μ_{2} nonnegative and $\mu_{1}+\mu_{2}=1$ is in $S_{n}(\beta)$.
Since

$$
h(z)=z+\sum_{k=2}^{\infty}\left(\mu_{1} a_{k 1}+\mu_{2} a_{k 2}\right) z^{k} \quad(z \in U)
$$

then

$$
\begin{equation*}
S^{n} h(z)=z+\sum_{k=2}^{\infty} k^{n}\left(\mu_{1} a_{k 1}+\mu_{2} a_{k 2}\right) z^{k} \quad(z \in U) \tag{2.1}
\end{equation*}
$$

Differentiating (2.1), we get

$$
\left[S^{n} h(z)\right]^{\prime}=1+\sum_{k=2}^{\infty} k^{n+1}\left(\mu_{1} a_{k 1}+\mu_{2} a_{k 2}\right) z^{k-1}
$$

whence

$$
\begin{equation*}
\operatorname{Re}\left[S^{n} h(z)\right]^{\prime}=\operatorname{Re}\left[1+\sum_{k=2}^{\infty} k^{n+1}\left(\mu_{1} a_{k 1}+\mu_{2} a_{k 2}\right) z^{k-1}\right] \tag{2.2}
\end{equation*}
$$

$$
=1+\operatorname{Re}\left[\mu_{1} \sum_{k=2}^{\infty} k^{n+1} a_{k 1} z^{k-1}\right]+\operatorname{Re}\left[\mu_{2} \sum_{k=2}^{\infty} k^{n+1} a_{k 2} z^{k-1}\right] .
$$

Since $f_{1}, f_{2} \in S_{n}(\beta)$, we obtain

$$
\begin{equation*}
\operatorname{Re}\left[\mu_{i} \sum_{k=2}^{\infty} k^{n+1} a_{k i} z^{k-1}\right]>\mu_{i}(\beta-1) \quad(i=1,2) . \tag{2.3}
\end{equation*}
$$

Using (2.3) in (2.2), we obtain

$$
\operatorname{Re}\left[S^{n} h(z)\right]^{\prime}>1+\mu_{1}(\beta-1)+\mu_{2}(\beta-1) \quad(z \in U)
$$

and since $\mu_{1}+\mu_{2}=1$, we deduce

$$
\operatorname{Re}\left[S^{n} h(z)\right]^{\prime}>\beta
$$

i.e. $S_{n}(\beta)$ is convex.

Theorem 2.2. Let q be a convex function in U, with $q(0)=1$, and let

$$
h(z)=q(z)+\frac{1}{c+2} z q^{\prime}(z) \quad(z \in U)
$$

where c is a complex number, with $\operatorname{Re} c>-2$.
If $f \in S_{n}(\beta)$ and $F=I_{c}(f)$, where

$$
\begin{equation*}
F(z)=I_{c}(f)(z)=\frac{c+2}{z^{c+1}} \int_{0}^{z} t^{c} f(t) d t, \quad \operatorname{Re} c>-2 \tag{2.4}
\end{equation*}
$$

then

$$
\begin{equation*}
\left[S^{n} f(z)\right]^{\prime} \prec h(z) \quad(z \in U) \tag{2.5}
\end{equation*}
$$

implies

$$
\left[S^{n} F(z)\right] \prec q(z) \quad(z \in U)
$$

and this result is sharp.
Proof. From (2.4), we deduce

$$
\begin{equation*}
z^{c+1} F(z)=(c+2) \int_{0}^{z} t^{c} f(t) d t, \quad \operatorname{Re} c>-2 \quad(z \in U) \tag{2.6}
\end{equation*}
$$

Differentiating (2.6), with respect to z, we obtain

$$
(c+1) F(z)+z F^{\prime}(z)=(c+2) f(z) \quad(z \in U)
$$

and

$$
\begin{equation*}
(c+1) S^{n} F(z)+z\left[S^{n} F(z)\right]^{\prime}=(c+2) S^{n} f(z) \quad(z \in U) \tag{2.7}
\end{equation*}
$$

Differentiating (2.7), we get

$$
\begin{equation*}
\left[S^{n} F(z)\right]^{\prime}+\frac{z}{c+2}\left[S^{n} F(z)\right]^{\prime \prime}=\left[S^{n} f(z)\right]^{\prime} \quad(z \in U) \tag{2.8}
\end{equation*}
$$

