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Abstract. In this paper, we show reverses of the Golden–Thompson type
inequalities due to Ando, Hiai and Petz: Let H and K be Hermitian matrices
such that mI ≤ H,K ≤ MI for some scalars m ≤ M , and let α ∈ [0, 1]. Then
for every unitarily invarint norm

|‖e(1−α)H+αK |‖ ≤ S(ep(M−m))
1
p |‖

(
epH ]α epK

) 1
p |‖

holds for all p > 0 and the right-hand side converges to the left-hand side as
p ↓ 0, where S(a) is the Specht ratio and the α-geometric mean X ]α Y is
defined as

X ]α Y = X
1
2

(
X− 1

2 Y X− 1
2

)α

X
1
2 for all 0 ≤ α ≤ 1

for positive definite X and Y .

1. Introduction.

Let Mn denote the space of n-by-n complex matrices and I stands for the
identity matrix. For a pair X, Y of Hermitian matrices, the order relation X ≥ Y
means as usual that X − Y is positive semidefinite. In particular, X > 0 means
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that X is positive definite. A norm |‖ · |‖ on Mn is said to be unitarily invariant if

|‖UXV |‖ = |‖X|‖, X ∈ Mn

for all unitary U, V . Throughout the paper, the symbol |‖ · |‖ denotes the unitarily
invariant norm.

Motivated by quantum statistical mechanics, Golden [5], Symanzik [12] and
Thompson [13] independently proved that

Tr eH+K ≤ Tr eHeK

holds for Hermitian matrices H and K. This so-called Golden–Thompson trace
inequality has been generalized in several ways [8, 2]. Hiai and Petz [6] gave a
lower bound on Tr eH+K in terms of the geometric mean of Hermitian matrices
H and K, and it complements the Golden–Thompson upper bound: For each
α ∈ [0, 1]

Tr
(
epH ]α epK

) 1
p ≤ Tr e(1−α)H+αK

holds for all p > 0. Here X ]α Y denotes the α-geometric mean of positive definite
X and Y in the sense of Kubo–Ando [7] (in particular, X ] Y = X ] 1

2
Y is the

geometric mean), i.e.,

X ]α Y = X
1
2

(
X− 1

2 Y X− 1
2

)α

X
1
2 for all 0 ≤ α ≤ 1.

Afterwards, Ando and Hiai [1] showed that for every unitarily invariant norm |‖·|‖

|‖
(
epH ]α epK

) 1
p |‖ ≤ |‖e(1−α)H+αK |‖ (1.1)

holds for all p > 0 and the left-hand side of (1.1) increases to the right-hand side
as p ↓ 0. In particular,

|‖e2H ] e2K |‖ ≤ |‖eH+K |‖.
The purpose of this paper is to find a upper bound on |‖e(1−α)H+αK |‖ in terms

of scalar multiples of |‖
(
epH ]α epK

) 1
p |‖ for every unitarily invariant norm, and it

shows reverses of the Golden–Thompson type inequalities (1.1): Let H and K be
Hermitian matrices such that mI ≤ H, K ≤ MI for some scalars m ≤ M , and
let α ∈ [0, 1]. Then

|‖e(1−α)H+αK |‖ ≤ S(ep(M−m))
1
p |‖

(
epH ]α epK

) 1
p |‖ (1.2)

holds for all p > 0 and the right-hand side of (1.2) converges to the left-hand side
as p ↓ 0, where S(h) is the Specht ratio.

2. Preliminaries.

In order to prove our results, we need some preliminaries. As a converse of the
arithmetic-geometric mean inequality, Specht [11] estimated the upper bound of
the arithmetic mean by the geometric one for positive numbers: For x1, · · · , xn ∈
[m, M ] with 0 < m ≤ M ,

x1 + · · ·+ xn

n
≤ S(h) n

√
x1 · · ·xn, (2.1)
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where h = M
m

(≥ 1) is a generalized condition number in the sense of Turing [15]
and the Specht ratio is defined for h > 0 as

S(h) =
(h− 1)h

1
h−1

e log h
(h 6= 1) and S(1) = 1. (2.2)

Pečarić [10] showed the noncommutative operator version of (2.1): For positive
definite A and B such that 0 < mI ≤ A, B ≤ MI for some scalars 0 < m ≤ M

(1− α)A + αB ≤ S(h) A ]α B for all α ∈ [0, 1], (2.3)

also see [14].

