REVERSES OF THE GOLDEN-THOMPSON TYPE INEQUALITIES DUE TO ANDO-HIAI-PETZ

YUKI SEO
This paper is dedicated to Professor Josip E. Pečarić

Submitted by M. Frank

Abstract. In this paper, we show reverses of the Golden-Thompson type inequalities due to Ando, Hiai and Petz: Let H and K be Hermitian matrices such that $m I \leq H, K \leq M I$ for some scalars $m \leq M$, and let $\alpha \in[0,1]$. Then for every unitarily invarint norm

$$
\left\|\left|e^{(1-\alpha) H+\alpha K}\left\|\left\lvert\, \leq S\left(e^{p(M-m)}\right)^{\frac{1}{p}}\right.\right\|\left\|\left(e^{p H} \sharp \alpha e^{p K}\right)^{\frac{1}{p}}\right\|\right.\right.
$$

holds for all $p>0$ and the right-hand side converges to the left-hand side as $p \downarrow 0$, where $S(a)$ is the Specht ratio and the α-geometric mean $X \not \sharp_{\alpha} Y$ is defined as

$$
X \not \sharp_{\alpha} Y=X^{\frac{1}{2}}\left(X^{-\frac{1}{2}} Y X^{-\frac{1}{2}}\right)^{\alpha} X^{\frac{1}{2}} \quad \text { for all } 0 \leq \alpha \leq 1
$$

for positive definite X and Y.

1. Introduction.

Let \mathbb{M}_{n} denote the space of n-by- n complex matrices and I stands for the identity matrix. For a pair X, Y of Hermitian matrices, the order relation $X \geq Y$ means as usual that $X-Y$ is positive semidefinite. In particular, $X>0$ means

[^0]that X is positive definite. A norm $\|\cdot\| \|$ on \mathbb{M}_{n} is said to be unitarily invariant if
$$
\|U X V\|=\|X\|, \quad X \in \mathbb{M}_{n}
$$
for all unitary U, V. Throughout the paper, the symbol $\|\mid \cdot\|$ denotes the unitarily invariant norm.

Motivated by quantum statistical mechanics, Golden [5], Symanzik [12] and Thompson 13 independently proved that

$$
\operatorname{Tr} e^{H+K} \leq \operatorname{Tr} e^{H} e^{K}
$$

holds for Hermitian matrices H and K. This so-called Golden-Thompson trace inequality has been generalized in several ways [8, 2]. Hiai and Petz [6] gave a lower bound on $\operatorname{Tr} e^{H+K}$ in terms of the geometric mean of Hermitian matrices H and K, and it complements the Golden-Thompson upper bound: For each $\alpha \in[0,1]$

$$
\operatorname{Tr}\left(e^{p H} \sharp_{\alpha} e^{p K K}\right)^{\frac{1}{p}} \leq \operatorname{Tr} e^{(1-\alpha) H+\alpha K}
$$

holds for all $p>0$. Here $X \sharp_{\alpha} Y$ denotes the α-geometric mean of positive definite X and Y in the sense of Kubo-Ando [7] (in particular, $X \sharp Y=X \sharp_{\frac{1}{2}} Y$ is the geometric mean), i.e.,

$$
X \sharp_{\alpha} Y=X^{\frac{1}{2}}\left(X^{-\frac{1}{2}} Y X^{-\frac{1}{2}}\right)^{\alpha} X^{\frac{1}{2}} \quad \text { for all } 0 \leq \alpha \leq 1 .
$$

Afterwards, Ando and Hiai [1] showed that for every unitarily invariant norm $\|\mid \cdot\|$

$$
\begin{equation*}
\left\|\left(e^{p H} \sharp_{\alpha} e^{p K}\right)^{\frac{1}{p}}\right\| \leq\left\|\mid e^{(1-\alpha) H+\alpha K}\right\| \tag{1.1}
\end{equation*}
$$

holds for all $p>0$ and the left-hand side of (1.1) increases to the right-hand side as $p \downarrow 0$. In particular,

$$
\left\|e^{2 H} \sharp e^{2 K}\right\| \leq\left\|e^{H+K}\right\| \| .
$$

The purpose of this paper is to find a upper bound on $\left\|\mid e^{(1-\alpha) H+\alpha K}\right\| \|$ in terms of scalar multiples of $\left\|\left|\left(e^{p H} \sharp_{\alpha} e^{p K}\right)^{\frac{1}{p}} \|\right|\right.$ for every unitarily invariant norm, and it shows reverses of the Golden-Thompson type inequalities (1.1): Let H and K be Hermitian matrices such that $m I \leq H, K \leq M I$ for some scalars $m \leq M$, and let $\alpha \in[0,1]$. Then

$$
\begin{equation*}
\left\|\mid e^{(1-\alpha) H+\alpha K}\right\| \leq S\left(e^{p(M-m)}\right)^{\frac{1}{p}}\left\|\left(e^{p H} \not \sharp_{\alpha} e^{p K}\right)^{\frac{1}{p}}\right\| \tag{1.2}
\end{equation*}
$$

holds for all $p>0$ and the right-hand side of (1.2) converges to the left-hand side as $p \downarrow 0$, where $S(h)$ is the Specht ratio.

