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Abstract. Remarks about strengthening of the triangle inequality and its
reverse inequality in normed spaces for two and more elements are collected.
There is also a discussion on Fischer–Muszély equality for n-elements in a
normed space. Some other estimates which follow from the triangle inequality
are also presented.

1. Introduction and preliminaries

We present three results on refinements of the triangle inequality and some related
estimates of independent interest.

A) The following strengthening of the triangle inequality and its reverse in-
equality in normed spaces were observed already in 2003. The paper [24] was
sent to AMM in 2003 and published in 2006.

Theorem 1.1. For any nonzero elements x and y in a normed space X = (X, ‖·‖)
we have

‖x + y‖ ≤ ‖x‖+ ‖y‖ −
(

2− ‖ x

‖x‖
+

y

‖y‖
‖
)

min {‖x‖, ‖y‖} (1.1)
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and

‖x + y‖ ≥ ‖x‖+ ‖y‖ −
(

2− ‖ x

‖x‖
+

y

‖y‖
‖
)

max {‖x‖, ‖y‖} . (1.2)

Moreover, if either ‖x‖ = ‖y‖ or y = cx with c > 0, then equality holds in both
(1.1) and (1.2).

Proof. ([24], p. 257) Without loss of generality we may assume that ‖x‖ ≤ ‖y‖.
Then, by the triangle inequality

‖x + y‖ = ‖‖x‖
‖x‖

x +
‖x‖
‖y‖

y + (1− ‖x‖
‖y‖

)y‖

≤ ‖x‖ ‖ x

‖x‖
+

y

‖y‖
‖+ ‖y‖ − ‖x‖

= ‖y‖+ (‖ x

‖x‖
+

y

‖y‖
‖ − 1)‖x‖

= ‖x‖+ ‖y‖+ (‖ x

‖x‖
+

y

‖y‖
‖ − 2)‖x‖,

which establishes the estimate (1.1). Similarly, the computation

‖x + y‖ = ‖‖y‖
‖y‖

y +
‖y‖
‖x‖

x + (1− ‖y‖
‖x‖

)x‖

≥ ‖y‖‖ y

‖y‖
+

x

‖x‖
‖ − | ‖x‖ − ‖y‖ |

= ‖y‖‖ y

‖y‖
+

x

‖x‖
‖ − ‖y‖+ ‖x‖

= ‖x‖+ ‖y‖ − (2− ‖ x

‖x‖
+

y

‖y‖
‖)‖y‖

gives the inequality (1.2). �

Estimates (1.1) and (1.2) were explicitly stated and proved in [24, Theorem 1].
Estimate (1.1) appeared also in [15, Lemma 1.1] and implicitly they appeared in
[17, Lemma 2]. We can put estimates (1.1) and (1.2) together as

‖x + y‖+

(
2− ‖ x

‖x‖
+

y

‖y‖
‖
)

min {‖x‖, ‖y‖} ≤ ‖x‖+ ‖y‖

≤ ‖x + y‖+

(
2− ‖ x

‖x‖
+

y

‖y‖
‖
)

max {‖x‖, ‖y‖} .

Moreover, we can rewrite them as the estimates for the so-called norm-angular
distance (called also the Clarkson distance since he defined it in [7]) between
nonzero x and y as d[x, y] = ‖ x

‖x‖ −
y
‖y‖‖ (cf. [24, Remark 3]):

Corollary 1.2. For any nonzero elements x and y in a normed space X =
(X, ‖ · ‖) we have

‖ x

‖x‖
− y

‖y‖
‖ ≤ ‖x− y‖+ | ‖x‖ − ‖y‖ |

max{‖x‖, ‖y‖}
(1.3)
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and

‖ x

‖x‖
− y

‖y‖
‖ ≥ ‖x− y‖ − | ‖x‖ − ‖y‖ |

min{‖x‖, ‖y‖}
. (1.4)

Proof. Estimate (1.3) follows directly from (1.2) and estimate (1.4) directly from
(1.1). In fact, inequality (1.2) implies that

