REVERSE OF THE GRAND FURUTA INEQUALITY AND ITS APPLICATIONS

MASATOSHI FUJII ${ }^{1 *}$, RITSUO NAKAMOTO ${ }^{2}$ AND MASARU TOMINAGA ${ }^{3}$
This paper is dedicated to Professor J.E. Pečarić

Submitted by A. R. Villena

Abstract. We shall give a norm inequality equivalent to the grand Furuta inequality, and moreover show its reverse as follows: Let A and B be positive operators such that $0<m \leq B \leq M$ for some scalars $0<m<M$ and $h:=\frac{M}{m}>1$. Then

$$
\begin{aligned}
& \left\|A^{\frac{1}{2}}\left\{A^{-\frac{t}{2}}\left(A^{\frac{r}{2}} B^{\frac{(r-t)\{(p-t) s+r\}}{1-t+r}} A^{\frac{r}{2}}\right)^{\frac{1}{s}} A^{-\frac{t}{2}}\right\}^{\frac{1}{p}} A^{\frac{1}{2}}\right\| \\
& \leq K\left(h^{r-t}, \frac{(p-t) s+r}{1-t+r}\right)^{\frac{1}{p s}}\left\|A^{\frac{1-t+r}{2}} B^{r-t} A^{\frac{1-t+r}{2}}\right\|^{\frac{(p-t) s+r}{p s(1-t+r)}}
\end{aligned}
$$

for $0 \leq t \leq 1, p \geq 1, s \geq 1$ and $r \geq t \geq 0$, where $K(h, p)$ is the generalized Kantorovich constant. As applications, we consider reverses related to the Ando-Hiai inequality.

1. Introduction

The origin of reverse inequalities is the Kantorovich inequality. It says that if a positive operator A on a Hilbert space H satisfies $0 \leq m \leq A \leq M$, then

$$
\begin{equation*}
\left\langle A^{-1} x, x\right\rangle \leq \frac{(M+m)^{2}}{4 M m}\langle A x, x\rangle^{-1} \quad \text { for all unit vectors } x \in H \tag{K}
\end{equation*}
$$

Date: Received: 15 April 2008; Accepted: 20 April 2008.

* Corresponding author.

2000 Mathematics Subject Classification. 47A63.
Key words and phrases. grand Furuta inequality, Furuta inequality, Löwner-Heinz inequality, Araki-Cordes inequality, Bebiano-Lemos-Providência inequality, norm inequality, positive operator, operator inequality, reverse inequality.

The point in $(\overline{\mathrm{K}})$ is the convexity of the function $t \rightarrow t^{-1}$. Mond and Pečarić turned their attention to the convexity of functions, and established the so called Mond-Pečarić method in the theory of reverse inequalities, see [13] in detail. The subject of this note is just on the line of Mond-Pečarić's idea, and our target is the grand Furuta inequality.

Let A and B be positive (bounded linear) operators acting on a Hilbert space. The grand Furuta inequality [10] says that

$$
\begin{equation*}
A \geq B \geq 0 \quad \Rightarrow \quad A^{1-t+r} \geq\left\{A^{\frac{r}{2}}\left(A^{-\frac{t}{2}} B^{p} A^{-\frac{t}{2}}\right)^{s} A^{\frac{r}{2}}\right\}^{\frac{1-t+r}{(p-t) s+r}} \tag{GFI}
\end{equation*}
$$

for $0 \leq t \leq 1, p \geq 1, s \geq 1$ and $r \geq t$.
The inequality (GFI) is considered as a parametric formula interpolating the Furuta inequality (FI) and Ando-Hiai one (1.1), respectively [9] and [1]:

$$
\begin{equation*}
A \geq B \geq 0 \quad \Rightarrow \quad A^{1+r} \geq\left(A^{\frac{r}{2}} B^{p} A^{\frac{r}{2}}\right)^{\frac{1+r}{p+r}} \quad(r \geq 0, p \geq 1) \tag{FI}
\end{equation*}
$$

and

$$
\begin{equation*}
A \geq B \geq 0 \quad \Rightarrow \quad A^{r} \geq\left\{A^{\frac{r}{2}}\left(A^{-\frac{1}{2}} B^{p} A^{-\frac{1}{2}}\right)^{r} A^{\frac{r}{2}}\right\}^{\frac{1}{p}} \quad(p, r \geq 1) \tag{1.1}
\end{equation*}
$$

Now the Furuta inequality appeared as a useful extension of the so-called Löwner-Heinz inequality (cf. [14]):

$$
\begin{equation*}
A \geq B \geq 0 \quad \Rightarrow \quad A^{\alpha} \geq B^{\alpha} \quad(0 \leq \alpha \leq 1) \tag{1.2}
\end{equation*}
$$