2. Preliminaries.

In order to prove our results, we need some preliminaries. As a converse of the arithmetic-geometric mean inequality, Specht [11] estimated the upper bound of the arithmetic mean by the geometric one for positive numbers: For $x_{1}, \cdots, x_{n} \in$ [m, M] with $0<m \leq M$,

$$
\begin{equation*}
\frac{x_{1}+\cdots+x_{n}}{n} \leq S(h) \sqrt[n]{x_{1} \cdots x_{n}} \tag{2.1}
\end{equation*}
$$

where $h=\frac{M}{m}(\geq 1)$ is a generalized condition number in the sense of Turing [15] and the Specht ratio is defined for $h>0$ as

$$
\begin{equation*}
S(h)=\frac{(h-1) h^{\frac{1}{h-1}}}{e \log h}(h \neq 1) \quad \text { and } \quad S(1)=1 \tag{2.2}
\end{equation*}
$$

Pečarić [10] showed the noncommutative operator version of (2.1): For positive definite A and B such that $0<m I \leq A, B \leq M I$ for some scalars $0<m \leq M$

$$
\begin{equation*}
(1-\alpha) A+\alpha B \leq S(h) A \not \sharp_{\alpha} B \quad \text { for all } \alpha \in[0,1], \tag{2.3}
\end{equation*}
$$

also see [14].
We collect basic properties of the Specht ratio ([4, Lemma2.47], [16]):
Lemma 2.1. Let $h>0$ be given. Then the Specht ratio has the following properties:
(1) $S\left(h^{-1}\right)=S(h)$.
(2) A function $S(h)$ is strictly decreasing for $0<h<1$ and strictly increasing for $h>1$.
(3) $\lim _{p \rightarrow 0} S\left(h^{p}\right)^{\frac{1}{p}}=1$.

For positive definite A such that $m I \leq A \leq M I$ for some scalars $0<m \leq M$, the following inequality is called the Kantorovich inequality:

$$
\begin{equation*}
(A x, x)\left(A^{-1} x, x\right) \leq \frac{(M+m)^{2}}{4 M m} \quad \text { for every unit vector } x \tag{2.4}
\end{equation*}
$$

We call the constant $\frac{(M+m)^{2}}{4 M m}$ the Kantorovich constant. Furuta [3] showed the following extension of (2.4) as a reverse of Hölder-McCarthy inequality:

Theorem A. Let A be a positive definite matrix such that $m I \leq A \leq M I$ for some scalars $0<m<M$ and x a unit vector. Put $h=\frac{M}{m}$. Then

$$
\begin{array}{ll}
(A x, x)^{p} \leq\left(A^{p} x, x\right) \leq K(h, p)(A x, x)^{p} & \text { for all } p \notin[0,1] \\
K(h, p)(A x, x)^{p} \leq\left(A^{p} x, x\right) \leq(A x, x)^{p} & \text { for all } p \in[0,1] \tag{ii}
\end{array}
$$

where a generalized Kantorovich constant $K(h, p)$ is defined for $h>0$ as

$$
\begin{equation*}
K(h, p)=\frac{h^{p}-h}{(p-1)(h-1)}\left(\frac{p-1}{p} \frac{h^{p}-1}{h^{p}-h}\right)^{p} \quad \text { for any real number } p \in \mathbb{R} . \tag{2.5}
\end{equation*}
$$

In fact, if we put $p=-1$, then $K\left(\frac{M}{m},-1\right)=\frac{(M+m)^{2}}{4 M m}$.
Remark 2.2. By using the Mond-Pečarić method, Mond and Pečarić [9] showed more general form of Theorem A in 1993: Let A be a Hermitian matrix such that $m I \leq A \leq M I$. If f is a strictly convex twice differentiable function on $[m, M]$ such that $f(t)>0$ for all $t \in[m, M]$, then for all unit vectors x, the inequality

$$
(f(A) x, x) \leq \lambda f((A x, x))
$$

holds for some $\lambda>1$. In fact, if we put $f(t)=t^{p}$, then we have Theorem A.