‖ x

‖x‖
− y

‖y‖
‖max{‖x‖, ‖y‖} ≤ ‖x− y‖+ 2 max{‖x‖, ‖y‖} − ‖x‖ − ‖y‖

= ‖x− y‖+ | ‖x− y‖ |,
and inequality (1.1) gives that

‖ x

‖x‖
− y

‖y‖
‖max{‖x‖, ‖y‖} ≥ ‖x− y‖+ 2 min{‖x‖, ‖y‖} − ‖x‖ − ‖y‖

= ‖x− y‖ − | ‖x− y‖ |.
�

Estimates (1.1) and (1.2) mean for the norm-angular distance that

(2− d[x,−y]) min{‖x‖, ‖y‖} ≤ ‖x‖+ ‖y‖ − ‖x + y‖

≤ (2− d[x,−y]) max{‖x‖, ‖y‖}
and they were mentioned in the book by E. Deza and M.-M. Deza [10, p. 52] as
a result from [24]. Estimates (1.3) and (1.4) mean that

‖x− y‖ − | ‖x‖ − ‖y‖ |
min{‖x‖, ‖y‖}

≤ d[x, y] ≤ ‖x− y‖+ | ‖x‖ − ‖y‖ |
max{‖x‖, ‖y‖}

.

Estimate (1.3) is a refinement of the Massera–Schäffer inequality proved in 1958
(see [26, Lemma 5.1]; see also [14, Theorem 1] and [29, p. 516]): for nonzero

vectors x and y in X we have that d[x, y] ≤ 2‖x−y‖
max(‖x‖,‖y‖) , which is stronger than

the Dunkl–Williams inequality d[x, y] ≤ 4‖x−y‖
‖x‖+‖y‖ proved in [12]. Estimates (1.2)

and (1.4) can be seen as the reverse inequalities of (1.1) and (1.3), respectively.
Another proof of estimate (1.4) appeared recently in [27, Theorem 1]. By the
way, Mercer [27] is using the name Maligranda inequality for (1.3) and reverse
Maligranda inequality for (1.4), but Pečarić-Rajić [31] called them Maligranda–
Mercer inequalities.

Note that the Dunkl–Williams inequality holds with constant 2 if and only if
X is an inner product space ([20]; cf. also [4, p. 31]) but one cannot replace
the constant 2 by 1 in the Massera–Schäffer inequality even for an inner prod-
uct space. Conditions for equality are proved in [20] and, consequently, we can
also ask for the equality conditions in (1.3) and (1.4). The Dunkl–Williams es-
timate was used in the proof of the fact that the Lipschitz norm of the radial
projection k(X) is smaller than 2 (see [8], [33], [35], [4, p. 142]; see also [22],
where the radial projection was used in the proof of the Dugunji theorem on
a failure of the Brouwer fixed point theorem in arbitrary infinite dimensional
Banach space, and [9, Theorem 1], where Desbiens showed that the Schäffer
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constant s(X) := lim supα[x,y]→0+
α[x,y]max{‖x‖,‖y‖}

‖x−y‖ is equal to k(X) in every finite-

dimensional Banach space X). Inequality (1.1) was also used in the proof of
a certain estimate of the Jordan–von Neumann constant CJN(X) by the James
constant J(X) (see [23, Lemma 1] and [25, Lemma 1]).

Recently, Betiuk–Pilarska and Prus [6] used the inequalities (1.1) and (1.2)
to find estimate of the James constant of a direct sum of the spaces Xs by its
James constants: J((

∑
s∈S Xs)Z) ≤ 2− 1

2
[2− sups∈S J(Xs)][2−J(Z)]. Moreover,

Jiménez–Melado, Llorens–Fuster and Mazuñán–Nararro [16] introduced the no-
tion of Dunkl–Williams constant

DW (X) = sup

{
‖x‖+ ‖y‖
‖x− y‖

: x, y ∈ X, x 6= 0, y 6= 0, x 6= y

}
and collected its connection with some other constants.