This Löwner-Heinz inequality (1.2) is equivalent to the Araki-Cordes inequality ([2], [4]):

$$
\begin{equation*}
\left\|A^{\frac{p}{2}} B^{p} A^{\frac{p}{2}}\right\| \leq\left\|A^{\frac{1}{2}} B A^{\frac{1}{2}}\right\|^{p} \quad(0 \leq p \leq 1) \tag{1.3}
\end{equation*}
$$

M.Fujii and Y.Seo [8] gave a reverse inequality of the Araki-Cordes inequality: If A and B are positive operators such that $0<m \leq B \leq M$ for some scalars $0<m<M$ and $h:=\frac{M}{m}(>1)$, then

$$
\begin{equation*}
K(h, p)\left\|A^{\frac{1}{2}} B A^{\frac{1}{2}}\right\|^{p} \leq\left\|A^{\frac{p}{2}} B^{p} A^{\frac{p}{2}}\right\| \quad(0 \leq p \leq 1) \tag{1.4}
\end{equation*}
$$

where a generalized Kantorovich constant $K(h, p)$ is defined as follows:

$$
\begin{equation*}
K(h, p):=\frac{1}{h-1} \frac{h^{p}-h}{p-1}\left(\frac{p-1}{h^{p}-h} \frac{h^{p}-1}{p}\right)^{p} \tag{1.5}
\end{equation*}
$$

for all $h(\neq 1), p \in \mathbb{R}$ and $K(h, 0)=K(h, 1)=1$, see [11] and [13].
In this note, we first give a norm inequality equivalent to the grand Furuta inequality (GFI). Based on this, we show a reverse inequality of (GFI), in which the generalized Kantorovich constant (1.5) is used. As an application, we obtain reverses of a generalization of Ando-Hiai inequality (1.1).

2. Norm Inequality equivalent to the grand Furuta inequality

The grand Furuta inequality (GFI) is equivalent to the following norm inequality:

Lemma 2.1. Let A and B be positive operators. Then the grand Furuta inequality (GFI) is equivalent to

$$
\begin{equation*}
\left\|A^{\frac{1-t+r}{2}} B^{r-t} A^{\frac{1-t+r}{2}}\right\|^{\frac{(p-t) s+r}{p s(1-t+r)}} \leq\left\|A^{\frac{1}{2}}\left\{A^{-\frac{t}{2}}\left(A^{\frac{r}{2}} B^{\frac{(r-t)\{(p-t) s+r\}}{1-t+r}} A^{\frac{r}{2}}\right)^{\frac{1}{s}} A^{-\frac{t}{2}}\right\}^{\frac{1}{p}} A^{\frac{1}{2}}\right\| \tag{2.1}
\end{equation*}
$$

for $0 \leq t \leq 1, p \geq 1, s \geq 1$ and $r \geq t$.
Proof. Replace A to A^{-1} and put

$$
C=\left\{A^{\frac{t}{2}}\left(A^{-\frac{r}{2}} B^{\frac{(r-t)\{(p-t) s+r\}}{1-t+r}} A^{-\frac{r}{2}}\right)^{\frac{1}{s}} A^{\frac{t}{2}}\right\}^{\frac{1}{p}}
$$

in (2.1). Since $B^{r-t}=\left\{A^{\frac{r}{2}}\left(A^{-\frac{t}{2}} C^{p} A^{-\frac{t}{2}}\right)^{s} A^{\frac{r}{2}}\right\}^{\frac{1-t+r}{(p-t) s+r}}$, we have

$$
\left\|A^{-\frac{1-t+r}{2}}\left\{A^{\frac{r}{2}}\left(A^{-\frac{t}{2}} C^{p} A^{-\frac{t}{2}}\right)^{s} A^{\frac{r}{2}}\right\}^{\frac{1-t+r}{(p-t) s+r}} A^{-\frac{1-t+r}{2}}\right\|^{\frac{(p-t) s+r}{p s(1-t+r)}} \leq\left\|A^{-\frac{1}{2}} C A^{-\frac{1}{2}}\right\| .
$$

This is equivalent to the inequality

$$
A \geq C \quad \Rightarrow \quad A^{1-t+r} \geq\left\{A^{\frac{r}{2}}\left(A^{-\frac{t}{2}} C^{p} A^{-\frac{t}{2}}\right)^{s} A^{\frac{r}{2}}\right\}^{\frac{1-t+r}{(p-t) s+r}},
$$

that is, (2.1) is equivalent to the grand Furuta inequality (GFI).