We state some properties of $K(h, p)$ (see [4, Theorem 2.54, 2.56], [16]):
Lemma 2.3. Let $h>0$ be given. Then a generalized Kantorovich constant $K(h, p)$ has the following properties:

$$
\begin{align*}
& K(h, p)=K\left(h^{-1}, p\right) \quad \text { for all } p \in \mathbb{R} . \tag{i}\\
& K(h, p)=K(h, 1-p) \quad \text { for all } p \in \mathbb{R} . \tag{ii}\\
& K(h, 0)=K(h, 1)=1 \quad \text { and } \quad K(1, p)=1 \quad \text { for all } p \in \mathbb{R} . \tag{iii}\\
& K\left(h^{r}, \frac{p}{r}\right)^{\frac{1}{p}}=K\left(h^{p}, \frac{r}{p}\right)^{-\frac{1}{r}} \quad \text { for } p r \neq 0 . \tag{iv}\\
& \lim _{p \rightarrow 0} K\left(h^{p}, \frac{r}{p}\right)=S\left(h^{r}\right) \quad \text { for all } r \in \mathbb{R} . \tag{v}
\end{align*}
$$

3. Specht ratio version.

Let A and B be positive definite matrices. Ando and Hiai [1] showed the following inequality by using the log-majorization: For each $\alpha \in[0,1]$

$$
\begin{equation*}
\left\|\left|\left(A^{p} \sharp_{\alpha} B^{p}\right)^{\frac{1}{p}}\|\leq\|\left(A^{q} \sharp_{\alpha} B^{q}\right)^{\frac{1}{q}} \|\right| \quad \text { for all } 0<q<p\right. \tag{3.1}
\end{equation*}
$$

for every unitarily invariant norm. In particular,

$$
\left\|A^{r} \sharp_{\alpha} B^{r}\right\|\left|\leq\left\|\left(A \not \sharp_{\alpha} B\right)^{r}\right\|\right| \quad \text { for all } r \geq 1 \text {. }
$$

First of all, we investigate order relations between $\left(A^{q} \sharp_{\alpha} B^{q}\right)^{\frac{1}{q}}$ and $\left(A^{p} \sharp_{\alpha} B^{p}\right)^{\frac{1}{p}}$ in terms of the Specht ratio. In fact a stronger result holds. We show that a reverse of (3.1) can be extended to all eigenvalues. Given two positive definite matrices X and Y, recall that the eigenvalues of Y dominate the corresponding eigenvalues of X iff there exists a unitary matrix U such that $X \leq U Y U^{*}$. For a Hermitian matrix H, let $\lambda_{1}(H) \geq \lambda_{2}(H) \geq \cdots \geq \lambda_{n}(H)$ be the eigenvalues of H arranged in decreasing order.

Lemma 3.1. Let A and B be positive definite matrices such that $0<m I \leq$ $A, B \leq M I$ for some scalars $0<m<M$, and let $\alpha \in[0,1]$. Put $h=\frac{M}{m}$. Then for each $0<q \leq p$, there exist unitary matrices U and V such that

$$
\begin{equation*}
S\left(h^{p}\right)^{-\frac{1}{p}} V\left(A^{p} \sharp_{\alpha} B^{p}\right)^{\frac{1}{p}} V^{*} \leq\left(A^{q} \sharp_{\alpha} B^{q}\right)^{\frac{1}{q}} \leq S\left(h^{p}\right)^{\frac{1}{p}} U\left(A^{p} \sharp_{\alpha} B^{p}\right)^{\frac{1}{p}} U^{*}, \tag{3.2}
\end{equation*}
$$

where $S(h)$ is defined as (2.2).
Proof. By the arithmetic-geometric mean inequality and its reverse 2.3), we have

$$
A \sharp_{\alpha} B \leq(1-\alpha) A+\alpha B \leq S(h) A \not \sharp_{\alpha} B .
$$

Since $0<\frac{q}{p}<1$, it follows from the operator concavity of $t^{\frac{q}{p}}$ that

$$
A^{\frac{q}{p}} \sharp_{\alpha} B^{\frac{q}{p}} \leq(1-\alpha) A^{\frac{q}{p}}+\alpha B^{\frac{q}{p}} \leq((1-\alpha) A+\alpha B)^{\frac{q}{p}} \leq S(h)^{\frac{q}{p}}\left(A \not \sharp_{\alpha} B\right)^{\frac{q}{p}} .
$$

Replacing A and B by A^{p} and B^{p} respectively, we have

$$
\begin{equation*}
A^{q} \not \sharp_{\alpha} B^{q} \leq S\left(h^{p}\right)^{\frac{q}{p}}\left(A^{p} \sharp_{\alpha} B^{p}\right)^{\frac{q}{p}} . \tag{3.3}
\end{equation*}
$$

In the case of $q \geq 1$, the Löwner-Heinz inequality asserts

$$
\left(A^{q} \sharp_{\alpha} B^{q}\right)^{\frac{1}{q}} \leq S\left(h^{p}\right)^{\frac{1}{p}}\left(A^{p} \sharp_{\alpha} B^{p}\right)^{\frac{1}{p}} .
$$

