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Abstract. The Schwarz inequality and Jensen’s one are fundamental in a
Hilbert space. Regarding a sesquilinear map B(X, Y ) = Y ∗X as an operator-
valued inner product, we discuss operator versions for the above inequalities
and give simple conditions that the equalities hold.

1. Introduction

Inequality plays a basic role in analysis and consequently in Mathematics. As
surveyed briefly in [6], operator inequalities on a Hilbert space have been discussed
particularly since Furuta inequality was established. But it is not easy in general
to give a simple condition that the equality in an operator inequality holds. In this
note, we observe basic operator inequalities and discuss the equality conditions.
To show this, we consider simple linear algebraic structure in operator spaces: For
Hilbert spaces H and K, the symbol B(H, K) denotes all the (bounded linear)
operators from H to K and B(H) ≡ B(H, H). Then, consider an operator
matrix A = (Aij) ∈ B(Hn), a vector X = (Xj) ∈ B(H, Hn) with operator
entries Xj ∈ B(H), an operator-valued inner product

Y ∗X =
n∑

j=1

Y ∗
j Xj,
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for X = (Xj), Y = (Yj) ∈ B(H, Hn) and an operator version E for eigenvalue
determined by AX = XE where A ∈ B(Hn), X ∈ B(H, Hn) and E ∈ B(H).
Particularly in the section 3, these concepts enable us to describe equality con-
ditions very simply. First we give three operator version of so-called Schwarz
inequality with simple equality conditions. Second we give a simple equivalent
condition to the equality in the Jensen operator inequality by Hansen-Pedersen
[3]. For the sake of convenience, we assume that a basis {ej} in a Hilbert space
H is fixed and a vector x =

∑
j xjej ∈ H is often considered as an operator from

C to H (i.e., H = B(C, H)) with the inner product

〈x, y〉 = y∗x =
∑

j

yjxj.

2. Schwarz inequalities

The classical Schwarz inequality in a Hilbert space is |y∗x| ≤ ‖x‖‖y‖. Here
we give three operator versions with equality conditions. First we give a simple
operator version on B(H) or B(Hn), where vectors x, y ∈ H cannot be substituted
directly for operators X and Y . The condition equivalent to the equality is very
simple:

Theorem 2.1 (Schwarz inequality 1). For operators X and Y on a Hilbert
space, the inequality

Y ∗X∗Y X + X∗Y ∗XY ≤ Y ∗X∗XY + X∗Y ∗Y X = (XY )∗XY + (Y X)∗Y X

holds with equality only when X commutes with Y .

Proof. The require inequality follows from

0 ≤ (XY −Y X)∗(XY −Y X) = (XY )∗XY −Y ∗X∗Y X−X∗Y ∗XY +(Y X)∗Y X.

The equality holds only when (XY − Y X)∗(XY − Y X) = 0, and hence XY −
Y X = 0, that is, X commutes with Y . �

Let {ej} be a fixed orthogonal basis of a Hilbert space H. For vectors x =∑
j xjej and y =

∑
j yjej, put diadic operators

Xj = xj ⊗ ej and Yj = yj ⊗ ej,

where the diadic operator (the Shatten product) is determined by (v ⊗ w)z =
〈z, w〉 v. Then, the inequality

Y ∗
j X∗

j YjXj + X∗
j Y ∗

j XjYj ≤ Y ∗
j X∗

j XjYj + X∗
j Y ∗

j YjXj

means

(xjyj 〈y, x〉+ yjxj 〈x, y〉) ej ⊗ ej 5
(
|yj|2 〈x, x〉+ |xj|2 〈y, y〉

)
ej ⊗ ej,

and consequently

xjyj 〈y, x〉+ yjxj 〈x, y〉 5 |yj|2 〈x, x〉+ |xj|2 〈y, y〉 .
Taking summation for j, we have (indeed, Parseval equation)

〈x, y〉 〈y, x〉+ 〈y, x〉 〈x, y〉 5 〈y, y〉 〈x, x〉+ 〈x, x〉 〈y, y〉 (2.1)
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so that the classical inequality yields. By the equality condition, we have

