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Abstract. In this paper, necessary and sufficient conditions for the validity
of the Hardy inequality for the case q < 0, p > 0 and for the case q > 0, p < 0
are derived.

1. Introduction and preliminaries

The classical Hardy inequality(∫ b

a

(∫ x

a

f(t)v(t)dt

)q

u(x)dx

) 1
q

≤ C

(∫ b

a

f(x)pdx

) 1
p

(1.1)

for all f ≥ 0, where u, v are weight functions, is almost completely described for
p, q such that

p ≥ 1, q > 0

(see [3], [4], [5]), while for p, q such that

0 < p < 1, q > 1

it is known that inequality (1.1) doesn’t hold (see [4], p.46).
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The so called reverse Hardy inequality(∫ b

a

(∫ x

a

f(t)v(t)dt

)q

u(x)dx

) 1
q

≥ C

(∫ b

a

f(x)pdx

) 1
p

(1.2)

was studied in [1] for

0 < p, q < 1 and p, q < 0;

the second case was described in [6] and the case for

−∞ < q ≤ p < 0

was described in [2].

Here, we want to consider parameters p, q which satisfy either

p < 0, q > 0

or

p > 0, q < 0.

It will be shown that in the first case, the reverse inequality (1.2) hold (see
Theorem 2.1) while in the second case, the reverse inequality (1.2) holds for
0 < p < 1, q < 0 (see Theorem 2.2) and the Hardy inequality (1.1) holds for
p ≥ 1, q < 0 (see Theorem 2.4). The results can be extended to the ”adjoint”
inequalities (∫ b

a

(∫ b

x

f(t)v(t)dt

)q

u(x)dx

) 1
q

≤ C

(∫ b

a

f(x)pdx

) 1
p

(1.3)

and (∫ b

a

(∫ b

x

f(t)v(t)dt

)q

u(x)dx

) 1
q

≥ C

(∫ b

a

f(x)pdx

) 1
p

(1.4)

(see Remark 2.6).
The negative powers p, q force us to work with functions having values from the
interval [0, +∞]. Therefore, we define the following arithmetics:

0 + (+∞) = a + (+∞) = a · (+∞) = a
0

= +∞, a ∈ (0, +∞];

0 · (+∞) = a
+∞ = 0, a ∈ [0, +∞);

0−α = (+∞)α = +∞, 0α = (+∞)−α = 0, α ∈ (0, +∞).

2. Main results

Let us denote

A(t) :=

(∫ t

a

vp′
(x)dx

) 1
p′ (∫ b

t

u(x)dx

) 1
q

, p′ =
p

p− 1
.

Then we can formulate the following theorems:
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Theorem 2.1. Let p < 0 and q > 0. Then inequality (1.2) holds if and only if
there exists τ ∈ (a, b) such that

A(τ) > 0. (2.1)

Moreover,

i) if
0 < A∗ := sup

(a,b)

A(t) < ∞,

and C is the best possible constant of inequality (1.2) then A∗ ≤ C;

ii) if
A∗ = ∞,

then the best constant of inequality (1.2) does not exist, more precisely,
the left hand side of (1.2) is infinite for all positive functions for which(∫ b

a
fp(t)dt

) 1
p

> 0.

Proof. Let τ ∈ (a, b) be arbitrary. Then

J :=

∫ b

a

(∫ x

a

f(t)v(t)dt

)q

u(x)dx ≥
∫ b

τ

(∫ x

a

f(t)v(t)dt

)q

u(x)dx

≥
∫ b

τ

(∫ τ

a

f(t)v(t)dt

)q

u(x)dx =

∫ b

τ

u(x)dx

(∫ τ

a

f(t)v(t)dt

)q

.

Applying the reverse Hölder inequality with powers p and p′ = p
p−1

to the second

integral of the last expression, we get that

J ≥
∫ b

τ

u(x)dx

(∫ τ

a

v(t)p′
dt

) q
p′
(∫ τ

a

f(t)pdt

) q
p

≥
∫ b

τ

u(x)dx

(∫ τ

a

v(t)p′
dt

) q
p′
(∫ b

a

f(t)pdt

) q
p

.

Thus, we obtain that∫ b

a

(∫ x

a

f(t)v(t)dt

)q

u(x)dx ≥ A(τ)q

(∫ b

a

f(t)pdt

) q
p

. (2.2)

It is easy to see that the condition (2.1) is equivalent with the validity of inequality
(1.2), i.e. (2.2). If we suppose that condition (2.1) is satisfied, i.e. if there exists
τ ∈ (a, b) such that A(τ) > 0, then from (2.2) we have inequality (1.2) with
C ≥ A(τ). Conversely, let us suppose that inequality (1.2) holds, which means
that for positive functions f such that(∫ b

a

f(t)pdt

) 1
p

> 0,

the expression on the left hand side of inequality (1.2) is greater than zero, i.e.(∫ b

a

(∫ x

a

f(t)v(t)dt

)q

u(x)dx

) 1
q

> 0. (2.3)
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If we define

a∗ = sup{t ∈ [a, b),

∫ t

a

vp′
(s)ds = 0}; b∗ = inf{t ∈ (a, b],

∫ b

t

u(s)ds = 0},

then
A(t) = 0 for all t ∈ (a, b) if and only if b∗ ≤ a∗.

