

Banach J. Math. Anal. 2 (2008), no. 2, 16–22

BANACH JOURNAL OF MATHEMATICAL ANALYSIS ISSN: 1735-8787 (electronic) http://www.math-analysis.org

GENERALIZATION OF SÅLÅGEAN OPERATOR FOR CERTAIN ANALYTIC FUNCTIONS

ALAWIAH IBRAHIM¹, SHIGEYOSHI OWA^{2*}, MASLINA DARUS³ AND YAYOI NAKAMURA⁴

This paper is dedicated to Professor Josip E. Pečarić

Submitted by M. Joita

ABSTRACT. For analytic functions f in the open unit disc \mathbb{U} , a generalization operator $D^{\lambda}f(z)$ of Sălăgean operator is introduced. Some properties for $D^{\lambda}f(z)$ are discussed in the present paper.

1. INTRODUCTION AND PRELIMINARIES

Let \mathcal{A} be the class of functions f of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k$$

which are analytic in the open unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$. For $f \in \mathcal{A}$, Sălăgean[5] has defined the following operator $D^n f(z)$ by

 $(i) \quad D^0 f(z) = f(z)$

$$\begin{array}{ll} (ii) \quad D^1f(z)=Df(z)=zf'(z)=z+\sum_{k=2}^\infty ka_kz^k, \end{array}$$

(*iii*) $D^n f(z) = D(D^{n-1}f(z)) = z + \sum_{k=2}^{\infty} k^n a_k z^k$, (n = 1, 2, 3...).

Date: Received: 8 February 2008; Accepted: 9 April 2008.

* Corresponding author.

Key words and phrases. Sălăgean operator, analytic function, starlike function.

²⁰⁰⁰ Mathematics Subject Classification. 30C45.

In view of the Sălăgean operator, we introduce

$$D^{\lambda}f(z) = z + \sum_{k=2}^{\infty} k^{\lambda}a_k z^k, \quad (\lambda \in \Re)$$

for $f \in \mathcal{A}$. Then for any real $\lambda \in \Re$ we see that

$$D^{\lambda+1}f(z) = z + \sum_{k=2}^{\infty} k^{\lambda+1} a_k z^k = z (D^{\lambda}f(z))'$$

and

$$D^{\lambda-1}f(z) = z + \sum_{k=2}^{\infty} k^{\lambda-1} a_k z^k = \int_0^z \frac{D^{\lambda} f(t)}{t} dt.$$

It is easy to see that

$$D^{\lambda_1+\lambda_2}f(z) = D^{\lambda_2}(D^{\lambda_1}f(z)) = D^{\lambda_1}(D^{\lambda_2}f(z))$$

for any real λ_1 and λ_2 .

To discuss our new problem, we have to recall here the following lemma by Jack [1] (also by Miller and Mocanu [3]).

Lemma 1.1. Let w(z) be non-constant and analytic in \mathbb{U} with w(0) = 0. If |w(z)| attains its maximum value on the circle |z| = r at the point $z_0 \in \mathbb{U}$, then we have $z_0w(z_0)' = kw(z_0)$ where $k \ge 1$ is real.

2. Properties of the operator $D^{\lambda}f(z)$

Our first result for the operator $D^{\lambda}f(z)$ is contained in the following theorem.

Theorem 2.1. If $f \in \mathcal{A}$ satisfies

$$\left|\frac{D^{\lambda+1}f(z)}{D^{\lambda}f(z)} - 1\right|^{\alpha} \left| z \left(\frac{D^{\lambda+1}f(z)}{D^{\lambda}f(z)}\right)' \right|^{\beta} < \left(\frac{1}{2}\right)^{\beta} \quad (z \in \mathbb{U})$$
(2.1)

for some real α , β with $\alpha + 2\beta \geq 0$ and for any real λ , then

$$\Re\left(\frac{D^{\lambda+1}f(z)}{D^{\lambda}f(z)}\right) > 0 \quad (z \in \mathbb{U}).$$

Proof. Let us define w(z) by

$$\frac{D^{\lambda+1}f(z)}{D^{\lambda}f(z)} = \frac{1+w(z)}{1-w(z)} \quad (w(z) \neq 1).$$

Then w(z) is analytic in \mathbb{U} and w(z) = 0.