〈y, ej〉x⊗ ej = 〈x, ej〉 y ⊗ ej,

for all j, and hence
〈y, ej〉x = 〈x, ej〉 y,

which means the linearly dependence of x and y.
Next we give another version where a vector x ∈ H can be substituted for X:

Theorem 2.2 (Schwarz inequality 2). For operators X and Y from a Hilbert
space to another, the inequality

(X∗Y )⊗ (Y ∗X) + (Y ∗X)⊗ (X∗Y ) ≤ (X∗X)⊗ (Y ∗Y ) + (Y ∗Y )⊗ (X∗X)

holds with equality only when X and Y are linearly dependent.

Proof. The inequality follows from

0 ≤ (X ⊗ Y − Y ⊗X)∗(X ⊗ Y − Y ⊗X)

= (X∗X)⊗ (Y ∗Y )− (X∗Y )⊗ (Y ∗X)− (Y ∗X)⊗ (X∗Y ) + (Y ∗Y )⊗ (X∗X).

Thereby the equality condition is X ⊗ Y = Y ⊗X, that is, xijY = yijX for all i
and j, which means the linearly dependence of X and Y . �

Since the tensor product for scalars like y∗x becomes the usual product, the
above inequality means also (2.1).

Recall the Marcus-Khan theorem for operators (see, [4]): Let U be the isometry
from H to H ⊗ H with Uej = ej ⊗ ej for all j (as a diadic representation,
U =

∑
j(ej ⊗ ej) ⊗ ej). Then the Haradamrd (Shur) product A ◦ B is obtained

by
A ◦B = U∗(A⊗B)U.

Since (A ⊗ B)Uej = Aej ⊗ Bej, conditions depend on each column vectors Aej

and Bej. Thus we have a Schwarz inequality for Hadamard products:

Corollary 2.3. The inequality (X∗Y ) ◦ (Y ∗X) ≤ (X∗X) ◦ (Y ∗Y ) holds with
equality only when all two vectors Xej and Y ej are linearly dependent for each j.

Finally in this section, we give an operator mean version. To show this, we use
the geometric operator mean A#B for positive operators A and B on a Hilbert
space. If A is invertible, then

A#B = B#A = A
1
2

(
A− 1

2 BA− 1
2

) 1
2
A

1
2

since X∗(A#B)X = (X∗AX#X∗BX) holds for invertible X by general theory
of operator means [7] (see also [6]). Ando [1] gives the operator matrix formula:

A#B = max

{
X ≥ O

∣∣∣ (A X
X B

)
≥ O

}
.

If A and B are commuting, then A#B = (AB)
1
2 = A

1
2 B

1
2 . Another typical

property is the homogeneity:

(sA)#(tB) =
√

st(A#B)

for positive numbers s and t. Now we have:
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Theorem 2.4 (Schwarz inequality 3). Let X and Y are operators from a
Hilbert space H to another with the polar decomposition Y ∗X = U |Y ∗X| in B(H)
where U ∈ B(H) is the partial isometry from ranX∗Y to ranY ∗X. Then

|Y ∗X| ≤ X∗X#U∗Y ∗Y U = |X|2#|Y U |2
(
resp. |X∗Y | ≤ |Y |2#|XU∗|2

)
.

If X (resp. Y ) is an invertible operator in B(H) or operators {X,Y U} (resp.
{Y,XU∗}) are linearly dependent, then the equality holds.