In the case of $0<q \leq 1$, by the minimax principle, there exists a subspace F of codimension $k-1$ such that

$$
\lambda_{k}\left(\left(A^{q} \not \sharp_{\alpha} B^{q}\right)^{\frac{1}{q}}\right)=\max _{x \in F,\|x\|=1}\left(x,\left(A^{q} \not \sharp_{\alpha} B^{q}\right)^{\frac{1}{q}} x\right)=\max _{x \in F,\|x\|=1}\left(x,\left(A^{q} \not \sharp_{\alpha} B^{q}\right) x\right)^{\frac{1}{q}} .
$$

Therefore, by (3.3) we have

$$
\begin{aligned}
& \lambda_{k}\left(\left(A^{q} \not \sharp_{\alpha} B^{q}\right)^{\frac{1}{q}}\right) \\
& \quad \leq \max _{x \in F,\|x\|=1}\left(S\left(h^{p}\right)^{\frac{q}{p}}\left(x,\left(A^{p} \sharp_{\alpha} B^{p}\right)^{\frac{q}{p}} x\right)\right)^{\frac{1}{q}} \\
& \leq \max _{x \in F,\|x\|=1} S\left(h^{p}\right)^{\frac{1}{p}}\left(x,\left(A^{p} \sharp_{\alpha} B^{p}\right)^{\frac{1}{p}} x\right) \quad \text { by } 0<q<1 \text { and Theorem A(ii) } \\
& \leq S\left(h^{p}\right)^{\frac{1}{p}} \lambda_{k}\left(\left(A^{p} \sharp_{\alpha} B^{p}\right)^{\frac{1}{p}}\right)
\end{aligned}
$$

and hence we obtain the right-hand side of (3.2).
To prove the left-hand side inequality, we replace A and B by their inverses and we use

$$
A^{-1} \sharp_{\alpha} B^{-1}=\left(A \not \sharp_{\alpha} B\right)^{-1} .
$$

Then we have

$$
\left(A^{-q} \sharp_{\alpha} B^{-q}\right)^{\frac{1}{q}} \leq S\left(h^{-p}\right)^{\frac{1}{p}} V\left(A^{-p} \sharp_{\alpha} B^{-p}\right)^{\frac{1}{p}} V^{*}
$$

for some unitary V. By raising both sides to the inverse and (1) of Lemma 2.1 we obtain the desired one.

As a corollary of Lemma 3.1, we have a reverse of (3.1):
Corollary 3.2. Let A and B be positive definite matrices such that $0<m I \leq$ $A, B \leq M I$ for some scalars $0<m \leq M$, and let $\alpha \in[0,1]$. Put $h=\frac{M}{m}$. Then

$$
\begin{equation*}
\left\|\left(A^{q} \sharp_{\alpha} B^{q}\right)^{\frac{1}{q}}\right\|\left|\leq S\left(h^{p}\right)^{\frac{1}{p}}\| \|\left(A^{p} \sharp_{\alpha} B^{p}\right)^{\frac{1}{p}} \|\right| \quad \text { for all } 0<q \leq p . \tag{3.4}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\left\|A^{p} \sharp_{\alpha} B^{p}\right\| \leq S(h)^{p}\left\|\left(A \not \sharp_{\alpha} B\right)^{p}\right\| \quad \text { for all } 0<p \leq 1 \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\left|\left(A \not \sharp_{\alpha} B\right)^{p}\left\|\leq S\left(h^{p}\right)\right\|\right| A^{p} \sharp_{\alpha} B^{p}\right\| \quad \text { for all } p>1 \text {. } \tag{3.6}
\end{equation*}
$$

Proof. By Lemma 3.1, we have (3.4). If we put $q=1$ in (3.4), then we have

$$
\left\|A \not \sharp_{\alpha} B\right\| \leq S\left(h^{p}\right)^{\frac{1}{p}}\| \|\left(A^{p} \sharp_{\alpha} B^{p}\right)^{\frac{1}{p}} \|
$$

for all $p \geq 1$. Moreover, replacing A and B by $A^{\frac{1}{p}}$ and $B^{\frac{1}{p}}$ we have

$$
\left\|A^{\frac{1}{p}} \sharp_{\alpha} B^{\frac{1}{p}}\right\| \leq S\left(h^{p}\right)^{\frac{1}{p}}\left\|\left(A \not \sharp_{\alpha} B\right)^{\frac{1}{p}}\right\| \|
$$

and hence we have (3.5). Similarly we have (3.6).

We show reverses of the Golden-Thompson type inequalities due to Ando, Hiai and Petz, which is our main result.