Since

$$z\left(\frac{D^{\lambda+1}f(z)}{D^{\lambda}f(z)}\right)' = \frac{2zw'(z)}{(1-w(z))^2},$$

we obtain that

$$\left|\frac{D^{\lambda+1}f(z)}{D^{\lambda}f(z)} - 1\right|^{\alpha} \left| z \left(\frac{D^{\lambda+1}f(z)}{D^{\lambda}f(z)}\right)' \right|^{\beta} = \left|\frac{2w(z)}{1 - w(z)}\right|^{\alpha} \left|\frac{2zw(z)'}{(1 - w(z))^{2}}\right|^{\beta} < \left(\frac{1}{2}\right)^{\beta}$$

for all $z \in \mathbb{U}$. If there exists a point $z_0 \in \mathbb{U}$ such that $\max_{|z| \leq |z_0|} |w(z)| = |w(z_0)| = 1$, then Lemma 1.1 gives us that $w(z_0) = e^{i\theta}$ and $z_0w'(z_0) = ke^{i\theta}$ $(k \geq 1)$. This implies that

$$\left|\frac{D^{\lambda+1}f(z_0)}{D^{\lambda}f(z_0)} - 1\right|^{\alpha} \left|z_0 \left(\frac{D^{\lambda+1}f(z_0)}{D^{\lambda}f(z_0)}\right)'\right|^{\beta} = \left|\frac{2e^{i\theta}}{1 - e^{i\theta}}\right|^{\alpha} \left|\frac{2ke^{i\theta}}{(1 - e^{i\theta})^2}\right|^{\beta}$$
$$= \frac{2^{\alpha+\beta}k^{\beta}}{|1 - e^{i\theta}|^{\alpha+2\beta}} \ge \left(\frac{k}{2}\right)^{\beta} \ge \left(\frac{1}{2}\right)^{\beta}$$

for all $z \in \mathbb{U}$, which contradicts the condition of the theorem. This show that there is no $z_0 \in \mathbb{U}$ such that $|w(z_0)| = 1$. Therefore |w(z)| < 1 for all $z \in \mathbb{U}$ which implies that

$$\Re\left(\frac{D^{\lambda+1}f(z)}{D^{\lambda}f(z)}\right) > 0 \quad (z \in \mathbb{U})$$

This completes the proof of the theorem.

Noting that if $f \in \mathcal{A}$ is starlike in \mathbb{U} which is equivalent to

$$\Re\left(\frac{zf'(z)}{f(z)}\right) > 0 \quad (z \in \mathbb{U}),$$

then

$$|a_k| \le k \quad (k = 2, 3, 4, ...)$$

and equality holds true for Koebe function f given by $f(z) = \frac{z}{(1-z)^2}$ which is the extremal function for the class of starlike functions in U. Thus we have

Corollary 2.2. If $f \in A$ satisfies the inequality (2.1) for some real α , β with $\alpha + 2\beta \geq 0$ and for any real λ , then

$$|a_k| \le k^{1-\lambda}$$
 $(k = 2, 3, 4, ...).$

Equality holds true for Koebe function.

By the Marx-Strohhäcker theorem ([2], [6]), we know that if $f \in \mathcal{A}$ satisfies

$$\Re\left(1+\frac{zf''(z)}{f'(z)}\right) > 0 \quad (z \in \mathbb{U}),$$

then

$$\Re\left(\frac{zf'(z)}{f(z)}\right) > \frac{1}{2} \quad (z \in \mathbb{U}).$$

If we define the function F(z) by $F(z) = D^{\lambda-1}f(z)$, then $zF'(z) = D^{\lambda}f(z)$ and $zF'(z) + z^2F''(z) = D^{\lambda+1}f(z)$. Therefore, we have

Corollary 2.3. If $f \in \mathcal{A}$ satisfies the inequality (2.1) for some real α, β with $\alpha + 2\beta \geq 0$ and for any real λ , then

$$\Re\left(\frac{D^{\lambda}f(z)}{D^{\lambda-1}f(z)}\right) > \frac{1}{2} \quad (z \in \mathbb{U}).$$

The result is sharp for the function f given by

$$f(z) = z + \sum_{k=2}^{\infty} k^{1-\lambda} z^k$$

which is equivalent to

$$D^{\lambda}f(z) = \frac{z}{(1-z)^2}.$$

Next we prove the following theorem.

Theorem 2.4. If $f \in \mathcal{A}$ satisfies

$$\left|\frac{D^{\lambda+1}f(z)}{D^{\lambda}f(z)} - 1\right|^{\alpha} \left| z \left(\frac{D^{\lambda+1}f(z)}{D^{\lambda}f(z)}\right)' \right|^{\beta} < \left(\frac{1}{2}\right)^{\beta} (1-\gamma)^{\alpha+\beta} \quad (z \in \mathbb{U})$$
(2.2)

for some real α , β , γ with $\alpha + 2\beta \geq 0$ and $0 \leq \gamma < 1$, then

$$\Re\left(\frac{D^{\lambda+1}f(z)}{D^{\lambda}f(z)}\right) > \gamma \quad (z \in \mathbb{U}).$$