Proof. Since X∗Y = U∗|X∗Y | is also the polar decomposition, we have only to
show the former case. By U∗Y ∗X = |Y ∗U | = X∗Y U , we have

O ≤
(

I O
O U

)∗(
X∗X X∗Y
Y ∗X Y ∗Y

)(
I O
O U

)
=

(
X∗X X∗Y U

U∗Y ∗X U∗Y ∗Y U

)
=

(
X∗X |Y ∗X|
|Y ∗X| U∗Y ∗Y U

)
,

and hence |Y ∗X| ≤ X∗X#U∗Y ∗Y U . Suppose X ∈ B(H) is invertible. Then

X∗X#U∗Y ∗Y U = |X|2#U∗Y ∗X(X∗X)−1X∗Y U

= |X|
(
I#|X|−1|Y ∗X|(X∗X)−1|Y ∗X||X|−1

)
|X|

= |X|
(
I#(|X|−1|Y ∗X||X|−1)2

)
|X|

= |X||X|−1|Y ∗X||X|−1|X| = |Y ∗X|.
Also suppose sX = rY U for some scalars s and r. Then

|sr|(X∗X#U∗Y ∗Y U) = (|s|2X∗X)#(|r|2U∗Y ∗Y U)

= (|r|2U∗Y ∗Y U)#(|r|2U∗Y ∗Y U) = |r|2U∗Y ∗Y U.

On the other hand, the relation

|sr|2|Y ∗X|2 = |r|2(sX)∗Y (UU∗)Y ∗(sX) = |r|4(U∗Y ∗Y U)2

implies |sr||Y ∗X| = |r|2U∗Y ∗Y U , which shows the equality. �

In the above theorem, putting X = x and Y = y for vectors x and y, we have the
classical Schwarz inequality. Considering rank 1 (hence noninvertible) operators
X = x⊗ e1 and Y = y⊗ e1 in B(H), we also have the classical one and moreover
we see that the equality never holds unless x and y are linearly dependent. The
above equality conditions are simple but merely sufficient ones. It seems to be
hard to give a simple condition exactly equivalent to the equality considering the
following example in B(H2) where X is not invertible and operators {X, Y U}
are not linearly dependent in the usual sense:

Example 2.5. For operators X, Y ∈ B(H), let T ∈ B(H) be a positive invertible
operator commuting with |X|2 + |Y |2 which is also assumed to be invertible (e.g.,

T = f(|X|2 + |Y |2) for a positive function f). Then, put X =

(
X O
Y O

)
. For any

operator Z ∈ B(H), the relation (that O is an operator version of eigenvalue for
X)

X

(
O
Z

)
=

(
X O
Y O

)(
O
Z

)
=

(
O
O

)
(=

(
O
Z

)
O)
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implies that X ∈ B(H2) cannot be invertible. Let

(
R
S

)
∈ B(H, H2) be a

vector orthogonal to

(
X
Y

)
in the sense

(
R
S

)∗(
X
Y

)
= O. Then, putting Y =(

XT R
Y T S

)
, we have

Y ∗X =

(
TX∗ TY ∗

R∗ S∗

)(
X O
Y O

)
=

(
T (|X|2 + |Y |2) O

O O

)
= |Y ∗X|.

Thereby the polar decomposition is

Y ∗X = U |Y ∗X| for U =

(
I O
O O

)
.

Since

Y U =

(
XT O
Y T O

)
and |Y U |2 =

(
T 2(|X|2 + |Y |2)2 O

O O

)
,

we have

|X|2#|Y U |2 =

(
|X|2 + |Y |2 O

O O

)
#

(
T (|X|2 + |Y |2) O

O O

)
=

(
(|X|2 + |Y |2)#

(
T 2(|X|2 + |Y |2)

)
O

O O

)
=

((
(|X|2 + |Y |2)T 2(|X|2 + |Y |2)

) 1
2 O

O O

)

=

(
T (|X|2 + |Y |2) O

O O

)
= |Y ∗X|.

3. Proper vectors and Jensen operator equality

The (classical) Jensen inequality is the following one: Take a probability vector
p = (pj) and real numbers aj. If f is convex, then∑

j

pjf(aj) = f

(∑
j

pjaj

)
. (3.1)

Moreover, if f is strictly convex and all fixed aj are distinct, then the equality
holds if and only if pj = 1 for some j (hence pi = 0 for i 6= j). This inequality has
a Hilbert space-like expression: Let x = (xj) be a unit vector and A a diagonal
selfadjoint matrix diag(a1, a2, · · · ). Then (3.1) is equivalent to

x∗f(A)x = x∗diag(f(a1), · · · )x =
∑

j

|xj|2f(aj) = f

(∑
j

|x2
j |aj

)
= f(x∗Ax).