Remark 1.3. The right-hand sides of (1.1) and (1.2) can be written also in another
way since

‖x‖+ ‖y‖ −
(

2− ‖ x

‖x‖
+

y

‖y‖
‖
)

min {‖x‖, ‖y‖}

= min {‖x‖, ‖y‖} ‖ x

‖x‖
+

y

‖y‖
‖+ | ‖x‖ − ‖y‖ |

and
‖x‖+ ‖y‖ −

(
2− ‖ x

‖x‖
+

y

‖y‖
‖
)

max {‖x‖, ‖y‖}

= max {‖x‖, ‖y‖} ‖ x

‖x‖
+

y

‖y‖
‖ − | ‖x‖ − ‖y‖ | .

Kato, Saito and Tamura ([18], Theorem 1) generalized inequalities (1.1) and
(1.2) to n-elements with n ≥ 2: For any nonzero elements x1, x2, . . . , xn in a
normed space X = (X, ‖ · ‖) we have

‖
n∑

k=1

xk‖ ≤
n∑

k=1

‖xk‖ −

(
n− ‖

n∑
k=1

xk

‖xk‖
‖

)
min

k=1,2,...,n
‖xk‖ (1.5)

and

‖
n∑

k=1

xk‖ ≥
n∑

k=1

‖xk‖ −

(
n− ‖

n∑
k=1

xk

‖xk‖
‖

)
max

k=1,2,...,n
‖xk‖. (1.6)

Remark 1.4. If either ‖x1‖ = ‖x2‖ = . . . = ‖xn‖ or for a fixed i ∈ I = {1, 2, . . . , n}
we have that 0 6= xi ∈ X and xk = ckxi with ck > 0 for k ∈ I \ {i}, then equality
holds in both (1.5) and (1.6).

Immediately from inequalities (1.5) and (1.6) we have the following equivalence.

Corollary 1.5. For nonzero vectors x1, x2, . . . , xn in a normed space X = (X, ‖ ·
‖) we have equality ‖

∑n
k=1 xk‖ =

∑n
k=1 ‖xk‖ if and only if ‖

∑n
k=1

xk

‖xk‖
‖ = n.
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Let us compare the above considerations with the Fischer–Muszély equality
for n-elements in a normed space. The statement was proved for two-elements
(n = 2) by Fischer–Muszély [13] (see also [5, Lemma 1], [3, Lemma 2.1] and [2,
Lemma 11.4]) and for three-elements (n = 3) by Lin [21, Lemma 1]. An induction
proof for all n ≥ 2 can be found in [1, pp. 335-336] and [2, p. 463]. We present a
direct proof following the ideas of Baker [5] and Lin [21]. Some results, without
knowledge of the Fisher–Muszély theorem, were presented also by Kato, Saito
and Tamura (cf. [18], Lemma 1 and Theorems 3, 4).

Theorem 1.6. (a). If x1, x2, . . . , xn are elements in a normed space X = (X, ‖ ·
‖), then the equality

‖
n∑

k=1

xk‖ =
n∑

k=1

‖xk‖ (1.7)

holds if and only we have equality

‖
n∑

k=1

akxk‖ =
n∑

k=1

ak‖xk‖ (1.8)

for any positive numbers a1, a2, . . . , an.
(b). If, in addition, X is a strictly convex normed space, that is, its sphere

does not contain any segment, then the equalities (1.7) and (1.8) for nonzero
x1, x2, . . . , xn ∈ X are equivalent to the equalities

x1

‖x1‖
=

x2

‖x2‖
= . . . =

xn

‖xn‖
. (1.9)

Proof. (a) Of course, it is sufficient to prove the implication (1.7)=⇒ (1.8). With-
out loss of generality we can assume that a1 = maxk=1,2,...,n ak. Then, by (1.7),
we obtain

‖
n∑

k=1

akxk‖ = ‖a1

n∑
k=1

xk −
n∑

k=1

(a1 − ak)xk‖

≥ a1‖
n∑

k=1

xk‖ − ‖
n∑

k=1

(a1 − ak)xk‖

≥ a1‖
n∑

k=1

xk‖ −
n∑

k=1

(a1 − ak)‖xk‖

=
n∑

k=1

ak‖xk‖.