Proof. Defining the function w(z) by

$$\frac{D^{\lambda+1}f(z)}{D^{\lambda}f(z)} = \frac{1 + (1 - 2\gamma)w(z)}{1 - w(z)} \quad (w(z) \neq 1),$$

we see that w(z) is analytic in \mathbb{U} and w(0) = 0. Note that

$$z\left(\frac{D^{\lambda+1}f(z)}{D^{\lambda}f(z)}\right)' = \frac{2(1-\gamma)zw'(z)}{(1-w(z))^2}.$$

Thus we have that

$$\begin{aligned} \left|\frac{D^{\lambda+1}f(z)}{D^{\lambda}f(z)} - 1\right|^{\alpha} \left| z \left(\frac{D^{\lambda+1}f(z)}{D^{\lambda}f(z)}\right)' \right|^{\beta} &= \left|\frac{2(1-\gamma)w(z)}{1-w(z)}\right|^{\alpha} \left|\frac{2(1-\gamma)zw(z)'}{(1-w(z))^{2}}\right|^{\beta} \\ &< \left(\frac{1}{2}\right)^{\beta} (1-\gamma)^{\alpha+\beta} \quad (z \in \mathbb{U}). \end{aligned}$$

If there exists a point $z_0 \in \mathbb{U}$ such that $\max_{|z| \leq |z_0|} |w(z)| = |w(z_0)| = 1$, then w(z) satisfies $w(z_0) = e^{i\theta}$ and $z_0 w'(z_0) = k e^{i\theta}$ $(k \geq 1)$ by Lemma 1.1.

This gives us that

$$\begin{aligned} \left| \frac{D^{\lambda+1}f(z_0)}{D^{\lambda}f(z_0)} - 1 \right|^{\alpha} \left| z_0 \left(\frac{D^{\lambda+1}f(z_0)}{D^{\lambda}f(z_0)} \right)' \right|^{\beta} &= \left| \frac{2(1-\gamma)e^{i\theta}}{1-e^{i\theta}} \right|^{\alpha} \left| \frac{2(1-\gamma)ke^{i\theta}}{(1-e^{i\theta})^2} \right|^{\beta} \\ &= \frac{2^{\alpha+\beta}k^{\beta}(1-\gamma)^{\alpha+\beta}}{|1-e^{i\theta}|^{\alpha+2\beta}} \\ &\geq \left(\frac{k}{2} \right)^{\beta} (1-\gamma)^{\alpha+\beta} \\ &\geq \left(\frac{1}{2} \right)^{\beta} (1-\gamma)^{\alpha+\beta} \quad (z \in \mathbb{U}) \end{aligned}$$

which contradicts the condition of the theorem. This show that there is no $z_0 \in \mathbb{U}$ such that $|w(z_0)| = 1$. Therefore |w(z)| < 1 for all $z \in \mathbb{U}$.

Thus we conclude that

$$\Re\left(\frac{D^{\lambda+1}f(z)}{D^{\lambda}f(z)}\right) > \gamma \quad (z \in \mathbb{U}).$$

Noting that if $f \in \mathcal{A}$ satisfies

$$\Re\left(\frac{zf'(z)}{f(z)}\right) > \gamma \quad (z \in \mathbb{U}),$$

then

$$|a_k| \le \frac{\prod_{j=2}^k (j-2\gamma)}{(k-1)!}$$
 $(k=2,3,4,...)$

and equality holds true for the functions f given by

$$f(z) = \frac{z}{(1-z)^{2(1-\gamma)}}$$

which is the extremal function for the class of starlike of order γ in \mathbb{U} (cf. Robertson[4]).

In view of the above, we give direct corollary as follows:

Corollary 2.5. If $f \in A$ satisfies the inequality (2.2) for some real α , β , γ with $\alpha + 2\beta \geq 0$ and $0 \leq \gamma < 1$, then

$$|a_k| \le \frac{\prod_{j=2}^k (j-2\gamma)}{k^\lambda (k-1)!}$$
 $(k=2,3,4,\ldots).$

Equality holds true for the function f given by

$$f(z) = z + \sum_{k=2}^{\infty} \frac{\prod_{j=2}^{k} (j-2\gamma)}{k^{\lambda}(k-1)!} z^{k}$$

which is equivalent to

$$D^{\lambda}f(z) = \frac{z}{(1-z)^{2(1-\gamma)}}.$$

Finally, we derive the following:

Theorem 2.6. If $f \in \mathcal{A}$ satisfies

$$\left|\frac{D^{\lambda+1}f(z)}{D^{\lambda}f(z)} - 1\right|^{\alpha} \left| z \left(\frac{D^{\lambda+1}f(z)}{D^{\lambda}f(z)}\right)' \right|^{\beta} < \left(\frac{\gamma}{2}\right)^{\beta} \quad (z \in \mathbb{U})$$

for some real α , β , and $\gamma = \frac{\beta}{\alpha + \beta}$, then

$$\Re\left(\frac{D^{\lambda+1}f(z)}{D^{\lambda}f(z)}\right)^{\frac{1}{\gamma}} > 0 \quad (z \in \mathbb{U}).$$