Corollary 2.2. Let A and B be positive operators. Then

$$
\begin{equation*}
\left\|A^{\frac{1+s}{2}} B^{1+s} A^{\frac{1+s}{2}}\right\|^{\frac{p+s}{p(1+s)}} \leq\left\|A^{\frac{1}{2}}\left(A^{\frac{s}{2}} B^{p+s} A^{\frac{s}{2}}\right)^{\frac{1}{p}} A^{\frac{1}{2}}\right\| \tag{2.2}
\end{equation*}
$$

for $p \geq 1$ and $s \geq 0$.
Moreover

$$
\begin{equation*}
\left\|A^{\frac{1+t}{2}} B^{t} A^{\frac{1+t}{2}}\right\| \leq\left\|A^{\frac{1}{2}}\left(A^{\frac{s}{2}} B^{s} A^{\frac{s}{2}}\right)^{\frac{t}{s}} A^{\frac{1}{2}}\right\| \tag{2.3}
\end{equation*}
$$

for $s \geq t \geq 0$.
Proof. Put $t=0, s=1$ in (2.1). Then replacing r and B to s and $B^{\frac{1+s}{s}}$, respectively, (2.1) implies (2.2).

Moreover, let t be a real number satisfying $s \geq t \geq 0$. Then (2.2) implies

$$
\left\|A^{\frac{1+t}{2}} B^{1+t} A^{\frac{1+t}{2}}\right\|^{\frac{p+s}{p(1+t)}} \leq\left\|A^{\frac{1+s}{2}} B^{1+s} A^{\frac{1+s}{2}}\right\|^{\frac{p+s}{p(1+s)}} \leq\left\|A^{\frac{1}{2}}\left(A^{\frac{s}{2}} B^{p+s} A^{\frac{s}{2}}\right)^{\frac{1}{p}} A^{\frac{1}{2}}\right\|
$$

by $\frac{1+t}{1+s} \in[0,1]$ and the Araki-Cordes inequality (1.3). Furthermore, replacing B to $B^{\frac{t}{1+t}}$ and putting $p=\frac{s}{t}$, we have (2.3).

Remark 2.3. The inequality (2.3) is originated by Bebiano-Lemos-Providência in [3]. In our previous note [7], we call it the BLP inequality and we showed (2.2) as a generalization of the BLP inequality (2.3). Incidentally it is equivalent to $(F I)$. For convenience, we give a proof of 2.2$) \Rightarrow(F I)$. The inequality (2.2) is rephrased by replacing A to A^{-1} as follows:

$$
\left\|A^{-\frac{1+t}{2}} B^{t} A^{-\frac{1+t}{2}}\right\|^{\frac{p+s}{p(1+t)}} \leq\left\|A^{-\frac{1}{2}}\left(A^{-\frac{s}{2}} B^{\frac{t(p+s)}{1+t}} A^{-\frac{s}{2}}\right)^{\frac{1}{p}} A^{-\frac{1}{2}}\right\|
$$

Moreover, putting

$$
C=\left(A^{-\frac{s}{2}} B^{\frac{t(p+s)}{1+t}} A^{-\frac{s}{2}}\right)^{\frac{1}{p}}, \text { or } B^{t}=\left(A^{\frac{s}{2}} C^{p} A^{\frac{s}{2}}\right)^{\frac{1+t}{p+s}}
$$

it is also rephrased as

$$
\left\|A^{-\frac{1+t}{2}}\left(A^{\frac{s}{2}} C^{p} A^{\frac{s}{2}}\right)^{\frac{1+t}{p+s}} A^{-\frac{1+t}{2}}\right\|^{\frac{p+s}{p(1+t)}} \leq\left\|A^{-\frac{1}{2}} C A^{-\frac{1}{2}}\right\|
$$

which obviously implies the Furuta inequality $(F I)$ by taking $s=t=r$.

Remark 2.4. In [12], Furuta gave a similar inequality to (2.1).

3. A reverse grand Furuta inequality and its applications

In this section, we give a reverse inequality of (2.1) by using the generalized Kantorovich constant (1.5).