In this case, if f is strictly convex, then the quality holds for a fixed A if and only
if x is a unit eigenvector for A.
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To extend this, consider a block diagonal operator matrix A = diag(Aj) ∈
B(Hn) and a column vector C = (Cj) ∈ B(H, Hn) for operators Cj on H.
Suppose that A is selfadjoint and that C is isometric:

IH = C∗C =
∑

j

C∗
j Cj,

which is called a unit operator. Then, by (3.1), Jensen’s operator inequality
should be of form

C∗f(A)C = C∗diag
(
f(Aj)

)
C =

∑
j

C∗
j f(Ai)Cj ≥ f

(∑
j

C∗
j AjCj

)
= f(C∗AC)

to preserve positivity for operators. The diagonality for A is not essential. In
fact, Hansen-Pedersen [3] (see also [5]) give the following result:

Theorem (Hansen-Pedersen). Let I be an (open) interval and A = (Aij) a
selfadjoint operator matrix on B(Hn) with σ(A) ∈ I. A continuous function f
on I is operator convex (resp. concave) if and only if

C∗f(A)C ≥ f (C∗AC) (resp. C∗f(A)C ≤ f (C∗AC)) (3.2)

for all unit operators C ∈ B(H, Hn).

To see the equality condition like the above vector cases, we define a (unit)
proper vector (with operator entries) X = (Xi) ∈ B(H, Hn) if X is an isometry
satisfying

AX = XE =

X1E
...

XnE


for some operator E ∈ B(H) which is called an eigen-operator. Then, we have

X∗AX = X∗XE = E,

which shows that if A is selfadjoint (or positive), then so is E. Note that if
XCDE = XE, then XC is also a proper vector with an eigen-operator DEC for
the above vector X ∈ B(Hn). In particular, for every isometry V ∈ B(H), an
operator XV ∗ is also a proper vector of A with the eigen-operator V EV ∗.

Here we naturally define an orthogonality for X and Y by Y ∗X = O. Then we
have a diagonalization theorem:

Theorem 3.1. Let A be a selfadjoint operator on Hn and X [J ] = (XiJ) mutually
orthogonal (unit) proper vectors in B(H, Hn) for A with eigen-operators EJ .
Then, an operator U ≡ (Xij) ∈ B(Hn) is an isometry and

U ∗AU =

E1

. . .
En

 ≡ E. (3.3)
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Moreover UU ∗ commutes with A and hence

U ∗f(A)U = f(U ∗AU ) = f(E) =

f(E1)
. . .

f(En)


for all real continuous functions f . Conversely if (3.3) holds for an isometry U
with UU ∗A = AUU ∗, then EJ is an eigen-operator for A with a proper vector
U [J ] = (UiJ) ∈ B(H, Hn).

Proof. By U ∗U =
(
X [i]∗X [j]

)
= (δijIH) = IHn , an operator U is an isometry.

Since

AU = A(X [1] · · · X [n]) = (AX [1] · · · AX [n]) = (X [1]E1 · · · X [n]En) = UE,

we have U ∗AU = U ∗UE = E, which also shows E∗ = E, that is, E∗
k = Ek

for all k. On the other hand, AUU ∗ = UEU ∗ = UU ∗A since E is selfad-
joint. It follows that (U ∗AU )n = U ∗AnU . Then p(U ∗AU ) = U ∗p(A)U for all
polynomials p and consequently f(U ∗AU ) = U ∗f(A)U holds for all continuous
functions f by Weierstrass’ approximation theorem. The converse is similarly
obtained. �

Example 3.2. Let C and D be invertible operators on H with C∗C +D∗D = I.
Put a projection

A =

(
C O
D O

)(
C O
D O

)∗
=

(
CC∗ CD∗

DC∗ DD∗

)
.