Theorem 3.3. Let H and K be Hermitian matrices such that $m I \leq H, K \leq M I$ for some scalars $m \leq M$, and let $\alpha \in[0,1]$. Then for each $p>0$ there exists unitary matrices U and V such that

$$
\begin{align*}
S\left(e^{p(M-m)}\right)^{-\frac{1}{p}} V & \left(e^{p H} \not \sharp_{\alpha} e^{p K}\right)^{\frac{1}{p}} V^{*} \\
& \leq e^{(1-\alpha) H+\alpha K} \leq S\left(e^{p(M-m)}\right)^{\frac{1}{p}} U\left(e^{p H} \not \sharp_{\alpha} e^{p K}\right)^{\frac{1}{p}} U^{*} . \tag{3.7}
\end{align*}
$$

Proof. Replacing A and B by e^{H} and e^{K} in Lemma 3.1 respectively, it follows that for each $0<q \leq p$ there exist unitary matrix $U_{p, q}$ such that

$$
\left(e^{q H} \not \sharp_{\alpha} e^{q K}\right)^{\frac{1}{q}} \leq S\left(e^{p(M-m)}\right)^{\frac{1}{p}} U_{p, q}\left(e^{p H} \not \sharp_{\alpha} e^{p K}\right)^{\frac{1}{p}} U_{p, q}^{*} .
$$

By [6, Lemma 3.3], we have

$$
e^{(1-\alpha) H+\alpha K}=\lim _{q \rightarrow 0}\left(e^{q H} \not \sharp_{\alpha} e^{q K}\right)^{\frac{1}{q}}
$$

and hence it follows that for each $p>0$ there exist unitary matrix U such that

$$
e^{(1-\alpha) H+\alpha K} \leq S\left(e^{p(M-m)}\right)^{\frac{1}{p}} U\left(e^{p H} \sharp_{\alpha} e^{p K}\right)^{\frac{1}{p}} U^{*} .
$$

We also have the left-hand side inequality of (3.7) by a similar method as the proof of Lemma 3.1.

In particular, we have the following results by (3) of Lemma 2.1 .
Theorem 3.4. Let H and K be Hermitian matrices such that $m I \leq H, K \leq M I$ for some scalars $m \leq M$, and let $\alpha \in[0,1]$. Then

$$
\begin{equation*}
\left\|\mid e^{(1-\alpha) H+\alpha K}\right\| \leq S\left(e^{p(M-m)}\right)^{\frac{1}{p}}\left\|\left(e^{p H} \not \sharp_{\alpha} e^{p K}\right)^{\frac{1}{p}}\right\| \tag{3.8}
\end{equation*}
$$

holds for all $p>0$ and the right-hand side of (3.8) converges to the left-hand side as $p \downarrow 0$. In particular,

$$
\begin{equation*}
\left\|\mid e^{H+K}\right\| \leq S\left(e^{2(M-m)}\right)\left\|e^{2 H} \sharp e^{2 K}\right\| . \tag{3.9}
\end{equation*}
$$

4. Kantorovich constant version.

In this section, we want to show another estimate of the Golden-Thompson type inequalities due to Ando, Hiai and Petz. As a matter of fact, the upper bound $S\left(e^{p(M-m)}\right)^{\frac{1}{p}}$ in 3.8 of Theorem 3.4 is constant for all $\alpha \in[0,1]$. We show another order relations between $\left(A^{q} \sharp_{\alpha} B^{q}\right)^{\frac{1}{q}}$ and $\left(A^{p} \sharp_{\alpha} B^{p}\right)^{\frac{1}{p}}$ in terms of the generalized Kantorovich constant.

Lemma 4.1. Let A and B be positive definite matrices such that $0<m I \leq$ $A, B \leq M I$ for some scalars $0<m<M$, and let $\alpha \in[0,1]$. Put $h=\frac{M}{m}$. Let $0<q \leq 1$. Then for each $0<q \leq p \leq 1$, there exist unitary matrices U_{1} and U_{2} such that

$$
\begin{align*}
& K(h, p)^{\frac{\alpha}{p}} K\left(h^{2 p}, \alpha\right)^{\frac{1}{p}} U_{1}\left(A^{p} \sharp_{\alpha} B^{p}\right)^{\frac{1}{p}} U_{1}^{*} \\
& \quad \leq\left(A^{q} \sharp_{\alpha} B^{q}\right)^{\frac{1}{q}} \leq K(h, p)^{-\frac{\alpha}{p}} K\left(h^{2 p}, \alpha\right)^{-\frac{1}{p}} U_{2}\left(A^{p} \sharp_{\alpha} B^{p}\right)^{\frac{1}{p}} U_{2}^{*} \tag{4.1}
\end{align*}
$$

and for each $p \geq 1$, there exist unitary matrices V_{1} and V_{2} such that

$$
\begin{align*}
& K\left(h^{2 p}, \alpha\right)^{\frac{1}{p}} V_{1}\left(A^{p} \sharp_{\alpha} B^{p}\right)^{\frac{1}{p}} V_{1}^{*} \\
& \leq\left(A^{q} \sharp_{\alpha} B^{q}\right)^{\frac{1}{q}} \leq K\left(h^{2 p}, \alpha\right)^{-\frac{1}{p}} V_{2}\left(A^{p} \sharp_{\alpha} B^{p}\right)^{\frac{1}{p}} V_{2}^{*}, \tag{4.2}
\end{align*}
$$

