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Abstract. Let A be a Banach algebra and let ϕ and ψ be continuous homo-
morphisms on A. We consider the following module actions on A,

a · x = ϕ(a)x, x · a = xψ(a) (a, x ∈ A).

We denote by A(ϕ,ψ) the above A-module. We call the Banach algebra A,
(ϕ,ψ)-weakly amenable if every derivation from A into (A(ϕ,ψ))∗ is inner. In
this paper among many other things we investigate the relations between weak
amenability and (ϕ,ψ)-weak amenability ofA. Some conditions can be imposed
on A such that the (ϕ′′, ψ′′)-weak amenability of A∗∗ implies the (ϕ,ψ)-weak
amenability of A.

1. Introduction and preliminaries

Let A be a Banach algebra and let X be a Banach A-module. Then a derivation
from A into X is a (bounded) linear map D : A −→ X such that for every
a, b ∈ A, D(ab) = D(a) · b+ a ·D(b). If x ∈ X, the map a 7→ a · x− x · a, (a ∈ A)
is a derivation. A derivation of this form is called an inner derivation. The set
of all bounded linear operators from A into X is denoted by B(A,X). The set
of all derivations from A into X is denoted by Z1(A,X), and the set of all inner

derivations from A into X is denoted by B1(A,X). Then H1(A,X) = Z1(A,X)
B1(A,X)

is

the first Hochschild cohomology group of A with coefficients in X.
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Let A be a Banach algebra and X be a Banach A-module. Then X∗ is the
dual of Banach A-module X, and is also a Banach A-module as well, if for each
a ∈ A , x ∈ X and x∗ ∈ X∗ we define

〈a · x∗, x〉 = 〈x∗, x · a〉, 〈x∗ · a, x〉 = 〈x∗, a · x〉.
A Banach algebra A is amenable if every derivation from A into every dual

Banach A-module is inner, equivalently if H1(A,X∗) = {0} for every Banach
A-module X, this definition was introduced by Johnson in [12]. A is weakly
amenable if H1(A,A∗) = {0}; this definition generalizes that introduced by Bade,
Curtis and Dales in [1]. We introduce the following new definition of amenability
which is related to homomorphisms of Banach algebras.

Let A be a Banach algebra and let ϕ and ψ be continuous homomorphisms on
A. We consider the following module actions on A,

a · x := ϕ(a)x, x · a := xψ(a) (a, x ∈ A).

We denote the above A-module by A(ϕ,ψ).
Let X be an A-module. A bounded linear mapping d : A → X is called a

(ϕ, ψ)-derivation if

d(ab) = d(a) · ϕ(b) + ψ(a) · d(b) (a, b ∈ A).

A bounded linear mapping d : A → X is called a (ϕ, ψ)-inner derivation if
there exists x ∈ X such that

d(a) = x · ϕ(a)− ψ(a) · x (a ∈ A).

Derivations of this form are studied in [14, 15, 16].

Definition 1.1. Let A be a Banach algebra and let ϕ and ψ be continuous homo-
morphisms on A. Then A is called (ϕ, ψ)-weakly amenable if H1(A, (A(ϕ,ψ))

∗) =
{0}.

Let A and B be Banach algebras. We denote by Hom(A,B) the metric space
of all bounded homomorphisms from A into B, with the metric derived from the
usual linear operator norm ‖ · ‖ on B(A,B) and denote Hom(A,A) by Hom(A).
The following assertions hold for any Banach algebra A.

(a) If A is amenable then A is an (ϕ, ψ)-weakly amenable for each ϕ and ψ in
Hom(A).

(b) A is weakly amenable if and only if A is an (id,id)-weakly amenable
(id=identity homomorphism).

(c) LetA be a commutative weakly amenable Banach algebra. Then Z1(A,X) =
{0} for each Banach A-module X [3, Theorem 2.8.63]. Therefore A is (ϕ, ψ)-
weakly amenable for all ϕ, ψ ∈ Hom(A) if and only if A is commutative and
weakly amenable.

Definition 1.2. Let A be a Banach algebra, X be a Banach A-module and let
ϕ, ψ ∈ Hom(A). A derivation D : A→ X is called approximately (ϕ, ψ)-inner if
there exists a net (xα) inX such that, for all a ∈ A, D(a) = limα xα·ϕ(a)−ψ(a)·xα
in norm.
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Definition 1.3. A Banach algebra A is approximately (ϕ, ψ)-weakly amenable
if every derivation D : A→ (A(ϕ,ψ))

∗ is approximately (ϕ, ψ)-inner.