The reverse inequality follows from the triangle inequality and thus we obtain the
equality (1.8).

(b) It is well-known that a normed space X is strictly convex if and only if the
equality ‖x+ y‖ = ‖x‖+ ‖y‖ for nonzero x, y implies that x = cy for some c > 0.
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If we assume that (1.7) holds, then for any 1 < j ≤ n

‖x1 + xj‖ ≥ ‖
n∑

k=1

xk‖ − ‖
∑
k 6=1,j

xk‖ ≥ ‖
n∑

k=1

xk‖ −
∑
k 6=1,j

‖xk‖

=
n∑

k=1

‖xk‖ −
∑
k 6=1,j

‖xk‖ = ‖x1‖+ ‖xj‖,

and whence ‖x1 + xj‖ = ‖x1‖ + ‖xj‖, which by the strict convexity of X gives

that x1 = cjxj with cj > 0, 1 < j ≤ n. Consequently, cj = ‖x1‖
‖xj‖ or x1

‖x1‖ =
xj

‖xj‖ for

any 1 < j ≤ n, and (1.9) is proved.
If (1.9) holds, then for any positive numbers a1, a2, . . . , an

‖
n∑

k=1

akxk‖ = ‖
n∑

k=1

ak‖xk‖
xk

‖xk‖
‖ = ‖

n∑
k=1

ak‖xk‖
xi

‖xi‖
‖

=
n∑

k=1

ak‖xk‖ ‖
xi

‖xi‖
‖ =

n∑
k=1

ak‖xk‖,

and the theorem is proved. �

Remark 1.7. If (1.9) holds, then we have equalities (1.7) and (1.8) without any
restriction on a normed space X. It will be interesting to characterize equalities
in (1.5) and (1.6).

Some other sharpenings of (1.3) and (1.4) in the case n ≥ 3 (for n = 2 they
are just estimates (1.1) and (1.2) was proved by Mitani, Saito, Kato and Tamura
[28, Theorem 1]: For any nonzero elements x1, x2, . . . , xn in a normed space
X = (X, ‖ · ‖) we have

‖
n∑

k=1

xk‖+
n∑

k=2

(
k − ‖

k∑
i=1

x∗i
‖x∗i ‖

‖

)(
‖x∗k‖ − ‖x∗k+1‖

)
≤

n∑
k=1

‖xk‖

≤ ‖
n∑

k=1

xk‖ −
n∑

k=2

k − ‖
n∑

i=n−(k−1)

x∗i
‖xi‖

(‖x∗n−k‖ − ‖x∗n−(k−1)‖
)
,

where x∗1, x
∗
2, . . . , x

∗
n are the rearrangements of ‖x1‖, ‖x2‖, . . . , ‖xn‖ satisfying

‖x∗1‖ ≥ ‖x∗2‖ ≥ . . . ≥ ‖x∗n‖ and x∗0 = x∗n+1 = 0.

Pečarić and Rajić [31] generalized inequalities (1.3) and (1.4) to n-elements
with n ≥ 2: if nonzero x1, x2, . . . , xn ∈ X, then

max
1≤i≤n

{S −Di

‖xi‖
} ≤ ‖

n∑
k=1

xk

‖xk‖
‖ ≤ min

1≤i≤n
{S + Di

‖xi‖
},

where S = ‖
∑n

k=1 xk‖ and Di =
∑n

k=1 |‖xk‖ − ‖xi‖| , i = 1, 2, . . . , n. They also
observed (cf. [31], Corollary 2.3) that from these estimates we can obtain the
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estimates (1.5) and (1.6) in the form

n∑
k=1

‖xk‖ ≤ ‖
n∑

k=1

xk‖+

(
n− ‖

n∑
k=1

xk

‖xk‖
‖

)
max

k=1,2,...,n
‖xk‖

and
n∑

k=1

‖xk‖ ≥ ‖
n∑

k=1

xk‖+

(
n− ‖

n∑
k=1

xk

‖xk‖
‖

)
min

k=1,2,...,n
‖xk‖.