This together with (2.3) implies that A(t) is positive for some t ∈ (a, b).

From (2.2) we have that

A(τ) ≤ C = inf
f>0

(∫ b

a

(∫ x

a
f(t)v(t)dt

)q
u(x)dx

) 1
q

(∫ b

a
f(t)pdt

) 1
p

.

The right hand side of the last estimate is independent on τ, so we get that

A∗ = sup
(a,b)

A(τ) ≤ C.

This ends the proof of i).

If A∗ = ∞ then inequality (1.2) holds, since its left hand side is infinite for
functions f such that (∫ b

a

fp(t)dt

) 1
p

> 0,

which follows from (2.2). �

Theorem 2.2. Let 0 < p < 1 and q < 0. Then inequality (1.2) holds for all
functions f > 0 if and only if the following condition is satisfied:

A∗ := inf
(a,b)

A(t) > 0.

Moreover, if C is the best possible constant in (1.2), then(
1 +

p′

q

) 1
p′
(

1 +
q

p′

) 1
q

A∗ ≤ C ≤ A∗.

Proof. (Sufficiency) Let α ∈ (0,− 1
p′ ) be a parameter and denote

V (t) :=

∫ t

a

vp′
(τ)dτ.

For

J :=

∫ b

a

(∫ x

a

f(t)v(t)dt

)q

u(x)dx

=

∫ b

a

(∫ x

a

f(t)v(t)dt

)p(∫ x

a

f(t)v(t)dt

)q−p

u(x)dx

=

∫ b

a

(∫ x

a

f(t)V −α(t)V α(t)v(t)dt

)p(∫ x

a

f(t)v(t)dt

)q−p

u(x)dx
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applying the reverse Hölder inequality with powers p and p′ = p
p−1

to the integral

in the first brackets, we get,

J ≥
∫ b

a

(∫ x

a

fp(t)V −αp(t)dt

)(∫ x

a

V αp′
(t)vp′

(t)dt

) p
p′

×
(∫ x

a

f(t)v(t)dt

)q−p

u(x)dx

=
1

(1 + αp′)
p
p′

∫ b

a

[(∫ x

a

fp(t)V −αp(t)dt

)
V

(1+αp′) p
p′ (x)

]
×
(∫ x

a

f(t)v(t)dt

)q−p

u(x)dx.

Now we again apply the reverse Hölder inequality with powers q
p

and q
q−p

which

yields

J ≥ 1

(1 + αp′)
p
p′

(∫ b

a

(∫ x

a

fp(t)V −αp(t)dt

) q
p

V
(1+αp′) q

p′ (x)u(x)dx

) p
q

×
(∫ b

a

(∫ x

a

f(t)v(t)dt

)q

u(x)dx

)1− p
q

=
J1− p

q

(1 + αp′)
p
p′

(∫ b

a

(∫ x

a

fp(t)V −αp(t)dt

) q
p

V
(1+αp′) q

p′ (x)u(x)dx

) p
q

.

The reverse Minkowski integral inequality with power r = q
p

yields

J ≥ J1− p
q

(1 + αp′)
p
p′

∫ b

a

fp(t)V −αp(t)

(∫ b

t

V
(1+αp′) q

p′ (x)u(x)dx

) p
q

dt

≥ J1− p
q Ap

∗(α)

(1 + αp′)
p
p′

∫ b

a

fp(t)dt,

where

A∗(α) := inf
(a,b)

A(t, α) = inf
(a,b)

V −α(t)

(∫ b

t

V
(1+αp′) q

p′ (x)u(x)dx

) 1
q

.

Therefore, we obtain that

J
1
q ≥ A∗(α)

(1 + αp′)
1
p′

(∫ b

a

fp(t)dt

) 1
p

. (2.4)

Now we show that

A∗(α) ≥ C1 A∗,
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where C1 depends only on α. Integration by parts leads to the estimate

J1(t, α) :=

∫ b

t

V
(1+αp′) q

p′ (x)u(x)dx

=

∫ b

t

V
(1+αp′) q

p′ (x)d

(
−
∫ b

x

u(s)ds

)
=V

(1+αp′) q
p′ (t)

∫ b

t

u(s)ds− lim
x→b−

V
(1+αp′) q

p′ (x)

∫ b

x

u(s)ds

+
(1 + αp′)q

p′

∫ b

t

(∫ b

x

u(s)ds

)
V

(1+αp′) q
p′−1

(x)dV (x)

≤V αq(t)Aq(t) +
(1 + αp′)q

p′

∫ b

t

Aq(x)V αq−1(x)dV (x)

≤Aq
∗

[
V αq(t) +

(1 + αp′)q

p′

∫ b

t

V αq−1(x)dV (x)

]
≤− 1

αp′
Aq
∗V

αq(t).