Using (2.8), the differential subordination (2.5) becomes

$$
\begin{equation*}
\left[S^{n} F(z)\right]^{\prime}+\frac{1}{c+2} z\left[S^{n} F(z)\right]^{\prime \prime} \prec h(z)=q(z)+\frac{1}{c+2} z q^{\prime}(z) . \tag{2.9}
\end{equation*}
$$

Let

$$
\begin{align*}
& p(z)=\left[S^{n} F(z)\right]^{\prime}=\left[z+\sum_{j=2}^{\infty} j^{n} a_{j} z^{j}\right]^{\prime} \tag{2.10}\\
& \quad=1+p_{1} z+p_{2} z^{2}+\cdots, \quad p \in \mathcal{H}[1,1] .
\end{align*}
$$

Using (2.10) in (2.9), we have

$$
p(z)+\frac{1}{c+2} z p^{\prime}(z) \prec h(z)=q(z)+\frac{1}{c+2} z q^{\prime}(z) \quad(z \in U) .
$$

Using Lemma 1.1, we obtain $p(z) \prec q(z)$, i.e.

$$
\left[S^{n} F(z)\right]^{\prime} \prec q(z) \quad(z \in U)
$$

and q is the best dominant.
Example 2.3. If we take $c=1+i$ and $q(z)=\frac{1}{1-z}$, then

$$
h(z)=\frac{3+i-z(2+i)}{(3+i)(1-z)^{2}}
$$

and from Theorem, we deduce that if $f \in S_{n}(\beta)$ and F is given by

$$
\begin{equation*}
F(z)=\frac{3+i}{z^{2+i}} \int_{0}^{z} t^{1+i} f(t) d t \tag{2.11}
\end{equation*}
$$

then

$$
\begin{equation*}
z^{2+i} F(z)=(3+i) \int_{0}^{z} t^{1+i} f(t) d t \quad(z \in U) \tag{2.12}
\end{equation*}
$$

Differentiating (2.12) with respect to z, we obtain

$$
(2+i) F(z)+z F^{\prime}(z)=(3+i) f(z)
$$

and

$$
\begin{equation*}
(2+i) S^{n} F(z)+z\left[S^{n} F(z)\right]^{\prime}=(3+i) S^{n} f(z) \quad(z \in U) . \tag{2.13}
\end{equation*}
$$

Differentiating (2.13) we have

$$
\left[S^{n} F(z)\right]^{\prime}+\frac{z}{3+i}\left[S^{n} F(z)\right]^{\prime \prime}=\left[S^{n} f(z)\right]^{\prime} \quad(z \in U)
$$

and we deduce

$$
\left[S^{n} f(z)\right]^{\prime} \prec \frac{3+i-z(2+i)}{(3+i)(1-z)^{2}} \quad(z \in U)
$$

implies

$$
\left[S^{n} F(z)\right]^{\prime} \prec \frac{1}{1-z} \quad(z \in U),
$$

where F is given by (2.11).

Theorem 2.4. Let $\operatorname{Re} c>-2$ and let

$$
\begin{equation*}
\omega=\frac{1+|c+2|^{2}-\left|c^{2}+4 c+3\right|}{4 \operatorname{Re}(c+2)} \tag{2.14}
\end{equation*}
$$

Let h be an analytic function in U with $h(0)=1$ and suppose that

$$
\operatorname{Re} \frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}+1>-\omega
$$

If $f \in S_{n}(\beta)$ and $F=I_{c}(f)$, where F is defined by (2.4), then

$$
\begin{equation*}
\left[S^{n} f(z)\right]^{\prime} \prec h(z) \quad(z \in U), \tag{2.15}
\end{equation*}
$$

implies

$$
\left[S^{n} F(z)\right]^{\prime} \prec q(z) \quad(z \in U)
$$

where q is the solution of the differential equation

$$
q(z)+\frac{1}{c+2} z q^{\prime}(z)=h(z), \quad h(0)=1
$$

given by

$$
q(z)=\frac{c+2}{z^{c+2}} \int_{0}^{z} t^{c+1} h(t) d t \quad(z \in U)
$$

Moreover q is the best dominant.
Proof. In order to prove Theorem 2.4 we will use Lemma 1.2. The value of ω is given by (2.14). From (2.10) we have

$$
p(z)=\left[S^{n} F(z)\right]^{\prime}=1+p_{1} z+p_{2} z^{2}+\cdots, \quad p \in \mathcal{H}[1,1] \quad(z \in U) .
$$