These last inequalities were also obtained, in a more general form and even for
convex functions, by Dragomir [11]:

n∑
k=1

‖xk‖p − n1−p‖
n∑

k=1

xk‖p ≤

(
n∑

k=1

‖xk‖p−1 − ‖
n∑

k=1

xk

‖xk‖
‖p

)
max

k=1,2,...,n
‖xk‖

and

n∑
k=1

‖xk‖p − n1−p‖
n∑

k=1

xk‖p ≥

(
n∑

k=1

‖xk‖p−1 − ‖
n∑

k=1

xk

‖xk‖
‖p

)
min

k=1,2,...,n
‖xk‖,

where p ≥ 1 and n ≥ 2.

B) In 1930 Alfred Tarski posed in [34] the question to prove that

| |x| − |y| | = |x + y|+ |x− y| − |x| − |y|

holds for all real numbers x, y, and in 1931 appeared his nice solution [34]. Of
course, this equality is not true for complex numbers (as a counterexample it is
enough to take x = 1 and y = i).
Note also that since for all x, y ∈ R we have the equality max{|x + y|, |x− y|} =
|x|+ |y| and also

|x + y|+ |x− y| − |x| − |y| = |x + y|+ |x− y| −max{|x + y|, |x− y|}
= min{|x + y|, |x− y|},

it yields that for all real x, y:

| |x| − |y| | = |x + y|+ |x− y| − |x| − |y| = min{|x + y|, |x− y|}.

Next we state a corresponding result in normed spaces.

Theorem 1.8. For any elements x, y in a normed space X = (X, ‖ · ‖) we have
that

| ‖x‖ − ‖y‖ | ≤ ‖x + y‖+ ‖x− y‖ − ‖x‖ − ‖y‖ ≤ min{‖x + y‖, ‖x− y‖}(1.10)

and

| ‖x‖ − ‖y‖ | ≤ ‖x‖+ ‖y‖ − | ‖x + y‖ − ‖x− y‖ | . (1.11)
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Proof. It is clear that for every x, y ∈ X

‖x‖+ ‖y‖+ | ‖x‖ − ‖y‖ | = 2 max{‖x‖, ‖y‖}
and

‖x‖+ ‖y‖ − | ‖x‖ − ‖y‖ | = 2 min{‖x‖, ‖y‖}.
By the triangle inequality

‖x + y‖+ ‖x− y‖ ≥ ‖x + y ± (x− y)‖ = 2‖x‖ or = 2‖y‖.
Thus,

‖x + y‖+ ‖x− y‖ ≥ 2 max{‖x‖, ‖y‖},
and by combining these facts we obtain the first estimate in (1.10). The second
estimate in (1.10) follows directly from the triangle inequality.
By the triangle inequality

| ‖x + y‖ − ‖x− y‖ | ≤ ‖x + y ± (x− y)‖ = 2‖x‖ or = 2‖y‖,
so that

| ‖x + y‖ − ‖x− y‖ | ≤ 2 min{‖x‖, ‖y‖}
and also the estimates in (1.11) are proved. �

C) In a normed space X = (X, ‖ · ‖) for a fixed u ∈ X and p ≥ 1 we consider
new norms ‖ · ‖u,p defined by

‖x‖u,p = (‖x + ‖x‖u‖p + ‖x− ‖x‖u‖p)1/p . (1.12)

The norm ‖ · ‖u,1 was considered by Odell and Schlumprecht [30, p. 178] to
produce a strictly convex norm in every separable Banach space (cf. also [32, p.
118]).

Theorem 1.9. The functionals ‖ · ‖u,p defined by (1.12) are norms in X which
are equivalent to the norm ‖ · ‖.