Theorem 3.1. Let A and B be positive operators such that $0<m \leq B \leq M$ for some scalars $0<m<M$ and $h:=\frac{M}{m}>1$. Then

$$
\begin{align*}
& \left\|A^{\frac{1}{2}}\left\{A^{-\frac{t}{2}}\left(A^{\frac{r}{2}} B^{\frac{(r-t)\{(p-t) s+r\}}{1-t+r}} A^{\frac{r}{2}}\right)^{\frac{1}{s}} A^{-\frac{t}{2}}\right\}^{\frac{1}{p}} A^{\frac{1}{2}}\right\| \\
& \quad \leq K\left(h^{\frac{1-t+r^{\prime}}{1-t+r}(r-t)}, \frac{(p-t) s+r}{1-t+r^{\prime}}\right)^{\frac{1}{p s}}\left\|A^{\frac{1-t+r^{\prime}}{2}} B^{\frac{1-t+r^{\prime}}{1-t+r}(r-t)} A^{\frac{1-t+r^{\prime}}{2}}\right\|^{\frac{(p-t) s+r}{p s\left(1-t+r^{\prime}\right)}} \tag{3.1}
\end{align*}
$$

for $0 \leq t \leq 1, p \geq 1, s \geq 1$ and $1+r \geq 1+r^{\prime}>t$, where $K(h, p)$ is the generalized Kantorovich constant defined by (1.5).
Proof. For $p \geq 1$ and $s \geq 1$, the Araki-Cordes inequality (1.3) implies that

$$
\begin{aligned}
& \left\|A^{\frac{1}{2}}\left\{A^{-\frac{t}{2}}\left(A^{\frac{r}{2}} B^{\frac{(r-t)\{(p-t) s+r\}}{1-t+r}} A^{\frac{r}{2}}\right)^{\frac{1}{s}} A^{-\frac{t}{2}}\right\}^{\frac{1}{p}} A^{\frac{1}{2}}\right\| \\
& \leq\left\|A^{\frac{p}{2}}\left\{A^{-\frac{t}{2}}\left(A^{\frac{r}{2}} B^{\frac{(r-t)\{(p-t) s+r\}}{1-t+r}} A^{\frac{r}{2}}\right)^{\frac{1}{s}} A^{-\frac{t}{2}}\right\} A^{\frac{p}{2}}\right\|^{\frac{1}{p}} \\
& =\left\|A^{\frac{p-t}{2}}\left(A^{\frac{r}{2}} B^{\frac{(r-t)\{(p-t) s+r\}}{1-t+r}} A^{\frac{r}{2}}\right)^{\frac{1}{s}} A^{\frac{p-t}{2}}\right\|^{\frac{1}{p}} \\
& \leq\left\|A^{\frac{(p-t) s}{2}}\left(A^{\frac{r}{2}} B^{\frac{(r-t)\{(p-t) s+r\}}{1-t+r}} A^{\frac{r}{2}}\right) A^{\left(\frac{p-t) s}{2}\right.}\right\|^{\frac{1}{p s}} \\
& =\left\|A^{\frac{(p-t) s+r}{2}} B^{\frac{(r-t)\{(p-t) s+r\}}{1-t+r}} A^{\frac{(p-t) s+r}{2}}\right\|^{\frac{1}{p s}} .
\end{aligned}
$$

Moreover, since $(p-t) s+r \geq 1-t+r^{\prime}>0$, it follows from the reverse Araki-Cordes inequality (1.4) that

$$
\begin{aligned}
& \left\|A^{\frac{(p-t) s+r}{2}} B^{\frac{(r-t)\{(p-t) s+r\}}{1-t+r}} A^{\frac{(p-t) s+r}{2}}\right\|^{\frac{1}{p s}} \\
& \leq\left\|A^{\frac{(p-t) s+r}{2}} B^{(r-t) \frac{1-t+r^{\prime}}{1-t+r} \frac{(p-t) s+r}{1-t+r^{\prime}}} A^{\frac{(p-t) s+r}{2}}\right\|^{\frac{1}{p s}} \\
& \leq K\left(h^{\frac{1-t+r^{\prime}}{1-t+r}(r-t)}, \frac{(p-t) s+r}{1-t+r^{\prime}}\right)^{\frac{1}{p s}}\left\|A^{\frac{1-t+r^{\prime}}{2}} B^{\frac{1-t+r^{\prime}}{1-t+r}(r-t)} A^{\frac{1-t+r^{\prime}}{2}}\right\|^{\frac{(p-t) s+r}{p s\left(1-t+r^{\prime}\right)}} .
\end{aligned}
$$

Combining them, we have the desired inequality (3.1).
From the reverse grand Furuta inequality (3.1) we have the following reverse Furuta inequality (see [7]):

Corollary 3.2. Let A and B be positive operators such that $0<m \leq B \leq M$ for some scalars $0<m<M$ and $h:=\frac{M}{m}>1$. Then

$$
\begin{equation*}
\left\|A^{\frac{1}{2}}\left(A^{\frac{s}{2}} B^{p+s} A^{\frac{s}{2}}\right)^{\frac{1}{p}} A^{\frac{1}{2}}\right\| \leq K\left(h^{1+t}, \frac{p+s}{1+t}\right)^{\frac{1}{p}}\left\|A^{\frac{1+t}{2}} B^{1+t} A^{\frac{1+t}{2}}\right\|^{\frac{p+s}{p(1+t)}} \tag{3.2}
\end{equation*}
$$

for all $p \geq 1$ and $s \geq t>-1$.
Proof. In (3.1), if we put $t=0, s=1$, and replace r, r^{\prime}, B and h to $s, t, B^{\frac{1+s}{s}}$ and $h^{\frac{1+s}{s}}$, respectively, then the desired inequality (3.2) holds.