Whenever ϕ = ψ = id, this is just the definition of approximate weak amenabil-
ity developed by Ghahramani and Loy in [9].

Definition 1.4. Let A be an algebra, and let ϕ ∈ ΦA∪{0} (ΦA be the character
space of A). A linear functional d on A is a point derivation at ϕ if

d(ab) = ϕ(a)d(b) + ϕ(b)d(a) (a, b ∈ A).

Throughout this paper A denotes a Banach algebra and A∗∗ is the second dual
of A equipped with the first Arens product. This product can be characterized
as the extension to A∗∗ × A∗∗ of the bilinear map A× A→ A : (a, b) → ab with
the following properties:

i) for fixed b′′ ∈ A∗∗, a′′ 7→ a′′b′′ is w∗-continuous on A∗∗.
ii) for fixed b ∈ A, a′′ 7→ ba′′ is w∗-continuous on A∗∗.

The image of A in A∗∗ under the canonical embedding is denoted by Â.
In section 2 we prove the main results for this new concept of amenability.

In section 3, we develop the relation between the (ϕ, ψ)-weak amenability of
a Banach algebra A and A∗∗. Finally in section 4 we give some examples to
show that the new concept of amenability is different from amenability and weak
amenability.

2. (ϕ, ψ)-weak amenability

Let A be a Banach algebra, and let A2 =span{ab: a,b∈ A}.
Proposition 2.1. Let A be Banach algebra and let ϕ, ψ ∈ Hom(A) such that

ϕ(a)b = aψ(b) for all a, b ∈ A. If A is (ϕ, ψ)-weakly amenable, then A2 = A,

where A2 is the closure of A2 in A.

Proof. Suppose A2 6= A. Take a0 ∈ A\A2 and f ∈ A∗ such that f |A2 = 0 and
〈f, a0〉 = 1. Define d : A→ (A(ϕ,ψ))

∗ by d(a) = 〈f, a〉f. It is easy check that d is
a (ϕ, ψ)-derivation. Since A is (ϕ, ψ)-weakly amenable, d is (ϕ, ψ)-inner, so that
there is a g ∈ (A(ϕ,ψ))

∗ such that d(a) = g · ϕ(a)− ψ(a) · g, for all a ∈ A. So we
have 〈da0, a0〉 = 1. On the other hand

〈d(a0), a0〉 = 〈g, ϕ(a0)a0〉 − 〈g, a0ψ(a0)〉 = 0.

This is a contradiction. �

Corollary 2.2. Let A be a Banach algebra. Then A is (0, 0)-weakly amenable if

and only if A2 = A.

Proof. Let A be (0, 0)-weakly amenable. Then by the above theorem, A2 = A.
For the converse let d : A → (A(0,0))

∗ be a (0, 0)-derivation. Then we have
d(A2) = {0}. Since d is continuous, we have d = 0. So d is (0, 0)-inner. �

Let A be a weakly amenable Banach algebra or A be a Banach algebra with
a bounded left (right) approximate identity. Then A2 is dense in A. Thus A is
(0, 0)-weakly amenable.



134 A. BODAGHI, M. ESHAGHI GORDJI, A.R. MEDGHALCHI

Proposition 2.3. Let A be a Banach algebra and ψ, ϕ and λ are continuous
homomorphisms from A into A. If ϕ is an epimorphism and A is (ψ ◦ ϕ, λ ◦ ϕ)-
weakly amenable, then A is (ψ, λ)-weakly amenable.

Proof. Let d : A → (A(ψ,λ))
∗ be a continuous (ψ, λ)-derivation, and D = d ◦ ϕ.

We see that D is a (ψ ◦ ϕ, λ ◦ ϕ)-derivation. So there exists a f ∈ (A(ψ◦ϕ,λ◦ϕ))
∗

such that for each a ∈ A, D(a) = f · (ψ ◦ ϕ)(a)− (λ ◦ ϕ)(a) · f . Let b ∈ A. Then
there exists a a ∈ A such that ϕ(a) = b and so

d(b) = d(ϕ(a)) = D(a) = f · ψ(ϕ(a))− λ(ϕ(a)) · f = f · ψ(b)− λ(b) · f.
Thus d is an (ψ, λ)-inner. �

Corollary 2.4. Let A be a Banach algebra and let ϕ ∈ Hom(A). If ϕ is an
epimorphism and A is (ϕn, ϕn)-weakly amenable for some n ∈ N. Then A is
weakly amenable.