Using Lemma 1.2, we deduce $k=1$. Using (2.8) and (2.10), the differential subordination (2.15) becomes

$$
\begin{equation*}
p(z)+\frac{1}{c+2} z p^{\prime}(z) \prec h(z)=q(z)+\frac{1}{c+2} z q^{\prime}(z) \quad(z \in U) . \tag{2.16}
\end{equation*}
$$

From subordination (2.16), by using Lemma 1.2, we deduce $r=c+2$ and

$$
p(z) \prec q(z) \quad(z \in U),
$$

where

$$
q(z)=\frac{c+2}{z^{c+2}} \int_{0}^{z} t^{c+1} h(t) d t \quad(z \in U)
$$

i.e.

$$
\left[S^{n} F(z)\right]^{\prime} \prec q(z)=\frac{c+2}{z^{c+2}} \int_{0}^{z} t^{c+1} h(t) d t \quad(z \in U)
$$

Moreover it is the best dominant.
Remark 2.5. If we put

$$
h(z)=\frac{1+(2 \beta-1) z}{1+z}
$$

in Theorem 2.4, we obtain the following interesting result.

Corollary 2.6. If $0 \leq \beta<1, n \in \mathbb{N}, \operatorname{Re} c>-2$ and I_{c} is defined by (2.4), then

$$
I_{c}\left[S_{n}(\beta)\right] \subset S_{n}(\delta),
$$

where $\delta=\min _{|z|=1} \operatorname{Re} q(z)=\delta(c, \beta)$ and this results is sharp. Moreover

$$
\begin{equation*}
\delta=\delta(c, \beta)=2 \beta-1+(c+2)(2-2 \beta) \sigma(c), \tag{2.17}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma(x)=\int_{0}^{z} \frac{t^{x+1}}{1+t} d t \tag{2.18}
\end{equation*}
$$

Proof. If we let

$$
h(z)=\frac{1+(2 \beta-1) z}{1+z}
$$

then h is convex and by Theorem 2.4, we deduce

$$
\begin{align*}
& {\left[S^{n} F(z)\right]^{\prime} } \prec q(z)=\frac{c+2}{z^{c+2}} \int_{0}^{z} t^{c+1} \cdot \frac{1+(2 \beta-1) t}{1+t} d t \tag{2.19}\\
&=2 \beta-1+\frac{(c+2)(2-2 \beta)}{z^{c+2}} \int_{0}^{z} \frac{t^{c+1}}{1+t} d t \\
&=2 \beta-1+\frac{(c+2)(2-2 \beta)}{z^{c+2}} \sigma(c),
\end{align*}
$$

where σ is given by (2.18).
If $\operatorname{Re} c>-2$, then from the convexity of q and the fact that $q(U)$ is symmetric with respect to the real axis, we deduce

$$
\begin{aligned}
& \operatorname{Re}\left[S^{n} F(z)\right]^{\prime} \geq \min _{|z|=1} \operatorname{Re} q(z)=\operatorname{Re} q(1)=\delta(c, \beta) \\
& =2 \beta-1+(c+2)(2-2 \beta) \sigma(c),
\end{aligned}
$$

where σ is given by (2.18).
From (2.19), we deduce

$$
I_{c}\left[S_{n}(\beta)\right] \subset S_{n}(\delta),
$$

where δ is given by (2.17).

References

[1] G. Oros and G.I. Oros, A Class of Holomorphic Function II, Libertas Math., 23 (2003), 65-68.
[2] G.S. Sălăgean, Subclasses of univalent functions, Complex Analysis-Fift RomanianFinnish Seminar, Part 1 (Bucharest, 1981), 362-372, Lecture Notes in Math., 1013, Springer, Berlin 1983.
[3] D.J. Hallenbeck and S. Ruscheweyh, Subordination by convex functions, Proc. Amer. Math. Soc., 52 (1975), 191-195.

[^0]
[^0]: 1,3 Faculty of Environmental Protection, University of Oradea, Str. Universităţit, No.1, 410087 Oradea, Romania.
 E-mail address: adela_taut@yahoo.com and roxana.sendrutiu@gmail.com
 ${ }^{2}$ Faculty of Sciences, University of Oradea, Str. Universităţí, No.1, 410087 Oradea, Romania.
 E-mail address: georgia_oros_ro@yahoo.co.uk