On the other hand, Ando and Hiai [1] proved

$$
A \not \sharp_{\alpha} B \leq 1 \Rightarrow A^{r} \sharp_{\alpha} B^{r} \leq 1 \quad \text { for } 0 \leq \alpha \leq 1, r \geq 1
$$

where $A \not \sharp_{\alpha} B:=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\alpha} A^{\frac{1}{2}}$. This inequality is equivalent to

$$
\begin{equation*}
\left\|A^{r} \sharp_{\alpha} B^{r}\right\| \leq\left\|A \not \sharp_{\alpha} B\right\|^{r} . \tag{AH}
\end{equation*}
$$

M.Fujii and E.Kamei [6] proved that (AH) is equivalent to (FI). Also they extended (AH) as follows:

$$
\begin{equation*}
\left\|A^{r} \not \sharp_{(1-\alpha) s+\alpha r} B^{s}\right\|^{\frac{(1-\alpha) s+\alpha r}{s r}} \leq\left\|A \not \sharp_{\alpha} B\right\| \tag{GAH}
\end{equation*}
$$

for $r, s \geq 1$ and $0 \leq \alpha \leq 1$. It is easy to see that the inequality (2.1) equivalent to the grand Furuta inequality is rewritten as follows:

$$
\left\|A^{\frac{1-t+r}{2}}\left(A^{-\frac{r}{2}} B^{s} A^{-\frac{r}{2}}\right)^{\frac{1-t+r}{(p-t) s+r}} A^{\frac{1-t+r}{2}}\right\|^{\frac{(p-t) s+r}{p(1-t+r)}} \leq\left\|A^{\frac{1}{2}}\left(A^{-\frac{t}{2}} B A^{-\frac{t}{2}}\right)^{\frac{1}{p}} A^{\frac{1}{2}}\right\|
$$

for $0 \leq t \leq 1, p \geq 1, s \geq 1$ and $r \geq t \geq 0$. Here if we put $\alpha=\frac{1}{p}$, then we have

$$
\begin{equation*}
\left\|A^{\frac{1-t+r}{2}}\left(A^{-\frac{r}{2}} B^{s} A^{-\frac{r}{2}}\right)^{\frac{\alpha(1-t+r)}{(1-\alpha t) s+\alpha r}} A^{\frac{1-t+r}{2}}\right\|^{\frac{(1-\alpha t) s+\alpha r}{s(1-t+r)}} \leq\left\|A^{\frac{1}{2}}\left(A^{-\frac{t}{2}} B A^{-\frac{t}{2}}\right)^{\alpha} A^{\frac{1}{2}}\right\| . \tag{3.3}
\end{equation*}
$$

This inequality (3.3) implies (GAH) by $t=1$.
From the viewpoint of the Ando-Hiai inequality, we consider the following inequality related to a reverse inequality of (3.3) which is equivalent to (3.1).

Theorem 3.3. Let A and B be positive operators such that $0<m \leq A, B \leq M$ for some scalars $0<m<M$ and $h:=\frac{M}{m}>1$. Then

$$
\begin{align*}
& K\left(h^{r+s}, \frac{\alpha\left(1-t+r^{\prime}\right)}{(1-\alpha t) s+\alpha r}\right)\left\|A^{\frac{1}{2}}\left(A^{-\frac{t}{2}} B A^{-\frac{t}{2}}\right)^{\alpha} A^{\frac{1}{2}}\right\|^{\frac{s\left(1-t+r^{\prime}\right)}{(1-\alpha r) s+\alpha r}} \tag{3.4}\\
& \leq \| A^{\frac{1-t+r^{\prime}}{2}}\left(A^{-\frac{r}{2}} B^{s} A^{-\frac{r}{2}} \frac{\alpha\left(1-t+r^{\prime}\right)}{(1-\alpha t) s+\alpha r} A^{\frac{1-t+r^{\prime}}{2}} \|\right.
\end{align*}
$$

for $0 \leq t \leq 1, s \geq 1,1+r \geq 1+r^{\prime} \geq t$ and $0 \leq \alpha \leq 1$ where $K(h, p)$ is the generalized Kantorovich constant defined by (1.5).