There are Banach algebras which are (ϕ, ϕ)-weakly amenable where ϕ is not
an epimorphism, and A is weakly amenable. This will be presented in Examples
4.3 and 4.4. The converse of the Corollary 2.4 is true when ϕ2 = 1A or ϕ is
an epimorphism such that ϕ2|[A] = 1A where [A] = {ab − ba|a, b ∈ A}. In the
following theorems and corollaries we prove the above claims.

Theorem 2.5. Let A be a Banach algebra and let ψ, λ, ϕ ∈ Hom(A) and ϕ2 = 1A.
If A is (ψ, λ)-weakly amenable, then A is (ψ ◦ ϕ, λ ◦ ϕ)-weakly amenable.

Proof. Let D : A→ (A(ψ◦ϕ,λ◦ϕ))
∗ be a (ψ◦ϕ, λ◦ϕ)-derivation and let d = D◦ϕ−1.

It can be shown that d is a (ψ, λ)-derivation. Thus there exist a f ∈ (A(ψ,λ))
∗ such

that for all a ∈ A, d(a) = f ·ψ(a)−λ(a)·f and so we have D(a) = D(ϕ−1(ϕ(a)) =
d(ϕ(a)) = f ·ψ(ϕ(a))−λ(ϕ(a)) ·f , i.e., D is an (ψ ◦ϕ, λ◦ϕ)-inner derivation. �

Corollary 2.6. If A is weakly amenable and ϕ ∈ Hom(A) such that ϕ2 = 1A,
then A is (ϕn, ϕn)-weakly amenable for all n ∈ N.

Theorem 2.7. Let ϕ, ψ ∈ Hom(A) and let A be (ψ, ψ)-weakly amenable. If
ϕ|[A] = id and ϕ is an epimorphism, then A is (ϕ ◦ ψ, ϕ ◦ ψ)- weakly amenable.

Proof. Suppose that D : A → (A(ϕ◦ψ,ϕ◦ψ))
∗ is an (ϕ ◦ ψ, ϕ ◦ ψ)-derivation. Set

d : A→ (A(ψ,ψ))
∗ as follows

〈d(a), b〉 := 〈D(a), ϕ(b)〉.
Then d is a (ψ, ψ)-derivation. Thus there exists a f ∈ (A(ψ,ψ))

∗ such that for
every a ∈ A, d(a) = f · ψ(a) − ψ(a) · f. Let b ∈ A. Since ϕ is onto, there exists
b1 ∈ A such that b = ϕ(b1). So

〈D(a), b〉 = 〈d(a), b1〉
= 〈f · ψ(a)− ψ(a) · f, b1〉
= 〈f, ϕ(ψ(a)b1 − b1ψ(a))〉
= 〈f · ϕ ◦ ψ(a)− ϕ ◦ ψ(a) · f, b〉.

Therefore D is an (ϕ ◦ ψ, ϕ ◦ ψ)-inner. �
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Corollary 2.8. Let A be a Banach algebra and let ϕ ∈ Hom(A). Suppose that
A is weakly amenable and ϕ is an epimorphism such that ϕ|[A] = id. Then A is
(ϕn, ϕn)-weakly amenable for all n ∈ N.

Proposition 2.9. Let A be a Banach algebra and ϕ ∈ Hom(A). Suppose that
A is (ϕn, ϕn)-weakly amenable for all n ∈ N, and ϕn → 1A in norm. Then A is
approximately weakly amenable.

Proof. LetD : A→ A∗ be a derivation. For every n ∈ N setDn : A→ (A(ϕn,ϕn))
∗,

Dn(a) = D(ϕn(a)). It is clear that Dn is an (ϕn, ϕn)-derivation. So there exists
a sequence (fn) in A∗ such that Dn(a) = fn · ϕn(a) − ϕn(a) · fn. Since ϕn(a) →
a,Dn(a) → D(a). Therefore D(a) = limn(fn · a− a · fn) . �

In the proof of the Proposition 2.9, if the sequence (fn) has an accumulation
point then A is weakly amenable.

Theorem 2.10. Let A be a Banach algebra, ϕ ∈ Hom(A) and 0 6= ψ ∈ ΦA.
Let A be (ϕ, ϕ)-weakly amenable and Imϕ 6⊂ kerψ. Then there are no non-zero
continuous point derivations at ψ ◦ ϕ.