where the generalized Kantorovich constant $K(h, p)$ is defined as (2.5).
Proof. For $0<q<p \leq 1$ and every unit vector x,

$$
\begin{aligned}
(x, & \left.\left(A^{q} \not \sharp_{\alpha} B^{q}\right) x\right)^{\frac{1}{q}}=\left(\frac{A^{\frac{q}{2}} x}{\left\|A^{\frac{q}{2}} x\right\|},\left(A^{-\frac{q}{2}} B^{q} A^{-\frac{q}{2}}\right)^{\alpha} \frac{A^{\frac{q}{2}} x}{\left\|A^{\frac{q}{2}} x\right\|}\right)^{\frac{1}{q}}\left\|A^{\frac{q}{2}} x\right\|^{\frac{2}{q}} \\
& \leq\left(\frac{A^{\frac{q}{2}} x}{\left\|A^{\frac{q}{2}} x\right\|}, A^{-\frac{q}{2}} B^{q} A^{-\frac{q}{2}} \frac{A^{\frac{q}{2}} x}{\left\|A^{\frac{q}{2}} x\right\|}\right)^{\frac{\alpha}{q}}\left\|A^{\frac{q}{2}} x\right\|^{\frac{2}{q}} \quad \text { by } 0<\alpha<1 \text { and Theorem A (ii) } \\
& =\left(x, B^{q} x\right)^{\frac{\alpha}{q}}\left\|A^{\frac{q}{2}} x\right\|^{\frac{2}{q}-\frac{2 \alpha}{q}} \\
& \leq(x, B x)^{\alpha}\left\|A^{\frac{q}{2}} x\right\|^{\frac{2}{q}-\frac{2 \alpha}{q}} \quad \text { by } 0<q<1 \text { and Theorem A (ii) } \\
& =(x, B x)^{\frac{p \alpha}{p}}\left\|A^{\frac{q}{2}} x\right\|^{\frac{2}{q}-\frac{2 \alpha}{q}} \quad(\star) \\
& \leq\left(K(h, p)^{-1}\left(x, B^{p} x\right)\right)^{\frac{\alpha}{p}}\left\|A^{\frac{q}{2}} x\right\|^{\frac{2}{q}-\frac{2 \alpha}{q}} \quad \text { by } 0<p \leq 1 \text { and Theorem A (ii) } \\
& =K(h, p)^{-\frac{\alpha}{p}}\left(x, B^{p} x\right)^{\frac{\alpha}{p}}\left\|A^{\frac{q}{2}} x\right\|^{\frac{2}{q}-\frac{2 \alpha}{q}} \\
& =K(h, p)^{-\frac{\alpha}{p}}\left(\frac{A^{\frac{p}{2}} x}{\left\|A^{\frac{p}{2}} x\right\|},\left(A^{-\frac{p}{2}} B^{p} A^{-\frac{p}{2}}\right) \frac{A^{\frac{p}{2}} x}{\left\|A^{\frac{p}{2}} x\right\|}\left\|^{\frac{\alpha}{p}}\right\| A^{\frac{p}{2}} x\left\|^{\frac{2 \alpha}{p}}\right\| A^{\frac{q}{2}} x \|^{\frac{2}{q}-\frac{2 \alpha}{q}}\right. \\
& \leq K(h, p)^{-\frac{\alpha}{p}} K\left(h^{2 p}, \alpha\right)^{-\frac{1}{p}}\left(A^{p} \not \sharp_{\alpha} B^{p} x, x\right)^{\frac{1}{p}}\left\|A^{\frac{p}{2}} x\right\|^{\frac{2 \alpha}{p}-\frac{2}{p}}\left\|A^{\frac{q}{2}} x\right\|^{\frac{2}{q}-\frac{2 \alpha}{q}} \quad \text { by } 0<\alpha<1 \\
& \leq K(h, p)^{-\frac{\alpha}{p}} K\left(h^{2 p}, \alpha\right)^{-\frac{1}{p}}\left(A^{p} \not \sharp_{\alpha} B^{p} x, x\right)^{\frac{1}{p}} .
\end{aligned}
$$

The last inequality holds since it follows from $0<q<p$ that

$$
\begin{aligned}
\left\|A^{\frac{p}{2}} x\right\|^{\frac{2 \alpha}{p}-\frac{2}{p}}\left\|A^{\frac{q}{2}} x\right\|^{\frac{2}{q}-\frac{2 \alpha}{q}} & =\left(A^{p} x, x\right)^{\frac{\alpha-1}{p}}\left(A^{q} x, x\right)^{\frac{1-\alpha}{q}} \\
& =\left(A^{p} x, x\right)^{\frac{\alpha-1}{p}}\left(\left(A^{p}\right)^{\frac{q}{p}} x, x\right)^{\frac{1-\alpha}{q}} \\
& \leq\left(A^{p} x, x\right)^{\frac{\alpha-1}{p}}\left(A^{p} x, x\right)^{\frac{1-\alpha}{p}}=1 .
\end{aligned}
$$

