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Abstract. We shall give a norm inequality equivalent to the grand Furuta
inequality, and moreover show its reverse as follows: Let A and B be positive
operators such that 0 < m ≤ B ≤ M for some scalars 0 < m < M and
h := M

m > 1. Then
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for 0 ≤ t ≤ 1, p ≥ 1, s ≥ 1 and r ≥ t ≥ 0, where K(h, p) is the generalized
Kantorovich constant. As applications, we consider reverses related to the
Ando-Hiai inequality.

1. Introduction

The origin of reverse inequalities is the Kantorovich inequality. It says that if
a positive operator A on a Hilbert space H satisfies 0 ≤ m ≤ A ≤ M , then

〈A−1x, x〉 ≤ (M + m)2

4Mm
〈Ax, x〉−1 for all unit vectors x ∈ H. (K)
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The point in (K) is the convexity of the function t → t−1. Mond and Pečarić
turned their attention to the convexity of functions, and established the so called
Mond-Pečarić method in the theory of reverse inequalities, see [13] in detail. The
subject of this note is just on the line of Mond-Pečarić’s idea, and our target is
the grand Furuta inequality.

Let A and B be positive (bounded linear) operators acting on a Hilbert space.
The grand Furuta inequality [10] says that

A ≥ B ≥ 0 ⇒ A1−t+r ≥ {A
r
2 (A− t

2 BpA− t
2 )sA

r
2}

1−t+r
(p−t)s+r (GFI)

for 0 ≤ t ≤ 1, p ≥ 1, s ≥ 1 and r ≥ t.
The inequality (GFI) is considered as a parametric formula interpolating the

Furuta inequality (FI) and Ando-Hiai one (1.1), respectively [9] and [1]:

A ≥ B ≥ 0 ⇒ A1+r ≥ (A
r
2 BpA

r
2 )

1+r
p+r (r ≥ 0, p ≥ 1) (FI)

and

A ≥ B ≥ 0 ⇒ Ar ≥ {A
r
2 (A− 1

2 BpA− 1
2 )rA

r
2}

1
p (p, r ≥ 1). (1.1)

Now the Furuta inequality appeared as a useful extension of the so-called
Löwner-Heinz inequality (cf. [14]):

A ≥ B ≥ 0 ⇒ Aα ≥ Bα (0 ≤ α ≤ 1). (1.2)

This Löwner-Heinz inequality (1.2) is equivalent to the Araki-Cordes inequality
([2], [4]):
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M.Fujii and Y.Seo [8] gave a reverse inequality of the Araki-Cordes inequality:
If A and B are positive operators such that 0 < m ≤ B ≤ M for some scalars
0 < m < M and h := M

m
(> 1), then
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1
2 BA

1
2 ‖p ≤ ‖ A

p
2 BpA

p
2 ‖ (0 ≤ p ≤ 1) (1.4)

where a generalized Kantorovich constant K(h, p) is defined as follows:

K(h, p) :=
1

h− 1

hp − h

p− 1

(
p− 1
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hp − 1

p

)p

(1.5)

for all h(6= 1), p ∈ R and K(h, 0) = K(h, 1) = 1, see [11] and [13].
In this note, we first give a norm inequality equivalent to the grand Furuta

inequality (GFI). Based on this, we show a reverse inequality of (GFI), in which
the generalized Kantorovich constant (1.5) is used. As an application, we obtain
reverses of a generalization of Ando-Hiai inequality (1.1).

2. Norm Inequality equivalent to the grand Furuta inequality

The grand Furuta inequality (GFI) is equivalent to the following norm inequal-
ity:
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Lemma 2.1. Let A and B be positive operators. Then the grand Furuta inequality
(GFI) is equivalent to
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for 0 ≤ t ≤ 1, p ≥ 1, s ≥ 1 and r ≥ t.