Proof. Let ψ ∈ ΦA and let ϕ ∈ Hom(A). Then ψ ◦ ϕ ∈ ΦA. Suppose that
d = dψ◦ϕ : A→ C is a point derivation at ψ ◦ ϕ. We define D : A→ (A(ϕ,ϕ))

∗ by
D(a) := d(a)ψ. Then clearly D is a (ϕ, ϕ)-derivation. Since A is (ϕ, ϕ)-weakly
amenable, there exists a f ∈ (A(ϕ,ϕ))

∗ such that D(a) = f · ϕ(a) − ϕ(a) · f . On
the other hand since Imϕ 6⊂ kerψ , there exist a1 ∈ A such that ψ(ϕ(a1)) = 1. If
dψ◦ϕ is a non-zero point derivation, then kerψ◦ϕ 6⊂ ker dψ◦ϕ. In fact if kerψ◦ϕ ⊂
ker dψ◦ϕ, then there is an α ∈ C such that dψ◦ϕ = α(ψ ◦ ϕ). So

2α = 2α((ψ ◦ ϕ)(a1)) = 2dψ◦ϕ(a1)

= 2dψ◦ϕ(a1)ψ ◦ ϕ(a1)

= dψ◦ϕ(a1)ψ ◦ ϕ(a1) + ψ ◦ ϕ(a1)dψ◦ϕ(a1)

= dψ◦ϕ(a
2
1) = α(ψ ◦ ϕ)(a2

1) = α.

Thus α = 0, i.e. d = 0 which is a contradiction.
Therefore there exist a2 ∈ kerψ ◦ ϕ such that d(a2) = 1. Put a0 = a1 + (1 −

d(a1))a2, then

ψ ◦ ϕ(a0) = ψ ◦ ϕ(a1) + (1− d(a1))ψ ◦ ϕ(a2) = 1,

and

d(a0) = d(a1) + (1− d(a1))d(a2) = d(a1) + 1− d(a1) = 1.

Therefore

1 = d(a0)ψ(ϕ(a0))

= 〈D(a0), ϕ(a0)〉 = 〈f · ϕ(a0)− ϕ(a0) · f, ϕ(a0)〉
= 〈f, (ϕ(a0))

2〉 − 〈f, (ϕ(a0))
2〉 = 0.

Which is a contradiction. �
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By using the Theorem 2.10, if A is a weakly amenable Banach algebra, then
there is no non-zero continuous point derivation on A. Therefore Theorem 2.10
could be considered as a generalization of [3, Theorem 2.8.63]. If A is approxi-
mately (ϕ, ϕ)-weakly amenable, then the Theorem 2.10 is also true.

Theorem 2.11. Let ϕ ∈ Hom(A) and ϕ2 = ϕ. Suppose that A and kerϕ are
weakly amenable, Imϕ is an ideal of A. Then A is (ϕ, ϕ)-weakly amenable.

Proof. Let D : A → (A(ϕ,ϕ))
∗ be a (ϕ, ϕ)-derivation. Take d : A → A∗ with

〈d(a), b〉 := 〈D(a), ϕ(b)〉, and so d is a derivation. Then there exists a f ∈ A∗

such that d(a) = f · a− a · f , (a ∈ A).
Since ϕ : A→ Imϕ is a projection, A=Imϕ⊕kerϕ where Imϕ and kerϕ are closed
ideals of A. Let a ∈ A. Then there exist a1, a2 ∈ A such that a = a1 + a2

where a1 ∈ Imϕ and a2 ∈ kerϕ. Since kerϕ is weakly amenable, (kerϕ)2 =
kerϕ. So, there is a net (tαsα)α ⊂ (kerϕ)2 such that tαsα → a2, and D(a2) =
limαD(tαsα) = limα(D(tα) · ϕ(sα)− ϕ(tα) ·D(sα)) = 0.

Therefore

D(a) = D(a1) = D(ϕ(a1)) = D(ϕ(a)),

so we have

〈D(a), ϕ(b)〉 = 〈D(ϕ(a)), ϕ(b)〉 = 〈d(ϕ(a)), b〉
= 〈f · ϕ(a)− ϕ(a) · f, b〉 = 〈f, ϕ(a)b− bϕ(a)〉
= 〈d(−b), ϕ(a)〉 = 〈D(−ϕ(b)), ϕ2(a)〉
= 〈d(−ϕ(b)), ϕ(a)〉 = 〈f · ϕ(a)− ϕ(a) · f, ϕ(b)〉.