We collect basic properties of the Specht ratio ([4, Lemma2.47], [16]):

Lemma 2.1. Let h > 0 be given. Then the Specht ratio has the following prop-
erties:

(1) S(h−1) = S(h).

(2) A function S(h) is strictly decreasing for 0 < h < 1 and strictly increasing
for h > 1.

(3) limp→0 S(hp)
1
p = 1.

For positive definite A such that mI ≤ A ≤ MI for some scalars 0 < m ≤ M ,
the following inequality is called the Kantorovich inequality:

(Ax, x)(A−1x, x) ≤ (M + m)2

4Mm
for every unit vector x. (2.4)

We call the constant (M+m)2

4Mm
the Kantorovich constant. Furuta [3] showed the

following extension of (2.4) as a reverse of Hölder-McCarthy inequality:

Theorem A. Let A be a positive definite matrix such that mI ≤ A ≤ MI for
some scalars 0 < m < M and x a unit vector. Put h = M

m
. Then

(Ax, x)p ≤ (Apx, x) ≤ K(h, p)(Ax, x)p for all p 6∈ [0, 1]. (i)

K(h, p)(Ax, x)p ≤ (Apx, x) ≤ (Ax, x)p for all p ∈ [0, 1], (ii)

where a generalized Kantorovich constant K(h, p) is defined for h > 0 as

K(h, p) =
hp − h

(p− 1)(h− 1)

(
p− 1

p

hp − 1

hp − h

)p

for any real number p ∈ R. (2.5)

In fact, if we put p = −1, then K(M
m

,−1) = (M+m)2

4Mm
.

Remark 2.2. By using the Mond–Pečarić method, Mond and Pečarić [9] showed
more general form of Theorem A in 1993: Let A be a Hermitian matrix such that
mI ≤ A ≤ MI. If f is a strictly convex twice differentiable function on [m,M ]
such that f(t) > 0 for all t ∈ [m,M ], then for all unit vectors x, the inequality

(f(A)x, x) ≤ λ f((Ax, x))

holds for some λ > 1. In fact, if we put f(t) = tp, then we have Theorem A.
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We state some properties of K(h, p) (see [4, Theorem 2.54, 2.56], [16]):

Lemma 2.3. Let h > 0 be given. Then a generalized Kantorovich constant
K(h, p) has the following properties:

K(h, p) = K(h−1, p) for all p ∈ R. (i)

K(h, p) = K(h, 1− p) for all p ∈ R. (ii)

K(h, 0) = K(h, 1) = 1 and K(1, p) = 1 for all p ∈ R. (iii)

K(hr,
p

r
)

1
p = K(hp,

r

p
)−

1
r for pr 6= 0. (iv)

lim
p→0

K(hp,
r

p
) = S(hr) for all r ∈ R. (v)

3. Specht ratio version.

Let A and B be positive definite matrices. Ando and Hiai [1] showed the
following inequality by using the log-majorization: For each α ∈ [0, 1]

|‖ (Ap ]α Bp)
1
p |‖ ≤ |‖ (Aq ]α Bq)

1
q |‖ for all 0 < q < p (3.1)

for every unitarily invariant norm. In particular,

|‖Ar ]α Br|‖ ≤ |‖ (A ]α B)r |‖ for all r ≥ 1.

First of all, we investigate order relations between (Aq ]α Bq)
1
q and (Ap ]α Bp)

1
p

in terms of the Specht ratio. In fact a stronger result holds. We show that a
reverse of (3.1) can be extended to all eigenvalues. Given two positive definite
matrices X and Y , recall that the eigenvalues of Y dominate the corresponding
eigenvalues of X iff there exists a unitary matrix U such that X ≤ UY U∗. For a
Hermitian matrix H, let λ1(H) ≥ λ2(H) ≥ · · · ≥ λn(H) be the eigenvalues of H
arranged in decreasing order.

Lemma 3.1. Let A and B be positive definite matrices such that 0 < mI ≤
A, B ≤ MI for some scalars 0 < m < M , and let α ∈ [0, 1]. Put h = M

m
. Then

for each 0 < q ≤ p, there exist unitary matrices U and V such that

S(hp)−
1
p V (Ap ]α Bp)

1
p V ∗ ≤ (Aq ]α Bq)

1
q ≤ S(hp)

1
p U (Ap ]α Bp)

1
p U∗, (3.2)

where S(h) is defined as (2.2).