By the minimax principle, there exists a subspace F of codimension $k-1$ such that

$$
\lambda_{k}\left(\left(A^{q} \sharp_{\alpha} B^{q}\right)^{\frac{1}{q}}\right)=\max _{y \in F,\|x\|=1}\left(x,\left(A^{q} \sharp_{\alpha} B^{q}\right)^{\frac{1}{q}} x\right)=\max _{y \in F,\|x\|=1}\left(x,\left(A^{q} \sharp_{\alpha} B^{q}\right) x\right)^{\frac{1}{q}} .
$$

Therefore, we have

$$
\begin{aligned}
& \lambda_{k}\left(\left(A^{q} \not \sharp_{\alpha} B^{q}\right)^{\frac{1}{q}}\right)=\max _{y \in F,\|x\|=1}\left(x,\left(A^{q} \not \sharp_{\alpha} B^{q}\right) x\right)^{\frac{1}{q}} \\
& \quad \leq \max _{y \in F,\|x\|=1} K(h, p)^{-\frac{\alpha}{p}} K\left(h^{2 p}, \alpha\right)^{-\frac{1}{p}}\left(A^{p} \sharp_{\alpha} B^{p} x, x\right)^{\frac{1}{p}} \\
& \quad \leq K(h, p)^{-\frac{\alpha}{p}} K\left(h^{2 p}, \alpha\right)^{-\frac{1}{p}} \lambda_{k}\left(\left(A^{p} \not \sharp_{\alpha} B^{p}\right)^{\frac{1}{p}}\right) \quad \text { by } \frac{1}{p} \geq 1 \text { and Theorem A(i). }
\end{aligned}
$$

Hence there exist a unitary matrix U_{2} such that

$$
\left(A^{q} \not \sharp_{\alpha} B^{q}\right)^{\frac{1}{q}} \leq K(h, p)^{-\frac{\alpha}{p}} K\left(h^{2 p}, \alpha\right)^{-\frac{1}{p}} U_{2}\left(A^{p} \not \sharp_{\alpha} B^{p}\right)^{\frac{1}{p}} U_{2}^{*} .
$$

Replacing A and B by their inverses, we have the left-hand side inequality of (4.1).

Suppose that $p \geq 1$. In the part (\star), we have $(x, B x)^{p} \leq\left(x, B^{p} x\right)$ by Theorem A(i). Therefore it follows that the inequality (4.2) holds by a similar method.

By Lemma 4.1, we have another reverse of the Golden-Thompson type inequalities due to Ando, Hiai and Petz.
Theorem 4.2. Let H and K be Hermitian matrices such that $m I \leq H, K \leq M I$ for some scalars $m \leq M$, and let $\alpha \in[0,1]$. Then

$$
\begin{array}{r}
\left\|e^{(1-\alpha) H+\alpha K}\right\| \leq K\left(e^{M-m}, p\right)^{-\frac{\alpha}{p}} K\left(e^{2 p(M-m)}, \alpha\right)^{-\frac{1}{p}} \|\left(\left(e^{p H} \not \sharp_{\alpha} e^{p K}\right)^{\frac{1}{p}} \|\right. \\
\text { for all } 0<p \leq 1
\end{array}
$$

and

$$
\left\|e^{(1-\alpha) H+\alpha K}\right\| \leq K\left(e^{2 p(M-m)}, \alpha\right)^{-\frac{1}{p}}\left\|\left(e^{p H} \not \sharp_{\alpha} e^{p K}\right)^{\frac{1}{p}}\right\| \quad \text { for all } p \geq 1 \text {, }
$$

where the generalized Kantorovich constant $K(h, p)$ is defined as (2.5). In particular,

$$
\begin{equation*}
\left\|\left|e^{H+K}\left\|\left\lvert\, \leq \frac{e^{2 M}+e^{2 m}}{2 e^{M} e^{m}}\right.\right\| e^{2 H} \sharp e^{2 K} \| .\right.\right. \tag{4.3}
\end{equation*}
$$

Proof. Replacing A and B by e^{H} and e^{K} in Lemma 4.1, we have this theorem.