On the other hand b = b1 + b2 such that b1 ∈ Imϕ, b2 ∈ kerϕ we have ϕ(b) =
ϕ(b1) = b1, hence

〈D(a), b2〉 = lim
α

lim
β
〈D(s1βs2β), t1αt2α〉

= lim
α

lim
β
〈D(s1β) · ϕ(s2β) + ϕ(s1β) ·D(s2β), t1αt2α〉

= lim
α

lim
β
〈D(s1β), ϕ(s2β)t1αt2α〉+ lim

α
lim
β
〈D(s2β), t1αt2αϕ(s1β)〉

= 0,

since s1β, s2β ∈kerϕ. ϕ(s2β)t1αt2α, t1αt2αϕ(s1β) ∈ Imϕ ∩ kerϕ = {0}. Therefore
A is (ϕ, ϕ)- weakly amenable. �

3. (ϕ, ψ)-weak amenability of the second dual

Let A be a Banach algebra. We consider A∗∗ the second dual of A. It is
known that the Banach algebra A inherits amenability from A∗∗ [11]. No example
is yet known whether this fails if one considers the weak amenability instead,
but the property is known to hold for the Banach algebras A which are left
ideals in A∗∗[10], the dual Banach algebras [8], the Banach algebras A which
are Arens regular and every derivation from A into A∗ is weakly compact [5],
Banach algebras for which the second adjoint of each derivation D : A → A∗

satisfies D′′(A∗∗) ⊆ WAP(A), and the Banach algebras A which are right ideals
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in A∗∗ and satisfy A∗∗A = A∗∗ [7]. Now let A be a Banach algebra and let
ϕ, ψ ∈ Hom(A) such that ϕ(a)b = aψ(b) for all a, b ∈ A. If A∗∗ is (ϕ′′, ψ′′)-weakly

amenable, then by Proposition 2.1, A∗∗2 = A∗∗. Thus we can show that A2 = A
[8, Proposition 2.1]. So by Corollary 2.2, A is (0, 0)-weakly amenable. A question
remains whether the (ϕ′′, ψ′′)-weak amenability of A∗∗ implies the (ϕ, ψ)-weak
amenability of A and vice versa?
L1(R) is (id,id)-weakly amenable but L1(R)∗∗ is not (id,id)-weakly amenable.

In general if G is a nondiscrete locally compact group then L1(G)∗∗ is not (id,id)-
weakly amenable [4], but L1(G) is (id,id)-weakly amenable [13].

For an infinite compact metric space X, lipα(X) is (id,id)-weakly amenable,for
0 < α < 1/2, but lipα(X)∗∗ is not (id,id)-weakly amenable [1].

Proposition 3.1. Let A be Banach algebra and ϕ ∈ Hom(A), if A∗∗ is (ϕ′′, 0)-
weakly amenable, then A is (ϕ, 0)-weakly amenable.

Proof. Suppose that D : A → (A(ϕ,0))
∗ is a continuous (ϕ, 0)-derivation. Take

a′′, b′′ ∈ A∗∗ and take bounded nets (aα) and (bβ) in A with âα → a′′, b̂β → b′′

in the w∗-topology of A∗∗. Then D′′ : A∗∗ → (A∗∗
(ϕ′′,0))

∗ is an (ϕ′′, 0)-derivation
because

D′′(a′′b′′) = w∗ − lim
α

lim
β
D′′(âαb̂β)

= w∗ − lim
α

lim
β

̂(D(aα) · ϕ(bβ))

= D′′(a′′) · ϕ′′(b′′).

Therefore there exists a′′′0 ∈ A∗∗∗ such that D′′(a′′) = a′′′0 ϕ
′′(a′′) for all a′′ ∈ A∗∗.

We obtain D(a) = a0ϕ(a)for all a ∈ A, where a′0 is the restriction of a′′′0 to A.
Thus A is an (ϕ, 0)-weakly amenable. �

If A∗∗ is (0, ψ′′)-weakly amenable, then A is (0, ψ)-weakly amenable if and only
if D′′(a′′b′′) = ψ′′(a′′) ·D′′(b′′) if and only if ψ′′(a′′) ·D′′(b′′) = w∗ − limα ψ

′′(âα) ·
D′′(b′′) [9]. The last equality is true if A∗∗ is a Banach algebra under the second
Arens product. Let A be a Banach algebra with a bounded approximate identity,
then A is (ϕ, 0) and (0, ψ)-weakly amenable (see Example 4.2).

For a Banach algebra A, let Aop be the Banach algebra with underlying Banach
space A and with product ◦ given by a ◦ b = ba . We have the following simple
observation.

Proposition 3.2. Let A be Banach algebra and ϕ, ψ ∈ Hom(A). Then A is
(ϕ, ψ)-weakly amenable if and only if Aop is (ψ, ϕ)-weakly amenable.