Proof. Replace A to A−1 and put
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This is equivalent to the inequality

A ≥ C ⇒ A1−t+r ≥ {A
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that is, (2.1) is equivalent to the grand Furuta inequality (GFI). �

Corollary 2.2. Let A and B be positive operators. Then

‖ A
1+s
2 B1+sA

1+s
2 ‖

p+s
p(1+s) ≤ ‖ A

1
2 (A

s
2 Bp+sA

s
2 )

1
p A

1
2 ‖ (2.2)

for p ≥ 1 and s ≥ 0.
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Proof. Put t = 0, s = 1 in (2.1). Then replacing r and B to s and B
1+s

s ,
respectively, (2.1) implies (2.2).

Moreover, let t be a real number satisfying s ≥ t ≥ 0. Then (2.2) implies
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∈ [0, 1] and the Araki-Cordes inequality (1.3). Furthermore, replacing B

to B
t

1+t and putting p = s
t
, we have (2.3). �

Remark 2.3. The inequality (2.3) is originated by Bebiano-Lemos-Providência
in [3]. In our previous note [7], we call it the BLP inequality and we showed (2.2)
as a generalization of the BLP inequality (2.3). Incidentally it is equivalent to
(FI). For convenience, we give a proof of (2.2) ⇒ (FI). The inequality (2.2) is
rephrased by replacing A to A−1 as follows:
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it is also rephrased as
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which obviously implies the Furuta inequality (FI) by taking s = t = r.

Remark 2.4. In [12], Furuta gave a similar inequality to (2.1).

3. A reverse grand Furuta inequality and its applications

In this section, we give a reverse inequality of (2.1) by using the generalized
Kantorovich constant (1.5).

Theorem 3.1. Let A and B be positive operators such that 0 < m ≤ B ≤ M for
some scalars 0 < m < M and h := M

m
> 1. Then
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for 0 ≤ t ≤ 1, p ≥ 1, s ≥ 1 and 1+r ≥ 1+r′ > t, where K(h, p) is the generalized
Kantorovich constant defined by (1.5).

Proof. For p ≥ 1 and s ≥ 1, the Araki-Cordes inequality (1.3) implies that
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Moreover, since (p−t)s+r ≥ 1−t+r′ > 0, it follows from the reverse Araki-Cordes
inequality (1.4) that
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Combining them, we have the desired inequality (3.1). �

From the reverse grand Furuta inequality (3.1) we have the following reverse
Furuta inequality (see [7]):
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Corollary 3.2. Let A and B be positive operators such that 0 < m ≤ B ≤ M
for some scalars 0 < m < M and h := M

m
> 1. Then
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extended (AH) as follows:
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to the grand Furuta inequality is rewritten as follows:
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This inequality (3.3) implies (GAH) by t = 1.

From the viewpoint of the Ando-Hiai inequality, we consider the following
inequality related to a reverse inequality of (3.3) which is equivalent to (3.1).

Theorem 3.3. Let A and B be positive operators such that 0 < m ≤ A, B ≤ M
for some scalars 0 < m < M and h := M
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for 0 ≤ t ≤ 1, s ≥ 1, 1 + r ≥ 1 + r′ ≥ t and 0 ≤ α ≤ 1 where K(h, p) is the
generalized Kantorovich constant defined by (1.5).
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Proof. In (3.1), we replace Br−t, hr−t and p to (A− r
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Under the conditions of 0 ≤ s ≤ 1 and r′ = r, we prove the following inequality
as in Theorem 3.3:
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for 0 ≤ s, t ≤ 1, 1+ r ≥ t and 0 ≤ α ≤ 1 with α(1− t) ≤ (1−αt)s where K(h, p)
is the generalized Kantorovich constant defined by (1.5).
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Proof. We use the Hölder-McCarthy inequality and its reverse: Let A be a positive
operator with 0 < m ≤ A ≤ M . Then for every vector y ∈ H
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Hence we obtain the desired inequality (3.5). �

Putting t = 1 in (3.5), we have an inequality given in [15]:
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