Proof. In (3.1), we replace B^{r-t}, h^{r-t} and p to $\left(A^{-\frac{r}{2}} B^{s} A^{-\frac{r}{2}}\right)^{\frac{\alpha(1-t+r)}{(1-\alpha t) s+\alpha r}}, h^{\frac{\alpha(r+s)(1-t+r)}{(1-\alpha t) s+\alpha r}}$ and $\frac{1}{\alpha}$, respectively. Then we have

$$
\begin{aligned}
\left\|A^{\frac{1}{2}}\left(A^{-\frac{t}{2}} B A^{-\frac{t}{2}}\right)^{\alpha} A^{\frac{1}{2}}\right\| \leq & K\left(h^{\frac{\alpha(r+s)\left(1-t+r^{\prime}\right)}{(1-\alpha t) s+\alpha r}}, \frac{(1-\alpha t) s+\alpha r}{\alpha\left(1-t+r^{\prime}\right)}\right)^{\frac{\alpha}{s}} \\
& \times\left\|A^{\frac{1-t+r^{\prime}}{2}}\left(A^{-\frac{r}{2}} B^{s} A^{-\frac{r}{2}}\right)^{\frac{\alpha\left(1-t+r^{\prime}\right)}{(1-\alpha t) s+\alpha r}} A^{\frac{1-t+r^{\prime}}{2}}\right\|^{\frac{(1-\alpha t) s+\alpha r}{s\left(1-t+r^{\prime}\right)}} .
\end{aligned}
$$

By the inversion formula (i.e., $K\left(h^{r}, \frac{1}{r}\right)=K(h, r)^{-\frac{1}{r}}$ for all $r \neq 0$) [5], it implies

$$
K\left(h^{\frac{\alpha(r+s)\left(1-t+r^{\prime}\right)}{(1-\alpha t) s+\alpha r}}, \frac{(1-\alpha t) s+\alpha r}{\alpha\left(1-t+r^{\prime}\right)}\right)^{\frac{\alpha}{s}}=K\left(h^{r+s}, \frac{\alpha\left(1-t+r^{\prime}\right)}{(1-\alpha t) s+\alpha r}\right)^{-\frac{(1-\alpha t) s+\alpha r}{s\left(1-t+r^{\prime}\right)}}
$$

and hence (3.4) holds.

Remark 3.4. If $r=r^{\prime}$ in (3.4), then we have the following reverse inequality of (3.3):

$$
\begin{aligned}
& K\left(h^{r+s}, \frac{\alpha(1-t+r)}{(1-\alpha t) s+\alpha r}\right)\left\|A^{\frac{1}{2}}\left(A^{-\frac{t}{2}} B A^{-\frac{t}{2}}\right)^{\alpha} A^{\frac{1}{2}}\right\|^{\frac{s(1-t+r)}{(1-\alpha r) s+\alpha r}} \\
& \leq\left\|A^{\frac{1-t+r}{2}}\left(A^{-\frac{r}{2}} B^{s} A^{-\frac{r}{2}}\right)^{\frac{\alpha(1-t+r)}{(1-\alpha t) s+\alpha r}} A^{\frac{1-t+r}{2}}\right\|
\end{aligned}
$$

for $0 \leq t \leq 1, s \geq 1,1+r \geq t$ and $0 \leq \alpha \leq 1$. Moreover, let $t=1$ in Theorem 3.3. As a reverse inequality of (GAH), we have

$$
\begin{aligned}
& K\left(h^{r+s}, \frac{\alpha r}{(1-\alpha) s+\alpha r}\right)\left\|A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\alpha} A^{\frac{1}{2}}\right\|^{\frac{s r}{(1-\alpha) s+\alpha r}} \\
& \leq\left\|A^{\frac{r}{2}}\left(A^{-\frac{r}{2}} B^{s} A^{-\frac{r}{2}}\right)^{\frac{\alpha r}{(1-\alpha) s+\alpha r}} A^{\frac{r}{2}}\right\|
\end{aligned}
$$

that is,

$$
K\left(h^{r+s}, \frac{\alpha r}{(1-\alpha) s+\alpha r}\right)\left\|A \not \sharp_{\alpha} B\right\|^{\frac{s r}{(1-\alpha) s+\alpha r}} \leq\left\|A^{r} \sharp_{\frac{\alpha r}{(1-\alpha) s+\alpha r}} B^{s}\right\|
$$

for $s \geq 1, r \geq 0$ and $0 \leq \alpha \leq 1$.