For a Banach algebra A, A∗∗ is (0, 0)-weakly amenable with the first Arens
product if and only if A∗∗ is (0, 0)-weakly amenable with the second Arens prod-
uct. We immediately observe that the (0, 0)-weak amenability of A∗∗ implies
that A is (0, 0)-weakly amenable. However, the (0, 0)-weak amenability of A does
not imply that A∗∗ is (0, 0)-weakly amenable unless every derivation from A∗∗

to A∗∗∗ is w∗-continuous. Some conditions can be imposed on A such that the
(ϕ′′, ψ′′)-weak amenability of A∗∗ implies the (ϕ, ψ)-weak amenability of A where
ϕ, ψ 6= 0.
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Theorem 3.3. Let A be a Banach algebra and ϕ, ψ ∈ Hom(A). Let A∗∗ be

(ϕ′′, ψ′′)-weakly amenable,and suppose Â is a left ideal in A∗∗. Then A is (ϕ, ψ)-
weakly amenable.

Proof. It is known that ϕ′′(â) = ϕ̂(a) and ψ′′(â) = ψ̂(a), for all a ∈ A. The proof
of the Theorem is similar to [10, Theorem 2.3]. �

A Banach algebra A is said to be dual if there is a closed submodule A∗ of A∗

such that A = A∗
∗. Let i : A∗ → A∗ be the canonical embedding and i′ be the

adjoint of i. If a ∈ A, we have i′(â) = â. Obviously i is norm-continuous, hence
i′ is w∗-continuous. Let a′′, b′′ ∈ A∗∗ and take nets (aα) and (bβ) in A such that

âα
w∗
−→ a′′ and b̂β

w∗
−→ b′′. Then

i′(a′′b′′) = i′(w∗ − lim
α

lim
β
âαb̂β) = w∗ − lim

α
lim
β
i′(âαb̂β)

= w∗ − lim
α

lim
β

(âαb̂β) = (w∗ − lim
α
âα)(w

∗ − lim
β
b̂β)

= i′(w∗ − lim
α
âα)i

′(w∗ − lim
β
b̂β) = i′(a′′)i′(b′′).

Hence i′ is an algebra homomorphism from A∗∗ onto A. Let ϕ : A −→ A be a
continuous homomorphism. Then the second conjugate ϕ′′ is w∗-continuous and

〈i′(ϕ′′(â)), b〉 = 〈ϕ′′(â), i(b)〉 = 〈ϕ′′(â), b〉 = 〈ϕ′′(i′(â)), b〉.
Hence i′(ϕ′′(â)) = ϕ′′(i′(â)). We know that ϕ′′|A = ϕ , if a′′ ∈ A∗∗ , (aα) ⊂ A ,

âα
w∗
−→ a′′, then

ϕ(i′(a′′)) = ϕ′′(i′(a′′)) = ϕ′′(i′(w∗ − lim
α
âα)) = w∗ − limαϕ

′′(i′(âα))

= w∗ − lim
α
i′(ϕ′′(âα)) = i′(ϕ′′(w∗ − lim

α
âα)) = i′(ϕ′′(a′′)).

Theorem 3.4. Let A be a dual Banach algebra and let ϕ, ψ ∈ Hom(A). If A∗∗

is (ϕ′′, ψ′′)-weakly amenable then A is (ϕ, ψ)-weakly amenable.

Proof. Let i be as above. Suppose that d : A −→ (A(ϕ,ψ))
∗ is an (ϕ, ψ)-derivation.

Set D = i′′ ◦ d ◦ i′ : A∗∗ −→ (A∗∗
(ϕ′′,ψ′′))

∗, then for every a′′, b′′, c′′ ∈ A∗∗ we have

〈D(a′′b′′), c′′〉 = 〈d(i′(a′′)i′(b′′)), i′(c′′)〉
= 〈d(i′(a′′)) · ϕ(i′(b′′)) + ψ(i′(a′′)) · d(i′(b′′)), i′(c′′)〉
= 〈d(i′(a′′)), ϕ′′(i′(b′′))i′(c′′)〉+ 〈d(i′(b′′)), i′(c′′)ψ′′(i′(a′′))〉
= 〈d(i′(a′′)), i′(ϕ′′(b′′))i′(c′′)〉+ 〈d(i′(b′′)), i′(c′′)i′(ψ′′(a′′))〉
= 〈(i′′ ◦ d ◦ i′(a′′)), ϕ′′(b′′)c′′〉+ 〈(i′′ ◦ d ◦ i′(b′′)), c′′ψ′′(a′′)〉
= 〈D(a′′) · ϕ′′(b′′) + ψ′′(a′′) ·D(b′′), c′′〉.