Proof. By the arithmetic-geometric mean inequality and its reverse (2.3), we have

A ]α B ≤ (1− α)A + αB ≤ S(h) A ]α B.

Since 0 < q
p

< 1, it follows from the operator concavity of t
q
p that

A
q
p ]α B

q
p ≤ (1− α)A

q
p + αB

q
p ≤ ((1− α)A + αB)

q
p ≤ S(h)

q
p (A]αB)

q
p .

Replacing A and B by Ap and Bp respectively, we have

Aq ]α Bq ≤ S(hp)
q
p (Ap ]α Bp)

q
p . (3.3)
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In the case of q ≥ 1, the Löwner-Heinz inequality asserts

(Aq ]α Bq)
1
q ≤ S(hp)

1
p (Ap ]α Bp)

1
p .

In the case of 0 < q ≤ 1, by the minimax principle, there exists a subspace F
of codimension k − 1 such that

λk((A
q ]α Bq)

1
q ) = max

x∈F,‖x‖=1
(x, (Aq ]α Bq)

1
q x) = max

x∈F,‖x‖=1
(x, (Aq ]α Bq)x)

1
q .

Therefore, by (3.3) we have

λk((A
q ]α Bq)

1
q )

≤ max
x∈F,‖x‖=1

(
S(hp)

q
p (x, (Ap]αBp)

q
p x)

) 1
q

≤ max
x∈F,‖x‖=1

S(hp)
1
p (x, (Ap]αBp)

1
p x) by 0 < q < 1 and Theorem A(ii)

≤ S(hp)
1
p λk((A

p ]α Bp)
1
p )

and hence we obtain the right-hand side of (3.2).
To prove the left-hand side inequality, we replace A and B by their inverses

and we use

A−1 ]α B−1 = (A ]α B)−1.

Then we have (
A−q ]α B−q

) 1
q ≤ S(h−p)

1
p V

(
A−p ]α B−p

) 1
p V ∗

for some unitary V . By raising both sides to the inverse and (1) of Lemma 2.1
we obtain the desired one. �

As a corollary of Lemma 3.1, we have a reverse of (3.1):

Corollary 3.2. Let A and B be positive definite matrices such that 0 < mI ≤
A, B ≤ MI for some scalars 0 < m ≤ M , and let α ∈ [0, 1]. Put h = M

m
. Then

|‖ (Aq ]α Bq)
1
q |‖ ≤ S(hp)

1
p |‖ (Ap ]α Bp)

1
p |‖ for all 0 < q ≤ p. (3.4)

In particular,

|‖Ap ]α Bp|‖ ≤ S(h)p|‖(A ]α B)p|‖ for all 0 < p ≤ 1 (3.5)

and

|‖(A ]α B)p|‖ ≤ S(hp)|‖Ap ]α Bp|‖ for all p > 1. (3.6)

Proof. By Lemma 3.1, we have (3.4). If we put q = 1 in (3.4), then we have

|‖A ]α B|‖ ≤ S(hp)
1
p |‖ (Ap ]α Bp)

1
p |‖

for all p ≥ 1. Moreover, replacing A and B by A
1
p and B

1
p we have

|‖A
1
p ]α B

1
p |‖ ≤ S(hp)

1
p |‖ (A ]α B)

1
p |‖

and hence we have (3.5). Similarly we have (3.6). �
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We show reverses of the Golden–Thompson type inequalities due to Ando,Hiai
and Petz, which is our main result.

Theorem 3.3. Let H and K be Hermitian matrices such that mI ≤ H, K ≤ MI
for some scalars m ≤ M , and let α ∈ [0, 1]. Then for each p > 0 there exists
unitary matrices U and V such that

S(ep(M−m))−
1
p V

(
epH ]α epK

) 1
p V ∗

≤ e(1−α)H+αK ≤ S(ep(M−m))
1
p U

(
epH ]α epK

) 1
p U∗. (3.7)

Proof. Replacing A and B by eH and eK in Lemma 3.1 respectively, it follows
that for each 0 < q ≤ p there exist unitary matrix Up,q such that

(eqH ]α eqK)
1
q ≤ S(ep(M−m))

1
p Up,q(e

pH ]α epK)
1
p U∗

p,q.