In fact, A is selfadjoint and

A2 =

(
C O
D O

)(
C O
D O

)∗(
C O
D O

)(
C O
D O

)∗
=

(
C O
D O

)(
I O
O O

)(
C O
D O

)∗
= A.

Noting that |C| and |D| are commuting, we take mutually orthogonal unit proper
vectors

X [1] =

(
C
D

)
, X [2] =

(
Y1

Y2

)
≡
(

(C∗)−1|C||D|
−D|D|−1|C|

)
.

In fact, X [1]∗X [1] = C∗C + D∗D = I,

X [2]∗X [2] = |D||C|(C∗C)−1|C||D|+ |C||D|−1D∗D|D|−1|C| = |D|2 + |C|2 = I

and

X [1]∗X [2] = C∗Y1 + D∗Y2 = |C||D| −D∗D|D|−1|C| = |D||C| − |D||C| = O,

which means the orthogonality. Since(
C O
D O

)∗
(X [1] X [2]) = (X [1] O)∗(X [1] X [2]) =

(
X [1]∗X [1] O
X [1]∗X [2] O

)
=

(
I O
O O

)
,

we have

A(X [1] X [2]) =

(
C O
D O

)(
I O
O O

)
= (X [1] X [2])

(
I O
O O

)
= (X [1]I X [2]O),
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which shows that X1 (resp. X2) is a proper vector with an eigen-operator I (resp.
O) and we also obtain the diagonalization:

(X [1] X [2])∗A(X [1] X [2]) =

(
I O
O O

)
.

Corollary 3.3. Under the same assumptions of f , A and Xj for Theorem 3.1,

X∗
j f(A)Xj = f(X∗

j AXj).

Proof. For a unit operator Vj = (O · · ·O
j-th

I O · · ·O)∗ and U in Theorem 3.1,

X∗
j f(A)Xj = V ∗

j U ∗f(A)UVj = V ∗
j f(U ∗AU )Vj

= V ∗
j f(E)Vj = f(Ej) = f(X∗

j AXj). �

Thus proper vectors give the equality. Indeed, this is a condition exactly equiv-
alent to the equality in (3.2):

Theorem 3.4. Under the same assumptions of Hansen-Pedersen’s theorem, sup-
pose f is strictly convex (or concave). The equality in (3.2) holds if and only if
C is a proper vector of A.

Proof. It suffices to show the case that f is operator convex on (−1, 1) and σ(A) ⊂
(−1, 1). Then f has an integral representation

f(x) = a + bx +

∫ 1

−1

x2

1− tx
dm(t)

for some finite measure m on [−1, 1] ([2]). Therefore, the above equality can be
reduced to that for the non-affine part

x2

1− tx
= −x

t
− 1

t2
+

1

t2(1− tx)
,

in particular, for the function f1(x) = 1/(1 − x). For B = 1 − A, we have
σ(B) ⊂ (0, 2) and hence

C∗B−1C = C∗f1(A)C = f1(C
∗AC) = (C∗BC)−1

by the equation in (3.2). Take the projection P = CC∗ ∈ B(Hn) with PC = C.
It follows from operator convexity of g(x) = x2 that

(C∗B− 1
2 C)2 ≤ C∗B−1C = (C∗BC)−1 ≤ (C∗B

1
2 PB

1
2 C)−1 = (C∗B

1
2 C)−2.

Thus we have all the terms in the above are equal, in particular,

C∗B
1
2 IB

1
2 C = C∗BC = C∗B

1
2 PB

1
2 C,

that is, C∗B
1
2 (I − P )B

1
2 C = O. Thereby(

(I − P )B
1
2 P
)∗

(I − P )B
1
2 P = PB

1
2 (I − P )B

1
2 P = O,

so that (I −P )B
1
2 P = O. Consequently, B

1
2 commutes with P and so does A.

Therefore we obtain

AC = APC = PAC = C(C∗AC),
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that is, C is a proper vector with the eigen-operator C∗AC. �
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