Remark 4.3. (1) In Theorem 4.2, the constant $K\left(e^{M-m}, p\right)^{-\frac{\alpha}{p}} K\left(e^{2 p(M-m)}, \alpha\right)^{-\frac{1}{p}}=$ 1 in the cases of $(\alpha, p)=(0,1)$ and $(1,1)$.
(2) Comparison of the constants (3.9) in Theorem 3.4 and (4.3) in Theorem4.2; If $\alpha=\frac{1}{2}$, then for each $p>0$ it follows from Specht theorem (2.1) that

$$
K\left(h^{2 p}, \frac{1}{2}\right)^{-\frac{1}{p}}=\left(\frac{h^{\frac{p}{2}}+h^{-\frac{p}{2}}}{2}\right)^{\frac{1}{p}} \leq\left(S\left(h^{p}\right) \sqrt{h^{\frac{p}{2}} h^{-\frac{p}{2}}}\right)^{\frac{1}{p}}=S\left(h^{p}\right)^{\frac{1}{p}} .
$$

Hence for each $p \geq 1$

$$
\begin{aligned}
\left\|e^{H+K}\right\| & \leq K\left(e^{4 p(M-m)}, \frac{1}{2}\right)^{-\frac{1}{p}}\left\|\left(e^{2 p H} \sharp e^{2 p K}\right)^{\frac{1}{p}}\right\| \\
& \leq S\left(e^{2 p(M-m)}\right)^{\frac{1}{p}}\left\|\left(e^{2 p H} \sharp e^{2 p K}\right)^{\frac{1}{p}}\right\|
\end{aligned}
$$

In particular, if we put $p=1$, then

$$
\left\|\mid e^{H+K}\right\| \leq \frac{e^{2 M}+e^{2 m}}{2 e^{M} e^{m}}\left\|e^{2 H} \sharp e^{2 K}\right\| \leq S\left(e^{2(M-m)}\right)\left\|e^{2 H} \sharp e^{2 K}\right\| .
$$

Finally, in the case of $0<p \leq 1$, if we put $h=2, \alpha=\frac{1}{2}$, then we graph two functions $S\left(2^{p}\right)^{\frac{1}{p}}$ and $K(2, p)^{-\frac{1}{2 p}} K\left(2^{2 p}, \frac{1}{2}\right)^{-\frac{1}{p}}$ on p as follows:

Figure 1. Graphs of $y=S\left(2^{p}\right)^{\frac{1}{p}} \cdots(1)$ and $y=K(2, p)^{-\frac{1}{2 p}} K\left(2^{2 p}, \frac{1}{2}\right)^{-\frac{1}{p}} \cdots(2)$

Acknowledgement. We would like to express our cordial thanks to Prof. T.Yamazaki and Prof. M.Yanagida for their valuable comments on Lemma 3.1 and Remark 4.3.

References

[1] T. Ando and F. Hiai, Log-majorization and complementary Golden-Thompson type inequalities, Linear Alg. Appl., 197/198 (1994), 113-131.
[2] R. Bhatia, Matrix Analysis, Springer, New York, 1997.
[3] T. Furuta, Operator inequalities associated with Hölder-McCarthy and Kantorovich inequalities, J. Inequal. Appl., 2(1998), 137-148.
[4] T. Furuta, J. Mićić, J.E. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities, Monographs in Inequalities 1, Element, Zagreb, 2005.
[5] S. Golden, Löwner bounds for Helmholtz function, Phys. Rev., 137(1965), B1127-B1128.
[6] F. Hiai and D. Petz, The Golden-Thompson trace inequality is complemented, Linear Algebra Appl., 181 (1993), 153-185.
[7] F. Kubo and T. Ando, Means of positive linear operators, Math. Ann., 246 (1980), 205224.
[8] A. Lenard, Generalization of the Golden-Thompson inequality $\operatorname{Tr}\left(e^{A} e^{B}\right) \geq \operatorname{Tr} e^{A+B}$, Indiana Univ. Math. J., 21(1971), 457-467.
[9] B. Mond and J.E. Pečarić, Convex inequalities in Hilbert space, Houston J. Math., 19(1993), 405-420.
[10] J.E. Pečarić, Power matrix means and related inequalities, Math. Commun., 1(1996), 91110.
[11] W. Specht, Zur Theorie der elementaren Mittel, Math. Z., 74 (1960), 91-98.
[12] K. Symanzik, Proof and refinements of an inequality of Feynman, J. Math. Phys., 6(1965), 1155-1156.
[13] C.J. Thompson, Inequality with applications in statistical mechanics, J. Math. Phys., 6(1965), 469-480.
[14] M. Tominaga, Specht's ratio in the Young inequality, Sci. Math. Japon., 55(2002), 585-588.
[15] A.M. Turing, Rounding off-errors in matrix processes, Quart. J. Mech. Appl. Math., 1 (1948), 287-308.
[16] T. Yamazaki and M. Yanagida, Characterizations of chaotic order associated with Kantorovich inequality, Sci. Math., 2(1999), 37-50.

Faculty of Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-City, Saitama $337-8570$, Japan.

E-mail address: yukis@sic.shibaura-it.ac.jp

[^0]: Date: Received: 28 March 2008; Revised: 15 June 2008; Accepted: 26 June 2008.
 2000 Mathematics Subject Classification. Primary 15A42; Secondary 15A45, 15A48 and 15A60.

 Key words and phrases. Positive semidefinite matrix, Golden-Thompson inequality, Specht ratio, reverse inequality, geometric mean, unitarily invariant norm, generalized Kantorovich constant, Mond-Pečarić method.