By [6, Lemma 3.3], we have

e(1−α)H+αK = lim
q→0

(eqH ]α eqK)
1
q

and hence it follows that for each p > 0 there exist unitary matrix U such that

e(1−α)H+αK ≤ S(ep(M−m))
1
p U

(
epH ]α epK

) 1
p U∗.

We also have the left-hand side inequality of (3.7) by a similar method as the
proof of Lemma 3.1. �

In particular, we have the following results by (3) of Lemma 2.1.

Theorem 3.4. Let H and K be Hermitian matrices such that mI ≤ H, K ≤ MI
for some scalars m ≤ M , and let α ∈ [0, 1]. Then

|‖e(1−α)H+αK |‖ ≤ S(ep(M−m))
1
p |‖

(
epH ]α epK

) 1
p |‖ (3.8)

holds for all p > 0 and the right-hand side of (3.8) converges to the left-hand side
as p ↓ 0. In particular,

|‖eH+K |‖ ≤ S(e2(M−m)) |‖e2H ] e2K |‖. (3.9)

4. Kantorovich constant version.

In this section, we want to show another estimate of the Golden–Thompson
type inequalities due to Ando, Hiai and Petz. As a matter of fact, the upper

bound S(ep(M−m))
1
p in (3.8) of Theorem 3.4 is constant for all α ∈ [0, 1]. We

show another order relations between (Aq ]α Bq)
1
q and (Ap ]α Bp)

1
p in terms of

the generalized Kantorovich constant.
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Lemma 4.1. Let A and B be positive definite matrices such that 0 < mI ≤
A, B ≤ MI for some scalars 0 < m < M , and let α ∈ [0, 1]. Put h = M

m
. Let

0 < q ≤ 1. Then for each 0 < q ≤ p ≤ 1, there exist unitary matrices U1 and U2

such that

K(h, p)
α
p K(h2p, α)

1
p U1(A

p ]α Bp)
1
p U∗

1

≤ (Aq ]α Bq)
1
q ≤ K(h, p)−

α
p K(h2p, α)−

1
p U2(A

p ]α Bp)
1
p U∗

2 (4.1)

and for each p ≥ 1, there exist unitary matrices V1 and V2 such that

K(h2p, α)
1
p V1(A

p ]α Bp)
1
p V ∗

1

≤ (Aq ]α Bq)
1
q ≤ K(h2p, α)−

1
p V2(A

p ]α Bp)
1
p V ∗

2 , (4.2)

where the generalized Kantorovich constant K(h, p) is defined as (2.5).

Proof. For 0 < q < p ≤ 1 and every unit vector x,

(x,(Aq ]α Bq)x)
1
q = (

A
q
2 x

‖A q
2 x‖

, (A− q
2 BqA− q

2 )α A
q
2 x

‖A q
2 x‖

)
1
q ‖A

q
2 x‖

2
q

≤ (
A

q
2 x

‖A q
2 x‖

, A− q
2 BqA− q

2
A

q
2 x

‖A q
2 x‖

)
α
q ‖A

q
2 x‖

2
q by 0 < α < 1 and Theorem A (ii)

= (x, Bqx)
α
q ‖A

q
2 x‖

2
q
− 2α

q

≤ (x, Bx)α‖A
q
2 x‖

2
q
− 2α

q by 0 < q < 1 and Theorem A (ii)

= (x, Bx)
pα
p ‖A

q
2 x‖

2
q
− 2α

q (?)

≤
(
K(h, p)−1(x, Bpx)

)α
p ‖A

q
2 x‖

2
q
− 2α

q by 0 < p ≤ 1 and Theorem A (ii)

= K(h, p)−
α
p (x, Bpx)

α
p ‖A

q
2 x‖

2
q
− 2α

q

= K(h, p)−
α
p (

A
p
2 x

‖A p
2 x‖

, (A− p
2 BpA− p

2 )
A

p
2 x

‖A p
2 x‖

)
α
p ‖A

p
2 x‖

2α
p ‖A

q
2 x‖

2
q
− 2α

q

≤ K(h, p)−
α
p K(h2p, α)−

1
p (Ap ]α Bpx, x)

1
p‖A

p
2 x‖

2α
p
− 2

p‖A
q
2 x‖

2
q
− 2α

q by 0 < α < 1

≤ K(h, p)−
α
p K(h2p, α)−

1
p (Ap ]α Bpx, x)

1
p .