Therefore D is an (ϕ′′, ψ′′)-derivation. Since A∗∗ is (ϕ′′, ψ′′)-weakly amenable,
there exists a′′′0 ∈ A∗∗∗ such that

D(a′′) = a′′′0 · ϕ′′(a′′)− ψ′′(a′′) · a′′′0 , a′′ ∈ A∗∗.
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Now let R : A∗∗∗ −→ A∗ be the restriction map. Set a′0 = R(a′′′0 ). For every
a, b ∈ A we have

〈d(a), b〉 = 〈d(i′(â), i′(̂b)〉 = 〈i′′ ◦ d ◦ i′(â), b̂〉

= 〈D(â), b̂〉 = 〈a′′′0 · ϕ′′(â), b̂〉 − 〈ψ′′(â) · a′′′0 , b̂〉

= 〈a′′′0 , ϕ′′(â)̂b〉 − 〈a′′′0 , b̂ψ′′(â)〉 = 〈a′′′0 , ϕ(a)b〉 − 〈a′′′0 , bψ(a)〉
= 〈R(a′′′0 ), ϕ(a)b〉 − 〈R(a′′′0 ), bψ(a)〉 = 〈a′0 · ϕ(a)− ψ(a) · a′0, b〉.

So d(a) = a′0 · ϕ(a)− ψ(a) · a′0. Therefore d is an (ϕ, ψ)-inner. �

4. Examples

Example 4.1. Let A be a commutative weakly amenable Banach algebra. A
Banach A-module X is called symmetric if a.x = x.a, for a ∈ A and x ∈ X.
Then for every symmetric Banach A-module X we have H1(A,X) = {0} [1]. On
the other hand for every ϕ ∈ Hom(A), (A(ϕ,ϕ))

∗ is a symmetric Banach A-module.
Thus A is (ϕ, ϕ)-weakly amenable.

Example 4.2. Let A be a Banach algebra with a bounded right approximate
identity (eα). Let D : A → (A(0,ψ))

∗ be a derivation. Then for every a, b ∈ A,
we have D(ab) = ψ(a) · D(b). Since D is bounded, (D(eα)) is a bounded net
in (A(0,ψ))

∗. Let f ∈ (A(0,ψ))
∗ be a cluster point of (D(eα)). We can suppose

that w∗ − limαD(eα) = f in (A(0,ψ))
∗. Then for every a ∈ A, we have w∗ −

limα aD(eα) = af in (A(0,ψ))
∗. Thus we have

D(a) = lim
α
D(aeα) = lim

α
ψ(a) ·D(eα) = ψ(a) · f.

This means that D is (0, ψ)−inner. So A is (0, ψ)-weakly amenable. Similarly
every Banach algebra with a bounded left approximate identity is (ϕ, 0)-weakly
amenable. So every group algebra and C∗-algebra are (ϕ, 0) and (0, ψ)−weakly
amenable.

Example 4.3. Let A = l1(N) with the product ab := a(1)b (a, b ∈ l1(N)). For
every ϕ, ψ ∈ Hom(A), A is (ϕ, ψ)-weakly amenable [16]. It is easy to check that
A dose not have a bounded right approximate identity, thus A is not amenable.

Example 4.4. Let S = {x1, x2, x3, x4, x5} be a semigroup with x2
1 = x1, x1x2 =

x2, x3x1 = x3, x3x2 = x4 and all other products equal to x5. We identify the
elements of S with the point masses on S(δx := x). We know that, for any
semigroup S,

l1(S) =

{∑
s∈S

αsδs;
∑
s∈S

| αs |<∞, s ∈ S, αs ∈ C

}
is a Banach algebra with the norm ‖

∑
s∈S αsδs ‖=

∑
s∈S | αs | and the con-

volution reduced to δs ∗ δt = δst, for s, t ∈ S (see citeDal for details). In our
case

l1(S) =

{
λ =

5∑
n=1

αnxn; {αn}5
n=1 ⊂ C, {xn}5

n=1 ⊂ S, ‖λ‖ =
5∑

n=1

|αn|

}
,
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and l1(S) is weakly amenable [2]. Since S is not regular semigroup, l1(S) is
not amenable [6]. Let ϕ, ψ : l1(S) → l1(S) be continuous homomorphisms and
D : l1(S) → (l1(S)(ϕ,ψ))

∗ be a (ϕ, ψ)-derivation we show that D = 0. Therefore
D is an (ϕ, ψ)-inner derivation for each ϕ, ψ ∈ Hom(l1(S)). If x, y ∈ S we show
that 〈Dx, y〉 = 0.