Under the conditions of $0 \leq s \leq 1$ and $r^{\prime}=r$, we prove the following inequality as in Theorem 3.3.

Theorem 3.5. Let A and B be positive operators on a Hilbert space H such that $0<m \leq A, B \leq M$ for some scalars $0<m<M$ and $h:=\frac{M}{m}>1$. Then

$$
\begin{align*}
& \left\|A^{\frac{1-t+r}{2}}\left(A^{-\frac{r}{2}} B^{s} A^{-\frac{r}{2}}\right)^{\frac{\alpha(1-t+r)}{(1-\alpha t) s+\alpha r}} A^{\frac{1-t+r}{2}}\right\| \\
& \leq K\left(h^{1+t}, \alpha\right)^{-\frac{s(1-t+)}{(1-\alpha t) s+\alpha r}}\left\|A^{\frac{1}{2}}\left(A^{-\frac{t}{2}} B A^{-\frac{t}{2}}\right)^{\alpha} A^{\frac{1}{2}}\right\|^{\frac{s(1-t+r)}{(1-\alpha t) s+\alpha r}} \tag{3.5}
\end{align*}
$$

for $0 \leq s, t \leq 1,1+r \geq t$ and $0 \leq \alpha \leq 1$ with $\alpha(1-t) \leq(1-\alpha t) s$ where $K(h, p)$ is the generalized Kantorovich constant defined by (1.5).

Proof. We use the Hölder-McCarthy inequality and its reverse: Let A be a positive operator with $0<m \leq A \leq M$. Then for every vector $y \in H$
$K(h, \beta)\langle A y, y\rangle^{\beta}\|y\|^{2(1-\beta)} \leq\left\langle A^{\beta} y, y\right\rangle \leq\langle A y, y\rangle^{\beta}\|y\|^{2(1-\beta)} \quad$ for $0 \leq \beta \leq 1$.
Since $\frac{m}{M^{t}} \leq m A^{-t} \leq A^{-\frac{t}{2}} B A^{-\frac{t}{2}} \leq M A^{-t} \leq \frac{M}{m^{t}}$ and $\left\|A^{\gamma} x\right\| \leq\left\|A^{\gamma}\right\|=\|A\|^{\gamma}$ $\leq M^{\gamma}$ for all unit vectors $x \in H$ and $\gamma>0$, we have for any $0 \leq s \leq 1$

$$
\begin{aligned}
&\left\langle A^{\frac{1-t+r}{2}}\left(A^{-\frac{r}{2}} B^{s} A^{-\frac{r}{2}}\right)^{\frac{\alpha(1-t+r)}{(1-\alpha t) s+\alpha r}} A^{\frac{1-t+r}{2}} x, x\right\rangle \\
& \leq\left\langle A^{\frac{1-t}{2}} B^{s} A^{\frac{1-t}{2}} x, x\right\rangle^{\frac{\alpha(1-t+r)}{(1-\alpha t) s+\alpha r}}\left\|A^{\frac{1-t+r}{2}} x\right\|^{2\left\{1-\frac{\alpha(1-t+r)}{(1-\alpha t) s+\alpha r}\right\}} \\
& \leq\left\langle A^{\frac{1-t}{2}} B A^{\frac{1-t}{2}} x, x\right\rangle^{\frac{s \alpha(1-t+r)}{(1-\alpha t) s+\alpha r}}\left\|A^{\frac{1-t}{2}} x\right\|^{\frac{2(1-s) \alpha(1-t+r)}{(1-\alpha t) s+\alpha r}} M^{\frac{1-t+r}{(1-\alpha t) s+\alpha r}(s-\alpha s t-\alpha+\alpha t)} \\
& \leq\left(K\left(h^{1+t}, \alpha\right)^{-1}\left\langle A^{\frac{1}{2}}\left(A^{-\frac{t}{2}} B A^{-\frac{t}{2}}\right)^{\alpha} A^{\frac{1}{2}} x, x\right\rangle\right)^{\frac{s(1-t+r)}{(1-\alpha t) s+\alpha r}}\left\|A^{\frac{1}{2}} x\right\|^{-\frac{2(1-\alpha) s(1-t+r)}{(1-\alpha t) s+\alpha r}} \\
& \times M^{\frac{1-t+r}{(1-\alpha t) s+\alpha r}(\alpha(1-s)(1-t))} M^{\frac{1-t+}{(1-\alpha t) s+\alpha r}(s-\alpha s t-\alpha+\alpha t)} \\
& \leq K\left(h^{1+t}, \alpha\right)^{-\frac{s(1-t+r)}{(1-\alpha t) s+\alpha r}}\left\|A^{\frac{1}{2}}\left(A^{-\frac{t}{2}} B A^{-\frac{t}{2}}\right)^{\alpha} A^{\frac{1}{2}}\right\|^{\frac{s(1-t+r)}{(1-\alpha t) s+\alpha r}} \\
& \times M^{-\frac{1-t+r}{(1-\alpha t) s+\alpha r}(1-\alpha) s} M^{\frac{1-t+r}{(1-\alpha t) s+\alpha r}(s-\alpha s)} \\
&= K\left(h^{1+t}, \alpha\right)^{-\frac{s(1-t+r)}{(1-\alpha t) s+\alpha r}}\left\|A^{\frac{1}{2}}\left(A^{-\frac{t}{2}} B A^{-\frac{t}{2}}\right)^{\alpha} A^{\frac{1}{2}}\right\|^{\frac{s(1-t+r)}{(1-\alpha t) s+\alpha r}} .
\end{aligned}
$$