The last inequality holds since it follows from 0 < q < p that

‖A
p
2 x‖

2α
p
− 2

p‖A
q
2 x‖

2
q
− 2α

q = (Apx, x)
α−1

p (Aqx, x)
1−α

q

= (Apx, x)
α−1

p ((Ap)
q
p x, x)

1−α
q

≤ (Apx, x)
α−1

p (Apx, x)
1−α

p = 1.

By the minimax principle, there exists a subspace F of codimension k − 1 such
that

λk

(
(Aq ]α Bq)

1
q

)
= max

y∈F,‖x‖=1
(x, (Aq ]α Bq)

1
q x) = max

y∈F,‖x‖=1
(x, (Aq ]α Bq)x)

1
q .
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Therefore, we have

λk

(
(Aq ]α Bq)

1
q

)
= max

y∈F,‖x‖=1
(x, (Aq ]α Bq)x)

1
q

≤ max
y∈F,‖x‖=1

K(h, p)−
α
p K(h2p, α)−

1
p (Ap]αBpx, x)

1
p

≤ K(h, p)−
α
p K(h2p, α)−

1
p λk

(
(Ap ]α Bp)

1
p

)
by 1

p
≥ 1 and Theorem A(i).

Hence there exist a unitary matrix U2 such that

(Aq ]α Bq)
1
q ≤ K(h, p)−

α
p K(h2p, α)−

1
p U2(A

p ]α Bp)
1
p U∗

2 .

Replacing A and B by their inverses, we have the left-hand side inequality of
(4.1).

Suppose that p ≥ 1. In the part (?), we have (x, Bx)p ≤ (x, Bpx) by Theorem
A(i). Therefore it follows that the inequality (4.2) holds by a similar method. �

By Lemma 4.1, we have another reverse of the Golden–Thompson type inequal-
ities due to Ando, Hiai and Petz.

Theorem 4.2. Let H and K be Hermitian matrices such that mI ≤ H, K ≤ MI
for some scalars m ≤ M , and let α ∈ [0, 1]. Then

|‖e(1−α)H+αK |‖ ≤ K(eM−m, p)−
α
p K(e2p(M−m), α)−

1
p |‖(epH ]α epK)

1
p |‖

for all 0 < p ≤ 1

and

|‖e(1−α)H+αK |‖ ≤ K(e2p(M−m), α)−
1
p |‖(epH ]α epK)

1
p |‖ for all p ≥ 1,

where the generalized Kantorovich constant K(h, p) is defined as (2.5). In par-
ticular,

|‖eH+K |‖ ≤ e2M + e2m

2eMem
|‖e2H ] e2K |‖. (4.3)

Proof. Replacing A and B by eH and eK in Lemma 4.1, we have this theorem. �

Remark 4.3. (1) In Theorem 4.2, the constant K(eM−m, p)−
α
p K(e2p(M−m), α)−

1
p =

1 in the cases of (α, p) = (0, 1) and (1, 1).
(2) Comparison of the constants (3.9) in Theorem 3.4 and (4.3) in Theorem 4.2:

If α = 1
2
, then for each p > 0 it follows from Specht theorem (2.1) that

K(h2p,
1

2
)−

1
p =

(
h

p
2 + h−

p
2

2

) 1
p

≤
(
S(hp)

√
h

p
2 h−

p
2

) 1
p

= S(hp)
1
p .

Hence for each p ≥ 1

|‖eH+K |‖ ≤ K(e4p(M−m),
1

2
)−

1
p |‖

(
e2pH ] e2pK

) 1
p |‖

≤ S(e2p(M−m))
1
p |‖

(
e2pH ] e2pK

) 1
p |‖
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In particular, if we put p = 1, then

|‖eH+K |‖ ≤ e2M + e2m

2eMem
|‖e2H ] e2K |‖ ≤ S(e2(M−m)) |‖e2H ] e2K |‖.

Finally, in the case of 0 < p ≤ 1, if we put h = 2, α = 1
2
, then we graph two

functions S(2p)
1
p and K(2, p)−

1
2p K(22p, 1

2
)−

1
p on p as follows:

Figure 1. Graphs of y = S(2p)
1
p · · · (1) and y = K(2, p)−

1
2p K(22p, 1

2
)−

1
p · · · (2)

(2)

(1)
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ties, Monographs in Inequalities 1, Element, Zagreb, 2005.
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[9] B. Mond and J.E. Pečarić, Convex inequalities in Hilbert space, Houston J. Math.,

19(1993), 405–420.
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