Proof. Defining the function w(z) by

$$\frac{D^{\lambda+1}f(z)}{D^{\lambda}f(z)} = \left(\frac{1+w(z)}{1-w(z)}\right)^{\gamma} \quad (w(z) \neq 1)$$

with $\gamma = \frac{\beta}{\alpha + \beta}$, we see that w(z) is analytic in U and w(0) = 0. Noting that

$$z\left(\frac{D^{\lambda+1}f(z)}{D^{\lambda}f(z)}\right)' = \frac{2\gamma z w'(z)}{(1-w(z))^2} \left(\frac{1+w(z)}{1-w(z)}\right)^{\gamma-1},$$

we have that

$$\begin{aligned} \left| \frac{D^{\lambda+1}f(z)}{D^{\lambda}f(z)} - 1 \right|^{\alpha} \left| z \left(\frac{D^{\lambda+1}f(z)}{D^{\lambda}f(z)} \right)' \right|^{\beta} &= \left| \frac{1+w(z)}{1-w(z)} \right|^{\alpha\beta+\beta(\gamma-1)} \left| \frac{2\gamma z w(z)'}{(1-w(z))^2} \right|^{\beta} \\ &= \left| \frac{2\gamma z w(z)'}{(1-w(z))^2} \right|^{\beta} \\ &< \left(\frac{\gamma}{2} \right)^{\beta} \quad (z \in \mathbb{U}) \end{aligned}$$

since $\gamma = \frac{\beta}{\alpha + \beta}$. Now, suppose that there exists a point $z_0 \in \mathbb{U}$ such that $\max_{|z| \leq |z_0|} |w(z)| = |w(z_0)| = 1$. Then, by Lemma 1.1, we have that $w(z_0) = e^{i\theta}$ and $z_0 w'(z_0) = k e^{i\theta}$ $(k \geq 1)$.

This gives us that

$$\begin{aligned} \frac{D^{\lambda+1}f(z_0)}{D^{\lambda}f(z_0)} - 1 \Big|^{\alpha} \left| z_0 \left(\frac{D^{\lambda+1}f(z_0)}{D^{\lambda}f(z_0)} \right)' \right|^{\beta} &= \left| \frac{2\gamma k e^{i\theta}}{(1-e^{i\theta})^2} \right|^{\beta} \\ &= \frac{2^{\beta} k^{\beta} \gamma^{\beta}}{|(1-e^{i\theta})^2|^{\beta}} \\ &\geq \left(\frac{k\gamma}{2} \right)^{\beta} \\ &\geq \left(\frac{\gamma}{2} \right)^{\beta} \quad (z \in \mathbb{U}) \end{aligned}$$

which contradicts the condition of the theorem. This show that there is no $z_0 \in \mathbb{U}$ such that $|w(z_0)| = 1$. Therefore, we conclude that |w(z)| < 1 for all $z \in \mathbb{U}$, that is, that

$$\Re\left(\frac{D^{\lambda+1}f(z)}{D^{\lambda}f(z)}\right)^{\frac{1}{\gamma}} > 0 \quad (z \in \mathbb{U}).$$

Acknowledgements: The work presented here was fully supported by eScience-Fund: 04-01-02-SF0425, MOSTI, Malaysia and completed at Universiti Kebangsaan Malaysia when the second author has visited in Malaysia.

References

- I.S. Jack, Functions starlike and convex of order α, J. London Math. Soc., 3 (1971), 469– 474.
- 2. A. Marx, Untersuchungen uber schlichte Abbildungen, Math. Ann., 107 (1932/33), 40-67.
- S.S. Miller and P.T. Mocanu, Second-order differential inequalities in complex plane, J. Math. Anal. Appl., 65 (1978), 289–305.
- 4. M.S. Robertson, On the theory of univalent functions, Ann. Math., 37 (1936), 374–408.
- G.S. Sălăgean, Subclasses of univalent functions, Lecture Notes in Math., 1013, Springer-Verlag, Berlin, 1983, 362–372.
- E. Strohhäcker, Beitrage zur Theorie der schlichten Funktionen, Math. Z., 37 (1933), 356-380.

^{1,3} SCHOOL OF MATHEMATICAL SCIENCES, FACULTY OF SCIENCE AND TECHNOLOGY, UNIVERSITI KEBANGSAAN MALAYSIA, 43600 BANGI, SELANGOR D. EHSAN, MALAYSIA. *E-mail address*: ¹alaibra@ukm.my, ³maslina@ukm.my

^{2,4} Department of Mathematics, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan.

E-mail address: ²owa@math.kindai.ac.jp, ⁴yayoi@math.kindai.ac.jp