Suppose that ϕ(xj) =
∑5

k=1 αjkxk, ψ(xj) =
∑5

k=1 βjkxk, (1 ≤ j ≤ 5, αjk, βjk ∈
C). Since ϕ(x2

1) = ϕ(x), α2
11 = α11, α11α12 = α12, α13α11 = α13, α13α12 = α14.

I) If α11 = 0, then α12 = α13 = α14 = 0, α2
15 = α15. It is easy to show that

above (ϕ, ψ)-derivation is zero.
II) If α11 = β11 = 1 then

ϕ(xj) = x1 +
5∑

k=2

αjkxk, ψ(xj) = x1 +
5∑

k=2

βjkxk (2 ≤ j ≤ 5). (4.1)

We put 〈Dxi, xj〉 = tij, (i, j ∈ {1, 2, 3, 4, 5}, xi, xj ∈ S, tij ∈ C). Also

〈Dxixk, xj〉 = 〈Dxi, ϕ(xk)xj〉+ 〈Dxk, xjψ(xi)〉 (4.2)

for all i, j, k ∈ {1, 2, 3, 4, 5}.
Since x2

1 = x1, t1j = 〈Dx1, ϕ(x1)xj〉+ 〈Dx1, xjψ(x1)〉 . Therefore

t14 = t15 = (2 + α12 + α13 + α14 + α15 + β12 + β13 + β14 + β15)t15.

If

α12 + α13 + α14 + α15 + β12 + β13 + β14 + β15 + 1 = 0 (4.3)

since ϕ(x2
1) = ϕ(x1) and ψ(x2

1) = ψ(x1), we have α14 = α12α13, β14 = β12β13 and

α2
12 + α2

13 + α2
12α

2
13 + α2

15 + 2α2
12α13 + 2α12α

2
13 + 2α12α13α15

+3α12α13 + 2α12α15 + 2α13α15 + α12 + α13 + α15 = 0, (4.4)

β2
12 + β2

13 + β2
12β

2
13 + β2

15 + 2β2
12β13 + 2β12β

2
13 + 2β12β13β15

+3β12β13 + 2β12β15 + 2β13β15 + β12 + β13 + β15 = 0. (4.5)

From (4.4)and (4.5) the following relation is obtained
α15 = −α12α13 − α12 − α13 + 1

or

α15 = −α12α13 − α12 − α13

(4.6)

and 
β15 = −β12β13 − β12 − β13 + 1

or

β15 = −β12β13 − β12 − β13

(4.7)

by inserting these solutions in (4.3), we get the contradictions: 3 = 0, 2 = 0, 1 = 0.
Therefore

t14 = t15 = 0. (4.8)

Since ϕ(x2
5) = ϕ(x5) and ψ(x2

5) = ψ(x5), similar to the above

t54 = t55 = 0. (4.9)
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From (4.1), (4.2) and (4.8), we deduce that

t24 = t25 = (1 + β12 + β13 + β14 + β15)t25.

Since Dx5 = Dx2x1,

t5j = 〈Dx2, ϕ(x1)xj〉+ 〈Dx1, xjψ(x2)〉. (4.10)

From (4.8), (4.9) and (4.10), we have

(1 + α12 + α13 + α14 + α15)t25 = 0.

If β12 + β13 + β14 + β15 = 0 and 1 + α12 + α13 + α14 + α15 = 0, from the relations
α14 = α12α13, β14 = β12β13 , (4.6) and (4.7), we conclude the contradictions:
1 = −1 and 1 = 0. Therefore

t24 = t25 = 0. (4.11)

From (4.1), (4.2) and (4.8), we have t34 = t35 = (1 + α12 + α13 + α14 + α15)t35.
Since 1 + α12 + α13 + α14 + α15 6= 0,

t34 = t35 = 0. (4.12)

Since Dx4 = Dx3x2,

t4j = 〈Dx3, ϕ(x2)xj〉+ 〈Dx2, xjψ(x3)〉. (4.13)

From (4.1) and (4.13), we have

t44 = t45 = (1 +
5∑

k=2

α2k)t25 + (1 +
5∑

k=2

β3k)t35. (4.14)

From (4.11), (4.12) and (4.14), we conclude that

t44 = t45 = 0.

If t11 6= 0, we can conclude that α43 = 0 and α43 = 2, which is a contradiction.
Hence t11 = 0. By using of the above relations tij = 0 for every i and j. Therefore
D = 0.
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