Since J1(t, α) = Aq(t, α)V αq(t) due to the definition of A(t, α), we finally obtain
that

A(t, α) ≥ (−αp′)−
1
q A∗,

i.e.

A∗(α) ≥ (−αp′)−
1
q A∗,

and from (2.4) it follows that

J
1
q ≥ (−αp′)−

1
q

(1 + αp′)
1
p′

A∗

(∫ b

a

fp(t)dt

) 1
p

.

For the best constant C we have

sup
α∈(0,− 1

p′ )

(−αp′)−
1
q

(1 + αp′)
1
p′

A∗ =

(
1 +

p′

q

) 1
q
(

1 +
q

p′

) 1
q

A∗ ≤ C.

The sufficiency part is proved.

(Necessity) From inequality (1.2) we get that

C ≤
(∫ b

a

(∫ x

a

f(t)v(t)dt

)q

u(x)dx

) 1
q
(∫ b

a

f(t)pdt

)− 1
p

≤

(∫ b

τ

(∫ x

a

f(t)pdt

)− q
p
(∫ x

a

f(t)v(t)dt

)q

u(x)dx

) 1
q

.

If we choose

f(t) = vp′−1(t),
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then we get

C ≤

(∫ b

τ

(∫ x

a

v(t)p′
dt

) q
p′

u(x)dx

) 1
q

≤
(∫ τ

a

v(t)p′
dt

) 1
p′
(∫ b

τ

u(x)dx

) 1
q

= A(τ),

and consequently,
A(τ) ≥ C,

which proves the necessity of the condition. �

Proposition 2.3. Let the assumptions of Theorem 2.2 be satisfied. Then the best
constant C of inequality (1.2) satisfies

sup
α∈(0,− 1

p′ )

A∗(α)

(1 + αp′)
1
p′
≤ C.

Proof. The proof follows from (2.4). �

Let us denote

B(t) :=



(
supess

(a, t)

v(x)
)(∫ t

a
u(x)dx

) 1
q

if p = 1,

(∫ t

a
vp′

(x)dx
) 1

p′
(∫ t

a
u(x)dx

) 1
q

if p > 1.

Then we can formulate the following theorem:

Theorem 2.4. Let p ≥ 1 and q < 0. Then inequality (1.1) holds if and only if
there exists τ ∈ (a, b) such that

B(τ) < ∞.

Moreover,

i) if
0 < B := inf

(a,b)
B(t) < ∞,

and C is the best constant of inequality (1.1) then C ≤ B;

ii) if
B = 0

then the best constant of the inequality does not exist, more precisely, the
left hand side of (1.1) is zero for all nonnegative functions f .

Proof. Let τ ∈ (a, b) be arbitrary. Then

J :=

∫ b

a

(∫ x

a

f(t)v(t)dt

)q

u(x)dx ≥
∫ τ

0

(∫ x

a

f(t)v(t)dt

)q

u(x)dx

≥
∫ τ

0

(∫ τ

a

f(t)v(t)dt

)q

u(x)dx =

∫ τ

0

u(x)dx

(∫ τ

a

f(t)v(t)dt

)q

.



HARDY INEQUALITY WITH ONE NEGATIVE PARAMETER 83

We estimate the second integral in the last expression as follows:

If p = 1 then ∫ τ

a

f(t)v(t)dt ≤ supess
(a, τ)

v(t)

∫ τ

a

f(t)dt.

If p > 1 then we apply the Hölder inequality∫ τ

a

f(t)v(t)dt ≤
(∫ τ

a

v(t)p′
dt

) 1
p′
(∫ τ

a

f(t)pdt

) 1
p

.

Consequently, we have that∫ b

a

(∫ x

a

f(t)v(t)dt

)q

u(x)dx ≥ B(τ)q

(∫ b

a

f(t)pdt

) q
p

,

i.e. (∫ b

a

(∫ x

a

f(t)v(t)dt

)q

u(x)dx

) 1
q

≤ B(τ)

(∫ b

a

f(t)pdt

) 1
p

.

The rest of the proof follows analogously as in the proof of Theorem 2.1. �

Remark 2.5. In Theorem 2.2 we supposed that f > 0, which is important, since
we can construct a nonnegative function f for which inequality (1.2) does not
hold.

Remark 2.6. If we denote

A(t) :=
(∫ b

t

vp′
(x)dx

) 1
p′
(∫ t

a

u(x)dx
) 1

q

and

B(t) :=



(
supess

(t, b)

v(x)
)(∫ b

t
u(x)dx

) 1
q

if p = 1,

(∫ b

t
vp′

(x)dx
) 1

p′
(∫ b

t
u(x)dx

) 1
q

if p > 1

then we are able to formulate results analogous to Theorems 2.1, 2.2 and 2.4 for
inequalities (1.3) and (1.4). The formulation and the proofs are left to the reader.
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