To prove this theorem we will need the following lemma of independent interest.

Lemma 1.10. For fixed x, y in a normed space X and p ≥ 1 consider the function
fp : R → [0,∞) defined by

fp(t) = (‖x + ty‖p + ‖x− ty‖p)1/p , t ∈ R.

Then fp is an even convex function and so is increasing on [0,∞).

Proof. Let 0 ≤ α, β ≤ 1 be such that α + β = 1 and s, t ∈ R. Then, by the
triangle inequality, homogeneouity of the norm ‖·‖ and the Minkowski inequality
for two-dimensional lp2-norm, that is, for a, b, c, d ≥ 0 it yields that

‖(a + c, b + d)‖p ≤ ‖(a, b)‖p+, ‖(c, d)‖p

or, equivalently,

[(a + c)p + (b + d)p]1/p ≤ (ap + bp)1/p + (cp + dp)1/p,
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we obtain the convexity of fp:

fp(αs + βt) = (‖x + (αs + βt)y)‖p + ‖x− (αs + βt)y)‖p)1/p

= (‖α(x + sy) + β(x + ty)‖p + ‖α(x− sy) + β(x− ty)‖p)1/p

≤ ([α‖x + sy‖+ β‖x + ty‖]p + [α‖x− sy‖+ β‖x− ty‖]p)1/p

≤ ([α‖x + sy‖]p + [α‖x− sy‖]p)1/p

+ ([α‖x + ty‖]p + [α‖x− ty‖]p)1/p = αfp(s) + βfp(t).

Moreover, by the triangle inequality and the concavity of u1/p, we get, for t ∈ R,
that

fp(0) = 21/p‖x‖ ≤ 21/p‖x + ty‖+ ‖x− ty‖
2

≤ 21/p(
‖x + ty‖p + ‖x− ty‖p

2
)1/p = fp(t).

In particular, if 0 ≤ s < t, then

fp(s) = fp

(s

t
t + (1− s

t
)0
)
≤ s

t
fp(t) + (1− s

t
)fp(0)

≤ s

t
fp(t) + (1− s

t
)fp(t) = fp(t).

Note also that |fp(s)− fp(t)| ≤ 21/p|s− t|‖y‖ for all s, t ∈ R. �

We are now ready to prove Theorem 1.9.

Proof. We need to show the triangle inequality for ‖ · ‖u,p. For any x, y ∈ X,
by using the monotonicity from Lemma 1.10, twice the triangle inequality of the
norm ‖ · ‖ and the Minkowski inequality for the two-dimensional lp2-norm, we
obtain that

‖x + y‖u,p = (‖x + y + ‖x + y‖u‖p + ‖x + y − ‖x + y‖u‖p)1/p

≤ (‖x + y + (‖x‖+ ‖y‖)u‖p + ‖x + y − (‖x‖+ ‖y‖)u‖p)1/p

= (‖(x + ‖x‖u) + (y + ‖y‖u)‖p + ‖(x− ‖x‖u) + (y − ‖y‖u)‖p)1/p

≤ ([‖x + ‖x‖u‖+ ‖y + ‖y‖u‖]p + [‖x− ‖x‖u‖+ ‖y − ‖y‖u‖]p)1/p

≤ (‖x + ‖x‖u‖p + ‖x− ‖x‖u‖p)1/p

+ (‖y + ‖y‖u‖p + ‖y − ‖y‖u‖p)1/p = ‖x‖u,p + ‖y‖u,p.

Moreover, by the convexity of up and the triangle inequality,

‖x‖u,p ≥ 21/p−1(‖x + ‖x‖u‖+ ‖x− ‖x‖u‖) ≥ 21/p‖x‖,
and also, by the triangle inequality,

‖x‖u,p ≤ 21/p(‖x‖+ ‖x‖‖u‖).
Thus

21/p‖x‖ ≤ ‖x‖u,p ≤ 21/p(1 + ‖u‖)‖x‖.
�
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