Hence we obtain the desired inequality (3.5).

Putting $t=1$ in (3.5), we have an inequality given in [15]:

$$
\left\|A^{r} \sharp_{\frac{\alpha r}{(1-\alpha) s+\alpha r}} B^{s}\right\| \leq K\left(h^{2}, \alpha\right)^{-\frac{r s}{(1-\alpha) s+\alpha r}}\left\|A \not \sharp_{\alpha} B\right\|^{\frac{r s}{(1-\alpha) s+\alpha r}}
$$

for $0 \leq s \leq 1, r \geq 0$ and $0 \leq \alpha \leq 1$.

References

[1] T. Ando and F. Hiai, Log majorization and complementary Golden-Thompson type inequality, Linear Algebra Appl. 197 (1994), 113-131.
[2] H. Araki, On an inequality of Lieb and Thirring, Lett. Math. Phys., 19 (1990), 167-170.
[3] N. Bebiano, R. Lemos and J. Providência, Inequalities for quantum relative entropy, Linear Algebra Appl. 401 (2005), 159-172.
[4] H.O. Cordes, Spectral Theory of Linear Differential Operators and Comparison Algebras, Cambridge University Press, 1987.
[5] J.I. Fujii, M. Fujii, Y. Seo and M. Tominaga, On generalized Kantorovich inequalities, Banach and Function Spaces (2004), 205-213, Yokohama Publisher.
[6] M. Fujii and E. Kamei, Ando-Hiai inequality and Furuta inequality, Linear Algebra Appl. 416 (2006), 541-545.
[7] M. Fujii, R. Nakamoto and M. Tominaga, Generalized Bebiano-Lemos-Providência inequalities and their reverses, Linear Algebra Appl. 426 (2007), 33-39.
[8] M. Fujii and Y. Seo, Reverse inequalities of Cordes and Löwner-Heinz inequalities, Nihonkai Math. J., 16 (2005), 145-154.
[9] T. Furuta, $A \geq B \geq 0$ assures $\left(B^{r} A^{p} B^{r}\right)^{1 / q} \geq B^{(p+2 r) / q}$ for $r \geq 0, p \geq 0, q \geq 1$ with $(1+2 r) q \geq p+2 r$, Proc. Amer. Math. Soc., 101 (1987), 85-88.
[10] T. Furuta, Extension of the Furuta inequality and Ando-Hiai log majorization, Linear Algebra Appl. 219 (1995), 139-155.
[11] T. Furuta, Operator inequalities associated with Hölder-McCarthy and Kantorovich inequalities, J. Inequal. Appl., 2 (1998), 137-148.
[12] T. Furuta, Operator inequality implying generalized Bebiano-Lemos-Providência one, Linear Algebra Appl. 426 (2007), 342-348.
[13] T. Furuta, J. Mićić, J.E. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities, Monographs in Inequalities 1, Element, Zagreb, 2005.
[14] G.K. Pedersen, Some operator monotone functions, Proc. Amer. Math. Soc., 36 (1972), 309-310.
[15] Y. Seo and M. Tominaga, A reverse inequality of a generalized Ando-Hiai inequality, preprint.

1,2 Faculty of Engineering, Ibaraki University, Hitachi, Ibaraki 316-0033, Japan.
E-mail address: ${ }^{1}$ mfujii@cc.osaka-kyoiku.ac.jp, ${ }^{2}$ nakamoto@mx.ibaraki.ac.jp
3 Toyama National College of Technology, Hongo-machi, Toyama-shi 9398630, Japan.

E-mail address: mtommy@toyama-nct.ac.jp

